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ABSTRACT
Real-world recommender systems often need to balance multiple
objectives when deciding which recommendations to present to
users. These include behavioural signals (e.g. clicks, shares, dwell
time), as well as broader objectives (e.g. diversity, fairness). Scalari-
sation methods are commonly used to handle this balancing task,
where a weighted average of per-objective reward signals deter-
mines the final score used for ranking. Naturally, how these weights
are computed exactly, is key to success for any online platform.

We frame this as a decision-making task, where the scalarisation
weights are actions taken to maximise an overall North Star reward
(e.g. long-term user retention or growth). We extend existing policy
learning methods to the continuous multivariate action domain,
proposing to maximise a pessimistic lower bound on the North Star
reward that the learnt policy will yield. Typical lower bounds based
on normal approximations suffer from insufficient coverage, and
we propose an efficient and effective policy-dependent correction
for this. We provide guidance to design stochastic data collection
policies, as well as highly sensitive reward signals. Empirical obser-
vations from simulations, offline and online experiments highlight
the efficacy of our deployed approach.

1 INTRODUCTION & MOTIVATION
Recommender systems are crucial tools that empower online plat-
forms to connect users to content they enjoy—be it on music and
video streaming platforms, e-commerce websites, social media ap-
plications, or others. Practical implementations of such systems
serve broad and diverse use-cases, with a few common tendencies.
One of those, is that recommendations are rarely centred around a
single objective. Indeed, streaming platforms might want to opti-
mise both short-term and long-term engagement whilst ultimately
targeting retention and lifetime customer value [4, 6, 44, 45, 57];
e-commerce platforms need to balance clicks, add-to-carts and con-
versions with possible returns and advertising income [20, 36, 60];
and social media platforms encounter similar challenges [50, 51].

Another recent tendency is that such systems are increasingly
often framed as decision-making instead of prediction systems. In-
deed, predictions about user-item affinities typically serve to inform

real-time decisions about recommendations, rankings, advertise-
ments, and so forth. The decision-making lens allows us to reason
about consequences of such systems, and has been gaining popu-
larity in recent years [29]. In the context of real-world platforms,
it allows us to frame changes in key online metrics as the conse-
quences of recommendation decisions, which in turn allows us to
optimise those online metrics directly [25]. Approaches that lever-
age the decision-making literature and frame recommendation as a
bandit learning task have led to several practical successes [2, 4, 8–
10, 13, 40, 43, 45, 54]. Most common is the off-policy or counterfactual
family of approaches, as they allow practitioners to learn and eval-
uate models offline before online deployment [59]. Such methods
typically leverage some form of algorithmic pessimism, optimising
a lower bound on the reward they will yield [26, 28, 55].

The majority of the (off-policy) bandit literature focuses on single
rewards, but multi-objective bandit approaches have been proposed
as well [7, 14]. In the context of multi-objective recommendation
with bandits, a few specialised solutions have been proposed re-
cently. These either focus on artist objectives in music streaming
platforms [45], exposure fairness objectives in top-𝐾 settings [27],
or long-term value via reinforcement learning [61].

In this work, we propose a general multi-objective recommenda-
tion approach that frames the optimisation of the weights that are
given to individual objectives as a decision-making problem. To this
end, we leverage the Counterfactual Risk Minimisation (CRM) prin-
ciple to optimise a lower bound on the reward a recommendation
policy will yield, thereby extending it to a multivariate continuous
action domain [55]. We show that existing approaches to construct
the lower bound, based on the Central Limit Theorem, provide
insufficient coverage in finite sample scenarios, and propose an
efficient and effective policy-dependent correction for this problem.
In doing so, we combine existing elements in the literature to derive
a novel estimator for the Effective Sample Size [41, 48].

Reproducible empirical observations on synthetic data show that
our proposed approach reduces the required sample size for the
confidence interval to have sufficient coverage by a factor of up to
60, significantly reducing the cost of randomisation that is required
for off-policy learning to work effectively. We discuss practical
considerations for designing logging policies in multivariate con-
tinuous domains, showing that the “curse of dimensionality” makes
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uniform randomisation less useful than practitioners would typi-
cally assume. Furthermore, we show how “learnt metrics” give rise
to highly sensitive reward signals that further improve effectiveness
by improving statistical power [31]. Using real-world data from a
large-scale short-video platform, we perform offline experiments
that highlight the promise of our learnt policies.

Online experiments on two platforms with monthly user-bases
over 160 million each, show that our approach significantly out-
performs existing alternatives on multiple key metrics, bringing
significant value to the business. The alignment between our off-
and online experimental results underscores the value of the bandit
learning paradigm, and the decision-making lens in general.

2 MULTI-OBJECTIVE RECOMMENDATION
Users interact with content on the web through various modalities.
Online content marketplaces such as Instagram, Reddit, TikTok
or ShareChat allow users to view, click, (dis)like, save, share and
comment on items that are presented to them by the recommender
system. Such systems are typically not optimised for a single type of
interaction, but rather aim to maximise a set of positive behaviours
through multi-objective optimisation techniques. Decidedly the
most common approach in practice is scalarisation [21], where the
multi-objective optimisation problem is recast with a single scalar
objective. Different parameterisations for the function that maps
the multiple objectives to a single scalar, then give rise to different
Pareto-optimal solutions. When the Pareto-front is convex, a linear
scalarisation function is sufficient to represent all Pareto-optimal
solutions. Naturally, this does not tell us how the weights of the
linear function should be chosen, or where on the Pareto-front the
business should position itself.

Formally, assume we need to decide on a recommendation 𝑖 ∈ I
to show to a user 𝑢 ∈ U, in an attempt to optimise 𝑑 ∈ N objectives
represented as 𝑓 (𝑢, 𝑖). A multi-objective decision-making procedure
with linear scalarisation can then be described as finding:

max
𝑖∈I

𝑑∑︁
𝑘=1

𝑎𝑘 · 𝑓𝑘 (𝑢, 𝑖). (1)

Naturally, in top-𝑛 settings we can replace the max-operation with
a sort-operation. This type of procedure is exceedingly common
in deployed recommender systems on the web. Indeed: public ac-
counts describe Facebook and TikTok’s systems in this way [46, 53]
and Twitter even open-sourced their exact weights [58]. Mehrotra
et al. [45] describe how Spotify leverages the Generalised Gini In-
dex [7] aggregation function to decide on the weights, motivated
as preserving fairness between user- and artist-centric objectives.
Zhang et al. describe a reinforcement learning approach for Tencent
that aims to find weights that maximise long-term user satisfac-
tion [61]. Milli et al. study strategic behaviour of users and content
providers that might result from the weights being chosen Milli
et al. [47]. Jannach and Abdollahpouri present a taxonomy of types
of objectives that might be considered in multi-objective recom-
mendation settings, whilst outlining open challenges [23].

Our work complements the existing literature by describing a
policy learning approach to align the scalarisation weights with an
over-arching North Star reward, such as long-term growth or rev-
enue. Crucially, this can help guide online platforms to decide where

on the Pareto-front they wish to position themselves. Additional to
technical contributions improving the robustness of existing policy
learning methods, we present extensive experimental results that
highlight its real-world effectiveness.

3 MULTIVARIATE OFF-POLICY LEARNING
We want to learn a 𝑑-dimensional weight vector 𝑎 ∈ R𝑑 , which we
will refer to as an action 𝐴, in line with the bandit literature [35].
The space of all possible actions, i.e. R𝑑 , is then denoted by the
calligraphic A. When taken, an action yields a reward 𝑅 (e.g. long-
term retention, growth, revenue). The goal is to find the weights that
maximise rewards. Specifically, we frame this as a policy learning
problem, where a policy 𝜋𝜃 describes a distribution over actions
𝜋𝜃 (𝐴) ≡ P(𝐴|𝜋, 𝜃 ). Note that the probabilistic view is general, but
𝜋𝜃 is allowed to be deterministic. We wish to learn the parameters
that maximise the expected reward under the learnt policy:

𝜃★ = arg max
𝜃 ∈Θ

E𝑎∼𝜋𝜃 [𝑅] . (2)

This is often attained via gradient ascent on an importance sam-
pling or Inverse Propensity Score (IPS) weighting estimator, where
we leverage samples from a given data collection or “logging” policy
to allow for unbiased counterfactual estimation:

E𝑎∼𝜋𝜃 [𝑅] = E𝑎∼𝜋0

[
𝜋𝜃 (𝑎)
𝜋0 (𝑎)

𝑅

]
. (3)

Being able to estimate the left-hand side of Eq. 3 without actually
needing to deploy 𝜋𝜃 , is what makes Off-Policy Learning (OPL)
attractive and desirable. We only need a single assumption to make
this work: the logging policy 𝜋0 should have common support with
the target policy 𝜋 . I.e. ∀𝑎 ∈ A : 𝜋 (𝑎) > 0 =⇒ 𝜋0 (𝑎) > 0.

Note that this implies that the logging policy should be stochastic.
Whilst a natural consideration for OPL researchers and practition-
ers, the choice of logging policy is crucial. We discuss concerns
when constructing data collection policies in Section 5.

Suppose we have a logged dataset D = {(𝑎𝑖 , 𝑟𝑖 )𝑁𝑖=1}, where
actions were sampled according to the logging policy: 𝑎𝑖 ∼ 𝜋0 (𝐴).
Then, we can get a sample estimate for the quantity in Eq. 3 as:

𝑉IPS (𝜋𝜃 ,D) = 1
|D|

∑︁
(𝑎,𝑟 ) ∈D

𝜋𝜃 (𝑎)
𝜋0 (𝑎)

𝑟 . (4)

Eq. 3 gives rise to an unbiased estimator for the optimisation
objective in Eq. 2, formulated in Eq. 4. Its variance, however, is often
problematic. A common solution is to introduce a multiplicative
control variate to the IPS estimator, and perform self-normalised
importance sampling instead:

E𝑎∼𝜋𝜃 [𝑅] =
E𝑎∼𝜋0

[
𝜋𝜃 (𝑎)
𝜋0 (𝑎) 𝑅

]
E𝑎∼𝜋0

[
𝜋𝜃 (𝑎)
𝜋0 (𝑎)

] . (5)

Indeed, the denominator on the right-hand side of this equation
equals 1 if the common support assumption is met [38]. Sample
average approximations for this Self-Normalised IPS (SNIPS) esti-
mator typically enjoy significantly reduced variance over the IPS
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estimator, whilst remaining asymptotically unbiased [34]:

𝑉SNIPS (𝜋𝜃 ,D) =
∑

(𝑎,𝑟 ) ∈D
𝜋𝜃 (𝑎)
𝜋0 (𝑎) 𝑟∑

(𝑎,𝑟 ) ∈D
𝜋𝜃 (𝑎)
𝜋0 (𝑎)

. (6)

Reducing the variance of the estimator does not solve all problems.
Indeed, we run into Goodhart’s law, often paraphrased as: “when
a measure becomes a target, it ceases to be a good measure” [18]. In
other words, maximising it directly likely leads to overfitting.

To deal with this, the Counterfactual Risk Minimisation (CRM)
paradigm proposes to optimise a lower bound on the true reward
instead, either for IPS [55] or SNIPS [56]:

𝜃★ = arg max
𝜃 ∈Θ

𝑉(SN)IPS (𝜋𝜃 ,D) − 𝜆Var
(
𝑉(SN)IPS (𝜋𝜃 ,D)

)
. (7)

The variance penalisation term is estimated empirically for IPS [42],
and approximated using the delta method for SNIPS [48, Eq. 9.9].
Naturally, these variance estimates are only useful when confi-
dence intervals constructed using them have the required coverage.
Whilst the Central Limit Theorem (CLT) ensures this eventually, it
might fall short in finite sample scenarios. We discuss this in detail
and propose effective extensions in Section 4.

Another important aspect to consider is that our action space
A is multivariate and continuous. This entails that we perform
importance sampling with probability density functions. In the case
of deterministic distributions, these are Dirac delta functions. In
other words, the probability that an observed action 𝑎 ∼ 𝜋0 has
non-zero density under a deterministic learnt policy 𝜋𝜃 exactly is
practically non-existent. Kernel smoothing techniques have been
proposed to deal with this [32]. A natural choice for the kernel is
the Gaussian density function. Letting 𝜃 ≡ 𝜇 and treating the kernel
bandwidth Σ as a matrix hyper-parameter, this is given by:

𝜋𝜃 (𝑎) ≈ P(𝐴 = 𝑎 |N (𝜇, Σ)) =
exp

(
− 1

2 (𝑎 − 𝜇)
⊤Σ−1 (𝑎 − 𝜇)

)
(2𝜋)

𝑑
2
√︁
|Σ|

. (8)

For limΣ→0, the kernel converges to the deterministic distribution,
and hence the estimate is unbiased. Nevertheless, this can lead to
excessively high variance because of a low effective sample size [48,
§9.3]. For lim𝜎→∞𝑰 , the kernel approximates a uniform distribution.
Whilst this minimises variance, it significantly increases bias. The
Gaussian kernel permits an intuitive understanding: we estimate
as if we would deploy a Gaussian policy, when in reality we ignore
its covariance matrix and simply deploy its mean deterministically.
This gives rise to an intuitive way to visualise estimates of policy
value: we vary values of Σ and consider their trend across the bias–
variance trade-off. We introduce, discuss, and visualise such results
for off-policy evaluation in Section 7.2.2.

Finally, we note that the Gaussian kernel is one of many alter-
natives to consider, albeit an intuitive option. Any multivariate
continuous probability distribution gives rise to a density function
that can be used either directly to optimise a stochastic policy, or
as a kernel smoothing function when optimising a deterministic
policy. The problems we describe in Section 5 that arise from uni-
form logging distributions, hold for all distributions and kernels
that have an unrestricted domain.

4 IMPROVING THE CRM LOWER BOUND
We require accurate variance estimates for two reasons: (1) dur-
ing evaluation, we want to ensure statistical significance of our
results, obtaining confidence intervals that exhibit the expected
coverage levels so we can make meaningful statements about Type-
I errors, and (2) during learning, we make use of sample variance
penalisation schemes that assume accurate variance estimates to
provide sensible lower bounds. As such: we require an estimator
for Var

(
𝑉(SN)IPS (𝜋𝜃 ,D)

)
that implies confidence intervals with

expected coverage. That is, when 𝜆 ≈ 1.96 in Eq. 7, the lower bound
holds in 95% of cases. Traditionally used variance estimators are
based on Gaussian approximations, motivated through the CLT.
For𝑉IPS, the sample variance with 𝑁 as the sample size is given by:

V̂ar
(
𝑉IPS (𝜋𝜃 ,D)

)
=

∑
(𝑎,𝑟 ) ∈D

(
𝜋𝜃 (𝑎)
𝜋0 (𝑎) 𝑟 −𝑉IPS (𝜋𝜃 ,D)

)2

𝑁 − 1 . (9)

Because the 𝑉SNIPS estimator deals with a ratio of two expec-
tations, we need to resort to the delta method to approximate its
variance [48, Eq. 9.9]:

V̂ar
(
𝑉SNIPS (𝜋𝜃 ,D)

)
=

∑
(𝑎,𝑟 ) ∈D

(
𝜋𝜃 (𝑎)
𝜋0 (𝑎) 𝑟 −

𝜋𝜃 (𝑎)
𝜋0 (𝑎) 𝑉SNIPS (𝜋𝜃 ,D)

)2

(𝑁 − 1)
(

1
|D |

∑
(𝑎,𝑟 ) ∈D

𝜋𝜃 (𝑎)
𝜋0 (𝑎)

)2 .

(10)

4.1 Effective Sample Size Corrections
Whilst the CLT justifies the use of such estimates to obtain confi-
dence intervals for 𝑉(SN)IPS in large-sample scenarios, it does not
tell us when the sample size is sufficient. As Bottou et al. write:
“central limit convergence might occur too slowly to justify such confi-
dence intervals” [3]. We empirically observe this phenomenon, and
highlight it in our experiments. Bottou et al.’s proposed solution is
two-fold [3]: reduce the variance of𝑉IPS by clipping the importance
weights [17, 22], bound the bias this introduces to the estimator,
and provide an inner and outer confidence interval. Whilst this can
be effective for evaluation, we wish to obtain confidence intervals
that we can plug into Eq. 7 to obtain a lower bound with improved
empirical coverage. As such, the alternative estimator we wish to
construct has two desiderata: (1) improved coverage at small sample
sizes, and (2) convergence to the Gaussian estimator at large sample
sizes (i.e. consistency with the CLT). Indeed, inflating the variance
estimate will help (1), but leave much to be desired for (2).

To satisfy property (1), we leverage the Effective Sample Size
(ESS) [48, §9.3]. The ESS estimates the number of independent sam-
ples from the target policy that would be equally informative as the
actual weighted samples from the logging policy that we have [16].
When the ESS is low, we can expect the variance estimates in Eqs. 9–
10 to be under-estimates. When the ESS is high (i.e. maximally 𝑁
when 𝜋𝜃 ≡ 𝜋0), we are not losing any statistical efficiency due to im-
portance sampling, and we can only hope for CLT convergence. To
satisfy property (2), we formulate our estimator as a multiplicative
correction factor to the original sample size. Thus, as the sample
size grows, we retain consistency and coverage guarantees at larger
sample sizes (from the CLT), whilst exhibiting improved coverage
at smaller sample sizes (which we show empirically in Section 7.1).
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We define the ESS-corrected sample size as:

𝑁 = 1 + 𝑁 (ÊSS − 1)
ÊSS

. (11)

From this formula, it is clear that 𝑁 is monotonically increasing
as a function of 𝑁 , and that 𝑁 ≡ 𝑁 when ÊSS ≡ 𝑁 . In Eqs. 9–10,
we then simply replace 𝑁 with 𝑁 and denote this as �VarESS. This
gives rise to a symmetric confidence interval as:

𝑉(SN)IPS (𝜋𝜃 ,D)±Φ−1
(
1 − 𝛼

2

) √√√ �VarESS
(
𝑉(SN)IPS (𝜋𝜃 ,D)

)
𝑁

. (12)

Naturally,Φ−1 represents the quantile function of a standard normal
distribution, such that the multiplicative factor roughly equals 1.96
when 𝛼 = 0.05 to obtain standard 95% confidence intervals.

This yields a robust lower bound on the value of the policy that
we wish to maximise. We expect the ESS correction to appropriately
inflate the width of the confidence interval when the ESS is low,
and the CLT is thus unlikely to hold, improving the estimators’
empirical coverage in low sample-size scenarios.

4.2 Estimating the Effective Sample Size
A widespread estimator for the ESS is given by [48, Eq. 9.13]:

𝑃2
𝑁 =

1∑
𝑖 𝑤

2
𝑖

, where𝑤𝑖 =
𝑤𝑖∑

(𝑎 𝑗 ,𝑟 𝑗 ) ∈D
𝑤 𝑗

=

𝜋𝜃 (𝑎𝑖 )
𝜋0 (𝑎𝑖 )∑

(𝑎 𝑗 ,𝑟 𝑗 ) ∈D

𝜋𝜃 (𝑎 𝑗 )
𝜋0 (𝑎 𝑗 )

.

(13)
Whilst common and intuitive, this estimator has flaws. First, Owen
remarks that the effectiveness of importance sampling depends on
the distribution of 𝑅, which is not captured here. They propose to
define a reward-specific estimator as [48, Eq. 9.17]:

𝑃𝑅−2
𝑁 =

1∑
𝑖 𝑤

2
𝑖

, (14)

where𝑤𝑖 =
𝑤𝑖 |𝑟𝑖 |∑

(𝑎 𝑗 ,𝑟 𝑗 ) ∈D
𝑤 𝑗 |𝑟 𝑗 |

=

𝜋 (𝑎𝑖 )
𝜋0 (𝑎𝑖 ) |𝑟𝑖 |∑

(𝑎 𝑗 ,𝑟 𝑗 ) ∈D

𝜋 (𝑎 𝑗 )
𝜋0 (𝑎 𝑗 ) |𝑟 𝑗 |

.

Martino et al. independently remark that 𝑃2
𝑁

is related to the Eu-
clidean distance between the distribution of the normalised impor-
tance weights and uniform weights (i.e. when 𝜋𝜃 ≡ 𝜋0) [41]. They
derive alternative estimators arising from alternative discrepancy
measures and evaluate them on a synthetic task, showing promis-
ing results for a formulation that considers the ℓ∞-norm instead
of the ℓ2-norm implied by the Euclidean distance measure (shown
in Eq. 15). We can equivalently extend this to obtain a reward-
dependent estimator in Eq. 16:

𝐷∞
𝑁 =

1
max𝑖 𝑤𝑖

, (15) 𝐷𝑅−∞
𝑁 =

1
max𝑖 𝑤𝑖

. (16)
Note that the latter provides a novel estimator for the ESS, combin-
ing existing elements in the literature [41, 48]. We can use any of
these estimators to compute ÊSS, 𝑁 and the resulting confidence
interval in Eq. 12. In Section 7.1, we empirically verify C.I. coverage
for all mentioned ESS estimators.

5 CONSIDERATIONS FOR LOGGING POLICIES
Assuming stationarity, the optimal scalarisation weights will be
deterministic. That is, if we do not consider the explore–exploit
trade-off that arises when learning over time, the density of the
optimal policy 𝜋𝜃★ will be a Dirac-delta centred at a single point. It
comes natural, however, to assume that 𝜋𝜃★ is not static and the
optimal weights might drift over time. As discussed in Section 3, the
logging policy that is responsible for collecting the samples we use
to estimate Eq. 12 needs to be stochastic. Thus, practitioners need to
deploy a randomisation strategy that collects informative samples
to allow for counterfactual estimation. For general applications, uni-
form distributions are attractive. Indeed, they are intuitive and easy
to implement, and the constant logging propensities 𝜋0 (𝑎) they
imply significantly simplify both the modelling and engineering
efforts required to run off-policy learning in production environ-
ments [59]. As such, they are commonly used.

Notwithstanding this, uniform distributions bring significant
downsides as well. In this Section, we wish to dissuade researchers
and practitioners from using uniform logging policies in the multi-
variate continuous case, focusing on three arguments.

5.1 Violating the common support assumption
Suppose we have a vector of production weights 𝒂0 ∈ R𝑑 , around
which we wish to design a logging policy. Suppose we wish to
explore a relative 𝜖% range on either side of the current weights:
hence we have 𝜋0 ≡ U

(
(1 − 𝜖

100 )𝒂0; (1 + 𝜖
100 )𝒂0

)
. Whilst a very

natural choice, it should be noted that the logging policy now
has a restricted domain. One might assume that if we are merely
learning a deterministic target policy, this is not hugely problematic.
Nevertheless, even when we learn deterministic policies, we need to
resort to kernel smoothing techniques such as the Gaussian kernel
introduced in Eq. 8. The Gaussian kernel implies a domain over
A ≡ R𝑑 , and hence, the common support assumption is violated:

∀𝑎 ∈ R𝑑\[ (1− 𝜖
100 )𝒂0;(1+ 𝜖

100 )𝒂0] : 𝜋0 (𝑎) = 0 ∧ 𝜋𝜃 (𝑎) > 0.

The main problem that this violation implies, is that the expected
importance weight no longer equals 1 [38]. Aside from the fact
that this implies that the conventional IPS estimator is now bi-
ased, it brings along additional problems. Indeed, baseline correc-
tions now have a significant effect on the estimator, and should
be avoided. Usually, practitioners recenter observed rewards as a
simple variance-reduction technique. When the common support
assumption holds, we can straightforwardly show that any constant
scalar translation 𝛽 preserves the unbiasedness of the estimator:

𝛽 + E
𝑎∼𝜋0

[
𝜋𝜃 (𝑎)
𝜋0 (𝑎)

(𝑅 − 𝛽)
]
= 𝛽 + E

𝑎∼𝜋0

[
𝜋𝜃 (𝑎)
𝜋0 (𝑎)

𝑅

]
− E

𝑎∼𝜋0

[
𝜋𝜃 (𝑎)
𝜋0 (𝑎)

𝛽

]
= 𝛽 + E

𝑎∼𝜋0

[
𝜋𝜃 (𝑎)
𝜋0 (𝑎)

𝑅

]
− 𝛽 E

𝑎∼𝜋0

[
𝜋𝜃 (𝑎)
𝜋0 (𝑎)

]
︸           ︷︷           ︸

.1

≠ E
𝑎∼𝜋0

[
𝜋𝜃 (𝑎)
𝜋0 (𝑎)

𝑅

]
. (17)

When we leverage a uniform logging policy with any kernel that has
a domain that can extend beyond that of 𝜋0, the common support
assumption does not hold. As a result, the equivalence of baseline
corrections is now violated, and they should be avoided.
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5.2 Self-normalisation becomes unstable
The SNIPS estimator introduced in Eq. 5 also leverages the fact that
E𝑎∼𝜋0

[
𝜋𝜃 (𝑎)
𝜋0 (𝑎)

]
= 1. Because this equivalence no longer holds, the

SNIPS estimator is no longer unbiased. More problematically, when
leveraging this estimator for learning purposes, we are incentivised
to find a policy that minimises E𝑎∼𝜋0

[
𝜋𝜃 (𝑎)
𝜋0 (𝑎)

]
(as it appears in the

denominator of Eqs. 5 and 12). This quantity can become arbitrar-
ily small by moving 𝜋𝜃 to or beyond the borders of the logging
policy’s domain. Indeed: this decreases E𝑎∼𝜋0

[
𝜋𝜃 (𝑎)
𝜋0 (𝑎)

]
and increases

𝑉SNIPS as a result. It should nevertheless intuitively be clear that
this is undesirable behaviour: placing probability density away
from the observed data should not increase our reward estimate.
This is closely related to the “propensity overfitting” phenomenon
described by Swaminathan and Joachims [56], which the uniform
logging policy cannot avoid here. As such, we cannot enjoy the vari-
ance reduction that self-normalisation brings without introducing
a statistical bias that is problematic.

5.3 The curse of dimensionality
Finally, whilst the uniform distribution has certain intuitive and
desirable properties in a single dimension, they can become coun-
terintuitive and disappear when we consider multiple dimensions.
A key desirable property in the univariate case is that sampled
points’ distances to the centre of the distribution are also uniformly
distributed. When the mean of the distribution is defined by the
weights we use in production and we randomise purely for the sake
of data collection, this seems logical and desirable.

Nevertheless, when we consider higher dimensions, this prop-
erty vanishes. Imagine we sample 1 million points from a uniform
distribution in U(−0.5, 0.5). In a single dimension, it is easily veri-
fied that the (normalised) Euclidean distance of every point is also
uniformly distributed.1 If we increase the number of dimensions,
however, this desirable property no longer holds. Suppose we were
to sample from a Gaussian distribution instead: this bias is also
present, but in a far less pronounced manner.

Intuitively, what practitioners expect when choosing a uniformly
distributed data collection policy is that he probability of a point
falling into a region [𝜇 −𝜖, 𝜇 +𝜖] (where 𝜇 is the centre of the distri-
bution) grows linearly with 𝜖 (until the upper bound of the interval).
This is clearly valid for the univariate case. Nevertheless, this is not
what we get for the multivariate case. Indeed, this probability can
be computed as P(𝑥 ∈ [𝜇 − 𝜖, 𝜇 + 𝜖]) = (1 − 2𝜖)𝑑 , implying that a
hypersphere with a radius covering 80% of the maximal distance to
the origin (𝜖 = 0.4), only covers roughly 16% of the data points for
𝑑 = 8. This fraction decreases monotonically as 𝑑 grows.

We visualise these phenomena in Figure 1, where we sample 1
million points from a Uniform distribution, and 1 million points
from an isotropic Normal distribution. The left and middle plot vi-
sualise the cumulative density of the normalised Euclidean distance
to the mean of the distribution (i.e. the origin), over sampled points.
The linear line on the left-hand plot (i.e. U(𝑑 = 1)) exhibits the

1Because the maximal Euclidean distance depends on the dimensionality 𝑑 , we nor-
malise the distances by a factor

√
0.25𝑑 to allow comparison across changing 𝑑 .

desirable uniform-distance property, which is not retained for in-
creasing 𝑑 . We plot the empirical fraction of sampled points falling
into a centred hypersphere with radius 𝜖 on the right-hand plot.
Analogous to the cumulative density, whilst we observe a linear
trend for U(𝑑 = 1) this quickly changes for increasing 𝑑 . The mul-
tivariate normal distribution provides a smoother transition, with
75% of points being covered for 𝜖 = 0.4 at 𝑑 = 8, instead of 16%.

A potential downside of using a multivariate normal logging
distribution instead of a uniform distribution, is that its domain is
unbounded. Nevertheless, the cumulative density plots show that
the probability of observing extreme points is negligible for practi-
cal purposes. We gain the desirable property of more sampled points
falling near the mean of the distribution, which in turn implies a
higher effective sample size when we wish to evaluate policies that
make small, rather than drastic changes to the production weights.

Furthermore, common support for the logging and target policies
opens the door to many statistical tools and tricks that allow for
more effective and efficient estimation for both evaluation and
learning: baseline corrections, and self-normalisation.

6 DESIGNING A SENSITIVE REWARD SIGNAL
The algorithmic decision-making lens that motivates the use of
policy learning techniques for recommendation use-cases, allows
us to directly target key online metrics as the reward signal for the
learnt policy. Whilst effective, typical North Star metrics such as
long-term growth might not be efficient labels to consider. Indeed,
the variance of the estimators discussed in Section 3 depends on
the inherent variance of the reward signal in the estimand. As
discussed in Section 4, the effective sample size is also dependent
on this reward, further highlighting its importance as a crucial
design consideration in the modelling process.

In essence, we wish to use a reward signal that is highly (causally)
correlated with the North Star, but potentially has lower variance.
Variance reduction techniques are a staple in the online experimen-
tation research literature, typically leveraging regression adjust-
ments as additive control variates [1, 5, 12, 49]. Note that this line
of work is analogous to the use of Doubly Robust estimators in the
off-policy learning literature [15]. As these techniques would re-
quire us to introduce an additional model that estimates the reward,
they are out-of-scope for the purposes of this work.

Other work has focused on “data-drivenmetric development” [11],
learning online metrics that directly target statistical sensitivity [33].
We leverage the work of Jeunen and Ustimenko [31] to learn a
reward signal that minimises a convex lower bound on the number
of type-III and type-II errors the metric exhibits on a logged dataset
of past A/B-experiments. This minimises observed 𝑝-values and,
hence, maximises statistical power w.r.t. the North Star. We refer
the interested reader to their work for technical details [31], and
evaluate the sensitivity of this learnt metric as a reward signal for
off-policy learning and evaluation in Section 7.

7 EXPERIMENTS & DISCUSSION
In this section, we wish to empirically validate the theoretical and
technical contributions set forth earlier in this article. The research
questions we wish to answer can be summarised as:
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Figure 1: Visualising the curse of dimensionality and counterintuitive properties of the Uniform distribution in high dimensions.
Left: Whilst all distances are equally likely in a single dimension, this property quickly disappears in higher dimensions.
Middle: The Normal distribution exhibits similar but less pronounced behaviour, with a lower slope on the cumulative density.
Right: Uniform sampling disfavours a hypersphere around the mean. Normal sampling can help to partially alleviate this.

RQ1 Can effective sample size corrections improve the coverage of
estimator confidence intervals for (SN)IPS?

RQ2 Does a learnt reward signal affect the sensitivity of results?
RQ3 Does our proposed approach lead to offline improvements?
RQ4 Does our proposed approach lead to online improvements?

7.1 ESS Corrections & Estimator Coverage (RQ1)
As argued in Section 4: whilst existing variance estimators for the
CRM objective are guaranteed to hold in the limit of large sample
sizes because of the CLT, they might give rise to confidence interval
that exhibit insufficient coverage in finite sample scenarios. We
wish to validate whether the policy-dependent correction laid out
in Section 4 can improve empirical coverage, when using a range
of potential estimators for the effective sample size.

Naturally, the statistical coverage of a confidence interval can
only be validated via simulation studies using synthetic data. This
has the added advantage of ease-of-reproducibility.

We simulate a multivariate isotropic Gaussian logging policy
with identity co-variance and 𝑑 = 5 dimensions, centred at the
origin. We shift the target policies to be centred at 𝜇𝑡 = 0.5, and
consider varying standard deviations𝜎 ∈ {1, 0.5, 0.25, 0.125, 0.0625}.
To simulate a realistic setting where the target is e.g. the number
of active days a user spends on the platform, we sample Poisson-
distributed rewards where the rate is proportional to the average of
the weights 𝑎: 𝑟 ∼ Poisson(max(0, 0.1 · 𝑎)). This allows us to easily
recover the ground truth policy value, as E𝑎∼N(𝜇𝑡 ,𝜎𝐼 ) [𝑅] = 0.1 · 𝜇𝑡 .
We sample between 23 and 220 data points from 𝜋0 and use these
to estimate the value of the target policy 𝑉(SN)IPS (𝜋𝑡 ). We repeat
this process 2 000 times to smooth out the effects of stochasticity.

Confidence Intervals (C.I.s) for 𝑉(SN)IPS (𝜋𝑡 ) are obtained via
Eq. 12, with varying estimators for ÊSS and thus 𝑁 . We report three
key metrics: (1) the estimated ESS (directly proportional to the
discrepancy between 𝜋0 and 𝜋𝑡 , (2) the width of the C.I. (directly
proportional to the estimated variance of the mean), and (3) the
coverage of the 95% C.I. (which should converge to 95%). We in-
crease the sample size over the 𝑥-axis, and show results for varying
target policy standard deviations in different columns. Results for
𝑉SNIPS are visualised in Figure 2.

Key observations from this plot include that the traditional sam-
ple variance C.I. has poor coverage in realistic scenarios, when sam-
ple sizes are relatively low (up to 10k in this simple non-contextual
setting). Convergence does indeed occur, as guaranteed by the CLT,
but slowly. Furthermore, it is unclear when we can expect the CLT
to hold. In constrast, all the proposed ESS estimators combined
with our sample size correction improve coverage at smaller sam-
ple sizes, whilst still converging to the advertised coverage level as
the sample size grows. These empirical findings corroborate our
theoretical expectations. Pessimistic ESS estimates, i.e. those lever-
aging the ℓ∞-norm proposed by Martino et al. [41], outperform the
conventional estimates that rely on ℓ2-norms. Reward-dependent
ESS estimates, as discussed by Owen [48], outperform their reward-
independent counterparts. The most promising variant is 𝐷𝑅−∞

𝑁
,

the estimator that combines both pre-existing elements in the lit-
erature into a novel estimator for the ESS. Importantly, we note
that the corrections do not significantly overshoot the required
coverage level, and converge to the CLT C.I.s as 𝑁 grows.

Aggregating for all considered target policies the ratio of the
minimum sample size required to achieve the advertised coverage
level using 𝑁 and using 𝑁 , we observe average sample size reduc-
tions of up to 60 times (i.e. down to 1.7% of the traditional C.I.).
These results are visualised in Figure 3. This represents a significant
shift that improves the robustness of offline evaluation and learning
capabilities for multivariate policy learning models in production.
Results for 𝑉IPS are qualitatively similar but omitted for brevity.

7.2 Improved Recommendations (RQ2–4)
To empirically validate that we can leverage the multivariate policy
learning approach to learn improved policies and ultimately im-
prove the recommendations that are being shown to end-users, we
require either access to (1) a dataset where weights were actively
randomised and logged along with the appropriate reward signals,
or (2) a simulation environment that accurately mimics real user
behaviour in response to recommendations, over multiple signals
and objectives (e.g. engagements, time spent, retention). Whilst the
latter has been popular to validate general off-policy learning ap-
proaches to recommendation [26, 28, 30, 37, 52], existing simulators
only consider single objectives (e.g. clicks) and it is unclear how
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these results translate to experiments with real end-users. Because
no appropriate datasets are publicly available, we resort to pro-
prietary datasets obtained from large-scale short-video platforms.
We report both offline evaluation results and results from online
experiments in the following subsections.

The base recommendation model on the platforms is a Multi-gate
Mixture of Experts (MMOE) multi-task learning model [39], used
to generate predictions for 9 different behaviour signals (e.g. like,
share, view, . . .). These are then combined following Eq. 1.

7.2.1 Production Baseline (Control). The production baseline can
be seen as an instantiation of the Direct Method [15], where a
direct search is performed to find the scalarisation weights that
maximise the correlation with retention, typically seen as a strong
indicator of user satisfaction and long-term growth for the platform.
These deterministic production weights are then treated as hyper-
parameters of the overall system, and have undergone multiple
manual tuning rounds where the outcomes of online experiments
decide which weights will be used going forward. Because online

performance is measured directly, this approach is effective. Nev-
ertheless, because the search space of possible weights is vast, the
approach is inefficient and costly. Automated policy learning meth-
ods that can improve over the production weights are therefore of
significant importance to the platform.

7.2.2 Offline Results (RQ2–3). To obtain an offline dataset to learn
from, we randomise weights for 4.5 million users and log their
behaviour on the platform over a period of three weeks. The ran-
domised weights correspond to the actions, and the behaviours
inform the rewards we wish to optimise using our proposed ap-
proach.

We optimise a deterministic policy to maximise a lower bound
on the𝑉SNIPS estimator, given by Eq. 12. For the learnt policy, we vi-
sualise the obtained ESS-corrected confidence interval for the value
estimates when we vary the bandwidth of the Gaussian kernel (i.e.
the standard deviation 𝜎). These results are visualised in Figure 4.
The policy we wish to deploy is deterministic, i.e. 𝜎 ≡ 0. Naturally,
this would lead to an extremely low ESS, and high variance as a
result. As we increase 𝜎 , we observe that the variance of the estima-
tor decreases as its bias increases. Indeed, for large values of 𝜎 , the
estimates coincide with the empirical reward obtained by the log-
ging policy, as the widening Gaussian kernel tend to smooth over
all observed samples. This visualises the bias–variance trade-off
that occurs for off-policy evaluation in continuous action domains.

We plot offline evaluation results for two reward signals: “re-
tained users” as a direct but noisy measurement of platform growth
objectives, and our “learnt reward” signal introduced in Section 6.
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Figure 4: Off-policy evaluation results for varying 𝜎 , visualising the bias-variance trade-off that comeswith the kernel smoothing
technique. We provide results for an insensitive North Star (a), and a learnt reward signal that maximises statistical power (b).

First, we observe that offline estimates for the “retained users” re-
ward are directionally positive, but imply such high variance that
we cannot make confident statements about the superiority of the
learnt policy. Furthermore, this inhibits any meaningful estimates
about the treatment effect of the learnt policy, as the C.I.s indicate
an increase of up to 300%, which no recommendation policy change
could ever reasonably incur.

When considering the learnt reward signal instead, we first ob-
serve a far more reasonable scale on the y-axis. Second, we observe
that around 𝜎 ≈ 0.1 the 95% confidence intervals denoting relative
improvements over the logging policy no longer include 1. In other
words, the improvements are statistically significant with 𝑝 < 0.05.
This leads us to consider the learnt policy as a promising candidate
for an online experiment.

7.2.3 Online Results (RQ4). We deploy the learnt policy obtained
through the offline experiment in Figure 4 in an online A/B-test
with 6.4 million users, over the course of 2 weeks. Results are re-
ported in Table 1a, for various metrics that are key to the platform.
Retention denotes the fraction of users that use the app the day
after, Time on the platform denotes overall time spent on the app,
Heavy Users are users that have more than 𝑋 positive item inter-
actions, and the Learnt Reward is a metric specifically optimised
to maximise statistical power w.r.t. the North Star, which is also
the optimisation target for our policy learning approach, as de-
scribed in Section 6. We apply a Bonferroni-correction to obtain
95% C.I.s for the relative improvement in these metrics, for the
learnt weights over the production weights. We observe that the
learnt policy is able to improve the target metric in the online test, a
testament to the effectiveness of the off-policy learning framework.
Indeed, mismatches between online and offline evaluation results
plague the recommender systems research field [17, 19, 24], but
the decision-making lens allows us to directly optimise offline esti-
mators of online metrics instead [25]. This experiment highlights
the effectiveness of such approaches for general multi-objective
recommendation scenarios.

To reproduce, validate and extend these empirical insights, we
perform a second online A/B-test on another large-scale short-
video platform, considering similar metrics. In this experiment, we
learn different scalarisation weights for different short-video feeds
users can interact with on the platform (i.e. home page feed, specific

feeds, et cetera). Reassuringly, we also observe that the learnt policy
is able to improve the target metric significantly. The time users
spend on the platform and user retention also improve significantly.
Because these metrics are not easily moved by online experiments,
this represents an important improvement to end-users’ experience
on the platforms, and signifies the effectiveness of our method.

8 CONCLUSIONS & OUTLOOK
Recommender Systems operating on online platforms are typically
optimised for multiple objectives via scalarisation techniques [21].
Whilst these techniques help to find Pareto-optimal solutions, the
choice of where on the Pareto-front the platform wishes to place
itself, remains a question that is hard to answer.

In this work, we present a general approach to solve this prob-
lem, leveraging elements from the algorithmic decision-making
literature. In particular, we propose to use the Counterfactual Risk
Minimisation paradigm [55] with a continuous multivariate action
space to learn a scalarisation policy that maximises a notion of
North Star reward defined by the platform. To make our approach
more effective and efficient, we propose a policy-dependent cor-
rection on the lower bound that is typically used by CRM, which
improves empirical coverage at small sample sizes whilst retain-
ing CLT guarantees in the limit. In doing so, we provide a novel
estimator for the ESS and empirically show its utility using syn-
thetic data. Furthermore, we highlight that the common practice
of preferring uniform randomisation is counterproductive in multi-
variate domains, and propose to leverage work on “learnt metrics”
to design reward signals that are highly correlated with the North
Star, but bring improved statistical power to benefit our learning
method [31].

We apply our learning method to two large-scale short-video
platforms, with over 160 million monthly active users each, and
showcase via off- and online experiments that our methods are able
to bring significant value to the platforms’ objectives.
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