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We present the first fully and inherently relativistic derivation of the thermal Sunyaev-Zel’dovich
effect. This work uses the formalism historically used to compute radiation spectra emerging from
inverse Thomson/Compton sources of x-ray radiation. Comparing our results to the traditional
approach based on relativistically-corrected classical Kompaneets equation, we find small, but sys-
tematic differences. Most notable are the modest (≤ 10%) differences in the crossover frequency
where the spectral distortion due to the Sunyaev-Zel’dovich effect vanishes, and the energy increase
of the distribution at high electron cloud temperatures.

When cosmic microwave background (CMB) radiation
scatters off hot intracluster electron gas, it results in a
small, yet measurable shift in the CMB photons distri-
bution. This effect is called the Sunyaev-Zel’dovich effect
(SZE) [1, 2]. There are two components of the SZE: the
thermal SZE (tSZE) due to Thomson scattering (special
case of Compton scattering when the electron recoil is
negligible) of CMB photons off hot electrons, and the ki-
netic SZE due to the cluster moving with respect to the
CMB rest frame. The equations describing tSZE were
initially derived from the Kompaneets equation [3], a ki-
netic equation based on non-relativistic electron distribu-
tion. After observing that intracluster gas is extremely
hot, with kBTe ≲ 15 keV [4–7], it became clear that the
classical derivation of the formulae quantifying the tSZE
had to be corrected to capture relativistic effects. Over
the years, a number of relativistic extensions of the Kom-
paneets kinetic equation have been reported [8–21]. All
of these generalizations agree for kBTe ≲ 15 keV, appro-
priate for galaxy clusters.

Importantly, the SZE can be used to estimate the
present value of the Hubble parameter H0, and as such
weigh in on one of the most important problems cur-
rently plaguing cosmology—the Hubble tension. It re-
sults from the fact that measurements of H0 performed
with low-redshift quantities, e.g., the Type IA supernova
[22], consistently yield values larger than measurements
from quantities originating at high-redshift, e.g., fits of
CMB radiation [23]. The 5σ discrepancy between the
two estimates is almost certainly not due to systematic
errors in the measurements [24, 25]. Adding the SZE
as yet another precision method for estimating H0, as
was reported in, e.g., Ref. [26–28], may help resolve the
Hubble tension.

In this Letter, we present the first fully and intrinsically
relativistic derivation of tSZE, based on computing radia-
tion spectra emerging from relativistic Thomson scatter-
ing. This approach draws from the considerable body of
work done in the context of Thomson/Compton sources

of x-ray radiation (for an overview, see Ref. [29]). Un-
like the original Kompaneets equation, the new approach
works equally well for up-Comptonization (or inverse
Thomson scattering, when energy transfer is from an
electron to a photon) as it does for down-Comptonization
(or Thomson scattering, when the energy transfer is from
a photon to an electron). Ultimately, the tSZE is a mix-
ture of both of these effects. We compare the results from
our new, fully relativistic approach to those from the nu-
merical solution of the relativistic Kompaneets equation
reported in Ref. [20].
The tSZE effect on the intensity I of the CMB is tradi-

tionally quantified by the generalized Kompaneets equa-
tion [30]:

∆ISZE(ν) = ISZE(ν)− ICMB(ν) = g(x)I0y, (1)

where ν is the photon frequency, I0 =
2(kBTCMB)

3/(hc)2, TCMB the temperature of the
CMB today, h the Planck constant, kB the Boltzmann
constant, c the speed of light and the g(x) is the
frequency dependence in terms of x ≡ hν/(kBTCMB):

g(x) =
x4ex

(ex − 1)2

(
x
ex + 1

ex − 1
− 4

)
F (Te, x)

≡ g0(x)F (Te, x), (2)

where the function F (Te, x) is the relativistic correction
which is either given as a asymptotic expansion in x,
e.g. [17],

F (Te, x) = 1 + δSZE(x, Te), (3)

or as a numerically evaluated generalized relativistic
Kompaneets equation [20]. Non-relativistic Kompaneets
equations corresponds to F (Te, x) = 1. Here Te is the
temperature of the electron gas, and y is the Compton
parameter:

y ≡ σT

mec2

∫ l

0

ne(x)kBTe(x)dx. (4)
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FIG. 1: Comparison of the two electron distributions at
different temperatures: relativistic (solid lines, Eq. (9))
and the Maxwell-Boltzmann (dashed lines, Eq. (10)).
Relativistic β = v/c is on the x-axis. The parameters

are l = 2.5 Mpc, ne,0 = 1000 m−3. At each
temperature, the two distributions are normalized to

ne(0) of the Maxwell-Boltzmann distribution.

whereme is the mass of the electron, and σT is the Thom-
son cross-section. For a constant density and tempera-
ture (ne = const. ≡ ne,0, Te = const.) spherical intr-
acluster electron gas cloud of diameter l, the Compton
parameter is

y ≈ kBTe

mec2
ne,0σTl. (5)

The CMB photon number density, and the corre-
sponding energy density and intensity (not including
anisotropies) are described by the Planck distribution:

nCMB(ν) =
8π

c3
ν2

ehν/(kBTCMB) − 1
,

uCMB(ν) ≡ hνnCMB(ν),

ICMB(ν) ≡
c

4π
hνnCMB(ν). (6)

When integrated over the frequencies ν, Eqs. (1) and (6)
provide the total intensity difference due to the tSZE and
the total intensity of the CMB, respectively:

∆ISZE,tot =
4πI0ykBTCMB

hc

∫
g(x)dx,

ICMB,tot =
8π5(kBTCMB)

4

15(hc)3
. (7)

Therefore, the relative energy shift due to the tSZE is

s ≡ ∆ISZE,tot

ICMB,tot
. (8)

At the lowest order, with relativistic effects δSZE ne-
glected,

∫∞
0

g(x)dx =
∫∞
0

g0(x)dx = 4π4/15, leading
to s = 4y. Without relativistic effects, this model ex-
plicitly conserves the total number of photons because∫∞
0

g0(x)/xdx = 0. However, with relativistic correc-
tions δSZE included as an asymptotic expansion like in
Ref. [17], each new order correction must separately en-
sure conservation of photons.

The intracluster medium (ICM) primarily consists of
diffused, ionized hydrogen, with trace amount of heav-
ier elements [31]. It has traditionally been modeled as
an isothermal sphere of electrons, simplifying the deriva-
tion of mass-temperature relationships. However, recent
observations and simulations show ICM to be neither
isothermal nor perfectly spherical [32]. Here we model
ICM as hot, relativistic gas of electrons. The number
density of the relativistic electron gas is given by the dis-
tribution:

ne(p)d
3p ≡ ne,0ñe(v)d

3p (9)

= ne,0
β̂

4πK2(β̂)
e−β̂

√
1+γ2β2

d(cos θ̄)dϕ̄γ5β2dβ,

where p ≡ mecγβ, dp = mecγ
3dβ; β = v/c and γ =

1/
√

1− β2 are the usual relativistic quantities, (θ̄, ϕ̄) are

the angles of the electron motion, and β̂ = mec
2/kBTe.

The modified Bessel function K2 is needed to normal-
ize the momentum distribution function. The expression
above simplifies to the classical Maxwell-Boltzmann dis-
tribution in the limit of small temperatures Te (small
electron velocities v):

ne(v)d
3v ≡ ne,0ñe(v)d

3v (10)

= ne,0

(
β̂

2π

) 3
2

e−
β̂β2

2 d(cos θ̄)dϕ̄β2dβ,

as may be found by taking the asymptotic value for K2.
The differences between the relativistic electron distribu-
tion in Eq. (9) and the Maxwell-Boltzmann distribution
in Eq. (10) at various temperatures are shown in Fig. 1.

We derive our fully relativistic results by first consid-
ering the details of Thomson scattering of a single CMB
photon with a single hot electron by enforcing conser-
vation of their relativistic 4-momenta. Let us define the
angle that photons make with that line of sight as (Θ,Φ).
An electron has a velocity v and angles (θ̄, ϕ̄). Then, be-
fore the collision, the momenta of the electron and the
photon are, respectively:

p = meγc(1, β sin θ̄ cos ϕ̄, β sin θ̄ sin ϕ̄, β cos θ̄),

k =
hν

c
(1, sinΘ cosΦ, sinΘ sinΦ, cosΘ). (11)
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The collision scatters a photon into angles (θ, ϕ), so:

p′ = meγ
′(c, p′x, p

′
y, p

′
z), (12)

k′ ≡
(
hν′

c
,k′
)

=
hν′

c
(1, sin θ cosϕ, sin θ sinϕ, cos θ).

The conservation of 4-momentum, p+k = p′+k′, relates
the incoming and scattered photon frequencies:

ν′(ν; v, θ̄, ϕ̄,Θ,Φ, θ, ϕ) = ν
1− β(sin θ̄ cos ϕ̄ sinΘ cosΦ + sin θ̄ sin ϕ̄ sinΘ sinΦ + cos θ̄ cosΘ)

1− β(sin θ̄ cos ϕ̄ sin θ cosϕ+ sin θ̄ sin ϕ̄ sin θ sinϕ+ cos θ̄ cos θ)

≡ νS(v, θ̄, ϕ̄,Θ,Φ, θ, ϕ). (13)

S is the scattering function which captures the depen-
dence of the scattered photon energy change on the col-
lision kinematics and geometry. There is no nonlinear
hν/(γmec

2) term in the denominator because electron
recoil is neglected in Thomson scattering. To make ex-
plicit contact with earlier work, in the special case of
back-scattering typical for Thomson sources of x-ray ra-
diation, θ̄ = 0, Θ = π, Eq. (13) reduces to the familiar
[29]

ν′ = ν
1 + β

1− β cos θ
. (14)

It is important to note that the scattering which occurs
as the tSZE includes both up- and down-Comptonization.
Which of the two takes place depends on kinematics and
geometry, as quantified by S. Figure 2 shows a distri-
bution of values for S. Overall, the net effect is energy
increase, as numerically confirmed by ⟨S⟩ > 1.

The number density of photons scattered by an elec-
tron cloud is

ns(ν
′) =

∫ l

0

∫ ∫ ∫
nCMB(ν(ν

′))
dσ

dΩ
ne(v)dΩkdΩsd

3vdx

= lne,0

∫ ∫ ∫ ∫
nCMB(ν

′/S)
dσ

dΩ
v2ñe(v)dΩkdΩsdΩpdv,

(15)

where dΩk, dΩp and dΩs are elements of solid angle for
the photon before scattering, electron before scattering
and photon after scattering, respectively, and

dσ

dΩ
=

r2e

γ2(1− β · k̂′)2

×

[
1− m2

ec
2

(p · k′)2

(
k′ · ϵ− p · ϵ

p · k
k · k′

)2
]
, (16)

is the Klein-Nishina cross-section [33], k̂′ = k′/|k′|, ϵ is
the polarization 4-vector of the incoming photon and re
is the classical electron radius. One can show by comput-
ing the dot products in Eq. (16) that the dependence on
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FIG. 2: Distribution of values for the scattering function
S, Eq. (13). Gray region shows the Thomson scattering
of photons, when ν′ < ν (energy transfers from photons
to electrons), while the light region is for the inverse
Thomson scattering of photons, when ν′ > ν (energy
transfers from electrons to photons). The parameters

are l = 2.5 Mpc, ne,0 = 1000 m−3 and Te = 5 keV (thin
lines), Te = 10 keV (medium lines), and Te = 15 keV
(thick lines), with 10 million random samples of the

7-dimensional domain of S(v, θ̄, ϕ̄,Θ,Φ, θ, ϕ), binned on
1000 grids. The inset shows the same plot on log-log
scale, revealing the power-law tails of the function.

ν and ν′ stemming from the k and k′ terms cancels out—
the Klein-Nishina cross-section is independent of the pho-
ton energy. This means that the probability p of a pho-
ton scattering by the tSZE is frequency-independent—
the same proportion of CMB photons at all frequencies
are scattered by the tSZE. After the tSZE, the total num-
ber density of the CMB photons becomes:

nSZE(ν) = (1− p)nCMB(ν) + ns(ν). (17)

Computing the number density of the photons scattered
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by the tSZE from Eq. (15) requires 7-dimensional numer-
ical integration, which we carry out using Monte-Carlo
methods.

To make contact with the previous work, e.g. [17, 20],
we multiply Eq. (17) by chν/(4π)

ISZE(ν) = (1− p)ICMB(ν) + Is(ν),

Is(ν) =
c

4π
hνns(ν), (18)

and

∆ISZE(ν) = ISZE(ν)− ICMB(ν)

= Is(ν)− pICMB(ν). (19)

The tSZE scatters photons to nearby energies. This
redistribution conserves the total number of photons∫

nSZE(ν
′)dν′ = (1− p)

∫
nCMB(ν)dν +

∫
ns(ν

′)dν′

=

∫
nCMB(ν)dν ≡ nCMB,0, (20)

which implies that the probability of a CMB photon scat-
tering by the tSZE is

p ≡
∫
ns(ν

′)dν′∫
nCMB(ν)dν

=
ns

nCMB,0
, (21)

where ns ≡
∫
ns(ν

′)dν′. Defining the scattering proba-
bility p as in Eq. (21) ensures explicit photon conserva-
tion. Figure 3 shows the tSZE for the numerically com-
puted Kompaneets equation, as reported in Ref. [20], and
the fully relativistic approach presented here.

The total intensity after accounting for the tSZE comes
from the scattered photons and (1− p) original photons:

ISZE,tot = (1− p)ICMB,tot + Is,tot, (22)

where

Is,tot =
c

4π

∫
hνns(ν)dν. (23)

The corresponding total energy shift for the new ap-
proach is then

ξ ≡ ISZE,tot − ICMB,tot

ICMB,tot
=

Is,tot
ICMB,tot

− p, (24)

which can be compared to that from the numerically
computed Kompaneets equation [20]. The comparison
is shown in Fig. 4. While close at lower electron cloud
temperatures (kBTe ≤ 18 keV), the two estimates dif-
fer noticeably at larger temperatures. The range of
possible values spanned by the scattering function S is
S ∈

[
γ−2(1 + β)−2, γ2(1 + β)2

]
, obtained from Eq. (15).

From this, we expect the energy shift to scale ∝ (kBTe)
2,

consistent with the spectra emerging from inverse Thom-
son/Compton sources of x-ray radiation. We indeed ob-
serve the quadratic dependence on kBTe for our ξ, while
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FIG. 3: Comparison of the two calculations for the
tSZE: the traditional approach with the numerically

computed relativistic Kompaneets equation [20] (dashed
line), and the fully relativistic approach proposed here
(solid line). Number density n is shown on the top and

the intensity I on the bottom. The latter is to be
compared to Fig. 2 in Ref. [30]. The parameters are
l = 2.5 Mpc, ne,0 = 1000 m−3 and Te = 10 keV.

for the traditional estimates it scales linearly with kBTe.
We obtained essentially the same plot when using fifth
order asymptotic expansion as reported in Ref. [17] in-
stead of the numerically computed Kompaneets equation
from Ref. [20]. Our result agrees well with early N-body
simulations of the tSZE, that found that for high tem-
perature clusters (kBTe ≳ 15 keV) relativistic corrections
based on a fifth order expansion of the extended Kompa-
neets equation seriously underestimate the SZE at high
frequencies, with discrepancies in intensity as large as
5 %, likely leading to ∼ 10 % error in estimating the
Hubble parameter [18].
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numerically computed relativistic Kompaneets equation
(solid squares, Ref. [20]). The parameters are

l = 2.5 Mpc, ne,0 = 1000 m−3, as the electron cloud
temperature Te is varied.

Finally, we study the crossover frequency, normalized
as X0 = hν0/(kBTCMB), at which the spectral intensity
distortion vanishes. In a non-relativistic model based
on traditional Kompaneets equation, the crossover fre-
quency is 218 GHz, independent of electron temperature,
optical depth, and all other parameters. Accurate deter-
mination of the X0 values is crucial for the study of the
SZE [10]. In Fig. 5, we plot the normalized crossover
frequency X0 as a function of kBTe.

In this Letter, we presented the derivation of the
first fully and intrinsically relativistic description of
the Thomson scattering process which drives the tSZE.
Whereas the present state of the art approach to mod-
eling the tSZE, based on the generalized Kompaneets
equation is relativistic by correction, our new deriva-
tion is relativistic by construction: it is based on con-
servation of relativistic 4-momenta and relativistic elec-
tron distribution. Also by construction, the new calcula-
tion ensures photon conservation. At the topmost level,
the new approach computes the properties of a single
CMB photon relativistically scattered off a single hot
electron (a well-understood fundamental process), and
then it averages it over the distributions of the two col-
liding species; Lorentz-transformed Klein-Nishina scat-
tering cross-section controls the likelihood of scattering.
Upon comparing our new result to that based on the gen-
eralized Kompaneets equation, we find that the two ap-
proaches exhibit non-negligible differences in the shapes
of the scattered spectra, the nature of the dependence of
the energy shift on the electron cloud temperature and
the crossover frequency where the spectral intensity dis-
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FIG. 5: Comparison of the normalized crossover
frequency X0 predicted by the new calculation (solid
circles), and the numerically computed relativistic

Kompaneets equation (solid line, as given in Ref. [20])
(compare with Fig. 6 from Ref. [17]). The parameters
are l = 2.5 Mpc, ne,0 = 1000 m−3, as the electron cloud

temperature Te is varied. Dashed line denotes the
crossover frequency of the non-relativistic Kompaneets
equation, 218 GHz, which is independent of the electron

gas temperature.

tortion vanishes. Further studies, beyond the scope of
the present work, are needed to fully realize the impor-
tance of the new results. Detailed comparison of the
new approach to the observations can only be done af-
ter carefully accounting for the kinetic SZE, systematics,
contamination and confusion from astronomical sources.
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