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Abstract—Audio recordings may provide important evidence in
criminal investigations. One such case is the forensic association
of the recorded audio to the recording location. For example, a
voice message may be the only investigative cue to narrow down
the candidate sites for a crime.

Up to now, several works provide tools for closed-set recording
environment classification under relatively clean recording condi-
tions. However, in forensic investigations, the candidate locations
are case-specific. Thus, closed-set tools are not applicable without
retraining on a sufficient amount of training samples for each
case and respective candidate set. In addition, a forensic tool
has to deal with audio material from uncontrolled sources with
variable properties and quality.

In this work, we therefore attempt a major step towards prac-
tical forensic application scenarios. We propose a representation
learning framework called Envld, short for environment identi-
fication. Envld avoids case-specific retraining. Instead, it is the
first tool for robust few-shot classification of unseen environment
locations. We demonstrate that Envid can handle forensically
challenging material. It provides good quality predictions even
under unseen signal degradations, environment characteristics or
recording position mismatches.

Our code and datasets will be made publicly available upon
acceptance.

Index Terms—audio forensics, representation learning, envi-
ronment identification.

I. INTRODUCTION

Audio forensics plays an important part in criminal inves-
tigations. Audio recordings can be evidence themselves, or
an analysis of their signal characteristics can contribute to
evidence or provide investigative cues [47].

One such characteristic is the reverberation in an audio
recording. Reverberation, most generally described, results
from reflections of sound waves at the recording location.
For example, when a recording is made of a sound that
originates next to a wall (consider, e.g., the breaking of a
glass), then the microphone records the primary sound that
travels directly from the origin to the microphone, and a
reflection of that sound from the wall. A simple computational
model for reverberation is the convolution of a clean signal
with an acoustic impulse response (AIR).

In principle, any enclosed environment or any obstacle
contributes to a reverberation signature. One can invert this
consideration to obtain a forensic cue: the reverberation in
an audio recording characterizes the recording location. The
inverse mapping of reverberation to environment geometry
and composition is not unique, but from a practical point of
view it is oftentimes sufficiently distinctive to support or reject
hypotheses that a recording has been made in one out of a set
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of specific environments. Such a question is of high practical
relevance for the reconstruction of crime scenes and the course
of events in a crime [47].

Two additional challenges increase the difficulty of forensic
investigations. First, it is impractical to collect extensive train-
ing data on a case-by-case basis. If example data is available
for a set of case-related environments, then it can for practical
reasons only stem from a limited acquisition. Second, forensic
investigations oftentimes have to work with audio samples
from uncontrolled sources, i.e., the data can be in almost any
encoding or quality. This imposes high requirements on the
robustness of the analysis tools.

There exist works that aim to perform environment iden-
tification with analytic tools [3[], [26], [33]]. However, it
is generally difficult to appropriately model the complexity
of real-world audio conditions in an analytic model. As a
consequence, deep learning (DL) tools have been increasingly
explored to learn signal characteristics from example data for
this and other forensic tasks [1], [2], [4l, [27], [31]], [44].
Nevertheless, existing methods for environment identification
still impose relatively strict constraints. For example, many
works perform environment identification in a closed-set sce-
nario, i.e., the network must be specifically trained for relevant
target environments [[1[], [3]], [25], [26], [30], [31]l, [33]]. While
this is feasible, e.g., for smart home assistants, it does not
meet the requirements for forensic applications. Oftentimes the
analysis is performed only on relatively clean recordings [3]],
(23], [25], 300, [31fI, [33] or on noisy environment where the
noise distribution is already known at training time [1]], [26].

In this work, we aim to make a substantial step forward
towards forensic environment identification under practical
constraints. We propose a representation learning framework
that performs environment classification, where the embedding
space also allows the regression of environment parameters.
Environment classification is realized as few-shot learning,
i.e., it is not necessary to retrain the representation for a
new case, but instead only a few sample audio recordings
are required from the candidate environments. Additionally,
the proposed method is extensively trained on mixed-quality
data, and as a consequence very relaxed in its assumptions
on the quality of the input data. We extensively evaluate the
proposed approach in difficult scenarios, include training-test
mismatches, unseen noise and lossy compression. This work
also evaluates the impact of specific microphone positions on
few-shot inference. The influence of the microphone position
is oftentimes overlooked in academic research, but it can be a
relevant source of error in practice.

We denote the proposed framework as “EnvId”, as an
abbreviation for “environment identification”. We hope that



Envld will set a new standard for environment identification
from data in the wild, and set a baseline for further research
in this direction [1]

The paper is organized as follows. Section [l reviews related
work on environment identification. In Sec. [[II] we present the
proposed Envld framework, and the data generation pipeline
for simulating challenging forensic scenarios. Extensive ex-
periments are performed in Sec. and Sec. [V] concludes the
work.

II. RELATED WORK

Various methods have been proposed that either perform
environment identification in constrained closed-set scenarios
or that estimate environmental properties from audio signals.
These methods are mostly evaluated on good quality data with-
out a significant mismatch in the training and test distribution.

Many works address the classification of recording environ-
ments of single channel audio samples from a known (closed)
set of classes [1[], [3[I, [24]-[26[, [30], [31], [33]-

Some methods train traditional classifiers like Gaussian
Mixture Models (GMMs) or Support Vector Machines (SVMs)
on hand-crafted features that serve as acoustic fingerprints
for the respective environments [3], [24]-[26[, [30], [33].
More recent methods oftentimes use DL for the closed-set
classification. Papayiannis et al. [31] show the superiority
of deep features of a convolutional recurrent neural network
(CRNN) as opposed to custom, analytic features, while Az-
imi et al. [1] use the deep features of pre-trained neural
networks (NNs) for speaker identification as input to an
SVM. The closed-set scenario is a useful assumption in smart
home environments, where it is possible to train on the same
recording environments that are queried at test time [[1], [31]].
However, the forensic task of environment identification is by
design a problem that has to operate with unknown recording
locations at test time. Hence, existing closed-set methods
are not applicable. For this reason, we instead approach the
problem as a few-shot classification task. Few-shot learning
has already been successfully explored for audio classification
to distinguish between signals of different content like, e.g.,
background music, bird voices or human speech [15], [42],
[43]], [46], but not for the identification of audio recording
environments.

Other works focus on the estimation of specific environment
parameters from single channel audio samples [[6], [9]—[13],
[16], [23]. Moore et al. [23] use analytical models to estimate
the geometry of 2-D rectangular rooms while more recent
approaches employ deep features and directly regress charac-
teristic environment parameters with NNs. For example, many
works target the estimation of RTg, i.e. the time until the AIR
energy decays by 60 db, or the volume of some space [6], [10]-
[13], [[16]. However, also other parameters were investigated,
like Cs, i.e. the ratio between the first 50 ms of a signal and its
remaining late energy [9], [[13]]. From a forensic point of view,
the estimation of specific environment characteristics might
unveil important cues. However, environment identification
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from estimated environment parameters is by design a two-
stage process, and as such relatively prone to errors: the pa-
rameters themselves are only estimates and subject to possible
confusions, overlap, or just estimation errors, and a subsequent
environment identification may add further estimation errors.
Still, the task may become relevant if the police does not
have a hypothesis about candidate locations, but aims to
characterize the recording location for further investigations,
such as a coarse estimate of the volume of a room. Thus,
we demonstrate that our framework is capable of environment
parameter estimation, but put our primary focus on few-shot
learning to directly identify recording locations.

The robustness to signal degradations is an underexplored
topic in research on room identification. Several works ex-
periment on quasi clean audio signals [3], [23]], [25], [30],
[31], [33]], others simulate noise degradations, but use identical
distributions in both the training and the test sets [1]], [6],
[O]-[11], [16], [26]. In contrast to previous research, we set
the focus on audio material in forensic investigations which
is usually ‘in-the-wild’ data of uncontrolled characteristics.
We thus evaluate under significant training and test set mis-
matches, as in practice, the audio signal might be heavily
impacted by unknown degradation factors. We include varying
noise distortions which can be expected from arbitrarily noisy
environments or distortions introduced by low-cost acquisition
devices. We also evaluate the practically important case of
lossy audio compression and also re-compression, which both
have not been addressed in previous works to our knowledge.

Additionally, we analyze the impact of recording po-
sition mismatches for few-shot classification. Some works
on closed-set environment classification evaluate training/test
mismatches of microphone positions, where the actual posi-
tions are not further documented [3]], [26]. Here, we take a
further step forward and give first insights into the influence
of specific microphone positions on few-shot inference.

III. METHODS

The proposed framework for few-shot environment identifi-
cation and parameter estimation is presented in Sec. The
associated data generation pipeline is presented in Sec.

A. The Envld Framework

Envld is designed as an end-to-end trainable framework
that handles joint few-shot environment identification and
environmental parameter regression. At its core, Envld aims
to learn a representation (or embedding) in which distances
enable a distinction of recording locations: distances between
vectors from the same recording location are smaller than
distances between vectors from any other recording location.
The trained embedding can then be used to query the affinity of
an unseen sample to unseen reference recording environments.
Either the closest matching environment is returned, or the
input is rejected if the distance to all candidates is too large.

Technically, the representation learning is achieved with
Prototypical Networks [[37]], a representation learning approach
that enables few-shot classification. Prototypical Networks
have primarily been used for computer vision tasks, but



EnvId Framework

Query Sample

- iv
[}
[} @ (] @
e® 00 00 00 e L '
. ' h 1 R
Reference Samples from N N C} N .ﬂ Match Query Sample or Rejec
Candidate Environments — N ) -~ Q. ‘_‘% —|_
Lo . N
(@] : O+o ) r ) > —>» D
_ ® (]

Regress Environmental Param.

Feature Extractor

(b)

Audio Recording Inputs
()

Projector

Predictions

(e)

Embedding and Prototyping

() )

Fig. 1: Our end-to-end trainable Envld framework for joint few-shot environment identification and blind parameter regression
from ‘in-the-wild’ recording samples. The framework consists of a neural feature extractor (b) and projector (c) to process
and map the input samples (a) to the learnable, metric embedding space (d). The audio representations in the metric space can
both be used for the identification of environments, and the regression of environment parameters (e).

some studies on audio classification also demonstrate their
effectiveness on audio signals [15]], [42], [43]], [46].

The main task for the framework is environment identifi-
cation. Here, the task is to assign an audio recording to a
specific recording location from a set of reference candidates
Ry = {l1,12,...,lp} never seen in training, or to reject the
assignment if the recording is from a different location. In a
given forensic case, it may happen that a candidate set R; is
not available, i.e., that an analyst has no specific hypothesis
about the recording location. In this case, the framework
also enables a secondary task, namely the blind regression
of scalar environmental parameters from input samples. Such
an estimate can provide important hints about the nature of
the unknown recording location.

A high-level overview of the EnvId framework is shown in
Fig. [I] The framework learns the representation by training
on reference recordings from candidate locations (Fig. E](a)),
from which features are extracted (Fig. (b)) and projected
into the representation space (Fig. [I](c)), where prototypes
represent the locations (Fig. [T|(d)). This representation pro-
vides a suitable metric space to match a new (unseen)
query sample to (unseen) candidate locations R; (Fig. E](e)
top). This matching constitutes the few-shot identification
of the recording environment. If no candidate locations R;
are available, then specific environmental parameters can be
blindly regressed with an additional fully-connected network.
(Fig. [T)(e) bottom). These steps are presented in greater detail
in the following paragraphs.

1) Audio Recording Inputs (Fig. [Z](a)): The input is trans-
formed to dense frequency representations, as it is commonly
done in audio processing [2], [27], [31], [35]. In detail, we
compute the Mel spectrogram [22] and the Mel frequency
cepstral coefficients (MFCCs) [22]] and concatenate the co-
efficients of both representations into one feature vector. The
Mel spectrograms are computed with torchaudio [39] with a
window size and FFT size of 1024 bins, a stride of 512, and
256 Mel filter banks. The MFCCs uses 20 coefficients and is
computed from the spectrogram.

2) Feature Extraction (Fig. [Z]( b)): A deep feature vector of
D dimensions is extracted from an input audio recording.

We recommend here a slim convolutional neural network

(CNN) backbone that we refer to as Gamper*. It is a variation
of the CNN feature extractor by Gamper et al. [10]. Different
than the original work, we recommend to use uniform 3 x 3
filter kernels in all layers instead of large kernel dimensions
in the time domain, since this degraded results in early
experiments.

However, also any other custom end-to-end trainable feature
extractor can be used for this stage, and we demonstrate
the performances of various other networks in the associated
evaluation in Sec.

3) Feature Projection (Fig. (c)—(d)): The extracted fea-
tures are projected to the metric embedding space of fixed
size. For our studies, we use a simple fully connected layer for
the mapping R” + R¥ of the deep features’ dimension D to
the embedding dimension E. While the embedding dimension
can be varied, we use E = 256 throughout all experiments, as
we observed in early studies with 26 < E < 29 that smaller
E led to worse embedding space results while larger F did
not show any advantage.

4) Embedding Space Optimization (Fig. [I|(e)): The rep-
resentation in the embedding space can either be used for
environment identification (Fig. E](e) top) or for parameter
regression (Fig. [T|(e) bottom). The regression requires an ad-
ditional output layer, and both tasks are trained with different
losses, which is described in greater detail below.

The idea of a Prototypical Network [37]] is to assign a
query sample to a so-called prototype of some class. Thus, in
our case, a prototype represents a specific recording location.
Prototypical Networks can match inputs to prototypes of
classes during testing that are entirely unseen, i.e., neither
samples from the same class as the query sample nor samples
from the same class as the reference samples forming the
prototype were part of the training set. This is a big advantage
over standard closed-set classifiers. It enables law enforcement
to deploy a trained network, and to operate it on actual case
work with case-specific queries and case-specific candidate
locations without retraining.

More in detail, Prototypical Networks provide an FE-
dimensional representation space that enables few-shot learn-
ing. At inference time, few samples of each candidate location
l,, are projected into the embedding space and averaged to



form one prototype p;,, per location. Then, the Euclidean
distance between a query sample q and each prototype is
evaluated,

d(pi,,,q) = |lp1,, —all - (1)

A query can be rejected if there is no prototype within a rea-
sonably short Euclidean distance (cf. Sec. [V-B4). Otherwise,
the likelihood that a query sample belongs to a prototype is
given by the softmax function over the distances of all classes

exp(d(p1,,, 9))

Pa=tmP =5 ooldmg, @)~ P
The learning task is to find an embedding space representa-
tion where the Euclidean distance between an unseen sample
and unseen reference recordings is actually meaningful. To
this end, the training is split in episodes. In each episode, M
different recording locations [,,, are randomly drawn from the
training set, and K reference samples are randomly drawn
from each of these locations. For each class, a prototype is

computed as the average vector
> xk 3)

Xk €S1,,
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where &, denotes the set of K samples from location [,,, in
the E-dimensional embedding space. The training loss is the
negative log-likelihood

‘Cclass = - Ing(q = lm|X) 5 (4)

which is minimized for the correct location [,,,.

If no reference environments are available, Envld can also
regress scalar environmental parameters from a query’s em-
bedding q € R¥ (Fig. (e) bottom). To this end, we propose
to append two linear layers with dimension ¥ = 256 and a
scalar output for the estimated parameter.

The training requires samples with known environmental
parameters. The loss for including the regression task for
training is

Etotal = Eclass+£rcg = - Ing(q = lm|X)+‘pe 7pe| s @)

which uses the room identification loss as in Eq. ] and addi-
tionally the absolute deviation of the environmental parameter
label p. from its regressed prediction p.. Our experiments in
Sec. set p. to volume and RTgg, i.e. the time in which
the signal energy decays by 60db.

Technically, the framework is implemented in PyTorch [32]
v.1.10.2. Training is conducted on one consumer GPU, at most
a RTX3090, with the Adam [19] optimizer and learning rate
le~* for at maximum 300 epochs. Early stopping is applied
when the validation accuracy for assigning audio samples to
recording locations does not increase for 30 epochs.

B. Generation of Almost-In-the-Wild Audio Samples

The quite unconstrained nature of in-the-wild data must be
met with extensive training with diverse datasets and various
training data augmentations. The specific training samples are
hence created with a flexible data generation pipeline that
aims to mimic in-the-wild data. We first review the theoret-
ical model for the simulation of reverberant environments in

Sec. and then present the proposed data generation
pipeline in Sec. [[lI-B2]

1) Background on Reverberant Environments: Consider an
audio signal a(t) that propagates from a source into space.
During propagation, a(t) may be partially reflected from
objects. Such reflections cause the signal to arrive at slightly
different times at a recording microphone, commonly referred
to as reverberation. Reverberation can be measured an acoustic
impulse response (AIR) signal 7(t). A reverberated audio
signal s(t) is hence commonly modeled as a convolution

s(t) = r(t) xa(t) . (6)

of a(t) with the AIR r(t), which is the de-facto standard
model for reverberation [1f], [3], [25], [26], 301, [31]], [33l].
Hence, one can separately record reverberation-free audio
signals a(t) and AIRs r(t), and freely combine both signals
into a reverberated audio signal.

2) Data Generation Pipeline: In the first step, shown
in Fig. [JJ(a), reverberant environments are simulated from
anechoic speech samples and AIRs using Eq. [(]

In the second step, shown in Fig. [2](b), noise degradation
is optionally added. We follow related work that models noise
as an additive signal n(t) scaled by scalar noise impact « [1],
[6], [91-[11], [16], [26]]. Hence, the signal becomes

5)=rt)*at) +a-n(t) . (7)

Customized test scenarios are created by feeding the gener-
ator with a set of noise signals n(t) and an interval of signal-
to-noise ratios (SNRs) that controls the noise strength. The
generator randomly samples the noise configuration for each
incoming sample.

In the third step, shown in Fig. [JJ(c), lossy compression
is optionally introduced as it might occur upon social media
sharing, editing/re-saving or other types of data processing.
This further extends the signal formation to

3(t) = fL (SR (r(t) xa(t) + - n(1)) (8)

where f¢(-) with n € [1, N] describes one out of N lossy
compression operations. The framework natively supports the
popular formats MP3, AMR-NB, GSM and Vorbis, and also
the neural EnCodec [5] format. If compression is applied,
the specific compression algorithm and strength is randomly
sampled from a customisable set for each incoming sample.
Re-compression is simulated by repeating this random com-
pression process.

IV. EXPERIMENTS

The evaluation is organized in five parts. First, Sec.
lists the data sources for the experiments. Section re-
ports Envld’s performance for different feature extractors and
compares it to related work. This benchmark also justifies our
proposed backbone for the remaining sections. Section
explores Envld’s robustness towards unseen signal degrada-
tions, which is highly relevant for practical forensic cases.
Section [IV-D] investigates the performance when the micro-
phone positions differ for the reference and query samples.
Section explores blind environmental parameter regres-
sion from degraded signals for volume and RTg.
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Fig. 2: Proposed pipeline for controlled simulation of real world audio recording and post-processing scenarios. Configurable
sets of input signals, environments and degradations (orange) enable the creation of custom test cases. In 3 steps (purple),
anechoic audio signals a(t) pass various transformations and are output in frequency representation. Dashed arrows indicate
skip connections to (randomly) enable and disable degradation transformations per sample.

Data Pool Speech a(t) AIR r(t)
Source: # Samples  Source: # Samples
Train ACE [8] : 239 MIT [40] : 200
Valid. ACE [8] : 64 MIT [40] : 20
ACE [8] : 7
. AAIR+REV [17], [20] : 13
Test TSP [18] : 67 MIT [40] : 20

OPENAIR [28] : 20

TABLE I: Composition of the source data pools of anechoic
speech samples and AIRs for dataset generation.

A. Data Sources and Evaluation Dataset Composition

The single channel audio signals and AIRs in this work
are collected from a total of seven freely available speech
databases. The source data pools are summarized in Tab. [[|
and further described below.

1) Anechoic Speech Pools.: The basis of our data are
speech samples from anechoic datasets.

From the ACE corpus [_8], we use 33 speech samples from
4 female speakers and from 7 male speakers with a duration
between 3s and 97s.

From TSP, we use 87 utterances from 2 female speakers
and from 2 male speakers with a duration between 1.70s and
3.25s. This dataset is used for testing.

All experiments operate on audio snippets of 3 s, and longer
samples are split into 3s segments. TSP has also shorter
samples, which are enlarged by concatenating speech from
the same speaker at silent positions. Hence, we have a total of
239/64 speech samples from the ACE [§]] corpus for training
and validation, and 67 clean voice snippets from TSP for
testing as shown in the left column of Tab. [I}

2) AIR Pools.: The training/validation AIR pool consists
of real 200/20 AIRs from the MIT Acoustical Reverberation
Scene Statistics Survey [40] (MIT) dataset. The MIT set
provides diverse space categories. Small categories are, e.g.,
cars and bathroom, mid-size categories are, e.g., bar, train,
and hallway, and large categories are, e.g., theatre, atrium, or
open air.

For testing we use four separate AIR pools from the
remaining MIT AIRs and from smaller databases that are
described below.

The ACE test pool consists of the ACE AIR set of 7 rooms
that is oftentimes used in related work [1]], [3]], [6l, [O-[12],
[16], [26]], [31]. The rooms are enclosed mid-size spaces of the
category lecture room, meeting room, office room and lobby,
with volumes between 47.3m? and 370 m3.

The AAIR+REV test pool is created by combining the 7
real AIR measurements from the Aachen Impulse Response
Database (AAIR) [17] with 6 high-quality simulations from
the 2014 REVERB challenge (REV) [20]. AAIR provides
measurements from a low-reverberant studio booth, a stairway,
an office, a meeting room, two lecture rooms, and a church.
It features diverse surface materials and furniture. The room
volumes range between 11.9m? and 370.8 m?, except for the
church where only the floor area is reported with 570 m?. To
enlarge the dataset, we sample 6 high-quality simulations from
the REV set following Kinoshita et al. [20], where 2 rooms
are from each category small, medium and large.

The MIT and OPENAIR test pools contain 20 AIR mea-
surements each. The MIT [40] database provides AIRs from
variable space categories while the OPENAIR [28]] data mainly
covers large spaces like churches, halls, auditoriums and open
spaces, where the volumes (excluding open air) range between
35.2m? and 140000 m>.

These real AIR measurements and high-quality AIR sim-
ulations represent a wide range of recording environments.
The specific selected environments are listed in Tab. and
Tab. A.1, A.2, A.3 of the supplemental material.

The data generation pipeline from Sec. is used to
generate a training/validation set of about 48k/1.3k samples
from the data pools. Hereby, each speech sample is paired with
each AIR, which leads to a uniform distribution of recording
examples for each available environment (Fig. [2|(a)). This
experiment features common quality impacts for real world
scenarios. General background noise on the training set is
simulated with additive white noise of a broad SNR range
of a € [—10,50]db (Fig. (b)). For additional compression
(Fig. (c)), we use MP3, AMR-NB and GSM as popular
formats with all available bitrate settings that control the com-
pression strength. Thus, the input configurations to the pipeline
are Cyyps = {8,16,24,32,40, 48, 56,64, 80,96,112,128},
Camr-nB = {4.75,5.15,5.9,6.7,7.4,7.95,10.2,12.2} and
Casm = {13}, since GSM only operates with constant bitrate.



Feature Extractor Params ACE [8] AAIR+REV [17], [20] MIT [40] OPENAIR [28]
nto max nwto max nto max pto max
Guessing chance 0.1430 0.0769 0.0500 0.0500
Related Work — CRNN :
Papayiannis [31] 266 M 0.676840.0314 0.7122  0.6866+0.0166 0.7072 0.7134+0.0068 0.7239  0.565240.0274 0.5985
GamperCRNN [9] 1.25M  0.706240.0336 0.7676  0.736240.0308 0.7738 0.7439+0.0181 0.7761  0.555140.0321 0.6157
Deng/Goétz 6], [12] 549 M 0.8068+0.0271 0.8401  0.761440.0564 0.8427 0.6755+0.0647 0.7463  0.620440.0795 0.7373
Related Work — CNNs:
VGGVox [1], [29] 11.65M  0.4827+0.0079 0.4947  0.5362+0.0184 0.5637 0.5497+0.0065 0.5567  0.472740.0201 0.5037
Genovese/Ick [[11]], [16] 0.19 M 0.8196+0.1028 0.8721  0.771540.0841 0.8220 0.7340+0.1149 0.8022  0.693740.1064 0.7448
ThinResnet [|1], [45] 11.72 M 0.8499+0.0178 0.8806  0.858340.0190 0.8783 0.82574+0.0054 0.8328  0.690740.0329 0.7388
Gotz [13] 386 M 0.941640.0218 0.9616  0.91504+0.0355 0.9518 0.823640.0454 0.8679  0.8187+0.0501 0.8754
GamperCNN [10] 343 M 0.9467+0.0189 0.9638  0.925440.0291 0.9506 0.8345+0.0419 0.8687  0.8240+0.0486 0.8709
Standard Vision CNNs:
RegNetY-400mf [34] 2823 M 0.721140.0441 0.7868  0.7724+0.0307 0.8129 0.733440.0387 0.7851  0.616340.0400 0.6649
EffNet-BO [38] 1285 M 0.7318+0.0303 0.7868  0.810140.0157 0.8301 0.7939+0.0116 0.8067  0.630040.0191 0.6642
EffNet-B2 [38] 17.43 M 0.754840.0199 0.7932  0.805740.0278 0.8542 0.8078+0.0121 0.8291  0.6639+40.0209 0.6925
RegNetY-800mf [34] 4375 M 0.7646+0.0187 0.7846  0.7929+0.0114 0.8140 0.764040.0213 0.7888  0.643640.0141 0.6604
ResNet-18 [14] 11.30 M 0.817140.0345 0.8593  0.820040.0276 0.8588 0.8124+0.0111 0.8269  0.677840.0348 0.7336
ResNet-50 [14] 2403 M 0.81754+0.0113 0.8316  0.8361+0.0110 0.8485 0.8045+0.0106 0.8216  0.684040.0076 0.6925
ConvNeXt-Tiny [21] 28.01 M 0.8618+0.0112 0.8806  0.7986+0.0137 0.8129 0.7658+0.0190 0.8000  0.7022+40.0118 0.8000
Standard Transformers:
Transf. Enc. [41] 19.19 M 0.403440.0394 0.4670  0.469340.0388 0.5385 0.4663+0.0141 0.4903  0.422740.0227 0.4545
ViT-Small [7] 86.08 M 0.496840.0350 0.5437  0.51464-0.0234 0.5408 0.492240.0113 0.5045  0.481340.0128 0.5015
Proposed Backbone:
Gamper* 386 M 0.9557+0.0076 0.9701  0.9375+0.0047 0.9449 0.8712+0.0164 0.8903  0.8131+0.0188 0.8358

TABLE II: Mean and maximum accuracy values of 5 training runs for all backbones and datasets under single compression and
noise degradation. The best (bold), second best (underlined) and third best (italic) model results are highlighted. The parameter
size includes backbone and Envld trainable weights. We provide an own custom backbone (last row) as strong baseline for

further research.

The test data pools are used to generate 4 test datasets with
recording locations from different sources. Also here, each
anechoic test sample is convolved with all available AIRs
from the test pool. For the experiment in Sec. noise
and compression settings are identical between training and
testing. The other experiments may vary the test configuration,
which is described in the respective Sections below.

B. Comparisons to Various Baselines and Backbones

The proposed framework is compared to feature extractors
from related works and popular standard NN architectures.
The task is few-shot forensic environment identification, and
we use the training/test datasets as described in the previous
Section. This experiment is split in three parts, where we first
perform a broad comparison in Sec. Then, we use only
the three best performing feature extractors and evaluate their
generalization ability in Sec.[[V-B3|and their open-set rejection
ability in Sec.

1) Evaluation Protocol: The comparison covers 8 neural
feature extractors that we implement from 11 published works.
Three extractors are based on CRNNs, which we denote as
Papayiannis [31f], GamperCRNN [10]], and Deng/Gotz [6],
[12]]. Five extractors are based on CNNs, which we denote as
VGGVox [1]], [29], Genovese/Ick [11]], [16], ThinResnet []1]],
[45], Gotz [13], and GamperCNN [9]]. Additionally, 7 stan-
dard CNNs from the RegNet [34], EffNet [38]], ResNet [[14]]
and ConvNext [21] families and two standard Transformer
models [[7]], [41] are considered, because standard architectures
oftentimes showed good transfer learning capabilities in var-

ious forensic and steganalytic tasks. Our proposed backbone
is a variation of GamperCNN that we denote as Gamper™ (cf.

Sec. [IT-A).

Each of the evaluated models is integrated into EnvId in two
steps. The final classification/regression layers (if present) are
removed, and the remaining layers (Fig. E](b)) are linked to
EnvId’s projector layer (Fig. [I](c)). The projector reduces the
dimensionality of the model to & = 256, which proved to
be sufficiently large for our purpose (cf. Sec. [II-A)). Missing
parameter configurations in related methods are supplemented
with the respective standard values from PyTorch [32].

For a representative comparison, we conduct 5 Envld train-
ing runs with random weight initialization for each feature
extractor and report the mean and best model accuracy per
test set. For the computation of good-quality prototypes in
the embedding space (cf. Sec. [[lI-A), we randomly sample a
subset of N, = 15 samples for L = 10 recording environment
classes per episode.

2) Comparison of Feature Extractors: Table [[I] shows the
evaluation results. The first row lists the random guessing
chance per test set, the following rows list the results per fea-
ture extractor and test set grouped by the underlying technique.
Several insights can be drawn from these results. Overall,
the CNN feature extractors Gotz and GamperCNN and the
proposed Gamper™ perform best. These networks are relatively
small, with less than 4 million parameters each. Nevertheless,
they outperform the much more complex CRNN extractors
and various standard models with a much larger number of
parameters. It is particularly notable that the Transformer



1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

True Positive Rate

Gamper* {10
Y AN N N L PYYEPYPE Gotz [13]
== ==t == GamperCNN [10]

0
0 0.1 02 03 04 05 06 07 08 09 1

False Positive Rate

Fig. 3: ROC curve on the MIT [40] test set for rejecting
samples that do not match any reference recording location.

models achieve only a quite low performance.

We hypothesize that the benefits from large vision nets and
Transformers might potentially become accessible with even
larger training datasets. However, due to the very promising
results with efficient and slim CNNs models with short training
times, we did not further investigate this direction.

For reference, the F1-Score, precision, and recall for all
recording locations in all 4 test sets for Gamper* is provided
in the supplemental material.

3) Difficult Cases in Few-Shot Generalization: The results
in Tab. show that OPENAIR is the most difficult test
set. OPENAIR consists mainly of large, strongly reverberant
locations like churches, cathedrals and halls, which are only
sparsely covered in the training set. In this Section, we
further characterize that sparsity and the associated challenge
to generalize to such queries.

One indication for the difficulty to generalize to the OPE-
NAIR test set provides the Pearson correlation coefficient
between the AIRs in the training and test sets. Here, the
Pearson correlation coefficients for the ACE, AAIR+REYV, and
MIT test sets are 0.5555, 0.3162 and 0.5844, whereas it is only
0.2375 for the OPENAIR test set.

Also at the level of individual AIRs it is possible to observe
the impact of differences in the training and test distributions.
To this end, we limit the examination to the three best
performing backbones GamperCNN, Gétz, and Gamper*, and
examine the F1 score per space category on OPENAIR. The
F1 scores of Gamper™ for all test set environments are listed in
Tab. [[T)in descending order. All three models perform worst on
the same 5 church, cathedral, and hall environments (bottom
part of Tab. [[I). For these 5 worst environments, the F1-Score
is only 0.7511, 0.7083, and 0.6202 for GamperCNN, Gotz,
and Gamper*. Without these 5 locations, the F1 scores for the
remaining locations are much higher at 0.9098, 0.9282, and
0.8864, respectively.

The proposed Gamper* performs slightly worse than Gam-
perCNN and Go6tz on OPENAIR locations, which shows
the contradicting goals of specialization and generalization.
However, all results are overall quite robust, given that the
tested AIRs are considerably different from the training data.

4) Open-Set Matching: Rejection of Unknown Environ-
ments: In several important practical use cases, it is helpful
if a system can indicate that an input does not match any
of the reference locations. To our knowledge, this task is
not addressed in related works. EnvId’s rejection mechanism
is straightforward: an input is rejected if its distance to all
available prototypes exceeds a threshold. The specific choice
of rejection threshold depends on practical requirements, e.g.,
whether a higher recall or lower false positive rate is required.
To show the general rejection ability, we calculate the receiver
operator characteristic (ROC) for the three best performing
backbones GamperCNN, Gotz, and Gamper™* on the large test
set of MIT AIRs. From the 20 available recording environment
classes, we keep all samples as test inputs, but randomly
sample only 10 locations as reference candidates.

Fig. 3] shows the results. Gamper* performs best by some
margin, but nevertheless there is room for improvement. We
hence see this as a possibility for further research in the future.

C. Robustness to Number of Prototypes and Unseen Signal
Degradations

This Section provides further experiments to characterize
Envld’s robustness. All experiments use the best performing
backbone Gamper*. We first evaluate the robustness with
respect to the number of few-shot prototypes for inference,
and then evaluate the robustness with respect to unseen mul-
tiple compressions, unseen compression codecs, and unseen
background noise.

1) Required Number of Prototypes: Envld requires a few
reference samples for identifying a recording environment.
There are no strict constraints on the number of reference
samples. From a theoretical perspective it is reasonable to
claim that “more data is better”. However, in practice, the
question of a lower limit on the number of required samples is
relevant as data collection can be tedious. Figure ] portrays the
accuracy of Envld with the best performing feature extractor
Gamper* on the 4 test sets w.r.t. K € [1,15]. For ACE
and AIR+REV based sets, already K = 1 reference sample
provides a good prototype and locations of MIT can be stably
identified with K = 2 reference samples. OPENAIR, where
the recording location characteristics deviate the most from our
training data, requires K = 10 to yield stable prototypes. This
shows that the number of reference samples that need to be
collected in practice depends on the embedding space quality
for the respective environmental characteristics. Analogous
to Sec these findings emphasize the importance of
analyzing training data for weakly covered environmental
characteristics.

2) Multiple Compression Runs: When audio messages are
shared over the internet, the signal might be recompressed
multiple times. To analyze such situations, the data pipeline is
configured to perform several compressions per test sample.

The experiments are performed with Gamper* trained on
synthetic white noise and only single compression as described
in Sec. The evaluation is performed on the MIT-based
test set from Tab. [[, since it is one of our larger sets and
contains a diverse distribution of recording locations from



OPENAIR Class Label [28] Volume [28]  Space Category [28] F1-Score  Precision  Recall
Live Room 352m3  Recording Studio 0.9771 1.0000 0.9552
Falkland Palace Bottle Dungeon - Chamber 0.9692 1.0000 0.9403
Innocent Railway Tunnel Entrance 13000 m3 - 0.9545 0.9692 0.9403
Koli National Park Summer - Open Air 0.9466 0.9688 0.9254
Stairwell - Hall 0.9343 0.9143 0.9552
Arthur Sykes Rymer Audit. Univ. York 1560 m®  Auditorium 0.9118 0.8986 0.9254
Spokane Woman’s Club 1600 m®  Auditorium, Ballroom, Hall ~ 0.9078 0.8649 0.9552
Dixon Studio Theatre Univ. York 908.23 m®  Theater 0.9065 0.8750 0.9403
Council Chamber 1140 m®  Chamber 0.8690 0.8077 0.9403
Alcuin College Univ. York 21000 m3  Open Air 0.8514 0.7778 0.9403
Falkland Tennis Court 2300 m3  Open Air, (Sports) Hall 0.8406 0.8169 0.8657
Central Hall Univ. York 8000 m3  Auditorium, Hall 0.8366 0.7442 0.9552
Lady Chapel St Alban’s Cathedral - Cathedral 0.8227 0.7838 0.8657
Jack Lyons Concert Hall Univ. York - Concert Hall 0.8000 0.7436 0.8657
Heslington Church 2000 m®  Church 0.7680 0.8276 0.7164
Baptist Nashville Balcony - Church 0.7445 0.7286 0.7612
Nuclear Reactor Hall 3500 m®  Hall 0.7111 0.7059 0.7164
York Minster 140000 m®  Cathedral 0.5872 0.7619 0.4776
Terry’s Warehouse 4500 m3  Hall 0.5455 0.6977 0.4478
Sportscentre 9000 m®  (Sports) Hall 0.5128 0.6000 0.4478

TABLE III: F1-Score, precision and recall results per environment of our Envld framework with Gamper* backbone on the
OPENAIR [28] test set under single compression and noise degradation.
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Fig. 4: Top-1 environment matching accuracy in dependence
of the number of reference samples for prototype computation
K. The out-of-distribution OPENAIR environments require a
larger number of reference samples.

small to large environments. The test data is obtained from our
data generator, configured to use multiple compressions with
randomly selected codec and bitrate as specified in Sec.|[IV-B

Figure shows the Top-{1,2,3} accuracy results for single,
double and triple compression. As expected, the accuracy
degrades with increasing number of compressions. However,
the total performance remains high even for Top-1 predictions.
The accuracy is 0.9351 for double compression and 0.9052
for triple compression, which is only moderately lower than
0.9657 for single compression. For Top-{2,3} predictions, the
performance never falls below 0.9590. The experiment thus
shows a good generalization to longer compression chains.

3) Unseen Compression Codecs: Fast progress in audio
compression research might lead to the case that Envld must
perform inference on compression codecs that it has not been
trained for.

The experiments are performed on the identically trained
Gamper* backbone as in the previous experiment. The eval-
uation is again performed on the MIT-based test set from
Tab. [lI} but this time compressed with two codecs that were

not seen during training, namely Vorbis as an established
analytic compressor and EnCodec [5] from Meta Research®
as a relevant neural network-based compressor. Both codecs
are evaluated with low, middle and high quality settings.

Figure [5b] shows the result for Vorbis, and Fig. [5¢| shows
the results for EnCodec. The accuracy on Vorbis compression
is very close to 1, which is understandable, as it targets
mid to high quality output where the lowest available bitrate
is still as high as 16kbps. In contrast, EnCodec [5]] has a
higher impact on the performance. While the Top-1 accuracies
on the high (24 kbps) and mid (6kbps) quality settings are
0.9216 and 0.8299, it drops to 0.5701 for the low (1.5kbps)
quality setting. The low accuracy on such an extremely low
bitrate is not surprising: the lowest available bitrate in the
training set are 4.75kbps with AMR-NB, hence Envld has to
simultaneously deal with unseen compression artifacts at an
unseen low bitrate.

Overall, Envld is quite robust to unseen compression
codecs, even at low bitrates of 24 kbps or even 6 kbps. Only
EnCodec’s strongest compression of 1.5kbps considerably
degrades the identification accuracy.

4) Unseen Noise Impact: The background noise may con-
siderably vary in the test data. To evaluate EnvIld’s general-
ization ability towards real environmental background noise,
a selection of 4 publicly available noise sources is used that
cover a passing trairﬂ falling rairﬂ and sounds of a crowded
airpor{] and exhibition half]

The test data set is identically composed to the previous
experiments, with the only difference that instead of compres-
sion traces these background noise sources are added. Per test
sample, one of the noise patterns is randomly selected, and
added with a SNR of 50, 25, or 0.

Zhttps://freesound.org/people/theplax/sounds/615849/
3https://freesound.org/people/straget/sounds/531947/
4https://freesound.org/people/arnaud%20coutancier/sounds/424362/
Shttps://freesound.org/people/BockelSound/sounds/487600/
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Fig. 5: Top-{1,2,3} accuracy for few-shot environment identification under different degradation factors unseen during training.
We provide benchmarks for multi compression runs (Fig. [5a)), high, mid and low quality settings of the unseen Vorbis (Fig. [5b)
and neural EnCodec [5]] compression codecs (Fig. , and unseen real environmental background noise (Fig. @

The evaluation result is shown in Fig.[5d] Small and medium
noise levels have little influence as EnvId’s Top-1 accuracy
is close to 1. However, strongly degraded signals cause the
accuracy to fall to 0.7739, 0.8731 and 0.9134 for the Top-1,
Top-2 and Top-3 predictions, respectively. Nevertheless, the
results are remarkable when considering that the noise pattern
is unseen and the distortion of the signal is extremely high.

D. Recording Position Mismatch

The actual position of the microphones in the room is a
subtle, yet quite impactful issue that has been barely addressed
in related works (cf. Sec. [I).

If reference audio samples from candidate environments are
collected during the investigation process, it must be assumed
that the recording position of the K collected reference sam-
ples is at least somewhat different from the query signal. To
our knowledge, the impact of this issue has not been quantified
before. We provide a benchmark and dataset with synthetic
data of enclosed spaces of varying recording positions in
differently shaped rooms. The evaluation is again performed
with the best Envld setting, fine-tuned with identical hyperpa-
rameters as above.

1) Microphone Position Data Set: To the best of our
knowledge, there is no dataset that provides a grid of real
AIR measurements with known positions for a large number
of recording locations. Hence, we simulate enclosed spaces
with pyroomacoustics [36]. We consider rooms within a length
interval of [, € [1,50] m and height h, € [2,5]m in steps of
10cm. Three common room shapes are corridor, rectangle,
and square rooms, where we define the fraction f of width
over length as f € [0.1,0.3] for corridor, f € [0.4,0.7] for
rectangle, and f € [0.8, 1] for square.

Different floor and wall characteristics are simulated with
an absorption coefficient ¢, € [0.1,0.8]. AIR measurements
are sampled from a equidistant 5 x 5 grid per room to
uniformly cover potential microphone positions. The distance
between the outer edges of the grid to the corresponding
nearest wall is set to 30cm. For this first study, we focus
on the practically relevant scenario of some speaker during
a telephone conversation or the recording of voice messages.
The relative distance between the microphone and the speaker
is thus set to a fixed size of 10cm, and the microphone is
always positioned 1.7 m above the ground floor. The speaker

orientation is always set towards the room center and the
microphone is set inversely. This preserves the comparability
of different grid positions.

Our final training/validation set consists of distinct random
samples of 45/15 rooms from each of the 3 shape categories
uniformly sampled from the whole volume range, which leads
to 135/45 rooms per set. For each room, absorption coefficients
are randomly sampled. AIR measurements are simulated for
each of the 5 x 5 grid positions, yielding a total of 3375/1125
training/validation AIRs. Each AIR is convolved with each
of 25/19 anechoic speech samples from a subset of the ACE
training and validation pool (Tab. [[). This leads to a total
of about 84k/21k training/validation samples. To approximate
real world scenarios, we again include additive white noise
and single compression degradation of varying strength as in
the previous experiments.

2) Recording Position Evaluation: The test set is con-
structed with a volume range of V' € [10, 3750 m?, as 3750 m3
is the maximum possible volume for a corridor room in
our setting. We sample one room per shape category for 10
volumes uniformly distributed over the full range to yield
30 test rooms in total. The absorption coefficient is fixed to
cq = 0.1 for medium absorption [36]]. The fixed absorption
coefficient in the test set enables an isolated analysis of
the impact of changing recording positions. Per room, AIRs
measured from the 5 X 5 grid positions are convolved each
with a subset of 16 samples from the TSP test pool (Tab. [,
yielding 12k samples in total. The evaluation tests each of the
25 positions against all other recording positions.

When averaging over all positions in all rooms per room
category, then corridor rooms are easiest to identify with
an average accuracy of 0.7715, followed by rectangle and
square rooms with average accuracies of 0.7648 and 0.7608.
The results for each individual position are visualized in
Fig. [6] for the three room shape categories corridor (left),
rectangle (middle), and square (right). Overall, the accuracy
tends to increase at locations that are closer to the walls. For
example, the average center accuracies are 0.6375, 0.6875
and 0.7063 for corridor, rectangle and square rooms, but
average accuracies at walls are 0.7663, 0.7687 and 0.7606. For
rectangle and square rooms it is particularly notable that the
most difficult positions are the ones along the middle column.
We hypothesize that the more distinct early reflections in the
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Fig. 6: Mean accuracy for specific microphone positions on a uniformly sampled 5 x 5 grid for the categories corridor, rectangle
and square. For visualization, all heatmaps are scaled to quadratic size. Environments for audio samples recorded closer to
boundaries are on average easier to identify. The total accuracy thus decreases for wider room widths from left to right.

Room RMSE Mean
Category . Targets
Clean Compr. Noise
Corridor  0.2640 0.2723 0.2748  0.6497
Rectangle 0.1692 0.1921 0.2157  0.4930
Square 0.1553 0.1777 02117  0.4125

TABLE IV: Results for the regression of RTgy on our synthetic
dataset. The RMSE and mean target RTg are reported for
medium reflecting spaces with randomly sampled absorption
coefficients 0.1 < ¢, < 0.8. The results are grouped by the
room categories corridor, rectangle, and square.

Signal Accuracy
Degradation
2-class  3-class  5-class  10-class
Clean 09706 09519 0.8566  0.7808
Compression  0.8872  0.8410  0.7045 0.6593
Noise 0.8298  0.7930  0.6605  0.5999

TABLE V: Results for classifying rooms in 2, 3, 5, or 10 size
categories via thresholding on the volume estimate.

AIR for recordings close to walls lead to more characteristic
features, which makes environment identification easier. This
is in line with the observation that the overall accuracies are
highest on corridor rooms, where the walls are closest relative
to the volume of the room.

We also investigate the impact of compression and noise
with degradation settings as described in Sec. For com-
pression, the averaged accuracy over all recording positions
drops to 0.6458, 0.6163 and 0.6340 for corridor, rectangle
and square rooms. Noise has an even stronger impact and
decreases the values down to 0.5298, 0.4898 and 0.5118,
respectively.

Overall, these first results are promising, even though this
experiment is limited in scope due to the fixed absorption
coefficients. The results demonstrate that the microphone
location is an important factor that should be considered in
future research and in practice.

E. Blind Environment Parameter Estimation

In forensic investigations may occur cases where there is
no hypothesis about candidate recording locations. In such an
unconstrained scenario, the only possible contribution is to
estimate recording parameters from the input sample. Envld
can provide such an estimate as a regression result. We demon-
strate this for the room volume V and the RTgo parameter,
which are popular quantities in related work (cf. Sec. [[T). We
use the same training setup as in the previous experiment,
with the only difference that we use a regression head for the
parameter prediction (cf. Sec. [[lI-A4).

We first compare Envld’s regression capability to the re-
cently proposed estimator by Gétz et al. [|13] who also apply
representation learning techniques.

In detail, they use contrastive learning with an upstream
encoder network to obtain embeddings for room volume and
RTgo. These embeddings are fed to a downstream network to
classify the room volume as small or large, and to regress the
RTgp. With the help of the authors, we recreate the dataset by
Gotz et al. [[13]] according to their protocol. The training set
consists of simulated rooms of uniformly distributed volumes
V € [27,500)m? and randomly sampled absorption coeffi-
cients. The test set consists of 1000 AIRs, i.e., 10 AIRs from
100 simulated rooms as described in their work [13]].

When running this experiment, Envld achieves a root mean
squared error (RMSE) of 0.2129 for RTgp and a remarkable
volume classification accuracy of 0.9998. Both values outper-
form the work by Gotz et al., who report a minimum RMSE
of 0.2146 for RTgy and a maximum volume classification
accuracy of 0.7422.

To provide further results for Envld, we also report results
for the synthetic room set from Sec. and Sec.
which covers a larger volume range of V' € [10,3750/m3
and includes additive noise and compression. For this experi-
ment, we further randomly sample absorption coefficients c,
between 0.1 and 0.8 for all rooms.

We first evaluate the influence of room shape on the
estimation of the RTgy parameter. The results are shown in



Tab. Both the RMSE and RTgy mean values of the targets
are reported grouped by shape category. As is reflected by
the mean target RTg, the RTgo naturally increases for more
elongated rooms in our set. Equally, the RMSE increases, such
that corridor rooms exhibit higher RMSE scores than rectan-
gle and especially square rooms. Compression and added noise
slightly reduce the performance. The average RMSE increases
by 1.79 percentage points (pp) for compression and by 3.79
pp for noise. These finding are in line with the results in the
previous Section.

To provide an intuition about the quality of the volume
predictions, we extent the evaluation approach by Gotz et
al. [13]]. As previously discussed, they use the volume estimate
to classify room sizes as small or large with a maximum
accuracy of 0.7422, while Envld exhibits a notable strong
performance with a classification accuracy of 0.9998 on the
same data and task. In this experiment, we generalize this
approach and evenly divide the volume range of our data in
n € {2,3,5,10} classes. The classification itself is done via
thresholding. Table |V| shows the results. The two class task is
solved with a high accuracy of 0.9706. Added compression
decreases the accuracy to 0.8872, added noise to 0.8298.
Naturally, accuracies decreases for increasing numbers of size
categories. However, for the finest problem granularity of 10
classes, Envld still achieves accuracies of 0.7808, 0.6593 and
0.5999 for clean, compressed and noisy inputs.

We take this as evidence that Envld with added regres-
sion head is able to outperform the dedicated state-of-the-
art regression network by Gotz et al. [13]]. Envld is able to
blindly extract relevant cues about recording location charac-
teristics from the internal representations used for few-shot
classification, also under signal impacting factors like noise
or compression.

V. CONCLUSION

DL tools are increasingly moving into the focus of police
authorities to support criminal investigations. However, it
remains an open challenge to develop tools that are flexible and
robust enough to meet practical requirements. In particular,
the identification of recording environments from single audio
samples is challenging due to the many practical challenges
in this seemingly straightforward task.

In this work, we propose Envld as a step towards practi-
cally applicable recording environment identification. EnvIld
is an end-to-end trainable framework for few-shot recording
location identification which supports recording parameter
estimation. Envld addresses a number of practically relevant
requirements, including open-set identification and identifica-
tion of data with unknown degradations. With the help of
Envld, we also explore the so-far neglected, but practically
very important issue of a mismatch in recording locations.
Here, our experiments quantitatively show that it is notably
easier to identify a room from mismatched recording locations
when they were done closer to the walls.
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