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Recent progress in the understanding of the collective behavior of electrons and ions have revealed
new types of ferroic orders beyond ferroelectricity and ferromagnetism, such as the ferroaxial state.
The latter retains only rotational symmetry around a single axis and reflection symmetry with
respect to a single mirror plane, both of which are set by an emergent electric toroidal dipole moment.
Due to this unusual symmetry-breaking pattern, it has been challenging to directly measure the
ferroaxial order parameter, despite the increasing attention this state has drawn. Here, we show
that off-diagonal components of the piezoresistivity tensor (i.e., the linear change in resistivity
under strain) transform the same way as the ferroaxial moments, providing a direct probe of such
order parameters. We identify two new proper ferroaxial materials through a materials database
search, and use first-principles calculations to evaluate the piezoconductivity of the double-perovskite
CaSnF6, revealing its connection to ferroaxial order and to octahedral rotation modes.

The magnetic dipole moment is a prime example of
an axial vector in physics. While it behaves like an or-
dinary (i.e., polar) vector under rotations, it is invari-
ant under spatial inversion. Another type of axial vector
that emerges in condensed matter systems is the electric
toroidal dipole moment, also called the ferroaxial (or “fer-
rorotational”) moment [1–5]. In contrast to the magnetic
dipole moment, the electric toroidal moment is invariant
under time reversal. Importantly, while a single electron
does not have an intrinsic electric toroidal dipole mo-
ment, long-range ferroaxial order is enabled only by the
collective behavior of electrons or the lattice. Indeed, sev-
eral materials have been observed to undergo a so-called
ferroaxial transition towards a state displaying a macro-
scopic ferroaxial moment – analogous to the macroscopic
magnetization that emerges below a ferromagnetic tran-
sition. Examples of proposed ferroaxial materials include
LuFe2O4, URu2Si2, RbCuCl3, Mo3Al2C, and GdTe3,
which undergo electronically driven transitions [5–11], as
well as CaMn7O12, Rb2Cd2(SO4)3, and NiTiO3, which
undergo transitions driven by their crystal structure [12–
17].

Ferroaxial order leads to the spontaneous breaking of
all rotational symmetries except those around the axis
parallel to the electric toroidal dipole moment. As a
result, it also breaks the reflection symmetry with re-
spect to any mirror plane that includes the toroidal mo-
ment, while leaving the perpendicular mirror and inver-
sion symmetries intact. Hence, the ferroaxial order is
distinct from chirality, which breaks all mirrors and in-
version centers, and is equivalent to an electric toroidal
monopole [18]. This creates a major challenge in prob-
ing ferroaxial phase transitions, as there is no obvious
conjugate field to the electric toroidal dipole moment [5].
This is in contrast to other widely studied “ferroic” elec-
tronic states displaying ferroelectric, ferromagnetic, and
nematic (or ferroelastic) orders, whose conjugate fields
are electric fields, magnetic fields, and deviatoric strain

respectively. Meanwhile, the lattice distortion pattern
generated by ferroaxial order is often not associated with
either infrared optical or acoustic phonon modes. While
diffraction and optical probes may identify the presence
of a nonzero ferroaxial moment [19, 20], the required sen-
sitivity can be challenging to be achieved, making it desir-
able to identify a macroscopic observable that is a direct
fingerprint of ferroaxial moments.
In this regard, it is noteworthy that, in the case of

other ferroic states, certain transport coefficients are lin-
early proportional to the corresponding ferroic order pa-
rameters. For instance, the anomalous Hall resistivity
has the same symmetry properties as the magnetization
[21, 22], whereas the resistivity anisotropy is equivalent,
on symmetry grounds, to the nematic order parameter
[23–27]. Thus it is interesting to ask whether there is a
transport coefficient that is symmetry-equivalent to the
ferroaxial moment.
In this paper, by using group theory, phenomenol-

ogy, and first-principles calculations, we show that the
piezoresistivity can be used to directly probe the ferroax-
ial moments in a crystal (see schematics in Fig. 1). The
piezoresistivity tensor Πijkl measures the change in the
resistivity ρij of a material that is linearly proportional
to an applied strain εkl, i.e.

ρij = Πijklεkl (1)

where the indices denote Cartesian coordinates and sum-
mation over repeated indices is implied. This quan-
tity has the same symmetry properties as the linear
elastoresistivity tensor defined in Ref. [24], mijkl =
∂(∆ρij/ρ)/∂εkl. It has been well-established that cer-
tain “diagonal” components of the piezoresistivity, such
as Πxyxy and (Πxxxx − Πxxyy), are proportional to the
nematic susceptibility [24, 25, 28]. Here, we show that
“off-diagonal” terms corresponding to changes in the lon-
gitudinal resistivity due to shear strain, such as Πxxxy,
or changes in the in-plane (out-of-plane) transverse resis-
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FIG. 1. Schematic of a DC piezoresistivity experiment.
The piezoresistivivity coefficient Πxyxx measures how uniaxial
strain εxx changes the dependence of the transverse voltage
V on the longitudinal current I applied through the sample.

tivity due to an out-of-plane (in-plane) shear strain, such
as Πxyyz, give the different components of the ferroaxial
order parameter Ψ = (Ψx,Ψy,Ψz).
To support our symmetry analysis, we perform a ma-

terials search to identify candidate materials that display
a ferroaxial transition. We identify the double-perovskite
CaSnF6 and the langbeinite Rb2Cd2(SO4)3 as cubic sys-
tems that display proper ferroaxial order [14, 29]. This is
to be contrasted with many of the materials listed before
[6, 7], as well as 1T -TaS2 [30], in which the ferroaxial
order parameter is improper, i.e. secondary. Focusing
on the case of CaSnF6, we perform first principles den-
sity functional theory calculations and explicitly calcu-
late the piezoresistivity tensor via a Boltzmann trans-
port approach [4], confirming our symmetry analysis and
revealing the important contribution of octahedral rota-
tions to the piezoresistivity of this compound.

To gain further insight before proceeding with the for-
mal group-theory analysis, we consider the hypothetical
situation of an isotropic planar system. The three in-
plane components of the strain tensor, εxx, εyy, and εxy
can be combined into a symmetry-preserving lattice ex-
pansion/contraction mode, εxx+εyy, and two lattice dis-
tortion modes that break the isotropy of the lattice, and
which can be conveniently encoded in the two-component
“vector” ε = (εxx − εyy, 2εxy). A non-zero ε necessarily
triggers a response in the electronic degrees of freedom
that communicates the broken lattice symmetry to the
electronic subsystem. Such an effect can be described by
a two-component electronic-nematic vector η = (η1, η2),
whose components correspond to some anisotropic re-
sponse in the charge, orbital, or spin sector – such as the
uniform magnetic susceptibility, η ∝ (χxx−χyy, 2χxy), or
(px, py-orbital occupations, η ∝ (npxpx

− npypy
, 2npxpy

)
(see, for instance, Ref. [25]). In terms of the Landau
free energy F of the system, these two quantities couple
bilinearly:

F = −κ1 (ε · η) (2)

where κ1 is a coupling constant. Now, the electronic
anisotropy encoded in η must be manifested in the

transport properties via the anisotropic resistivity ten-
sor ρani = (ρxx − ρyy, 2ρxy), since ρani ∝ η [23, 26].
Therefore, one can then use Eq. (2) to obtain the well-
established relationship between the diagonal piezore-
sistivity coefficients and the nematic susceptibility, e.g.
Πxyxy = ∂ρxy/∂εxy ∝ χnem [24].

In the presence of ferroaxial order, the situation
changes. Let us focus on the Ψz component of the fer-
roaxial order parameter , whose condensation breaks the
vertical mirrors but preserves the horizontal mirror – the
in-plane components (Ψx,Ψy) turn out to also trigger an
electric quadrupolar moment (see Supplementary Mate-
rial (SM) [32]) It follows that the free-energy of the sys-
tem acquires a trilinear coupling between ε, η, and Ψz

of the form:

∆F = −κ2 Ψz (ε× η) · ẑ (3)

Using the fact that ρani ∝ η, it is straightforward to
conclude from Eq. (3) that the off-diagonal piezoresis-
tivity coefficients are proportional to the ferroaxial order
parameter, namely, Πxxxy = ∂ρxy/∂εxx = −Πxyxx =
−∂ρxy/∂εxx ∝ Ψz.

Group theory allows us to extend this result in a
straightforward way to any crystalline lattice. While
the cases of layered tetragonal and hexagonal crystals
are explained in the SM [32], we here illustrate the pro-
cedure for the case of the cubic lattice, in which the
three components of the electric dipolar toroidal mo-
ment Ψ = (Ψx,Ψy,Ψz) transform as the same three-
dimensional irreducible representation (irrep).

Being a rank-4 tensor, the piezoresistivity Πijkl has 81
components. Under a point symmetry operation R, rep-
resented by 3×3 matrix αR acting on the Cartesian com-
ponents, it transforms as Πijkl → αii′αjj′αkk′αll′Πi′j′k′l′

[7]. The 81 components of Π transform as an 81-
dimensional reducible representation of the point group,
which can be decomposed into irreps using the orthog-
onality theorem [6, 34]. This procedure is equivalent to
building 81 × 81 matrices representing each point group
operation acting on the 81-component vector represent-
ing the components of Π, then block diagonalizing these
matrices and identifying each block with the irrep matri-
ces listed in point group tables.

Importantly, the rank-4 tensor Π has the Jahn symbol
[V2][V2], i.e., it is symmetric under the exchange of either
the first two or the last two indices [34].[36] As a result, Π
can at most have 36 independent components, instead of
81. This allows us to use the Voigt notation and represent
Π by a 6 × 6 matrix with row and column indices 1 to
6 corresponding to {xx, yy, zz, yz, zx, xy}, respectively.
Performing the procedure outlined above for the cubic
point group m3̄m (Oh), we express the 36 components of
ΓΠ as irreps of the point group:

ΓΠ = 3A1g ⊕A2g ⊕ 4Eg ⊕ 3T1g ⊕ 5T2g. (4)
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Interestingly, every inversion-even irrep of the point
group m3̄m appears in this expansion at least once.
Among them, there are 3 independent non-zero compo-
nents of Π, corresponding to the 3 A1g irreps of the de-

composition, and corresponding to Π̃11 ≡ Πxxxx, Π12 ≡
Πxxyy, and Π44 ≡ Πyzyz, such that:

Πm3̄m =


Π11 Π12 Π12 0 0 0
Π12 Π11 Π12 0 0 0
Π12 Π12 Π11 0 0 0
0 0 0 Π44 0 0
0 0 0 0 Π44 0
0 0 0 0 0 Π44

 (5)

The other components, which are zero in the cubic phase,
correspond to symmetry-breaking electronic or structural
order parameters. For example, Eg and T2g represent
nematic (or ferroelastic) order parameters [37], whereas
A2g corresponds to a l = 6 (tetrahexacontapole) electric
multipole, or equivalently, an electric toroidal octupole
[1]. Crucially for our purposes, the three-dimensional ir-
rep T1g, which appears three times in ΓΠ, corresponds to
the ferroaxial order parameter Ψ. Thus, its condensation
leads to the onset of the corresponding non-zero piezore-
sistivity components. Since Π includes each and every
inversion-even irrep, different components of piezoresis-
tivity can be used to probe any structural phase transi-
tion that does not break inversion.

Focusing on ferroaxial order, we can build three axial
vectors Ψn, with n = A,B,C, from the components of
Π:

ΨA =
1

2
(Πyyyz −Πzzyz,Πzzzx −Πxxzx,Πxxxy −Πyyxy)

(6)

ΨB =
1

2
(Πyzzz −Πyzyy,Πzxxx −Πzxzz,Πxyyy −Πxyxx)

(7)

ΨC =
1

2
(Πxyzx −Πzxxy,Πyzxy −Πxyyz,Πzxyz −Πyzzx)

(8)
Therefore, the change in Π across a ferroaxial (FA)
transition can be expressed in terms of the components
Ψn = (Ψn1,Ψn2,Ψn3):

∆ΠFA =


0 0 0 0 −ΨA2 ΨA3

0 0 0 ΨA1 0 −ΨA3

0 0 0 −ΨA1 ΨA2 0
0 −ΨB1 ΨB1 0 −ΨC3 ΨC2

ΨB2 0 −ΨB2 ΨC3 0 −ΨC1

−ΨB3 ΨB3 0 −ΨC2 ΨC1 0


(9)

Each Ψ has a different physical meaning: ΨA is the
change in the longitudinal resistivity when a shear strain
is applied; ΨB is the change in the transverse resistivity
when longitudinal strain is applied; andΨC is the change

Material
Low Temp

Space Group
High Temp
Space Group Γ-point

ZnTe [38] P31 F43m
CaSnF6 [29] R3 Fm3m ✓

Si [39] R3 Fd3m
CsU2O6 [40] R3 Fd3m

Rb2Cd2(SO4)3 [14] P21 P213 ✓
LiIO3 [41] P63 P42/n

RbCuCl3 [9, 10] C2 I4/mcm

TABLE I. Ferroaxial material candidates that have reported
structures both with and without an axial moment. All com-
pounds except CaSnF6 and Rb2Cd2(SO4)3 have a larger unit
cell in the ferroaxial phase, as thus cannot be proper ferroax-
ial materials.

in the in-plane (out-of-plane) transverse resistivity when
an out-of-plane (in-plane) shear strain is applied. Since
all three Ψ’s transform as the same irrep, they must all
be simultaneously zero or non-zero. The Landau theory
of Ψ, discussed in the SM, shows that in the absence of
coupling with strain, the ferroaxial moment must point
either along the cubic [111] body diagonals or the cubic
[100] axes, resulting in eight or six domains, respectively
[32].

To proceed, we perform a materials search using the
Materials Project Database [42] to identify new nonmag-
netic materials with experimentally observed transitions
from a non-axial point group to an axial one. We list
seven promising materials in Table I, of which two dis-
play proper ferroaxial order: the double-perovskite flu-
oride CaSnF6 and the langbeinite Rb2Cd2(SO4)3. The
other ones are improper ferroaxial materials, in that fer-
roaxial order is triggered by the condensation of a finite-
momentum (zone-boundary) order parameter. While the
phase transitions of these materials are well-established
experimentally, they were not recognized to be ferroax-
ial before. In the remainder of the paper, we focus on
CaSnF6, shown in Fig. 2. This compound is a member
of the family of MM’X6 cation-ordered perovskites with
unoccupied A-sites [43]. Like most perovskites, it under-
goes an anion octahedral rotation transition from a cubic
high temperature Fm3̄m phase to a low temperature R3̄
phase at 200 K [44]. The rotation pattern is a−a−a− in
Glazer notation, which would have led to the commonly
observed R3̄c space group of single-perovskites if there
was no cation order [45, 46]. In CaSnF6, however, the
checkerboard ordering of cations doubles the unit cell,
folding the zone boundary R−

5 rotation mode onto the
zone center T1g ferroaxial mode (Γ+

4 irrep). This turns
the octahedral rotations into a proper ferroaxial order
parameter, similar to NiTiO3 [16].

To demonstrate that the octahedral rotations are in-
deed manifested in the piezoresistivity tensor of CaSnF6,
we calculate the latter via first-principles. By conven-
tion, we use the Cartesian axes of the hexagonal unit cell
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FIG. 2. (a) In the double perovskite structure of CaSnF6,
two different types of octahedra (green and brown) formed
by the F atoms (grey spheres) enclose two types of metal
atoms (Ca and Sn) in an alternating way. This staggered

pattern of cations corresponds to a B-site R-point (i.e. Q⃗ =
(π, π, π)) cation order. (b) Cartesian coordinate axes for cubic
(blue) and hexagonal (black, tilde) cells shown over the cubic
structure. (c) The rhombohedral structure with octahedral
rotations. (d) The atomic displacements (small arrows) due to
the rotation of a single octahedron cause a change in electronic
density (yellow/blue), resulting in an axial moment, Ψ, along
the [111] direction (large arrow).

of the low symmetry rhombohedral space group R3̄ in-
stead of the pseudo-cubic axes (see Fig. 2 and SM for
illustrations). We denote the hexagonal axes and quan-
tities therein with tilde symbols for clarity. In this co-
ordinate system, the ferroaxial moment points along ˆ̃z,
Ψ = Ψˆ̃z, and the form of the piezoresistivity tensor in
the symmetry-unbroken phase changes from Eq. (5) to

Π̃m3̄m =



Π̃11 Π̃12 Π̃13 Π̃14 0 0

Π̃12 Π̃11 Π̃13 −Π̃14 0 0

Π̃13 Π̃13 Π̃33 0 0 0

Π̃14 −Π̃14 0 Π̃44 0 0

0 0 0 0 Π̃44 Π̃14

0 0 0 0 Π̃14 Π̃66

 (10)

The 7 nonzero components Π̃ij are not independent, and
can be expressed in terms of the three independent com-
ponents Π11, Π12, and Π44 of the piezoresistivity in the
pseudocubic coordinate system of Eq. (5), see SM [32].
Conversely, in the hexagonal coordinate system, the form
of ∆Π̃FA, i.e. the change in the piezoresistivity tensor due
to ferroaxial order, is also different from Eq. (9). While
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FIG. 3. Off-diagonal components of the conductivity under
uniaxial strain (a) in the cubic non-axial phase and (b) in
the rhombohedral ferroaxial phase. (c) Same as in (b), but
calculated without relaxing the internal coordinates of the
atoms after strain is applied.

the full expression for ∆Π̃FA is given in the SM, we fo-
cus here on the elements ∆Π̃FA

15 = −2(ΨA − 2ΨB +2ΨC)
and ∆Π̃FA

16 = −2(ΨA + ΨB + 2ΨC), which can be di-
rectly read off from the piezoresistivity tensor calcu-
lated in the symmetry-broken phase, ∆Π̃FA

15 = Π̃R3̄
15 and

∆Π̃FA
16 = Π̃R3̄

16 . This is not the case, however, for ∆Π̃FA
14 ,

since ∆Π̃FA
14 ̸= Π̃R3̄

14 due to the fact that Π̃m3̄m
14 ̸= 0 in Eq.

(10).

Because CaSnF6 is a wide band-gap insulator with
negligible conductivity, we consider hole doping, which
can be achieved by cation vacancies or gating [47, 48]).
We compute the conductivity tensor elements σ̃ij in the
hexagonal coordinate system via the Boltzmann trans-
port approach [49] as a function of uniaxial strain ε̃xx
by building Wannier-based tight binding models at dif-
ferent strain values [5, 32, 51]. This procedure gives the
piezoconductivity tensor which, crucially, has the same
symmetry properties as piezoresistivity.

In Fig. 3(a), we show the three transverse conduc-
tivities (σ̃xy, σ̃xz, and σ̃yz) as a function of ε̃xx strain
for a doping level of 0.05 holes per metal atom (corre-
sponding to 7 × 1020 cm−3 carriers) in the cubic (non-
ferroaxial) phase. In the absence of strain, as expected,
the transverse conductivities vanish as required by sym-
metry. In the presence of strain, we find that σ̃xz and
σ̃xy remain zero, i.e. ∂σ̃xz/∂ε̃xx = ∂σ̃xy/∂ε̃xx = 0, which
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is in agreement with the fact that Π̃m3̄m
15 = Π̃m3̄m

16 = 0
in Eq. (10). Conversely, σ̃yz depends linearly on strain,

consistent with Π̃m3̄m
14 ̸= 0. Moving on to the rhombo-

hedral (ferroaxial) phase, shown in Fig. 3(b), we see a
remarkable change in the behavior of σ̃xz and σ̃xy, which
now display a linear dependence on strain ε̃xx. This im-
plies that ∆Π̃R3̄

15 = ∆Π̃FA
15 ̸= 0 and Π̃R3̄

16 = ∆Π̃FA
16 ̸= 0,

thus demonstrating that the off-diagonal piezoresistivity
(piezoconductivity) are only non-zero inside the ferroax-
ial phase.

From Fig. 3(b), we extract the slopes (the off-diagonal
piezoconductivities) as ∂σ̃xy/∂ε̃xx = −4.3×104 (Ωm)−1,
∂σ̃xz/∂ε̃xx = 3.6 × 105 (Ωm)−1, and ∂σ̃yz/∂ε̃xx =
2.4 × 105 (Ωm)−1. Because atomic positions were re-
laxed when different strains were imposed, these piezo-
conductivity values contain both the direct effect of strain
(clamped-ion effects) and the effects mediated through
changes in the atomic positions (including octahedral
rotation angles) under strain. To disentangle these ef-
fects, we show in Fig. 3(c) the off-diagonal piezocon-
ductivity obtained after not relaxing the internal po-
sitions of atoms, which leaves only the direct effect of
strain. Some of the slopes in this case are very different,
∂σ̃xy/∂ε̃xx = 8.9 × 104 (Ωm)−1, ∂σ̃xz/∂ε̃xx = 2.1 × 105

(Ωm)−1, and ∂σ̃yz/∂ε̃xx = 2.7 × 105 (Ωm)−1, signaling
the importance of the coupling between octahedral rota-
tions, strain, and electronic structure in determining the
magnitude of the piezoresistive response. This is likely
a result of the electronic hopping parameters being more
sensitive to the F-(Ca,Sn)-F bond angles than strain.

In summary, by considering the application of irrep
projection operators on response tensors, we demon-
strated that the off-diagonal components of the piezore-
sistivity can be used to directly measure the ferroaxial
order parameter. By performing a materials database
search, and then computing the piezoconductivity from
first-principles, we discovered that the transitions ob-
served in CaSnF6 and Rb2Cd2(SO4)3 are proper ferroax-
ial transitions, in contrast to most other materials that
exhibit only an improper ferroaxial transition.

More broadly, our work underlines the capabilities of
piezoresistivity as a powerful experimental probe to de-
tect non-inversion-symmetry-breaking transitions in ma-
terials. This further extends the functionality of this
response tensor, whose diagonal components have been
widely employed over the past decade to obtain invalu-
able information about the nematic susceptibility of var-
ious materials.
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Supplemental Information for
“Piezoresistivity as an Order Parameter for Ferroaxial Transitions”

DETAILS OF DFT CALCULATIONS

Our calculations are implemented in the VASP software package [S1] using projected augmented wave methods
[S2]. The exchange correlation effects were captured in the generalized gradient approximation (GGA) using the
Perdew-Burke-Ernzerhof (PBE) functional finetuned for solids [S3]. A Γ centered 5 x 5 x 5 k-point mesh was used
in the one formula unit rhombohedral cell for all structures and calculations. A force cutoff of 1 meV/Å was used
for relaxations. The transport properties were calculated in the semiclassical Boltzmann transport theory via the
Boltwann package [S4] using a tight-binding model for the valence band manifold fit by the Wannier90 code [S5]. For
each phase we calculate a separate Wannier model for each value of strain. The transport calculations where done on
a 200 x 200 x 200 k point mesh with a relaxation time of 10 fs. This relaxation time is a purely phenomenological
value and the exact values will depend on the extrinsic details of the system. However this value can usually give
plausible values.

TENSOR DECOMPOSITION

The general form for the projection operator onto a representation Γn is

P̂Γn =
ℓn
h

∑
R

χ(Γn)(R)∗R̂ (S1)

where R ranges over all symmetry operations of a specific group, χ(Γ) is the character function of the representation Γ,
ℓn is the dimensionality of the representation, and h is the overall number of symmetry operations. For a derivation,
see e. g. section 4.5 in Ref. [S6]. Since we are not interested in normalization we will drop the pre-factor. The usual
issue with this formula is that we do not know how a symmetry operator acts on an arbitrary object. However as we are
decomposing tensors the transformation is defined by the basic tensor property. Taking the cartesian transformation
matrix of an operator to be Rab, we can write the projection of a tensor T of dimension k onto representation Γ as

P̂ΓTi1i2...ik ∝
∑
R

χ(Γ)(R)∗Ri1i′1
Ri2i′2

· · ·Riki′k
Ti′1i

′
2...i

′
k

(S2)

By making our starting tensor arbitrary (symbolic) we obtain the general form of the contribution of that irrep.

By counting the number of independent variables remaining after projection and dividing by the dimensionality of
the irrep we can also determine the multiplicity of each irrep in the tensor. This includes the case where the tensor
does not contain any combination of components that transform as that irrep, in which case the projection will yield
a zero tensor.

There is also a more cumbersome, but somewhat more direct way to obtain the multiplicity. One can explicitly
construct the regular representation of the tensor by flattening the tensor into a large vector; for a rank-4 tensor
with no symmetry this will be 34 = 81 dimensional. The transformation properties of this can be deduced from the
transformation properties of the tensor. Denoting the transformation matrix in the regular representation associated
with operation R as DR we have

DR
(i1,i2,...,id),(j1,j2,...,jd)

≡ Ri1,j1Ri2,j2 · · ·Rid,jd (S3)

Then a different form of the Orthogonality Theorem can be used to count the multiplicity for each irrep

nΓ =
1

h

∑
R

χΓ(R) TrDR (S4)
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Example

We can illustrate a simple use of this projection scheme with the example of a symmetric rank-2 tensor (such as
conductivity) in point group m. The most general rank-2 tensor is

σ =

 σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 . (S5)

There are only two symmetry operations in this point group: the identity E and the mirror m, which is chosen to be
on the xz plane following the crystallographic convention, and two irreps, A′ and A′′, with characters

χ(E) χ(m)
A′ 1 1
A′′ 1 -1

The projection onto A′ is

σA′
= χA′

(E)Êσ + χA′
(m)m̂σ (S6)

= (1)

1 0 0
0 1 0
0 0 1

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

1 0 0
0 1 0
0 0 1

+ (1)

1 0 0
0 −1 0
0 0 1

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

1 0 0
0 −1 0
0 0 1

 (S7)

=

σ11 0 σ13

0 σ22 0
σ13 0 σ33

 (S8)

The projection operator onto A′′ is different only in the character of m in this irrep

σA′′
= χA′′

(E)Êσ + χA′′
(m)m̂σ (S9)

= (1)

1 0 0
0 1 0
0 0 1

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

1 0 0
0 1 0
0 0 1

+ (−1)

1 0 0
0 −1 0
0 0 1

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

1 0 0
0 −1 0
0 0 1

 (S10)

=

 0 σ12 0
σ12 0 σ23

0 σ23 0

 (S11)

As both are one dimensional irreps we can conclude that in this point group a rank two symmetric tensor has
decomposition 4A′ ⊕ 2A′′. Since A′ is the fully symmetric irrep, everything that transforms as A′ is in principle
nonzero when no symmetry is broken. The form of σA′

coincides with the form of a symmetric rank-2 tensor in the
monoclinic point group m, as tabulated in, for example, Ref. [S7].

PIEZORESISTIVITY IN OTHER POINT GROUPS

In 6/mmm the piezoresistivity has the decomposition

ΓΠ = 6A1g ⊕ 2A2g ⊕ 2B1g ⊕ 2B2g ⊕ 6E1g ⊕ 6E2g (S12)

In this group, the ferroaxial moment transforms as the sum of two separate irreps, A2g ⊕ E1g, corresponding to the
c-axis component and the in-plane components, respectively. Other quantities, such as deviatoric strain and electric
quadrupolar order (nematic order), also transform as E1g, which means that in-plane ferroaxial moments leaves the
same signatures in the piezoresistivity as electronic nematic order. As a result, we only list the two A2g components
here,

∆ΠA2g =


0 0 0 0 0 ΨA3

0 0 0 0 0 −ΨA3

0 0 0 0 0 0
0 0 0 0 ΨB3 0
0 0 0 −ΨB3 0 0

ΨA3 −ΨA3 0 0 0 0

 (S13)
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The form of the piezoresistivity tensor and its components for 4/mmm can be deduced by the subduction relations
between m3m and 4/mmm but we nevertheless list them explicitly [S8]. In this group, piezoresistivity has the
decomposition

ΓΠ = 7A1g ⊕ 3A2g ⊕ 5B1g ⊕ 5B2g ⊕ 16Eg (S14)

and the ferroaxial moment splits into A2g ⊕ Eg for the out of plane and in plane components. This means the A2g

components are merely the z components from the m3m case,

∆ΠA2g =


0 0 0 0 0 ΨA3

0 0 0 0 0 −ΨA3

0 0 0 0 0 0
0 0 0 0 ΨC3 0
0 0 0 −ΨC3 0 0

ΨB3 −ΨB3 0 0 0 0

 (S15)

UNIT CELL TRANSFORMATIONS FOR DOUBLE-PEROVSKITES

Here we discuss the coordinate systems change from the cubic unit cell of CaSnF6 to the hexagonal one. We start
from the cubic unit cell (black arrows) shown in Figure 3 with lattice vectors (a, b, c). The matrix that transforms
these basis vectors to the hexagonal cell basis vectors (ã, b̃, c̃) is given byã

b̃
c̃

 =

− 1
2

1
2 0

1
2 0 − 1

2
1 1 1

a
b
c

 (S16)

The orthogonal axes corresponding to this setting have the x-axis along the first direction, the z-axis along the
third and the y-axis chosen to be orthogonal to them. Thus, the corresponding relationship between the Cartesian
coordinate systems of the cubic primitive cell (blue, primed arrows in Supplementary Fig. 1) and those of the
hexagonal cell (black, unprimed arrows) is

x̃
ỹ
z̃

 =


1√
2

0 − 1√
2

− 1√
6

√
2
3 − 1√

6
1√
3

1√
3

1√
3


x
y
z

 (S17)

The form of piezoresistivity in the cubic phase expressed in the cartesian axes of the hexagonal system (Π̃m3̄m) can
be expressed in terms of the components of Π in the cartesian axes of the cubic phase (equation 5 in the main text)
as

Π̃m3̄m = (S18)

1
2 (Π11 +Π12 + 2Π44)

1
6 (Π11 + 5Π12 − 2Π44)

1
3 (Π11 + 2Π12 − 2Π44)

−Π11+Π12+2Π44

3
√
2

0 0
1
6 (Π11 + 5Π12 − 2Π44)

1
2 (Π11 +Π12 + 2Π44)

1
3 (Π11 + 2Π12 − 2Π44)

Π11−Π12−2Π44

3
√
2

0 0
1
3 (Π11 + 2Π12 − 2Π44)

1
3 (Π11 + 2Π12 − 2Π44)

1
3 (Π11 + 2Π12 + 4Π44) 0 0 0

−Π11+Π12+2Π44

3
√
2

Π11−Π12−2Π44

3
√
2

0 1
3 (Π11 −Π12 +Π44) 0 0

0 0 0 0 1
3 (Π11 −Π12 +Π44)

−Π11+Π12+2Π44

3
√
2

0 0 0 0 −Π11+Π12+2Π44

3
√
2

1
6 (Π11 −Π12 + 4Π44)


This shows the relation between Equations (5) and (10) in the main text.

Ferroaxial contribution to piezoresistivity in hexagonal cell’s coordinate system

We also write explicitly the change in the piezoresistivity tensor due to ferroaxial order in the hexagonal cell, which
is the analogue of Eq. (9) in the main text. As the form becomes significantly more complicated we will additionally
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(a)

(b)

z~
x~

y~

z~

x~

y~

x

y

z

x

y
z

FIG. S1. The coordinate axes used for the double perovskites. The cartesian coordinate axes that coincide with the simple
cubic (or the conventional body-centered cubic) cell are shown in blue with labels without a tilde. The cartesian coordinate
axes that align with the hexagonal unit cell of the rhombohedral R3̄ structure are shown in black with labels with tilde.
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impose the relevant physical condition that ΨA,ΨB ,ΨC all have direction (1, 1, 1). We find:

∆Π̃FA
15 = ΨA − 2ΨB + 2ΨC

∆Π̃FA
16 =

√
2 (ΨA +ΨB + 2ΨC)

∆Π̃FA
25 = −ΨA + 2ΨB − 2ΨC

∆Π̃FA
26 = −

√
2 (ΨA +ΨB + 2ΨC)

∆Π̃FA
45 = −

√
2 (ΨA +ΨB −ΨC)

∆Π̃FA
46 = −2ΨA +ΨB + 2ΨC

∆Π̃FA
51 = 2ΨA −ΨB − 2ΨC

∆Π̃FA
52 = −2ΨA +ΨB + 2ΨC

∆Π̃FA
54 =

√
2 (ΨA +ΨB −ΨC)

∆Π̃FA
61 = −

√
2 (ΨA +ΨB + 2ΨC)

∆Π̃FA
62 =

√
2 (ΨA +ΨB + 2ΨC)

∆Π̃FA
64 = −ΨA + 2ΨB − 2ΨC

(S19)

LANDAU THEORIES

Coupling between axial vectors and strain

In this section, we discuss the Landau theory of the ferroaxial order parameter (Γ+
4 ) and deviatoric strain (Γ+

3 for
normal and Γ+

5 for shear) in a cubic (Oh or m3̄m) system. Expressing the three components of the axial moment as

(Ψx,Ψy,Ψz), the two components of normal strain as (ε1, ε2) =
(
εzz − 1

2εxx − 1
2εyy,

√
3
2 (εyy − εxx)

)
, and the three

shear strain components as (εyz, εxz, εxy), the Landau free energy up to fourth order in Ψ and second order in strain
becomes [S9]:

F = aΨ2 + u1Ψ
4 + u2

(
Ψ2

xΨ
2
y +Ψ2

xΨ
2
z +Ψ2

yΨ
2
z

)
+ λ1

(
Ψ2

x(ε1 +
√
3ε2) + Ψ2

y(ε1 −
√
3ε2)− 2Ψ3

zε1

)
+ λ2 (ΨxΨyεxy +ΨxΨzεxz +ΨyΨzεyz) + C1

(
ε21 + ε22

)
+ C2

(
ε2xy + ε2xz + ε2yz

)
(S20)

where we defined Ψ2 = Ψ2
x +Ψ2

y +Ψ2
z, and the Latin letters represent materials-specific coefficients. The form of this

free energy expression is rather generic, and it is identical to that of polarization coupling with strain. The Ψ-only
part (the first three terms) allows only two low-symmetry phases with either only one component of Ψ nonzero, or
all three components of Ψ equal to each other, determined by the sign of the coefficient u2. On the other hand, the
coupling with strain allows breaking the rotational symmetry in different ways. For example, in the case that the
energy cost of having multiple shear strain components is large due to a higher order term ε4xy + ε4xz + ε4yz, then
regardless of the sign of the coefficient λ2, a phase that has two components of Ψ can be stabilized.

Interplay of cation order, octahedral rotations, and the ferroaxial moment

As discussed in the main text, the octahedral rotations in perovskites do not lead to macroscopic electric toroidal
dipoles or ferroaxial moments, but in the B-site checkerboard cation-ordered double perovskites, the R-point octa-
hedral rotation mode is folded back onto the zone center and gives rise to a ferroaxial moment. This point can be
illustrated further by considering a Landau free energy expansion that takes into account the cation order as an order
parameter as well. For a cubic perovskite in the space group Pm3̄m, the axial moments transform as the 3-dimensional
irrep Γ+

4 , and the out-of-phase octahedral rotations transform as the 3-dimensional R-point irrep R−
4 if the origin is

chosen to be on the A-site. We denote the order parameters of these two irreps as 3-component vectors Ψ and Φ.
Using the same origin choice, the B-site R-point (3D checkerboard) cation order transforms as the 1-dimensional R−

2

irrep, the amplitude of which we denote by m. (If the origin was chosen to be on the B-site instead, then the irreps
for octahedral rotations and cation orders would have been R+

4 and R+
1 , but the form of the free energy would not

have changed.) The Landau free energy in terms of these three order parameters can be derived using the standard
tools [S9], and it does not include any interesting second or fourth order terms. However, in third-order, it has a
trilinear coupling between these three irreps:

F ∝ mΨ ·Φ (S21)
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FIG. S2. Density of States for the valence band showing atomic projections. The valence band has entirely Fluorine p character.

When there is no cation order present and translational symmetry is not broken (m = 0), Ψ and Φ do not couple
bilinearly with each other. However, when there is cation order (m ̸= 0), this trilinear term couplesΨ andΦ bilinearly,
and a nonzero amplitude of octahedral rotations Φ makes it necessary that Ψ becomes nonzero as well.

Mathematically, this is the same scenario as in hybrid-improper ferroelectric Ruddlesden-Popper structures, for
which two modes from the X point of the body-centered tetragonal Brillouin zone couple with the Γ−

5 polar mode at
the zone center, and hence a polarization is induced when the two separate X modes are nonzero.[S10–S12] It is also
similar to the trilinear terms between orthogonal components of a single zone-boundary order parameter that appear
often in hexagonal lattices, for example in the vanadate Kagome metals.[S13, S14] A necessary but not sufficient
condition for such trilinear terms to appear is that the sum of the wavevectors adds up to zero, which is satisfied in
all three cases.

MISCELLENEOUS FIGURES

Figure S2 shows the Density of States, obtained from density functional theory, of the valence band of CaSnF6. Due
to the large electronegativity of F, there is minimal hybridization between the cations and F, and hence the valence
band is almost entirely made up of Fluorine p states.

Fig. S3 shows the evolution σxx and σxy as a function of carrier concentration (doping), holding strain constant.
The diagonal component behaves linearly and the off-diagonal non-linearly, but both are smooth with filling.

Fig. S4 shows the change in all the components of the conductivity under strain at two different dopings. These
are nearly identical curves except at different overall scales.

Fig. S5 shows that our Wannier tight-binding model accurately reproduces the entire valence band.
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FIG. S3. Components of conductivity (σxx and σxy) as a function of doping under uniaxial strain εxx in the rhombohedral cell.
Other components are qualitatively similar. Lines are color coded by strain.
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