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ABSTRACT
Recently, tensor algebra have witnessed significant applications
across various domains. Each operator in tensor algebra features
different computational workload and precision. However, current
general accelerators, such as VPU, GPGPU, and CGRA, support
tensor operators with low energy and area efficiency. This paper
conducts an in-depth exploration of general accelerator for tensor
processing.

First, we find the similarity between matrix multiplication and
precision multiplication, and create a method classifying tensor op-
erators using GEMM and vector operations. Then, we implement
two discoveries and introduce the systolic architecture into general-
purpose accelerator. Therefore, we propose a new General Tensor
Accelerator (GTA), which has a better area efficiency and data reuse.
Furthermore, we create a general tensor scheduling optimization
strategies based on dataflow, precision and array resize. Our evalua-
tion results demonstrate that GTA is able to achieves 7.76×, 5.35×,
8.76× memory efficiency and 6.45×, 3.39×, 25.83× speedup over
of VPU, GPGPU and CGRA.
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1 INTRODUCTION
In recent years, computing kernels in various domains, such as
machine learning, data analysis, signal processing, and scientific
computing, have been categorized as operators in tensor algebra
(like GEMM, CONV, GEMV, MTTKRP, TTMc etc.). These ten-
sor operators exhibit different computational workload, including
inherent variation in tensor dimension, computation, and accumu-
lation. [16, 25]. Furthermore, these operators involve different pre-
cision. For instance, applications like audio and image signal pro-
cessing often demand filter operators with INT8 or INT16 preci-
sion [34, 37]. Scientific computing, encryption algorithms, and other
zero-error algorithms necessitate NTT(Number Theoretic Trans-
form) with INT32 or even INT64 precision [1, 21, 40]. Even in one
domain, there can be diverse precision requirements. In machine
learning, for example, quantization inference (INT8) [14], training
weights (FP16, BP16) [12], and high-precision AI networks (FP32,
FP64) [2] encompass a wide spectrum of precision.

Previous works focus on dedicated ASIC accelerators for spe-
cific tensor operator [6, 7, 16]. But, the general purpose hardware
still have many application scenarios, and they are typically em-
ployed to handle various tensor applications. With overwhelming
computation, CPU can’t bear the burden of tensor operators. Exist-
ing general accelerators adopted by academia and industry refer to
Vector Processing Unit (VPU) and Cuda Core in GPGPU.

However, these vector architectures support the computational
workload of operators with low energy efficiency [3, 28]. One of
the most important reasons is that vectorization is indeed the most
general method for tensor operators, but the computing unit cannot
exploit data reuse in tensor operators, resulting in a lot of access to
storage.

Besides, the emergence of various precision of tensor operator
requires hardware support. For example, contemporary vector in-
struction sets need to implement operations for eight kinds of pre-
cision, including INT8, INT16, INT32, INT64, BP16, FP16, FP32,
and FP64 [22, 30, 36]. These precision units are often established
independently and occupy the majority of the overall area [4]. But,
the specific workload always only utilizes single precision unit of
all, which leads to a low area efficiency.

To summarize, current general accelerators suffer from low area
and energy efficiency simultaneously. Actually, it is difficult to
achieve both generality and efficiency in hardware design. To our
knowledge, previous works only improves the energy efficiency of
GEMM [10, 18, 27] for general accelerators. There are also solutions
to introduce CGRA [25] into general tensor processing. However,
their energy efficiency and generality can be further improved, and
they overlook opportunity to co-optimize with computational preci-
sion.

This work takes an ingenious perspective, dissecting the compu-
tational workload and precision from the perspective of architecture
and computing paradigms. Based on traditional VPU, we proposes
a new General Tensor Accelerator (GTA) aiming for processing
tensor applications more efficiently. In summary, this paper makes
the following contributions:

• We find the similarity between matrix multiplication and
precision multiplication, and create a classification of tensor
operators. Then we implement two discoveries on systolic
array for better area and memory efficiency.

• We design a Multi-Precision Reconfigurable Array (MPRA)
and implement MPRA in vector architecture to compose
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GTA, which can compute the tensor operators with arbitrary
computational workload and precision.

• We implement general tensor scheduling optimization strate-
gies based on dataflow, precision and array resize and make
an analysis of scheduling space.

According to the evaluation, GTA is able to achieve 7.76×, 5.35×,
8.76× memory efficiency and 6.45×, 3.39×, 25.83× speedup over
VPU (Ara), GPGPU (NVIDIA H100) and CGRA (hycube).

2 BACKGROUND
In this section, We provide here an introduction to the specialized ac-
celerators about tensor operators compared with general accelerators.
The accelerators are mainly spatial architecture, and systolic array
is a typical example. Then we provide a brief overview of previous
work about reconfigurable architecture and reveal the distance to a
general tensor accelerator.
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Figure 1: The diagram of multi-precision matrix multiplication
implement on the systolic array.

2.1 Specialized Accelerators and Systolic Array
To tackle the problem of tensor algebra acceleration, various spatial
architectures are adopted such as Tensor Core [7], eyeriss [6], etc.
These spatial accelerators are often composed of PE arrays and their
interconnections, which can exploit different types of data reuse.
Usually, the majority of spatial architectures is naturally suitable for
single kind of tensor operator with specific computational workload
because of their microarchitecture. For example, the systolic array is

well suited to accelerating GEMM, while eyeriss is for CONV. In
most cases, they are only designed for one precision.

Among them, the systolic array has emerged as a great choice due
to its high power efficiency and peak throughput. Adopting simple
PE unlike that with large memory in other dataflow architectures [6]
and implementing simple interconnection instead of complicated
and poor timing one in Tensor Core [7] makes it easy to scale
the array, which achieves a higher degree of data reuse [31, 39].
Furthermore, there are several works on improving the utilization,
which is the primary drawback of the systolic array. RASA [15]
utilizes systolic array as an additional pipeline matrix unit of CPU,
also overlooking the potential for reusing the original components.
Mirroring [23] and Redas [11] work on flexible multi-workloads to
improve utilization. All the above works have not jointly optimized
dataflow and precision. Meanwhile, previous efforts have integrated
systolic array with CPU [18], VPU [27], GPU [10]. But they cannot
fully exploit original control and communication hardware resources,
which could have been used to improve the utilization of systolic
array. They also ignore the precision unit of general accelerators.

2.2 Specialized Accelerators Become More and
More General

Recently, while general-purpose accelerators are enhancing their
performance for GEMM in neural networks [10, 18, 27], specialized
accelerators are trying to accept more operators in robustness. But
we hold the view that previous works only explore reconfigurable
architecture and functional versatility, which involves limited range
of computational workload and precision.

For example, there are a few studies exploring the functional ver-
satility of TPU [13, 24]. These works lack hardware modifications,
resulting in limited improvement. Furthermore, they don’t take an
intrinsic view into the generality of tensor operators. Morphling [25]
addresses how to transform CGRA to accommodate dense and sparse
tensor operators. We think that CGRAs often require large-area in-
terconnect, memory and control units. Therefore the hardware often
comprises small array, like 8×8 and 4×4, with inadequate ability
of data reuse and accelerating. Besides, critical precision aspect is
overlooked. Tensorlib [16] focuses on the generation of hardware
towards tensor operators. But it ignores the generality and leads to
under-utilization of the array.

Above works all ignore the chance to co-optimize with the pre-
cision, which is the significant factor about implementation. Bitfu-
sion [32] and GPNPU [33] consider the precision and computation
at the same time, but are stuck in the limited range of computational
precision and workload domains of operators.

3 INSIGHTS INTO MULTI-PRECISION
TENSOR OPERATORS

In this section, we analyze the inherent characteristics of the com-
putational workload and precision of tensor operators. We find the
similarity between Matrix Multiplication and precision multiplica-
tion and a method classifying tensor operators. At last, we implement
two discoveries on systolic array in each subsection respectively.
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3.1 Similarity between Matrix Multiplication and
Precision Multiplication

It is known that a long multiplication could be decomposed into
several basic multiplications and additions. As shown in Figure 1(a),
operands (i.e.X and Y are 32 bits) are decomposed into 8-bit limbs
respectively (like X00,Y 00, etc). It is obvious that all 8-bit limbs
of the X and Y need to be cross-multiplied, and then the product
of limbs should be added to get the result, which is similar to the
computing pattern in matrix multiplication (by the way, the carry-bits
among the product of limbs will be processed in the accumulator).

The reuse pattern of systolic array is in conformity with matrix
multiplication, which can be migrated to multiplication detailed
above. It could assume that the precision of a single PE is 8 bits. As
can be seen from Figure 1(a), in Weight-Stationary (WS) mode, we
can place the limbs in consecutive positions as the weight used in
WS mode and the other one is taken as input streaming into the array
from the leftmost PE. And 32-bit multiplication is achieved within 4
PEs.

As shown in Figure 1(b) of WS mode, in the column direction,
the partial product of this multiplication flows downward to next row.
Therefore the corresponding partial products produced at the same
position are added, which is essentially equivalent to the addition of
two multiplication results. Also, the input could be reused by row
direction. After extending the row and column, it is equivalent to a
multi-precision matrix multiplication.

The three types of dataflow supported by the systolic array in
this work are WS, Input-Stationary(IS), and Output-Stationary(OS).
The dataflow of IS is the same as that of WS, and the operands
occupying the array are inputs. As shown in Figure 1(b) of OS mode,
the difference between multi-precision in OS and WS is analogous
to the distinctions in matrix multiplication. However, in OS mode,
due to the fact that both input and weight are mapped onto the array,
the size of the workload mapped on the array expands with multiple
in both the column and row directions. In contrast, when working in
WS mode, it only affects the row direction. Leveraging the array’s
scalability, it could enable the realization of matrix multiplication
with arbitrary multiples of PE’s precision.

3.2 Classification of Tensor Operators using
p-GEMM and vector operators

It is worth reconsidering these tensor operators from a hardware
perspective. The computational workload of tensor operators can be
decomposed into two dimensions: algorithmic parallelism and arith-
metic intensity. Arithmetic intensity reflects the data reuse opportu-
nity of operators, indicating how many computations are performed
after fetching data from memory. Algorithmic parallelism represents
the parallel operations that could be extracted under certain circum-
stances, like the extent of vectorization achievable in a kernel. For
instance, not absolutely, image processing algorithms always exhibit
higher algorithmic parallelism compared to audio processing algo-
rithms. These two dimensions serve as axes for partitioning existing
tensor operators, yielding the following approximate classification
results in Figure 2.

Along the arithmetic intensity axis, tensor operators with no inten-
sity could only be compiled into vector operations without data reuse
opportunity, while those with higher intensity could be transformed

Algorithmic
Parallelism

Arithmetic
Intensity

Algorithmic
Parallelism

Arithmetic
Intensity

sRGB2XYZ in
Image Processing

Matrix Multiplication
In Attention

CONV in Alexnet

FFE in Audio
Processing

Sparse Matrix
Operation

Parallel Add
In Resnet

Filter in
Image Blurring

Parallel Quicksort

Figure 2: The indicative algorithmic parallelism and arithmetic
intensity of some tensor operators.

into GEMM, like solving tensor contraction problems. Tensor con-
tractions can be rewritten equivalently as the form of Transpose-
Transpose-GEMM-Transpose sequences [5, 35]. Also, it is easy to
manually convert to a GEMM kernel based on the data reuse charac-
teristics. Based on the results of the above works, these GEMM come
with different sizes, whose transformation results depend on both
the arithmetic intensity and algorithmic parallelism, encompassing
operations of varying size hierarchies such as matrix multiplication,
matrix-vector multiplication, and vector inner product. In general,
operators with high algorithmic parallelism and arithmetic intensity
are transformed into matrix multiplication.

Therefore, we can define them as p-GEMM (p represents pseudo)
including operators of arbitatry size. Although systolic dataflow ar-
chitecture is ideal for handling matrix multiplication, it may lead
to under-utilization problems when meeting various operators in
p-GEMM unsuitable for the size of array, let alone the vector opera-
tions. Vector hardware has flexible interconnection and control units.
So we could combine the vector and systolic architecture to improve
the utilization of systolic array by reusing these fine-grained control
modules. We will discuss this in detail in the next section.

4 HARDWARE ARCHITECTURE
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Figure 3: Implementation of a 16-bit multi-precision accumula-
tor.
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We choose the VPU as the combining vector hardware. In this
section, based on above discoveries, the GTA architecture will be
explained, detailing the implementation of Multi-Precision Recon-
figurable Array (MPRA) and reuse of fine-grained control and inter-
connection logic in VPU.

4.1 Multi-Precision Reconfigurable Array
We can call it Multi-Precision Reconfigurable Array(MPRA) which
could implement systolic dataflow to operate multi-precision matrix
multiplication as described in Section 3.1. As shown in Figure 4(a),
the precision that a single PE supports is 8-bit and the multiplication
is performed in a linear pattern. The number of column is set to 8
so that one row of PEs supports the 8×n bits (n = 1,2,4,8) multi-
plication in WS or IS mode by utilizing corresponding partition. A
MPRA set 64(8×8) PEs to support 64-bit in OS mode.

The multi-precision accumulator is composed of basic accumu-
lator units to support accumulation in different bit width. We take
a 16-bit accumulator as an example. Figure 3 shows the microar-
chitecture of a basic 16-bit accumulator unit. As shown, a 16-bit
accumulator unit takes as input four 16-bit operands – X1Y1, X2Y1,
X1Y2 and X2Y2, which corresponds to four partial products of 16-bit
multiplications generated by systolic array. Based on the mathemati-
cal property, the 16-bits accumulator unit uses shift-add operations
to easily generate the results of 16-bit multiplications.

MPRA can be reconfigured to perform mantissa multiplication in
different width, coordinated with other functional units to execute
the FP operation. In addition to mantissa computation, the FPadd
and FPmul require alignment, normalization, overflow processing,
rounding and other steps. And the dominant area and energy con-
sumption comes with the multiplier of the mantissa. Specifically,
the mantissa multiplication for BP16, FP16, FP32, and FP64 can be
equivalently represented as the multiplication of INT8, 12, 24, and
53, respectively.

4.2 GTA Overall Architecture
As can be seen in Figure 4(c), the VPU could be configured with
various lanes and a lane scheduler responsible for inter-lane com-
munication and allocation of computational resources. Within each
lane of original VPU, Multiply Accumulate (MAC) units in various
precision are set up to meet the requirements of the vector exten-
sion instruction set, occupying a substantial area. We introduce one
MPRA into each lane to replace these MAC units. Due to the config-
urability of GTA architecture, we can set arbitrary number of lanes.
We take an example of 16 lanes below.

Besides the MAC unit, the PE in MPRA is equipped with three
operand registers, systolic mode register, operation units (the same as
lane’s), and a centrally controlled finite state machine. The systolic
mode register is synchronized with the global configuration in CSR,
which controls the data transfer of single PE.

We introduce the Systolic Control and Status Register (SysCSR)
as shown in Figure 4(c), which achieves a three-level array intercon-
nect configuration. These levels correspond to the Global Layout,
Systolic Mode, and Mask Group fields, respectively. The Global
Layout field encodes the logical layout of lanes, and upon decoding,
programs direction of the data shuffling (source lane and destination
lane) in the Slide Unit as shown in Figure 4(d). We can define it as
array arrangement. This influences the interconnection of the lane,
thus inducing different shapes of the array. The Systolic Mode speci-
fies the content when data movement is performed between lanes.
For example, in the GEMM-OS mode, the movement with three
sets of operands between lanes is required, while in the GEMM-
WS(IS) mode, a set of input data and partial sum results need to be
transferred. The situations in IS mode is similar to that of WS mode.

The Mask Sets consist of a group of mask bit sets in the num-
ber of lanes. After operator scheduling is completed, the hardware
library generates mask bit sets based on shape information. Follow-
ing the execution of SysCSR write instructions, the Lane Scheduler
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Figure 5: Dataflow pattern matching: 64 lanes and 64×64 size array example.

loads these sets into the mask registers within each lane to control
the data transfer. As shown in Figure 4(e), we introduce the Mask
Match Mechanism to limit the data communication between lanes
to logically divide lanes into different sub-regions, each of which
contains lanes possessing a same set of mask bits permitting the data
transfer. And the width of mask bits determines how many partitions
are achievable in the architecture. Therefore GTA could combine
its all MPRA as a whole array with several array rearrangements
and freely schedule matrix operation of arbitrary size in high array
utilization.

In conclusion, by reconfiguring the interconnection between PEs,
MPRA can perform in either vector operator supported by original
VPU or p-GEMM operator in multi-precision as shown in Figure 4(a)
and (b). In other words, the previous works [10, 18, 27] only equip
accelerator with GEMM and vector operation, while our work evolve
into p-GEMM. The proposed architecture is applicable to a wide
range of scenarios according to the number of configuring lanes,
spanning from high-performance general computing to embedding
accelerator. Compared with popular products in academia and indus-
try, "VPU+Systolic Array" system [9, 17, 38], GTA improve area
efficiency in both aspects of computational precision and combining
vector and matrix unit.

5 SCHEDULING SPACE EXPLORING FOR
P-GEMM OPERATOR

The vector operators are executed by GTA as usual VPU. However,
for a p-GEMM operator, the scheduling approach is influenced by
three factors, including the array resize, computational precision,
dataflow. According to section 3.1, the size mapped on the GTA
depends on the computational workload of the tensor operator trans-
formed into p-GEMM and its corresponding precision. Also, the
mapping size is influenced by selected dataflow. We employ three
systolic dataflows (WS, IS, OS) and SIMD(vector) mode (some

p-GEMM operators may get better result from vectorization) to ad-
dress this challenge. Additionally, the shape of whole array depends
on array resize with numerous lanes. Different p-GEMM operators
benefit from different array shape.

In the context of matrix multiplication in three systolic dataflows,
typically characterized by three dimensions: M, N, and K, where M
and N can be assumed as two dimensions mapped onto the array
spatially, and K represents the temporal dimension of the operation.

To enhance array utilization, the left computational tasks are
mapped to the available part of array. In such cases, we can seg-
ment the K dimension to increase the array utilization to reduce
computation time. Moreover, according to the scale-sim [31], larger
continuous computation areas mapped on the systolic array result
in a higher degree of data reuse. Conversely, if the segmentation is
thinner, memory access counts increase. Therefore, in these situa-
tions, the theoretical conflict between improving array utilization
(associated with computation speed) and data reuse (associated with
the number of memory access) arises.

Additionally, when the load mapping size significantly exceeds
the array, tiling in both row and column directions towards the load
mapping often introduces idle array part in the edge column or row
of every tiling loop. To mitigate this, tasks from the next column
or row can be brought in prematurely to fill the idle array to get
a spatial cover. Therefore, the optimal one can be selected from
two directions. As illustrated in Figure 5, we can categorize these
situations into four distinct cases:

• Uncover 1: The workload falls short of covering the array in
two directions.

• Uncover 2, 3: The workload exceeds the array size in either
the row or column direction, but the total size does not fully
cover the entire array.

• Cover 2, 3: The workload exceeds the array size in either the
row or column direction, achieving full coverage of the entire
array.
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Table 1: Evaluated platforms’ information.

GTA VPU-Ara GPGPU-NVIDIA H100 CGRA-hycube

Technology 14nm 14nm 4nm 28nm

Frequency 1GHz 250MHz 1755MHz 704MHz

Area 0.35mm2 0.33mm2 814.00mm2 7.82mm2

Cores 4 4 528-tensor core 4x4

Precision
INT8, INT16, INT32,
INT64, BP16, FP16,

FP32, FP64

INT8, INT16, INT32,
INT64, BP16, FP16,

FP32, FP64

FP64, TF32, FP32, INT32, BP16
, FP16, FP8, INT8

INT8, INT16, INT32,
INT64, BP16, FP16,

FP32, FP64

• Cover 1: The workload exceeds the array size in both direc-
tions. The tiling placement could be in direction of Lateral or
Vertical.

We define this approach as dataflow pattern matching, resulting
in a dataflow scheduling space. Because of multitude of scheduling
schemes, we could prioritize choices based on a comprehensive
priority strategy, wherein diverse outcomes are normalized, and the
preference is given to the one with the least sum of squares.

6 METHODOLOGY
6.1 Implementation
Our architecture is based on the open source vector processor Ara [4].
The RTL design is synthesized using Synopsys Design Compiler
and the SAED 14nm library to evaluate the chip area and energy of
our architecture. At the same time, we also synthesize Ara under
the same conditions for comparison. The maximum clock frequency
of reference design is only approximately 250 MHz under our tech-
nology library. After replacing the original computing units with
MPRA, the design can be synthesized at 1 GHz. Obviously, it is
very advantageous in terms of timing under the design of basic PE
in 8-bit. The lane with 8×8 MPRA can be implemented using only
60.76% of the original lane area and cover all precision. Adding
additional processing units for floating-point numbers, the overall
area is about the same as that of the original lane. Due to the reuse
of existing structures, the control and other logic have only 6.06%
area overhead over original Ara’s setting 4 lanes.

We measure the power consumption of MPRA under different
precision and operation modes as shown in Figure 6. The abscissa
refers to the corresponding integer and floating point precision. The
clock constraint is set at 250 MHz. It can be observed that their
energy consumption is approximately the same. Although MPRA’s
average energy consumption is a little higher than original lane’s
computation unit, it can significantly reduce the energy efficiency of
memory access.

6.2 Workload
As listed in Table 2, we select important tensor applications in vari-
ous precision that are prevalent in various domains, and decompose
them into p-GEMM and vector operators for execution.

6.3 Baseline
GTA can be configured to operate in various scenarios, which vary
in terms of memory configurations and array sizes. Therefore, our
focus is specifically on two most important aspects, computing cycle
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Table 2: Size and precision of p-GEMM operators in various
workloads.

Workload Description Precision

BNM Big Numbers Multiplication
in Scientific Computing and Encryption Field INT64

RGB SRGB2XYZ in Image Processing INT8
FFE FFE in Audio Processing INT16

MD Matrix Decomposition
in Mathematical Analysis INT32

PCA PCA in Data Analysis FP64
ALT Alexnet Training in ML FP32
FFL GPT3-Feed-Forward Layers in ML BP16
ALI Alexnet Inference in ML INT8
Nerf Nerf in ML FP32

and memory access, for core computing architecture. We assume the
same clock frequency and configure different number of MPRA to
match the same area according to technology library. The baseline
is lited in Table 1:

• VPU: The vector units are parallel precision units essentially.
Therefore we take Ara as an example and set the lane with all
kinds of precision units.

• GPGPU: We choose the NVIDIA’s newest Hopper [7]. It
involves Tensor Core and CUDA Core. For precision that
Tensor Core cannot support, we use the closely higher preci-
sion.

• CGRA: We choose CGRA with all kinds of precision to
compare performance with GTA. We choose the hycube ar-
chitecture [19].
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Figure 8: Comparisons with original GPGPU.

We develop cycle-accurate simulators, based on scale-sim [31],
CGRA simulator morpher [8], VPU simulator [29] and GPU sim-
ulator [20, 26], of our architecture and other baselines to get the
performance statistics. We verify the GTA’s simulator against our
verilog implementation.

7 EVALUATION
7.1 Schedule Analysis
For the first time, we explore the mixed scheduling of precision and
dataflow as shown in Figure 9. The values on both axes are the ratio
to the minimum value gotten from all the available configurations.
We choose one conv layer in Alexnet and set three kinds of preci-
sion used in case of real-world case. Due to the flexibility of our
architecture and the exploration of scheduling space, we can display
the statistical distribution of the scheduling cases. It is noteworthy
that, unlike placing the precision units independently in other accel-
erators, different precision results in nonlinear distributions for the
same operator.

7.2 Compared with VPU
The vector operators commonly encountered in every application. As
shown in Table 3, an increase in throughput is observed as precision
decreases when compared to the original VPU. The bitwidth of
mantissa in floating-point numbers is not multiples of 8 bits, so the
gain is not an integer. Leveraging the reconfigurability of 8 bit-width
computing units, the utilization is higher than the original design.
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Figure 9: The scatter diagram of the scheduling cases with com-
puting cycles and memory access index.

Table 3: SIMD gains for all data types.

Data Type Throughput Data Type Throughput
INT8 8× BP16 16×

INT16 4× FP16 4×
INT32 2× FP32 3.56×
INT64 1× FP64 1.3×

Compared to systolic array architecture, the chaining technique in
VPU exhibits weaker data reuse capability. Additionally, the number
of computation units decreases with higher precision. Moreover,
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Figure 10: Comparisons with original CGRA in p-GEMM operators.

factors at the microarchitectural level, such as maximum vector
length, also impose limitations on computational speed. As shown
in Figure 7, due to the area advantages brought by the additional
computing units and the memory access advantages brought by
systolic architecture, we can notice the savings in computational
time and memory access.

The average memory access saving is 7.76× and the average
computational speedup is 6.45×. The results demonstrates strong
overall performance. The comparison with VPU demonstrates the
effectiveness of our structure in achieving notable generality in
handling tensor operators in various domains.

7.3 Compared with GPGPU
The GPGPU consists of Tensor Core and CUDA Core. Tensor Core
is only for accelerating GEMM .This work can be also regarded as
the merger of Tensor Core and CUDA Core. Therefore, GTA have
better area efficiency besides of the factor of precision. Furthermore,
aiming to maximize the throughput, Tensor Core is consisted of
small cube computing matrix multiplication, which requires large
numbers of memory operations and high on-chip memory bandwidth.
To get a fair comparison, we give the decomposed vector operator to
cuda core and the p-gemm operator to tensor core.

As shown in Figure 8, there are still superiority of computing
speed and the memory access. Due to the high throughput in high pre-
cision of Tensor Core, some performance remain modest, but there is
a significant improvement in memory access. The average memory
access saving is 5.35× and the average computational speedup is
3.39×.

7.4 Compared with CGRA
CGRA realizes the flexibility for tensor operators, which use wordlevel
reconfigurability and contain larger logic blocks and datapath-oriented
interconnections. Therefore, CGRA is consisted of small arrays in
physical implementation. As a result, they are relatively weak in
acceleration and data reuse. It can be seen from the experimental
data that high-precision computing units such as FP64 have a larger
number of settings and can be on par with GTA in performance.
But there are many PE in the idle state in the mapping. As shown
in Figure 10, overall it still performs well. GTA is able to achieves
8.76× memory efficiency and 25.83× speedup over of CGRA.

8 CONCLUSION
Based on the similarity between matrix multiplication and precision
multiplication and classification of tensor operators using p-GEMM
and vector, We propose GTA, a general tensor accelerator combining
of systolic array and VPU. GTA covers tensor operators of arbi-
trary precision. Besides, we explore the schedule space consisting
of dataflow, precision and array resize. GTA achieves significant
speedup and memory benefits compared to other general accelera-
tors.
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