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Energy-filtered quantum states are promising candidates for efficiently simulating thermal states.
We explore a protocol designed to transition a product state into an eigenstate located in the
middle of the spectrum; this is achieved by gradually reducing its energy variance, which allows us
to comprehensively understand the crossover phenomenon and the subsequent convergence towards
thermal behavior. We introduce and discuss three energy-filtering regimes (short, medium and
long), and we interpret them as stages of thermalization. We show that the properties of the filtered
states are locally indistinguishable from those of time-averaged density matrices, routinely employed
in the theory of thermalization. On the other hand, unexpected non-local quantum correlations
are generated in the medium regimes and are witnessed by the Rényi entanglement entropies of
subsystems, which we compute via replica methods. Specifically, two-point correlation functions
break cluster decomposition and the entanglement entropy of large regions scales as the logarithm
of the volume during the medium filter time.

Introduction — In a seminal article, M.C. Bañuls,
D. Huse and J.I. Cirac investigated how much entangle-
ment is necessary to reduce the energy fluctuations of a
quantum state in the middle of the spectrum of a many-
body system [1]. The question is natural: on the one
hand, product states have no entanglement but extensive
energy fluctuations, on the other hand, the exact eigen-
states of Hamiltonians display extensive entanglement
entropy. To understand the crossover, they introduced
the protocol of energy filtering, which progressively re-
duces the energy fluctuations of an initial product state.
Remarkable was the discovery of intermediate regimes
where energy variance shrinks to zero while the entrop-
ies grow logarithmically in the system size [1, 2], opening
the way to reproducing efficiently thermal properties via
pure states [3–7].

A protocol analogous to filtering is unitary dynam-
ics as, in both cases, purity is preserved but, at late
times, the state becomes locally indistinguishable from
a thermal one. Quantum correlations spreading across
the system during real-time evolution have been thor-
oughly characterized in order to gain a deeper under-
standing of the thermalization process. On the other
hand, fundamental questions regarding quantum correl-
ations in energy-filtered quantum states (EFQS) are still
unanswered. In addition to theoretical interest, clarify-
ing these issues is crucial for understanding the extent
to which EFQS can accurately capture thermal proper-
ties and to discern features that are instead related to
non-thermal spurious effects.

In this Letter, we give a detailed characterization of
the behavior of both local observables and entanglement
measures during filtering. Remarkably, we find that the
EFQS exhibits non-local quantum correlations between
arbitrarily distant points. We further develop a tech-
nique, based on replica methods, to compute the entan-
glement entropies of large regions, which complements
the information on correlation functions. We find that

the intermediate regime of the protocol, characterized by
small energy variance and entanglement, is unavoidably
accompanied by the violation of the cluster decomposi-
tion principle, which is an unorthodox non-thermal fea-
ture, albeit thermal features quickly show up locally.

Our approach applies to generic d-dimensional systems
and provides model-independent predictions; further, it
gives a systematic way to characterize the emerging non-
local properties and to connect them to the underly-
ing unitary dynamics. We validate our predictions and
the actual feasibility of the protocol by testing a non-
integrable spin chain with up to ∼ 80 sites numerically.

Energy filters — We begin by recalling a few known
results on EFQS. We consider a local Hamiltonian H and
a product state |Ψ0⟩ that is not an energy eigenstate and
such that EΨ0

= ⟨Ψ0|H |Ψ0⟩ lies in the middle of the
energy spectrum. We construct the EFQS as follows:

|Ψτ ⟩ =
1√
Z(τ)

exp

(
− (H − EΨ0

)2

4
τ2
)
|Ψ0⟩ ; (1)

the operator acting on |Ψ0⟩ is the energy filter and τ
the filter time; Z(τ) ensures normalisation. The energy
variance of |Ψτ ⟩ decreases as τ increases, and |Ψτ ⟩ in-
terpolates between the initial product state |Ψ0⟩ and a
state with reduced energy fluctuations maintaining the
same energy. Without loss of generality, we can assume
EΨ0 = 0 (the Hamiltonian can be shifted by a constant).

The energy distribution of |Ψτ ⟩ can be determined un-
der weak assumptions. For a product state |Ψ0⟩, all
the cumulants of H are extensive, the central limit the-
orem holds, and the energy distribution of |Ψ0⟩ is Gaus-
sian in the large volume V limit [8]. This means that
for a typical eigenstate |E⟩ with energy E the scalar
product |⟨E|Ψ0⟩|2 ∝ exp

(
− E2

2ε2V

)
, where ε2V ≡ ∆H2

0

is the energy variance of |Ψ0⟩. From Eq. (1) we can
compute the energy distribution of the filtered state
|⟨E|Ψτ ⟩|2 ∝ exp

(
−E2τ2

2

)
|⟨E|Ψ0⟩|2, so that the variance
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of |Ψτ ⟩ is

∆H2
τ ≃ 1

τ2 + 1
ε2V

. (2)

Filtering regimes — The formula in Eq. (2) suggests
the identification of three filtering regimes. We list them
here and anticipate some of the results derived below. At
short filter time, τ ∼ 1√

V
, the energy variance is extens-

ive and the expectation value of local observables is close
to the initial value; entanglement starts to build up, but
the state remains a standard area-law state. At medium
filter time, τ ∼ O(1), the energy variance does not scale
anymore with the size of the system. Bipartite entangle-
ment entropies become significant and have a universal
scaling as 1

2 log VA, where VA is the volume of the smal-
lest region A (reminiscent of the logarithmic behavior
found in long-range systems in Refs. [9, 10]). Here, a new
phenomenology appears: the state breaks the clustering
condition and quantum correlations become highly non-
local. Finally, at long filter times, when τ increases with
V , local observables attain values that are independent
of τ . The bipartite entanglement entropy scales as the
volume ∼ VA and two-point correlation functions satisfy
again a clustering condition; the state can be considered
as thermal.

Local observables — The study of EFQS is not
straightforward because |Ψτ ⟩ in Eq. (1) is issued from
a non-local and non-Hermitian evolution. Our approach
is based on the existence of a deep link with the process
of thermalization that we detail below.

We begin with a representation of |Ψτ ⟩ obtained by
Fourier-transforming the energy filter (see also Refs. [1,
11, 12])

|Ψτ ⟩ ∝
∫ ∞

−∞
dt′λτ (t

′)e−iHt′ |Ψ0⟩ , λτ (t) = exp
(
− t2

τ2

)
.

(3)
Eq. (3) provides a link between the filtered state and the
time-evolving one |Ψ0(t)⟩ = e−iHt |Ψ0⟩. We now con-
sider a local observable O [13] in the Heisenberg picture,
O(t) = eiHtOe−iHt. Formally, its expectation value in
|Ψτ ⟩, which we denote by ⟨. . .⟩τ , reads

⟨O(t)⟩τ =

∫
dt̃1dt1λ

∗
τ (t̃1)λτ (t1)⟨eiH(t̃1−t1)O(t− t1)⟩0∫

dt̃1dt1λ∗
τ (t̃1)λτ (t1)⟨eiH(t̃1−t1)⟩0

.

(4)
We point out that, in the limit of large system V → ∞

with t, τ fixed, this can be simplified: On the one hand,
at the denominator the expectation value ⟨eiH(t̃1−t1)⟩0 is
the Loschmidt echo, or return amplitude, which scales as
eV F (t1−t̃1) [14], with F (t) a function that is analytic in a
neighborhood of t = 0, when |Ψ0⟩ is a product state [15,
16]. On the other hand, such an exponential localisation
in time characterises also the numerator ⟨eiH(t̃1−t1)O(t−
t1)⟩0, which turns out to scale as eV F (t1−t̃1)⟨O(t− t1)⟩0.
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Figure 1. A sketch of ⟨Ox(t)⟩τ as a function of t for different
values of τ is shown in panel (a). The data are produced
using Eq. (5) and we plot the profile of the filter kernel λτ (t)
that we employed in panel (b). In panel (c) we show actual
numerical results for the model discussed at the end of the
letter in Eq. (12). The markers represent the numerical data
obtained for the numerically-simulated filtered state, while
the blue line shows the expectation value of the observable for
the unfiltered state |Ψ0(t)⟩. The comparison with the black
dotted lines, which are evaluated via the right-hand side of
Eq. (5), is excellent at several system sizes L.

We can then perform the integrals over t̃1 in Eq. (4),
which are marked by a saddle point contribution localized
at t̃1 ≃ t1. This gives the first main result:

⟨O(t)⟩τ ≃
∫
dt1|λτ (t1)|2⟨O(t+ t1)⟩0∫

dt1|λτ (t1)|2
. (5)

Hence, the EFQS |Ψτ ⟩ is locally indistinguishable from
the time-averaged mixed state that is routinely invoked
in the theory of thermalisation [4, 17]

ρth(τ) ∝
∫

dt1 |λτ (t1)|2 |Ψ0(t1)⟩⟨Ψ0(t1)| . (6)

Eqs. (5) and (6) are a powerful tool for linking the physics
of EFQS to the theory of thermalization, as we discuss
below—see also Fig. 1. Let us consider for simplicity
t = 0 in Eq. (5) and a local observable O. For small τ ,
⟨O(0)⟩τ is dominated by the initial transient dynamics of
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⟨O(t1)⟩0. For large τ , it is dominated by times t1 larger
than the observable’s relaxation time, and, thus, ⟨O(0)⟩τ
converges to its thermal value. The medium filter time
captures how thermalization occurs dynamically and is
therefore a particularly intriguing regime.

The goal of the rest of the paper is to show that en-
ergy filtering is a powerful method for understanding this
process, so far largely unexplored, and we will do so by
deriving some general and universal properties that char-
acterize the medium filter time.

Two-point correlations — Let us focus on short or
medium filter times and consider two operators Ox and
Oy, localized at x,y, at a distance large enough to cluster
in the state e−iHτ |Ψ0⟩. Eq. (5) can then be simplified as
follows

⟨OxOy⟩τ,c ≃
∫
dt1|λτ (t1)|2⟨Ox(t1)⟩20∫

dt1|λτ (t1)|2
− ⟨Ox⟩2τ , (7)

where translational invariance has been employed. This
correlator satisfies the clustering condition if, for large
enough |x− y|, it is equal to zero.

At short filter times, where |λτ (t)|2 localizes at t ≃ 0,
⟨OxOy⟩τ,c vanishes because the initial state |Ψ0⟩ is a
product state. For medium τ , instead, the right-hand
side of Eq. (7) is nonzero simply because the operator
is time evolving—we will provide numerical evidence in
Fig. 2. In that regime, therefore, the state |Ψτ ⟩ breaks
the clustering condition and its correlations become non-
local. This is consistent with the fact that the energy
filter introduced in Eq. (1) comes from a non-local time
evolution. We can conclude that, during the energy fil-
tering, non-local and non-thermal correlations build up,
and, in turn, ρth shall develop similar properties before
approaching a thermal state.

Entanglement of bipartitions — We now investig-
ate quantum correlations between spatial regions through
the lens of entanglement. We recall that, given a
quantum state and denoting by ρA its reduced density
matrix with respect to a region A with volume VA, its n-
th Rényi entropy reads Sn(A) ≡ (1−n)−1 logTr (ρnA) and
the von Neumann entropy is S1(A) ≡ −Tr (ρA log ρA).
We compute the Rényi entropies Sn,τ (A) (n ≥ 2) for
the filtered state |Ψτ ⟩ with the replica method, which
requires to compute Tr (ρnA) as a certain partition func-
tion between n replicas; we then use the replica trick
to compute the von Neumann entropy, i.e., we perform
the analytical continuation over n ∈ R>0 and take the
limit n → 1+ [18]. After introducing the twist operator
TA, that acts as a replica permutation j → j + 1 (with
j = 1, . . . , n a replica index) within the region A, we can
represent the moments of ρA as Tr (ρnA) =

n⟨Ψ| TA |Ψ⟩n,
with |Ψ⟩n ≡ |Ψ⟩⊗n the state of the system replicated
n times [19–21]. Details on the actual calculations are
reported in the Supplementary Material (SM); here we
focus on the results.

At short filter times τ ∼ 1/
√
V , entanglement starts

to build up quickly, and we find

Sn,τ (A)− Sn,0(A) = fsft,n

(√
ε2V τ,

VA

V

)
. (8)

In the case of a product state Sn,0(A) is zero, but the
result holds more generally for an initial area-law state.
The explicit form of fsft,n is universal and it does not
depend on the details of the Hamiltonian; it is reported
in the SM. In particular, it first grows quadratically as
fsft,n ∼ V τ2, whereas asymptotically the behaviour is
logarithmic, fsft,n ∼ log

(√
V τ
)
.

After this transient, at a filter time scaling as τ ∼
1/
√
V , the entropy reaches a value proportional to the

logarithm of VA. This result is non-trivial as a priori
one would expect that a non-local evolution saturates
the quantum correlations and produces an entanglement
of bipartition scaling as VA.

The medium filter time regime takes place after this
saturation and we obtain

Sn(A)− Sn,0(A) ≃ 1

2
log VA + gmft,n(τ) + . . . . (9)

The function gmft,n(τ), represents the most important
contribution that appears as a function of τ . In particu-
lar, the behaviour above is found for τ shorter than the
time that is necessary for the subsystem to thermalize.

The explicit expression of gmft,n(τ) depends on the
model, but its asymptotic behavior in τ has general fea-
tures; we find a strong dependence on the order of the
Rényi entropy, a situation which is rather uncommon:

gmft,n(τ) ≃


n

n−1 log τ, n > 1;
1√
2π

Γ1 |∂A|τ, n = 1;
1−n
8n Γ2

n |∂A|2τ2, 0 < n < 1.

(10)

Here, the growth of entropy under unitary dynamics is
assumed to be linear, and Γn is related to its rate via
Sn(A) ≃ Γn |∂A|t. The linear growth of S1(A) as a func-
tion of τ in Eq. (10) has to be compared with the slower
logarithmic growth observed for n > 1, and it is com-
patible with the rigorous upper bound found in Ref. [1]
with different methods for one-dimensional systems. We
mention that a similar drastic change of behaviour of the
Rényi entropy close to n = 1 has been found also in a dif-
ferent context in Refs. [22, 23]. Interestingly, this change
of behavior disappears when A is taken to be the entire
system [17].

The Rényi entropies for 0 < n < 1 are fundamental in
the context of tensor networks; in particular, it is known
that if Sn(A) is bounded by c log VA, then an efficient
MPS representation exists [24]. Our result in Eq. (10),
therefore, suggests that the filtered state |Ψτ ⟩ can be effi-
ciently simulated with a tensor-network algorithm up to
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a filter time of order τ ∼
√
log V . This would make it ac-

cessible to a classical simulation a state with logarithmic
entanglement entropy and an energy variance decaying
as ∆H2

τ ∼ 1
log V . A rigorous proof of a similar statement

has been provided in Ref. [2] with different methods for
one-dimensional systems.

We remind the reader that Ref. [25] found asymptotic
eigenstates with subextensive entanglement entropy and
energy variance ∆H2 ∼ 1

L2 . We note that such a scenario
cannot be recovered via the filter protocol for generic sys-
tems because τ ∼ V is a time scale compatible with the
thermalization time, when every region has thermalized
and an extensive entropy is observed.

Mutual information — We remark that the prefactor
(1/2) of the logarithmic growth of the entropy as a func-
tion of the volume in Eq. (9) holds for both connected
and disconnected regions. In particular, the mutual in-
formation of two distant regions A,B of size VA, VB = VA

can be estimated as

I(A,B) ≡ S1(A) + S1(B)− S1(A ∪B) ≃ 1

2
log VA + . . .

(11)
up to O(1) terms (finite for τ ̸= 0 fixed and VA large).
Therefore, the mutual information does not decay to zero
within the distance, as it happens in the ground states of
critical systems [26]. Similar properties are also found in
some exact scars (see Ref. [27]), and they are ultimately
related to the breaking of clustering. This is the entangle-
ment version of the non-locality of the state at medium
filter time that has been pointed out when looking at
two-point correlation functions.

Numerical simulations — We benchmark our pre-
dictions against numerical results in a one-dimensional
quantum spin chain of length L. We consider the spin-
1/2 Ising model with both longitudinal and transverse
magnetic field

H = −J

L−1∑
j=1

Sx
j S

x
j+1 + hx

L∑
j=1

Sx
j + hz

L∑
j=1

Sz
j ; (12)

with open boundary conditions, and we choose J =
1, hx = 1.2, hz = 0.8. We take |Ψ0⟩ = |↑↓↑↓ . . . ↑↓⟩,
which lies in the middle of the spectrum with EΨ0

= 0
and has extensive energy variance ∆H2

0 = (J2/16 +
h2
x/4)L. In order to numerically implement the energy

filter e−
H2τ2

4 we use a matrix-product state represent-
ation of the quantum state combined with the Time-
Dependent Variational Principle (TDVP) [28–30], em-
ploying the ITensors library [31, 32]. We follow Ref. [33]
and we first apply the 2-TDVP until a chosen bond-link
χ = 450 is reached; subsequently, we employ the 1-TDVP
algorithm at fixed bond link. This procedure represents a
compromise between the computational efficiency offered
by 1-TDVP, and the mitigation of projection errors in-
herent to 2-TDVP. This allows us to reliably simulate
chains of up to L = 80 sites up to filter time τ = 7.
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Figure 2. Panels (a) and (b) show the evolution of ⟨Sz
j=L

2
⟩τ

and ⟨Sx
j=L

2
⟩τ , as function of τ . In (c) we show results for the

connected correlator ⟨Sz
j=L

4
Sz
j′= 3L

4
⟩τ,c, as function of τ . We

compare numerical data for L = 32, 48, 64, 80 with the right-
hand side of Eq. (7) evaluated for L = 80.

We first assess the validity of Eq. (5). In Fig. 1(c)
we plot the numerical data obtained for ⟨O(t)⟩τ , with
O = Sz

j=L
2

. Black dashed curves are obtained by pro-
cessing, according to Eq. (5), the unitary time-evolution
result ⟨O(t)⟩0, which is plotted as a solid blue line. The
comparison with the direct simulation of ⟨O(t)⟩τ using
the filter algorithm is excellent.

We subsequently investigate the behaviour of local ob-
servables and of two-point connected correlation func-
tions of distant points, studying ⟨Sz

j=L
2

⟩, ⟨Sx
j=L

2

⟩ and
⟨Sz

j=L
4

Sz
j′= 3L

4

⟩τ,c and plot the results in Fig. 2. Local
observables have a significant dependence on the filter
time up to τ ∼ 4, after which they show significant sat-
uration effects; it is expected that this value is close to
the thermal one approached for τ → ∞. As anticip-
ated, the connected correlator takes the value 0 at τ = 0,
increases towards a maximal value, and eventually de-
creases for longer values of τ . The curves obtained at
various L are compatible with a collapse as L increases.
We also evaluate numerically for L = 80 the right-hand
side of Eq. (7), obtained from the unitary dynamics of
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Figure 3. Sn − 1/2 logL (n = 1, 2) for the half-chain biparti-
tion as a function of τ, L. The data against τ (panels (a) and
(c)) show compatibility with a collapse as L increases. In (b)
and (d) we show the results as a function of 1/L for different
values of τ and extrapolate them in the limit L → ∞. The
extrapolated value is finite, which supports the anticipated
large-L behaviour S1,2 ∼ 1

2
logL.

the model, finding good agreements with the previous
curves. Note that while local observables have saturated
and approach slowly the long-τ limit, the connected cor-
relation function is still displaying a significant evolution,
with a marked decreasing trend.

Finally, we study the Rényi entropies (n = 1, 2) of
half-chain in the medium filter time as a function of τ
and system size L; the results are plotted in Fig. 3. Our
data show compatibility with a collapse of Sn − 1

2 logL
against τ , as predicted by Eq. (9). Finite-size deviations
are displayed in panels (b) and (d), and a slowly-decaying
oscillating behaviour as a function of L is found.

Conclusions — We have shown that the filtering pro-
tocol generates non-local correlations in an intermediate
filter-time regime. These non-thermal effects should be
contrasted with the local thermal features, which emerge
quickly. We provide analytical predictions for entangle-
ment entropies and its fictitious dynamics under filtering
that address fundamental questions regarding the sim-
ulability of thermal properties via quantum pure states,
and that have been thoroughly validated through numer-
ical simulation.

Further, we believe that the techniques employed, con-
cerning a non-local and non-unitary evolution, can be
applied in the context of open quantum systems. An-

other interesting direction regards the possible role of
conserved charges, or integrability, in the filtering. Non-
thermal states, say generalized Gibbs ensembles, are then
expected to arise eventually after filtering. We defer the
examination of these generalizations to future investiga-
tions.
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Supplementary Material for
“Energy-filtered quantum states and the emergence of non-local correlations”

Appendix A: Rényi entropies and replica trick

In this section, we characterize the Rényi entropy of the filtered state |Ψτ ⟩ via replica trick. Given a subsystem A,
we first express the nth moment of its RDM as

Tr (ρnA) =
n ⟨Ψτ | TA |Ψτ ⟩n =

1(∫
dt̃1dt1λ(t̃1)λτ (t1)⟨eiH(t̃1−t1)⟩0

)n×∫
dt̃1dt1 . . . dt̃ndtnλτ (t̃1) . . . λτ (t̃n)λτ (t1) . . . λτ (tn)×n ⟨Ψ0| ei

∑
j Hj t̃jTAe−i

∑
j Hjtj |Ψ0⟩n ,

(A1)

with Hj the Hamiltonian of the j-th replica. The expression above, exact at finite size, boils down to a computation
of an integral in 2n variables. Simplifications occur in the limit of large regions, and one can exploit the exponential
localization of the integrand (analogous to the Loschmidt echo case, discussed in the main text). For instance,
n ⟨Ψ0| ei

∑
j Hj t̃jTAe−i

∑
j Hjtj |Ψ0⟩n gets a contribution from the region A associated with the replica shift: this gives

localization around tj−1 ≃ t̃j . Another contribution comes from the complementary region, and it gives localization
around tj ≃ t̃j . We perform a quadratic approximation around the localization points, relevant to evaluate the integral
in Eq. (A1), and we get

n ⟨Ψ0| ei
∑

j Hj t̃jTAe−i
∑

j Hjtj |Ψ0⟩n ≃ exp

−ε2(V − VA)

2

∑
j

(tj − t̃j)
2 − VAε2

2

∑
j

(tj−1 − t̃j)
2

× n ⟨Ψ0| TA(t1) |Ψ0⟩n .

(A2)

Here, n ⟨Ψ0| TA(t1) |Ψ0⟩n is the nth moment of the RDM in the state |Ψ0(t1)⟩, and it is the only quantity which
contains detail on the underlying model.

We first discuss the short filter time τ ∼ 1√
V

and for convenience we define the rescaled variable

τ̃ =
√
V τ. (A3)

The integral in Eq. (A1) is a Gaussian integral over 2n variables. Because of the fast decay of λτ (t) as a function of
t, the integrand is localized around tj ≃ t̃j ≃ 0; in this regime we can therefore safely replace n ⟨Ψ0| TA(t1) |Ψ0⟩n by
n ⟨Ψ0| TA(0) |Ψ0⟩n inside (A1). The latter is 1 for a product state, but the forthcoming discussion will hold true for
area-law states as well. We introduce the 2n-dimensional vector

t =


t1
. . .
tn
t̃1
. . .
t̃n

 , (A4)

and we express the numerator of (A1) as

n ⟨Ψ0| TA(0) |Ψ0⟩n ×
∫

dt exp

(
−1

2
V tTMnt

)
= n ⟨Ψ0| TA(0) |Ψ0⟩n × det−

1
2

(
VMn

2π

)
, (A5)

with Mn the 2n× 2n matrix Mn

Mn =

(
2

τ̃2
+ ε2

)
1+ ε2(1− VA/V )

(
0 −1
−1 0

)
+ ε2VA/V



0 . . . . . . 0
. . . . . . . . . . . .
. . . . . . . . . . . .
0 . . . . . . 0

0 −1 0 . . .
. . . 0 −1 . . .
. . . . . . . . . . . .
−1 0 0 . . .

0 . . . . . . −1
−1 0 . . . 0
0 −1 . . . 0
. . . . . . . . . . . .

0 . . . . . . 0
. . . . . . . . . . . .
. . . . . . . . . . . .
0 . . . . . . 0


, (A6)
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whose spectrum is thoroughly discussed in Sec. B. Finally, we compute the difference of Rényi entropies between |Ψτ ⟩
and |Ψ0⟩ as

Sn(A) = Sn,0(A) +
1

2(n− 1)
log

det(Mn)

detn(M1)
. (A7)

For small τ̃ one gets a quadratic growth as Sn(A)−Sn,0(A) ∼ τ̃2. For large τ̃ instead a logarithmic growth is observed

Sn(A)− Sn,0(A) ≃ log τ̃ + . . . , (A8)

which will be traced back to the smallest eigenvalue of Mn. As expected, our prediction vanishes identically in the
limit VA/V → 0; this is a further demonstration that local observables, associated with a finite region A, do not vary
in the short filter time regime (see Eq. (A7)). Further, one can check explicitly that the result is symmetric under
VA ↔ V − VA, as expected since |Ψτ ⟩ is a pure state.

In the case of a medium filter time, with τ fixed, one can still perform a saddle-point analysis, but carefulness is
needed. In particular, λτ (tj) (and λτ (t̃j)) no longer contribute to the saddle point of (A1), and the latter is determined
by the term in Eq. (A2). Here localization of the integral around tj ≃ t̃j ≃ t, which is a one-dimensional manifold,
occurs. To compute (A1), we first perform a saddle-point integration over the transverse (2n − 1) directions and,
then, integrate over t

n ⟨Ψτ | TA |Ψτ ⟩n =

∫
dt|λτ (t)|2n n ⟨Ψ0| TA(t) |Ψ0⟩n(∫

dt|λτ (t)|2
)n ×

∫
dt exp

(
− 1

2V tTNnt
)(∫

dt′ exp
(
− 1

2V t′N1t′
))n =

∫
dt|λτ (t)|2n n ⟨Ψ0| TA(t) |Ψ0⟩n(∫

dt|λτ (t)|2
)n ×

(
V

2π

) 1−n
2

× det−
1
2 (Nn)

det−
n
2 (N1)

(A9)

where t is the 2n− 1-dimensional vector

t =

 t1
. . .

t2n−1

 , (A10)

and Nn is a 2n−1×2n−1 matrix. The specific entries of Nn depend on the way we parametrize the 2n−1-dimensional
manifold that is orthogonal to the one-dimensional one where the integral localizes. However, the spectrum of Nn does
not depend on this choice and it can be obtained directly from the results available for Mn in Sec. B. For instance,
in the limit τ̃ → +∞ in Eq. (A6), Mn becomes singular as one eigenvalue vanishes: this eigenvalue is associated
precisely with the one-dimensional manifold of localization (tj = t̃j = t in Eq. (A1)), while the other (2n − 1) ones
rule the exponential decay in its neighborhood. The latter are the eigenvalues of Nn, and we write the spectrum of
the matrix (denoted by Spec(. . . )) as

Spec (Mn|τ̃=∞) = Spec (Nn) ∪ {0}. (A11)

For completeness, we write the eigenvalues of Nn as

{ε2(1 +
√
(1− VA/V )2 + (VA/V )2 + 2VA/V (1− VA/V ) cos k)}k≥0∪

{ε2(1−
√
(1− VA/V )2 + (VA/V )2 + 2VA/V (1− VA/V ) cos k)}k>0,

(A12)

with k ∈ 2π
n {0, . . . , n− 1}.

To proceed with the analysis, it is necessary to make some hypothesis on the behaviour of n ⟨Ψ0| TA(t) |Ψ0⟩n, which
is the only quantity not predicted by this approach and depends on the properties of the model. We assume that
the growth in time of the entropy under unitary dynamics from the state |Ψ0⟩ is linear, which is a common scenario
found for both integrable and non-integrable systems [36–38]. At large times, the entropy is expected to approach an
extensive value, and hence

n ⟨Ψ0| TA(t) |Ψ0⟩n
n ⟨Ψ0| TA(0) |Ψ0⟩n

≃

{
exp (−(n− 1)Γn|∂A| × |t|) |t| ≲ tth,

exp (−(n− 1)snVA) |t| ≳ tth,
(A13)

with Γn ≥ 0 a (model-dependent) rate, and |∂A| the area of A. The thermalization time tth entering the previous
expression grows with the size of the region and it is proportional to tth ∼ V

1/d
A in the presence of ballistic transport
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(or tth ∼ V
2/d
A for diffusive systems). For one-dimensional systems, where ∂A is just a set of points (which means

that |∂A| does not scale with the subsystem size) the first term in Eq. (A9) is finite, as long as τ is fixed and much
smaller than the thermalization time tth. For those systems, the leading term of the entropy is precisely given by the
second term of Eq. (A9)

Sn(A)− Sn,0(A) ≃ 1

2
log VA + . . . (A14)

where O(1) (τ -dependent) terms have been neglected[39].
We now discuss the limit of large τ for the corrections to Eq. (A14). We analyze the cases n ≥ 2, n → 1+, and

n < 1 separately, as qualitative differences arise. The important quantity is the first term of Eq. (A9), and we study
its behaviour as a function of τ . First, using the exponential decay in Eq. (A13), we make the following approximation∫

dt|λτ (t)|2n
n ⟨Ψ0| TA(t) |Ψ0⟩n
n ⟨Ψ0| TA(0) |Ψ0⟩n

≃
∫

dt exp (−(n− 1)Γn|∂A| × |t|) ∝ 1

(n− 1)Γn|∂A|
. (A15)

Also, up to an irrelevant prefactor, we have (∫
dt|λτ (t)|2

)n

∝ τn. (A16)

Putting everything together, we express the leading correction to Eq. (A14) as

Sn(A)− Sn,0(A) ≃ 1

2
log VA +

n

n− 1
log τ + . . . , n ≥ 2 (A17)

for large τ . As manifest from the equation above, the analytic continuation n → 1 is pathological, and the technical
mechanism is traced back to the non-commutativity of the limits τ → ∞ and n → 1. The leading order in the limit
of small (n− 1) reads∫

dt|λτ (t)|2n
n ⟨Ψ0| TA(t) |Ψ0⟩n
n ⟨Ψ0| TA(0) |Ψ0⟩n

≃
∫

dt|λτ (t)|2n (1− (n− 1)Γ1|∂A||t|+ . . .) ∝ (A18)

τ√
n
(1 + (1− n)CΓ1|∂A|τ + . . .) , (A19)

where C is a dimensionless constant given by

C =

∫
dx |x|e−2x2∫
dxe−2x2 =

1√
2π

. (A20)

We compute the von Neumann entropy from the limit n → 1 of the expression above and get

S1(A)− S1,0(A) ≃ 1

2
log VA + CΓ1|∂A|τ + log τ + . . . . (A21)

We finally consider the case n < 1. This regime is particularly tricky, since the expectation value of the twist operator
in Eq. (A13) grows exponentially in time, and it competes with the decay of λτ (t) in Eq. (A9). We perform an
estimation via saddle point analysis, which gives the most leading asymptotics at large τ (up to an irrelevant constant
prefactor)∫ ∞

−∞
dt|λτ (t)|2n

n ⟨Ψ0| TA(t) |Ψ0⟩n
n ⟨Ψ0| TA(0) |Ψ0⟩n

≃2

∫ ∞

0

dt exp

(
−2nt2

τ2
+ (1− n)Γn|∂A|t

)
∝ τ exp

(
(1− n)2Γ2

n|∂A|2

8n
τ2
)

.

(A22)

Putting everything together, we find

Sn(A)− Sn,0(A) ≃ 1

2
log VA +

(1− n)Γ2
n|∂A|2

8n
τ2 + log τ + . . . n < 1, (A23)

where subleading terms have been neglected. Remarkably, a quadratic growth emerges at large τ , resulting in a
much faster growth of the Rényi entropy compared to the von Neumann entropy, as described in Eq. (A21), and the
logarithmic behavior at n > 1 in Eq. (A17).

We remark that the predictions above refer to τ large with respect to microscopic scales but still smaller than the
thermalization time tth. For instance, in the limit of τ ≫ tth, the integral in (A9) is dominated by the asymptotic
value of n ⟨Ψ0| TA(t) |Ψ0⟩n (see Eq. (A13)); that is exponentially small in the subsystem size, and therefore the Rényi
entropy of |Ψτ ⟩ becomes extensive. This is precisely the regime of long-filter time of the main text, where the thermal
properties are eventually recovered.
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Figure 4. Rényi entropy of half chain in the short filter time. The data shows a good collapse of S2 against τ
√
Lε2 for various

system sizes, and compatibility with the universal prediction (B4), black dashed line, is found.

Appendix B: Diagonalization of the matrix Mn

Here, we diagonalize the matrix Mn defined in Eq. (A6) to provide close expressions for the entropies in the short
filter time regime via (A7). To do that, we make use of a Zn symmetry associated with the replica permutation
symmetry j → j+1, which corresponds to tj → tj+1, t̃j → t̃j+1 in Eq. (A1). Such a symmetry allows us to decompose
Mn in n 2× blocks (via the Fourier transform) defined by

M(k) ≡
(

2

τ̃2
+ ε2

)(
1 0
0 1

)
+ ε2(1− VA/V )

(
0 −1
−1 0

)
+ ε2VA/V

(
0 −eik

−e−ik 0

)
. (B1)

Here, k = 0, 2π
n , . . . 2π(n−1)

n correspond to the discrete momenta in the Fourier space. The diagonalization of M(k) is
straightforward, and its two eigenvalues are

2

τ̃2
+ ε2 ± ε2

√
(1− VA/V )2 + (VA/V )2 + 2VA/V (1− VA/V ) cos k. (B2)

Therefore, we express the determinant of Mn as

det (Mn) =
∏
k

det (M(k)) =
∏
k

((
2

τ̃2
+ ε2

)2

− ε22
(
(1− VA/V )2 + (VA/V )2 + 2VA/V (1− VA/V ) cos k

))
. (B3)

From the expression above, one can prove det (Mn) ≥ detn (M1), which ensures Sn(A) ≥ Sn,0(A) for n ≥ 2 integer
(Eq. (A7)); this is physically expected since the filter protocol is supposed to increase the entropy of the state. For
the sake of completeness, we exhibit the explicit analytic prediction of the Rényi-2 entropy of half of the system
(VA/V = 1/2)

S2(A)− S2,0(A) ≃ − log

 2
(
ε2τ̃

2 + 1
)√

(ε2τ̃2 + 1) (ε2τ̃2 + 2)
2

 , (B4)

valid in the large volume limit (with τ̃ = τ
√
V fixed). Fig. 4 shows a numerical check of Eq. (B4) for the non-integrable

Ising model in Eq. (12).
We now discuss the analytic continuation of Eq. (B3) to non-integer values of n. We need the following trigonometric

equality (see e.g. Appendix A3 of Ref. [40])

n−1∏
p=0

(
x− cos

2πp

n
y

)
=

(x+
√
x2 − y2

2

)n/2

−

(
x−

√
x2 − y2

2

)n/2
2

, (B5)

and we express Eq. (B3) as

det (Mn) =

(x+
√
x2 − y2

2

)n/2

−

(
x−

√
x2 − y2

2

)n/2
2

, (B6)
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with {
x =

(
2
τ̃2 + ε2

)2 − ε22
(
(1− VA/V )2 + (VA/V )2

)
,

y = 2ε22VA/V (1− VA/V ).
(B7)

From (B6), one computes the Rényi entropies for non-integers values of n. We emphasize that the general logarithmic
growth found in Eq. (A8) for integer n ≥ 2 as a function of τ̃ is also present for n → 1 and n < 1. This mechanism
has to be contrasted with the drastic change of behaviour observed in the medium filter time as n crosses the value
1, discussed at the end of Sec. A.

Appendix C: Numerical methods

In this Section, we present (i) some further details on the numerical simulation that we discussed in the main text,
and (ii) some additional numerical simulations that we performed in order to ensure the reliability of our results.
We recall that our study focuses on the Ising model in Eq. (12); the initial state is the Néel state |↑↓↑↓ . . . ↑↓⟩,
characterized by a vanishing energy density in the middle of the spectrum and an extensive energy variance.

Our numerical simulations are based on matrix-product states (MPS), a class of many-body quantum states that
are characterized by a limited entanglement entropy and that display finite correlations decaying asymptotically
exponentially in space in large enough one-dimensional systems [24]. The crucial parameter of MPS is the so-called
bond link χ: for χ = 1 MPS are product states, whereas for increasing χ they can accommodate for larger correlations
and eventually, for large enough χ, MPS can cover the entire Hilbert space of a finite-length quantum spin chain.
MPS are a crucial tool for the numerical simulation of one-dimensional quantum many-body systems since for most
situations of interest it is possible to accurately describe the quantum state with a limited value of χ and thus at a
tractable numerical complexity.

The numerical simulation of an energy-filtered quantum state is complicated by the fact that while H is a local
Hamiltonian, the operator H2 is non-local, and standard techniques such as TEBD or tDMRG [41–45] cannot be
straightforwardly employed. For this reason, we use the Time-Dependent Variational Principle (TDVP) to implement
the energy filter protocol [28–30] employing the ITensors library [31, 32]. In general, a TDVP is a scheme that projects
the Schrödinger equation dictating the time-evolution of the state onto the manifold of MPS with fixed maximum
bond link χmax. The projection scheme can be done in several ways, and in particular allowing for the modification of
only one site of the MPS (1-TDVP, first introduced in Ref. [29]) or of two neighboring sites (2-TDVP, first introduced
in Ref. [30]). In general, the 1-TDVP suffers from the problem that it is not possible to increase the bond-link of the
initial state during the time evolution, and thus requires an initial state represented by a sufficiently large bond-link
in order to be able to describe the time-evolved state. The 2-TDVP algorithm does not suffer from this difficulty, but
requires in turn a more important computational complexity. Following Ref. [33], we first apply the 2-TDVP and we
evolve the initial state in time until a user-defined bond dimension is reached. Subsequently, we employ the 1-TDVP
algorithm. This approach is a compromise between the computational efficiency, in terms of RAM and processing
time, offered by 1-TDVP, and the mitigation of projection errors inherent in 2-TDVP, thereby enabling us to reach
large filter time τ even for L = 80 (see Ref. [33]). This is the technique employed to obtain the results presented in
the main text, where the maximal bond link is χ = 450, the δτ = 0.01 and [J, hx, hz] = [1, 1.2, 0.8].

In order to probe the reliability of the TDVP algorithm, we have also performed simulations based on a straight-
forward expansion of the evolution operator, which is less efficient in terms of computational resources and time-step
errors. This expansion is given by

exp

(
−H2τ2

4

)
=

[
exp

(
−H2 δτ

2

4

)]N
≃
(
1−H2 δτ

2

4

)N

, (C1)

with τ =
√
Nδτ (valid in the large N limit). Since the Hamiltonian H has a simple MPO representation, the MPO

representation of H2 follows automatically, and thus the operator 1 − δτ2

4 H2 can be contracted onto an MPS with
standard techniques; we set the cutoff to 10−10 for the contraction between the MPO and the MPS, and to 0 for
the construction of the MPOs. Using this method we have been able to study spin chains up to L = 40 and thus to
produce numerical data to validate the TDVP data. We use δτ = 0.05 for L = 8, 16, 24 and δτ = 0.1 for L = 32, 40.

In Fig. 5 we plot several data for the energy variance of the model obtained with both techniques for L up to 80.
The agreement of the two techniques is excellent up to L = 24 and with small differences at τ > 5 for L = 32, 40; for
larger system size we could not produce data with the expansion in Eq. (C1). For large L, we compare our numerics
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Figure 5. Energy variance ∆H2 as a function of τ for different system sizes. We have employed both the TDVP algorithm
(bond dimension reached χ = 450, square markers) and the expansion (C1) (crosses, for L = 8, 16, 24), for δτ = 0.1. These
methods are compatible, and they further show a collapse to ∆H2 = τ−2 at large L.

with the analytical prediction, since in the large L limit we know that as the filter time τ increases, it should decrease
as ∆H2 ≃ τ−2. A collapse to this asymptotic scaling is observed for larger values of L ∼ 64, 80, while clear finite size
effects are present for L = 8, 16. In this manner, we validate the results for both short and large L obtained with the
TDVP algorithm.
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