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Fig. 1: Our Unified Promptable Panoptic Mapping (UPPM) dynamically generates rich object labels through open-vocabulary prompts, merging diverse yet
imperfect labels into a unified semantic structure. Efficient postprocessing, coupled with open-vocabulary object detection, ensures accurate 2D segmentations
and reconstructs a multi-resolution multi-TSDF map. This map enables natural human-robot communication and versatile applications, showcasing scene
exploration and object retrieval using intuitive prompts. (Webpage)

Abstract—In the field of robotics and computer vision, efficient
and accurate semantic mapping remains a significant challenge
due to the growing demand for intelligent machines that can com-
prehend and interact with complex environments. Conventional
panoptic mapping methods, however, are limited by predefined
semantic classes, thus making them ineffective for handling
novel or unforeseen objects. In response to this limitation, we
introduce the Unified Promptable Panoptic Mapping (UPPM)
method. UPPM utilizes recent advances in foundation models
to enable real-time, on-demand label generation using natural
language prompts. By incorporating a dynamic labeling strategy
into traditional panoptic mapping techniques, UPPM provides
significant improvements in adaptability and versatility while
maintaining high performance levels in map reconstruction. We
demonstrate our approach on real-world and simulated datasets.
Results show that UPPM can accurately reconstruct scenes and
segment objects while generating rich semantic labels through
natural language interactions. A series of ablation experiments
validated the advantages of foundation model-based labeling over
fixed label sets.

I. INTRODUCTION

Panoptic mapping is a key element in enabling machines
to comprehend and reconstruct their surroundings with ad-
vanced understanding. The representation of rich semantic
information forms the bedrock for intelligent machine per-
ception. However, prevalent methodologies [1]–[3] encounter
challenges due to their reliance on rigid predefined class
sets, constraining their adaptability to unforeseen objects
or dynamic contexts. The applicability of these systems in
diverse real-world settings necessitates either a substantial
corpus of labeled data [4], [5] or the imposition of controlled
environmental conditions. Integrating open-set approaches
[6], [7] presents a promising avenue for enhancing robustness
and generalizability in perception tasks.

This work proposes a prompt-based panoptic mapping
pipeline that leverages recent advances in foundation mod-
els to enable on-demand label generation through nat-
ural language interactions. This approach overcomes the
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limitations of static labels, allowing robots to dynamically
acquire and apply object labels, resulting in richer semantic
understanding and increased flexibility. We define Dynamic
Labeling as the process of assigning semantically unified
categories (see fig. 4) to the detected objects in previously
unseen environments, all while preserving the rich labels
generated through open-vocabulary methods. Extensive eval-
uations on real-world and simulated datasets demonstrate
the accuracy of scene reconstruction and the effectiveness
of dynamic label generation. This research opens doors
for more natural human-robot communication and adaptable
machine perception in dynamic environments.

II. RELATED WORK

Semantic mapping and visual SLAM have been active
areas of research, with methods proposed for dense semantic
mapping [8], [9], object-centric mapping [2], [3], as well as
Keypoint-based Object-level SLAM [10]. These approaches
have contributed significantly to understanding complex real-
world environments by focusing on object-level semantic
mapping.

Dense semantic mapping methods like SemanticFusion [8]
and DA-RNN [9] assign semantic labels to map elements like
voxels or surfels. While enabling comprehensive scene un-
derstanding, these methods face challenges in distinguishing
individual objects within the scene.

In contrast, object-centric approaches such as SLAM++
[3] and Fusion++ [2] have shown a strong focus on re-
constructing specific objects, yet they often lack the ability
to incorporate the semantics and geometry of background
regions, limiting their capacity for a holistic understanding
of scenes.

Moreover, recent advancements in panoptic mapping have
aimed at addressing the limitations of traditional methods.
The work on Panoptic Multi-TSDFs [11] and Panoptic
Fusion [1] have significantly contributed to the field by
enabling flexible representations for online multi-resolution
volumetric mapping with a focus on long-term dynamic
scene consistency and semantic understanding at different
levels of granularity.

These panoptic approaches have shown promise in simul-
taneously capturing both semantic information and geometric
details, providing a more comprehensive understanding of
scenes. However, these methods are often constrained by
predefined sets of semantic classes, limiting their adaptability
to unforeseen objects and scenarios.

Our system is inspired by the recent success of generative
AI and foundation models [12]–[15] in wide spectrum of
tasks, such as, Image Captioning [16], [17], Object Detection
[18], [19], Image Segmentation [12], etc.

The proposed UPPM aims to address these limitations by
leveraging foundation models for dynamic label generation.
UPPM offers a more adaptive and versatile labeling mech-
anism by enabling on-demand, dynamic label generation
for mapped objects through natural language prompts. This
new approach significantly enhances the adaptability and ro-

bustness of semantic mapping systems, fostering interactive
robotic perception and human-robot communication.

III. METHODOLOGY

UPPM proposes a novel solution to address the visual
semantic mapping problem by leveraging advances in foun-
dation models for on-demand, dynamic label generation. Our
approach takes posed RGBD data as input and generates
panoptic segmentations that form the basis for reconstructing
the 3D panoptic volumetric map. In contrast to point-level
approaches [20], [21], UPPM, relying on [11], is a superior
method for assigning semantics on the objects’ level. This
makes our dynamically-labeled maps more efficient for map
queries fig. 2, which makes UPPM to be used in a wide range
of downstream tasks such as localization and navigation. The
mapping pipeline is illustrated in fig. 3.

Show me the table

Show me the wooden
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dining table
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small dining table
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Fig. 2: Our UPPM system enables interactive scene exploration and object
retrieval using natural language prompts, employing query postprocessing
and STS (Semantic Textual Similarity) for enhanced accuracy. Here, we
showcase the ability to employ UPPM in such an application by presenting
a scene with a small round wooden table and displaying semantic labels
associated with it, showcasing the system’s response to four different user
prompts, each increasing in specificity.

A. Object-centric 3D Representation

In our study, we build upon the object-centric mapping
framework introduced in [11]. Inspired by their semantically
consistent representation of the environment, we adopt their
notion of dividing the world into submaps for accurate
temporal alignment and reduced computational complexity.
However, we aim to improve the quality of objects contained
within the maps.

The core enhancement in our approach involves refining
the basic unit of change: the object. Rather than employing
generic entities, we utilize high-quality object instances to
generate a richer and more intricate spatial understanding.
While preserving the fundamental structure from the original
method, we prioritize discerning subtle details inherent in
complex environments.

Specifically, every submap encompasses comprehensive
information necessary for object tracking, transformations,
and label assignments. Panoptic, instance and class labels
contribute to complete characterizations of the elements
within each submap, facilitating seamless integration with
downstream applications requiring precise object recognition
and localization capabilities.
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Fig. 3: System Overview of Unified Promptable Panoptic Mapping (UPPM). The UPPM pipeline commences with the acquisition of poses, depth
images, and RGB images. RGB inputs are processed through VLFE++ (Visual-Linguistic Features Extraction [17], inclusive of part-of-speech tagging [22]
and lemmatization [23]), generating detailed object labels enhanced by open-vocabulary prompts for rich semantic content. The Semantic-Textual Similarity
(STS) module predicts the size and parent class for each identified object class. This information is then fed into the Open-set Object Detection [19] and
Promptable Segmentation module [12], where detection is refined by NMS to ensure heightened accuracy and detail richness. The outputs from the STS
module and panoptic segmentation, in conjunction with the posed RGBD inputs, collectively contribute to the reconstruction of the final output. Notably,
this reconstruction is influenced by the panoptic mapping approach [11], adapted in our work to accommodate dynamic labels, with a subtle modification
ensuring compatibility without overstating the deviation. The final output manifests as a multi-resolution multi-TSDF (Truncated Signed Distance Function)
map, fostering natural human-robot communication and enabling versatile applications such as scene exploration and object retrieval using intuitive prompts.

B. Open-Set Classes Generation

In the system overview presented in fig. 3, the VLFE++
comprises various interconnected components designed to
generate an open-set classes from an input RGB image. Each
component plays a crucial role in the overall process, as
described below:

1) Visual-Linguistic Features Extraction (VLFE): By
harnessing a pre-trained Visual Language Foundation
Model such as Tag2Text [17], we encode the input
image to derive both visual and semantic information.
At this juncture, we obtain significant textual data
necessary for subsequent stages.

2) Part-Of-Speech Tagging (POS tagging): Applying an
average perceptron network [22], we identify potential
objects within a scene alongside relevant attributes
through grammatical labeling of the generated textual
depiction. Here, our focus is particularly on extracting
nouns and noun phrases along with any accompanying
adjectives, providing rich contextual information about
the detected elements present in the given image.

3) Lemmatization: Following part-of-speech tagging,

lemmatization [23] occurs—a procedure converting
inflected or derived word forms into their base or
dictionary form (lemma). For instance, instances like
”apples” becoming “apple”, or “chairs” transforming
to “chair”. This results in normalized representations
of words which subsequently simplifies the extracted
terms while preserving their core meanings.

C. Semantic-Textual Similarity (STS)

The task of Semantic-Textual Similarity (STS) aims to
quantify the similarity between two pieces of text based on
their meaning. In the context of this project, we apply STS
fig. 3 to associate size-based categories with corresponding
classes in the COCO-Stuff dataset [24]. We define C as the
set of all possible classes, where each class (ci ∈ C) has a
corresponding size attribute (si), which takes one of three
values - small (s = 1), medium (s = 2), or large (s = 3).
Our goal is to determine the most appropriate COCO-Stuff
class ĉ for any given input class c:

ĉ = argmax
c′∈C

sim(E(c), E(c′)) (1)



where sim(·) denotes a similarity function between embed-
dings and E(·) represents the embedding representation of a
class. To generate these embeddings, we follow the method
proposed by Song et al. [25]. After obtaining the embed-
dings, we conduct a semantic search using the algorithm
presented by Johnson et al. [26] to select the closest match
among the COCO-Stuff classes.

Additionally, we build upon the Panoptic Mapping frame-
work [11] to create a Unified Panoptic Mapping. By incor-
porating posed RGBD data along with the idea of Unified
Semantics, we ensure consistent identification of identical
objects across different semantic labels through the assign-
ment of unified category identifiers (fig. 4). This enhance-
ment simplifies classification, leading to a more intuitive
interaction experience with spatial information.

Semanitic label Category id

table 105

small dining table 105

wooden table 105

Fig. 4: Unified Semantics in Action: Three sequential frames featuring the
same table with distinct semantic labels – “table”, “small dining table”, and
“wooden table”. Despite varied descriptions, the unified semantics ensures
a consistent category ID across all instances, ensuring semantic cohesion.

D. Open-set Object Detection and Segmentation

Object detection and image segmentation are critical tasks
in computer vision, particularly when dealing with uncon-
strained environments. Our proposed method performs these
tasks using curated textual labels as queries for the object
detector, thereby facilitating semantic information extrac-
tion and object detection. This process results in generated
bounding boxes, which then trigger the segmentation model.
We employ a promptable zero-shot segmentation model [12]
to generate panoptic segmentation maps containing both
semantic and instance labels for every pixel within the
provided images.

To further refine our approach, we employ Non-Maximum
Suppression. During this stage, we address potential redun-
dancies or errors introduced during object detection. Specifi-
cally, we focus on rectifying instances involving overlapping
bounding boxes assigned identical labels or similar bounding
box sizes but dissimilar labels. This approach differs from
per-class non-maximum suppression (NMS), which is com-
monly used in object detection [27]. In mathematical terms:

1) Let Bi denote the set of all bounding boxes ex-
tracted from the object detector, such that |Bi| ⩾ 1.

For any pair (ba, bb), where ba, bb ∈ Bi, if their
Intersection-over-Union (IoU) exceeds a predefined
threshold IoU (ba, bb) ⩾ τ , and they share the exact
class label y(ba) = y(bb), one of the duplicates will
be suppressed based on criteria like confidence scores.

2) When encountering bounding boxes having equal areas
but distinct class labels, the algorithm assigns prece-
dence to the labels originating from captions rather
than those derived from previously identified tags. As a
result, only one bounding box survives while others get
removed through suppression. Mathematically, given
two bounding boxes bc and bd sharing equivalent
dimensions but disparate labels y(bc) ̸= y(bd), we pri-
oritize retaining bc whenever its associated label stems
from the caption. Otherwise, bd takes precedence.

E. Implementation Details
We utilized Tag2Text [17] for caption and tag extraction,

which provided us with initial descriptions of the environ-
ment. To further refine our understanding of open-vocabulary
objects and their attributes, we applied part-of-speech (POS)
tagging [22] and lemmatization [23]. This allowed us to
extract nouns and adjectives from the captions and the
identified tags, providing a more precise set of objects and
descriptive features.

To embed these objects into a common feature space,
we employ MPNet [25] to generate embedding vectors
for all relevant COCO-Stuff [24] classes, as well as any
open-vocabulary objects identified through our text analysis.
Specifically, given an input sequence x containing both open-
vocabulary objects & COCO-Stuff classes, MPNet generates
corresponding embedding vectors h = MPNet(x). This
allows us to search for similarities between open-vocabulary
objects & COCO-Stuff classes using cosine similarity:

sim(u,v) =
u · v

||u|| ||v||
. (2)

For each open-vocabulary object, we defined the most similar
COCO-Stuff class as its parent class, thereby achieving
a unified semantic representation. Moreover, we used the
assigned COCO-Stuff class to infer the size estimation for
the open-vocabulary object.

Once object detections were generated, we leveraged
Grounding-DINO [19] with NMS to ensure that only unique
instances were considered. Additionally, we employed Seg-
ment Anything model (SAM) [12] to create high-quality
instance masks for each detected object. These components
with the Panoptic Multi-TSDFs [11] formed the basis of our
proposed prompt-based, panoptic mapping pipeline. Rather
than introducing a new panoptic segmentation model, our
focus was on establishing a dynamic labeling system capable
of enriching environmental data with detailed, contextually
appropriate metadata.

IV. EXPERIMENTS

A. Experimental Setup
To evaluate the efficiency of our system, we conducted

experiments on both simulated and real-world datasets. The



Flat dataset [11] was utilized for the simulated environment,
while evaluations on real-world data were performed using
ScanNet v2 [28] and RIO [29] datasets.

For our experiments, a tracking time τnew of 1 frame was
assumed for the new submap [11] to be added, ensuring
minimal corruption to previously reconstructed data and
thereby improving both qualitative and quantitative results.

We measure the performance using root-mean-square error
(RMSE), mean-absolute error (MAE), Chamfer distance,
and coverage. As shown in eq. (3), the Chamfer distance
dch(G,R) is computed by combining the sum of RMSE in
both directions, RMSEG→R and RMSER→G, providing the
errors from the ground truth point cloud G to the evaluated
point cloud R and vice versa.

dch(G,R) =
∑
g∈G

min
r∈R

∥g − r∥22︸ ︷︷ ︸
RMSEG→R

+
∑
r∈R

min
g∈G

∥g − r∥22︸ ︷︷ ︸
RMSER→G

. (3)

Root-mean-square error (RMSE) and mean-absolute er-
ror (MAE) are asymmetrical metrics, as the distance from
ground truth points (G) to reconstructed map points (R)
may differ from R to G. These metrics compute distances by
comparing each point in one set to its nearest neighbor in the
other. A larger RMSER→G suggests potential inaccuracies in
the reconstruction process, emphasizing the importance of
accuracy for both sets.

As shown in eq. (4), the coverage is calculated as the
percentage of observed ground truth points in the map:

Cov =
Nobserved

Ntotal
× 100%. (4)

The experiments were conducted on a system with a 2.6 GHz
CPU, an NVIDIA GeForce RTX 2060 6 GB GPU, and 16
GB of RAM, supplemented by a server featuring an NVIDIA
GeForce RTX 2080 Ti 16 GB GPU and 32 GB of RAM.

B. Evaluations on the Flat dataset

We evaluate our proposed UPPM model using the Flat
dataset [11] as a simulated benchmark, showcasing its effec-
tiveness in scene understanding and reconstruction. Despite
its 31-category ground truth segmentation, the Flat dataset
provides comprehensive information, highlighting the chal-
lenges in achieving full scene understanding, especially for
objects like refrigerators, cabinets, and stoves.

We chose this dataset deliberately to highlight the impor-
tance of detailed labels for improved scene reconstruction.
While the ground truth includes a predefined set of human
labels, it might not fully encapsulate the diversity and com-
plexity of real-world scenes. On the other hand, MaskDINO
recognizes LVIS1 [30] categories (1203 categories). UPPM,
as shown in fig. 3, operates within a customized category list
for each new map.

In table I, we present comparative quantitative results
demonstrating the superior accuracy and competitive cov-
erage of our UPPM model in comparison to both the ground
truth segmentation and the MaskDINO method [4]. Our

approach, operating with a customized category list for
each new map, emphasizes the significance of incorporating
nuanced and diverse labels for robust scene understanding
and reconstruction.

GT→Reconst. Reconst.→GT

Method MAE
[m](↓)

RMSE
[m](↓)

MAE
[m](↓)

RMSE
[m](↓)

Chamfer
dist.

[m](↓)

Cover
-age

[%](↑)

Groundtruth
Seg. [11] 1.27 2.24 0.66 0.80 3.05 71.30

MaskDINO
[4] 1.26 2.23 0.68 0.85 3.08 71.69

UPPM (Ours) 1.249 2.015 0.644 0.7854 2.8004 70.85

TABLE I: Quantitative results on the simulated Flat dataset [11]. UPPM
exhibits superior accuracy and competitive coverage compared to ground-
truth segmentation and MaskDINO [4].

Groundtruth

Co-DINO SAM MaskDINO

UPPM

Fig. 5: Qualitative Comparison of Reconstruction Maps on Flat dataset [11].

It is worth noting that while MaskDINO achieves better
coverage, a comprehensive comparison between the methods
requires examining fig. 5. Upon inspection, it becomes
apparent that MaskDINO looks to have better reconstruction
for structures like walls and floors. However, it falls short
in capturing intricate details present in the scene, like the
paintings on the wall, which might hold more semantic
value than the wall itself. Conversely, UPPM successfully
reconstructs these fine-grained elements without any issues.

C. Evaluations on ScanNet dataset

In order to evaluate the performance of our pro-
posed method, UPPM, we conducted a comparison against
MaskDINO [4] and the ground truth segmentation provided
by the ScanNet v2 dataset [28]. The ScanNet v2 dataset
offers an increased number of categories and enhanced image
quality relative to prior datasets, thereby providing a more
rigorous evaluation benchmark.

As demonstrated in table II, UPPM exhibits superior
accuracy than MaskDINO while maintaining the best cov-
erage in comparison with the ground truth and MaskDINO.
However, despite its strong performance, UPPM still falls



short of achieving better accuracy scores than the ground
truth segmentation. This discrepancy can be attributed to the
inherent complexities present within the ScanNet v2 dataset.

GT→Reconst. Reconst.→GT

Method MAE
[m](↓)

RMSE
[m](↓)

MAE
[m](↓)

RMSE
[m](↓)

Chamfer
dist.

[m](↓)

Cover
-age

[%](↑)

Groundtruth
Seg. [11] 1.38 2.06 2.80 7.41 9.46 82.5

MaskDINO
[4] 1.81 2.51 4.40 14.26 16.76 81.21

UPPM (Ours) 1.74 2.413 3.656 11.213 13.626 82.64

TABLE II: Comparative Evaluation Results on ScanNet v2 Dataset [28].

D. Evaluations on the RIO dataset

Our experiments are carried out using the RIO dataset
[29], evaluating the performance of our UPPM model against
robust benchmarks like MaskDINO [4] and ground truth seg-
mentation [29]. The RIO dataset presents noisy conditions,
creating significant hurdles for our pipeline—particularly
regarding limiting error propagation across various pipeline
components. Each component is designed to cater to distinct
modalities and downstream tasks (section III).

Contrasting our final UPPM implementation with the early
Vanilla UPPM approach (without blurry image filtering or
NMS) reveals substantial performance gains on the RIO
dataset. Our optimized UPPM demonstrates a 16.675%
decrease in Chamfer distance and an impressive 6.47%
enhancement in coverage. These advancements originate
from targeted modifications aimed primarily at enhancing
the vanilla UPPM pipeline’s ability to handle the noisy
characteristics inherent in the RIO dataset.

One major enhancement comes from incorporating an
image filtering scheme, removing approximately 3% of RIO
dataset images flagged as blurry through caption analysis.
As depicted in fig. 3, this approach capitalizes on Tag2Text
[17]’s ability to identify blurred images. By eliminating low-
quality imagery, our method brings UPPM outputs closer to
the ground truth segmentations, fig. 6.
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M

Fig. 6: Comparative Visualization. Top Row: Groundtruth segmentation
showcasing the spatial distribution (Right) and its corresponding recon-
structed colored map (Left) for enhanced scene comprehension. Bottom
Row: Our proposed UPPM approach, demonstrating refined segmentation
with pronounced clarity and detail in both the spatial (Right) and colored
map (Left) representations, underscoring the superior performance of UPPM
in intricate scene understanding.

To better understand our contributions, we compare the
final UPPM to MaskDINO [4] and ground truth segmentation
[29] on the RIO dataset [29], summarizing our observations
in table III. Unlike the Flat and ScanNet datasets, MaskDINO
[4] seems to have better performance on the RIO dataset,
which we attribute to the MaskDINO closed-set classes
seems to work well on RIO dataset which might be not the
case in other unseen environments.

GT→Reconst. Reconst.→GT

Method MAE
[m](↓)

RMSE
[m](↓)

MAE
[m](↓)

RMSE
[m](↓)

Chamfer
dist.

[m](↓)

Cover
-age

[%](↑)

Groundtruth
Seg. [11] 1.23 1.68 1.91 8.57 10.25 77.09

MaskDINO
[4] 1.28 1.74 1.97 7.42 9.16 76.63

UPPM (Ours) 1.315 1.772 1.87 8.052 9.824 75.14

TABLE III: Performance comparison of our final UPPM model, MaskDINO,
and ground truth segmentation on the RIO dataset.

E. Ablation Studies

We conduct ablation studies on each dataset independently
to gain a deeper understanding of the contributions made by
different components in our UPPM model. The objective of
these studies is to offer insights into the trade-offs between
accuracy and generalizability across diverse scenarios by
examining the impacts of individual components and their
variations within the UPPM architecture. We classify our
ablation experiments into four main categories:

Firstly, we investigate the performance of the UPPM w/o
tags. In this setup, we exclude additional tags from the
UPPM model (fig. 3). Despite some debate around the utility
of these tags, as they may not guarantee the presence of
related objects in captions, our findings indicate that such
tags typically correspond to real objects existing in Flat
dataset images. As a result, we regard them as beneficial
supplementary inputs.

Secondly, we study the effect of disabling the unified
semantic mechanism (PPM) while retaining the extra tags.
By doing so, we intend to determine if the unified semantics
have any detrimental influence on map reconstruction, whilst
still benefiting from the added tags.

Thirdly, in PPM w/o tags, we deactivate both the unified
semantics mechanism and the extra tags, allowing us to
explore possible negative consequences associated with these
features during map reconstructions.

Lastly, we replace the open-set object detector with a
closed-set counterpart, specifically, Co-DINO [5], referred
to as Co-DINO+SAM. With Co-DINO identifying all LVIS1
[30] classes comprised of 1203 unique categories, we analyze
how it affects the overall performance of the system.

Below, you find the results and detailed analyses of the
above experiments conducted on three datasets:

1) Flat dataset ablation experiments: As shown in ta-
ble IV, our ablation studies show that both UPPM and
PPM perform similarly on the Flat dataset. However, Co-
DINO+SAM excels with lower errors in Chamfer distance



and all other metrics, excluding coverage. Although Co-
DINO+SAM yields impressive quantitative results, it faces
challenges when precisely identifying background objects
during recognition tasks (see fig. 5). Notably, our UPPM
approach competes well against the other settings by giving
the combination of dynamic-labeling, competitive accuracy
and high coverage.

GT→Reconst. Reconst.→GT

Method MAE
[m](↓)

RMSE
[m](↓)

MAE
[m](↓)

RMSE
[m](↓)

Chamfer
dist.

[m](↓)

Cover
-age

[%](↑)

Co-DINO+SAM 0.90 1.39 0.62 0.73 2.12 44.84
PPM w/o tags 1.207 1.994 0.651 0.8037 2.7977 70.38
PPM 1.233 2.017 0.643 0.8032 2.8202 71.26
UPPM w/o tags 1.25 2.065 0.652 0.8103 2.8753 70.76
UPPM 1.249 2.015 0.644 0.7854 2.8004 70.85

TABLE IV: Quantitative Ablation Experiments on the Flat dataset [11].

2) Ablation Experiments on ScanNet Dataset: In this
section, we discuss the findings from our ablation studies
conducted using the ScanNet v2 dataset [28]. The proposed
synthetic approach, Co-DINO+SAM, demonstrates the best
performance concerning the Chamfer distance metric. How-
ever, there remains room for improvement regarding cover-
age when compared to alternative techniques. Upon further
investigation, we attribute this disparity to limitations arising
from the closed-set design of the model and restrictions
related to training data.

Although PPM and UPPM exhibit slightly reduced ac-
curacy due to imperfect image quality inherent within the
ScanNet dataset (0.84% of images were flagged as blurry,
significantly less than those found in RIO), both metrics
yield comparable and remarkably high levels of coverage.
Moreover, their corresponding Chamfer distances remain
relatively close to the ground truth segmentation (table II),
signifying robustness against real-world challenges posed by
datasets such as ScanNet.

GT→Reconst. Reconst.→GT

Method MAE
[m](↓)

RMSE
[m](↓)

MAE
[m](↓)

RMSE
[m](↓)

Chamfer
dist.

[m](↓)

Cover
-age

[%](↑)

Co-DINO+SAM 1.51 2.03 2.25 5.43 7.46 59.3
PPM w/o tags 1.794 2.477 3.064 9.166 11.643 81.07
PPM 1.736 2.395 3.365 10.106 12.501 82.75
UPPM w/o tags 1.781 2.432 3.299 10.21 12.642 81.42
UPPM 1.74 2.413 3.656 11.213 13.626 82.64

TABLE V: Quantitative Ablation Experiments on the ScanNet v2 [28].

One might wonder why UPPM should be used when
PPM offers higher coverage and superior accuracy. How-
ever, as depicted in fig. 7, the reason becomes apparent.
While PPM boasts an open-vocabulary, it lacks dynami-
cally labeled classes, resulting in potential ambiguity where
multiple semantic categories may apply to the same object.
This can result in reduced control over the environment
due to duplicated classes assigned to the same object. In
contrast, UPPM demonstrates a more consistent behavior

by accurately assigning semantic classes to objects while
maintaining richness in dynamic labeling.

x

blue seat

blue chair

PPM

y z

blue seat

blue chair

UPPM

PPM

UPPM

Fig. 7: Qualitative Comparison of PPM vs UPPM in 3D-Semantic Segmen-
tation. The predicted semantic classes are represented by x, y,&z.

3) RIO dataset ablation experiments: The ablation exper-
iments, as shown in table VI, provide valuable insights on on
how different factors may affect the algorithm performance.
Specifically, we observed that both UPPM w/o tags ad
UPPM w/o tags demonstrated the best coverage across all
experiments while maintaining competent accuracy. This
result highlights the negative effects of poor image quality
and motion blur on the performance of UPPM with tags,
indicating that these issues may lead to suboptimal results.

Interestingly, we notice that the Tag2Text algorithm [17]
identifies approximately 3% of the RIO dataset as containing
blurry images. However, manual inspection and classification
of the data revealed that over 21% of the dataset is affected
by motion blur or other forms of degradation. This discrep-
ancy suggests that Tag2Text identifies only extreme cases of
blurriness, leaving many less severe cases undetected.

On the other hand, the Co-DINO+SAM model exhibited
the largest Chamfer distance among all models evaluated.
We attribute this behavior to substantial deviations from the
ground truth during map reconstruction, leading to reduced
accuracy and reliability.

Based on the findings obtained through our analysis of
the RIO dataset, we draw the following conclusion: In
scenarios where the dataset contains noise or poor quality
data, relying solely on the UPPM w/o tags seems to yield
better performance. By doing so, one maintains the benefits
of dynamic labeling and unified semantics while preventing
low-quality tags from contaminating the input fed to the
open-set object detector [19].

GT→Reconst. Reconst.→GT

Method MAE
[m](↓)

RMSE
[m](↓)

MAE
[m](↓)

RMSE
[m](↓)

Chamfer
dist.

[m](↓)

Cover
-age

[%](↑)

Co-DINO+SAM 1.11 1.46 2.76 14.55 16.01 43.42
PPM w/o tags 1.2339 1.699 1.38 2.559 4.258 72.47
PPM 1.2332 1.698 1.73 7.304 9.002 73.49
UPPM w/o tags 1.195 1.628 1.547 4.024 5.652 74.14
UPPM 1.315 1.772 1.87 8.052 9.824 75.14

TABLE VI: Quantitative Ablation Experiments on the RIO data [29].



V. CONCLUSION

In this work, we propose UPPM, a novel approach that
tackles the challenges of generating rich and accurate object
labels for panoptic mapping by harnessing the power of
dynamic labeling. Our system efficiently integrates diverse,
possibly noisy labels from multiple sources into a consistent
semantic structure, leading to effective postprocessing and
precise 2D segmentation. We demonstrated the usefulness
of foundation models and their efficiency in being utilized
in downstream mapping tasks without requiring model re-
training. Furthermore, our findings highlight the limitations
of model outputs and emphasize the importance of postpro-
cessing model outputs to ensure optimal performance in real-
world scenarios.
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twenty-thousand classes using image-level supervision,” in European
Conference on Computer Vision, pp. 350–368, Springer, 2022.

[19] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li,
J. Yang, H. Su, J. Zhu, et al., “Grounding dino: Marrying dino with
grounded pre-training for open-set object detection,” arXiv preprint
arXiv:2303.05499, 2023.

[20] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. Montiel, and
J. D. Tardós, “Orb-slam3: An accurate open-source library for visual,
visual–inertial, and multimap slam,” IEEE Transactions on Robotics,
vol. 37, no. 6, pp. 1874–1890, 2021.

[21] E. Sucar, S. Liu, J. Ortiz, and A. J. Davison, “imap: Implicit map-
ping and positioning in real-time,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 6229–6238, 2021.

[22] M. Honnibal, “A good part-of-speech tagger in about
200 lines of python.” https://explosion.ai/blog/
part-of-speech-pos-tagger-in-python, 2013.

[23] C. Fellbaum, “Wordnet,” in Theory and applications of ontology:
computer applications, pp. 231–243, Springer, 2010.

[24] H. Caesar, J. Uijlings, and V. Ferrari, “Coco-stuff: Thing and stuff
classes in context,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 1209–1218, 2018.

[25] K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu, “Mpnet: Masked
and permuted pre-training for language understanding,” Advances in
Neural Information Processing Systems, vol. 33, pp. 16857–16867,
2020.

[26] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with gpus,” IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535–547,
2019.

[27] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 580–587, 2014.

[28] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. Nießner, “Scannet: Richly-annotated 3d reconstructions of indoor
scenes,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 5828–5839, 2017.

[29] J. Wald, A. Avetisyan, N. Navab, F. Tombari, and M. Nießner, “Rio:
3d object instance re-localization in changing indoor environments,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 7658–7667, 2019.

[30] A. Gupta, P. Dollar, and R. Girshick, “Lvis: A dataset for large
vocabulary instance segmentation,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 5356–
5364, 2019.

https://explosion.ai/blog/part-of-speech-pos-tagger-in-python
https://explosion.ai/blog/part-of-speech-pos-tagger-in-python

	Introduction
	Related Work
	Methodology
	Object-centric 3D Representation
	Open-Set Classes Generation
	Semantic-Textual Similarity (STS)
	Open-set Object Detection and Segmentation
	Implementation Details

	Experiments
	Experimental Setup
	Evaluations on the Flat dataset
	Evaluations on ScanNet dataset
	Evaluations on the RIO dataset
	Ablation Studies
	Flat dataset ablation experiments
	Ablation Experiments on ScanNet Dataset
	RIO dataset ablation experiments


	Conclusion
	References

