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Abstract

We build a finite volume scheme for the scalar conservation law ∂tu+ ∂x(H(x, u)) = 0 with initial
condition uo ∈ L∞(R,R) for a wide class of flux function H, convex with respect to the second variable.
The main idea for the construction of the scheme is to use the theory of discontinuous flux. We prove
that the resulting approximating sequence converges in Lp

loc(]0,+∞[×R,R), p ∈ [1,+∞[, to the entropy
solution.
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1 Introduction

Consider the following Cauchy problem for x-dependent scalar conservation law:{
∂tu(t, x) + ∂x (H(x, u(t, x))) = 0 (t, x) ∈ ]0,+∞[×R

u(0, x) = uo(x) x ∈ R. (CL)

Equations of this type often occur, for instance, in the modeling of physical phenomena related to traffic
flow [43, 33, 22], porous media [21, 23] or sedimentation problems [15, 16].
It is known that solutions of (CL) are discontinuous, regardless of the regularity of the data. They are to
be understood in the entropy sense of [29]. The following quantity often recurs below,

∀x, u, k ∈ R, Φ(x, u, k) := sgn(u− k) (H(x, u)−H(x, k)). (1.1)

Definition 1.1. Let H ∈ C1(R2,R) and uo ∈ L∞(R,R). We say that u ∈ L∞(]0,+∞[×R,R) is an
entropy solution to (CL) if for all φ ∈ C∞

c (R+ × R,R+) and k ∈ R,∫ +∞

0

∫
R
|u− k|∂tφ+Φ(x, u, k)∂xφ dx dt−

∫ +∞

0

∫
R
sgn(u− k)∂xH(x, k)φ dx dt

+

∫
R
|uo(x)− k|φ(0, x) dx ≥ 0. (1.2)

Remark 1.1. In appearance, Definition 1.1 is weaker than the classical [29, Definition 1] since it does
not require the existence of a strong trace at the initial time. It is in particular more manageable to
limit process. Nevertheless, it can be shown that if H ∈ C3(R2,R), then Definition 1.1 ensures that each
entropy solution admits a representative belonging to C([0,+∞[,L1

loc(R,R)), see [13, Theorem 2.6].

In [29], the author proved existence, uniqueness and stability with the respect to the initial datum for
(CL) in the framework of entropy solutions under, among others, the growth assumptions

∂uH ∈ L∞(R2,R) and sup
(x,u)∈R2

(
−∂2

xuH(x, u)
)
< +∞, (1.3)

highlighting the fact that the author treated the space dependency in (CL) as a source term. In his paper,
Kruzhkov proved existence using the vanishing viscosity method, that is through a parabolic regularization
of (CL). The following example motivates the necessity to abandon it.

Example 1.1. Fix positive constants X,V1, V2, R1, R2, and let θ, ρ ∈ C3(R, ]0,+∞[) be such that θ(x) =
V1, resp. ρ(x) = R1, for x < −X and θ(x) = V2, resp. ρ(x) = R2, for x > X. Define

H(x, u) := θ(x) u

(
1− u

ρ(x)

)
.

Then with this flow, (CL) is the so-called “LWR” (Lightill-Whitham, Richards) model [30, 35] for a flow of
vehicles described by their density u along a rectilinear road with maximal speed, resp. density, smoothly
varying from V1 to V2, resp. from R1 to R2. Clearly, H does not satisfy (1.3).

Remark 1.2. A priori, Kruzhkov results do not apply in the case of Example 1.1. For completeness, let
us however mention that a truncation argument could be used to extend them if the initial datum takes
values between the stationary solutions u(t, x) = 0 and u(t, x) = ρ(x).
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Recently, the authors of [13, 37] developed an alternative framework to tackle (CL), one not requiring
(1.3) and inspired by Example 1.1:

Smoothness : H ∈ C3(R2,R). (C3)

Compact Heterogeneity : ∃X > 0, ∀(x, u) ∈ R2, |x| ≥ X =⇒ ∂uH(x, u) = 0. (CH)

Strong Convexity : ∀x ∈ R, u 7→ ∂uH(x, u) is an increasing (CVX)

C1-diffeomorphism of R onto itself.

Assumption (CVX) ensures that for all x ∈ R, the mapping u 7→ H(x, u) is strictly convex. Naturally,
it can be replaced by the strong concavity assumption: for all x ∈ R, u 7→ ∂uH(x, u) is a decreasing
C1-diffeomorphism of R onto itself.
The condition (CH) expresses the compact spatial heterogeneity of H and is not, apparently, common in
the context of conservation laws. We expect that it might be relaxed.
Like we previously mentioned, assumptions (C3)-(CH)-(CVX) comprise flows that do not fit in the
classical Kruzhkov framework and that are relevant from the modeling point of view, for instance, the flow
of Example 1.1 (in the concave case). On the other hand, Kruzhkov results apply to general balance laws
in several space dimensions. Let us recall the following.

Theorem 1.2. [13, Theorem 2.6 and Theorem 2.18] Assume that H satisfies (C3)–(CVX). Then for all
uo ∈ L∞(R,R), the Cauchy problem (CL) admits a unique entropy solution u ∈ L∞(]0,+∞[×R,R).
Moreover, if vo ∈ L∞(R,R) and if v is the associated entropy solution, then there exists L > 0 such that
for all R > 0 and t > 0,∫

|x|≤R
|u(t, x)− v(t, x)|dx ≤

∫
|x|≤R+Lt

|uo(x)− vo(x)| dx∫
|x|≤R

(u(t, x)− v(t, x))+ dx ≤
∫
|x|≤R+Lt

(uo(x)− vo(x))
+ dx .

The proof of existence in [13], like in [29], relies on the vanishing viscosity method, but there, the authors
exploit the correspondence with the Hamilton-Jacobi equation (and its parabolic approximation), going
back and forth between the two frameworks, and gathering information for both equations at each step.

Remark 1.3. To be precise, let us mention that in [13], the convexity assumption (CVX) is relaxed to
a uniform coercivity assumption coupled to a genuine nonlinearity assumption:

Uniform Coercivity : ∀h ∈ R, ∃ Uh ∈ R, ∀(x, u) ∈ R2,

|H(x, u)| ≤ h =⇒ |u| ≤ Uh. (UC)

Weak Genuine NonLinearity : for a.e. x ∈ R, the set {p ∈ R : ∂2
uuH(x, p) = 0}

has empty interior. (WGNL)

The strong convexity implies (WGNL), while (UC) follows from the fact that H admits a Nagumo
function. Indeed, thanks to (CH) and (CVX), we can use [37, Lemma 8.1.3 and Corollary 8.1.4] which
ensure that there exists a function ϕ ∈ C(R+,R) that verifies:

∀x, u ∈ R, H(x, u) ≥ ϕ(|u|) and
ϕ(r)

r
−→

r→+∞
+∞.

The convexity was used in [14] to characterize, for (CL), the attainable set and the set of initial data
evolving at a prescribed time into a prescribed profile.
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An alternative to the vanishing viscosity method to construct solutions to (CL), and this is the main
focus of the paper, is to build and prove the convergence of finite volume schemes. The most recent results
include the works of [20, 19, 11] (in the case H(x, u) = θ(x)f(u)), [9] (convergence and error analysis),
[10] (with a source term) or [42] (on a bounded domain). In all these works, the flux function enters the
framework of Kruzhkov by satisfying whether (1.3), or the stronger requirement ∂xH ≡ 0. To the author’s
knowledge, no convergence result is available for flux functions that do not verify (1.3).
The aim of this paper is precisely to build a finite volume scheme for (CL) and prove its convergence to the
entropy solution under the assumptions (C3)–(CVX). The main result is Theorem 3.12, establishing the
convergence of the sequence generated by the scheme described in Section 3. As a byproduct, we provide
an alternate existence result for the Cauchy problem (CL), one that does rely on the vanishing viscosity
method. The main difficulty to overcome in the convergence analysis of the scheme is the obtaining of
a priori L∞ bounds for the approximating sequence. Indeed, flux functions verifying (C3)–(CVX) are
not globally Lipschitz therefore, assigning an a priori CFL condition is not straightforward. That is the
main reason why we rely on the theory of discontinuous flux, see [1, 2, 3, 4, 15, 21, 26, 28, 32, 39] and
the references therein, which, for completeness, we adapt in Section 2. In Section 3, we discretize the
space dependency of H and the idea behind the construction of the scheme is to treat each interface as
a discontinuous flux problem. Outside the compact [−X,X], the scheme reduces to a standard three
point monotone finite volume scheme. The contribution of the discontinuous flux theory is that we can
build by hand discrete steady states of the scheme, see Lemma 2.7 and Lemma 3.3, making him, in a
way, well-balanced. This is how we obtain L∞ bounds, Lemma 3.4. For the convergence analysis, since
global BV are not expected in the context of discontinuous flux, we rely on the compensated compactness
method [31, 36], taking advantage of the genuine nonlinearity of H under assumption (CVX).

2 Discontinuous Flux Theory

We start by recalling results regarding conservation laws with discontinuous flux. For the purpose of this
section, let us fix fl, fr ∈ C3(R,R) two convex functions satisfying (CVX). Consider:

∂tu+ ∂x (F (x, u)) = 0, F (x, u) :=

{
fl(u) if x ≤ 0

fr(u) if x > 0.
(2.1)

Since the works of [1, 2, 3, 4, 15, 21, 26, 28, 39], it is now well known that additionally to the conservation
of mass (Rankine-Hugoniot condition)

for a.e. t > 0, fl(u(t, 0−)) = fr(u(t, 0+)),

an entropy criterion must be imposed at the interface to select one solution. This choice is often guided
by physical consideration. Among the most common criteria, we can cite: the minimal jump condition
[21, 25, 24], the vanishing viscosity criterion [5, 6], or the flux maximization [3].
If Φl, resp. Φr, denotes the Kruzhkov entropy flux associated with fl, resp. with fr, then in this section,
define Φ = Φ(x, u) as the Kruzhkov entropy associated with F :

∀x ∈ R, ∀a, b ∈ R, Φ(x, a, b) := sgn(a− b)(F (x, a)− F (x, b)) =

{
Φl(a, b) if x ≤ 0

Φr(a, b) if x > 0.

2.1 Dissipative germs

For the study of (2.1), we follow [4], where the traces of the solution at the interface {x = 0} are explicitly
treated. It will be useful to have a name for the critical points of fl,r, say αl,r. Notice that for all
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y ∈ ]min fr,+∞[, the equation fr(u) = y admits exactly two solutions, S−
r (y) < αr < S+

r (y). When
y = min fr, then S−

r (y) = S+
r (y) = αr. This motivates the following definition.

Definition 2.1. The admissibility germ for (2.1) is the subset G defined as the union of:

G1 :=
{
(kl, kr) ∈ R2 : kl ≥ αl, kr = S+

r (fl(kl))
}

G2 :=
{
(kl, kr) ∈ R2 : kl ≤ αl, kr = S−

r (fl(kl))
}

G3 :=
{
(kl, kr) ∈ R2 : kl > αl, kr = S−

r (fl(kl))
}
.

(2.2)

The germ contains all the possible traces along {x = 0} of the solutions to (2.1). Notice that by construc-
tion, any couple in the germ satisfies the Rankine-Hugoniot condition. Conversely, some couples verifying
the Rankine-Hugoniot condition have been excluded from the germ, more precisely the ones belonging to{

(kl, kr) ∈ R2 : kl < αl, kr = S+
r (fl(kl))

}
.

The reason lies in the following proposition, see in particular (2.4).

Proposition 2.2. G defined in Definition 2.1 is a maximal L1-dissipative germ, meaning that hold:
(i) For all (ul, ur) ∈ G, fl(ul) = fr(ur).
(ii) Dissipative inequality:

∀(ul, ur), (kl, kr) ∈ G, Φl(ul, kl)− Φr(ur, kr) ≥ 0. (2.3)

(iii) Maximality condition: let (ul, ur) ∈ R2 such that fl(ul) = fr(ur). Then

∀(kl, kr) ∈ G, Φl(ul, kl)− Φr(ur, kr) ≥ 0 =⇒ (ul, ur) ∈ G. (2.4)

Proof. Point (i) is clear, by construction, while (ii) follows from a straightforward case by case study.
We now prove (iii) by way of contradiction: let (ul, ur) ∈ R2 such that fl(ul) = fr(ur) and assume that

∀(kl, kr) ∈ G, Φl(ul, kl)− Φr(ur, kr) ≥ 0 and (ul, ur) /∈ G.

From the Rankine-Hugoniot condition, we deduce that ur = S+
r (fl(ul)), with ul < αl. Take kr = S−

r (f(kl))
with kl ∈ ]ul, αl[. Clearly, (kl, kr) ∈ G2 ⊂ G, therefore by assumption, Φl(ul, kl)− Φr(ur, kr) ≥ 0. But the
choice of kl raises the contradiction:

Φl(ul, kl)− Φr(ur, kr) = (fl(kl)− fl(ul))− (fr(ur)− fr(kr)) = 2(fl(kl)− fl(ul)) < 0.

□

The theory of [4] proposes an abstract framework for the study of (2.1). For each germ satisfying the
requirements of Proposition 2.2 holds, one can define a notion of solution for (2.1), see Theorem 2.4 2.(i)-
(ii), below. On the other hand, the authors of [3, 2] give a formula for the flux at the interface for Riemann
problems of (2.1). In the following proposition, we link the two points of view. Let us adopt the notations:

∀a, b ∈ R, a ∧ b := min{a, b} and a ∨ b := max{a, b}. (2.5)

Proposition 2.3. For all (ul, ur) ∈ R2, define the interface flux:

Fint(ul, ur) := max{fl(ul ∨ αl), fr(αr ∧ ur)}, (2.6)

and the remainder term:

R(ul, ur) := |Fint(ul, ur)− fl(ul)|+ |Fint(ul, ur)− fr(ur)|. (2.7)

Then the following points hold.
(i) For all (ul, ur) ∈ R2, (ul, ur) ∈ G ⇐⇒ R(ul, ur) = 0.
(ii) For all (ul, ur) ∈ R2 and for all (kl, kr) ∈ G, Φr(ur, kr)− Φl(ul, kl) ≤ R(ul, ur).
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Proof. The fact that we have an “explicit” description of G facilitates the proof.
(i) If (ul, ur) ∈ G1 ∪ G2, then ul − αl and ur − αr have the same sign, therefore

Fint(ul, ur) =

{
fl(ul) if ul ≥ αl

fr(ur) if ul < αl

= fl(ul) = fr(ur).

On the other hand, if (ul, ur) ∈ G3, then

Fint(ul, ur) = max{fl(ul), fr(ur)} = fl(ul) = fr(ur).

This ensures that R(ul, ur) = 0.
Conversely, assume that R(ul, ur) = 0. In particular, the Rankine-Hugoniot holds. We deduce that

R(ul, ur) = 0 =⇒ (ul, ur) ∈ G or ur = S+
r (fl(ul)), ul < αl.

But in the latter case, Fint(ul, ur) = max{min fl,min fr} ≠ fl(ul). Therefore, (ul, ur) ∈ G.
(ii) For clarity, set µ := max{min fl,min fr} and notice that

R(ul, ur) =

{
|fl(ul)− µ|+ |fr(ur)− µ| if ul < αl and ur ≥ αr

|fl(ul)− fr(ur)| otherwise.

Let us call q := Φr(ur, kr)−Φl(ul, kl). We proceed with a case by case study. We use the fact that fl,r is
decreasing on ]−∞, αl,r] and increasing on [αl,r,+∞[.
Case 1: ul ≤ kl and ur ≤ kr. Then q = fl(ul)− fr(ur) ≤ R(ul, ur).
Case 2: ul > kl and ur ≤ kr. Then q = (fr(kr) − fr(ur)) + (fl(kl) − fl(ul)). Notice that because
of the germ structure, the case kl < ul < αl and αr ≤ ur ≤ kr cannot happen. Therefore, in case 2,
R(ul, ur) = |fl(ul)− fr(ur)|. We have

• kl < ul ≤ αl and ur ≤ kr ≤ αr

=⇒ q ≤ fl(kl)− fl(ul) = fr(ur)− fl(ul) + (fr(kr)− fr(ur)) ≤ fr(ur)− fl(ul) ≤ R(ul, ur)

kl < ul ≤ αl and ur ≤ αr < kr does not happen

• kl < ul ≤ αl and αr < ur ≤ kr does not happen

• αl < kl < ul and ur ≤ kr ≤ αr =⇒ q ≤ 0

kl < αl < ul and ur ≤ kr ≤ αr

=⇒ q ≤ fl(kl)− fl(ul) = fr(ur)− fl(ul) + (fr(kr)− fr(ur)) ≤ fr(ur)− fl(ul) ≤ R(ul, ur)
αl < kl < ul and ur ≤ αr ≤ kr

=⇒ q ≤ fr(kr)− fr(ur) = fl(ul)− fr(ur) + (fl(kl)− fl(ul)) ≤ fl(ul)− fr(ur) ≤ R(ul, ur)
αl < kl < ul and ur ≤ αr ≤ kr does not happen

• αl < kl < ul and αr < ur ≤ kr

=⇒ q ≤ fr(kr)− fr(ur) = fl(ul)− fr(ur) + (fl(kl)− fl(ul)) ≤ fl(ul)− fr(ur) ≤ R(ul, ur)
kl < αl < ul and αr < ur ≤ kr does not happen.

When we say “does not happen”, we mean that germ structure prevents the situation from occurring.
Case 3: ul ≤ kl and ur > kr. Similar to case 2.
Case 4: ul > kl and ur > kr. Similar to case 1. □
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Remark 2.1. Notice that for all k ∈ R,

R(k, k) =

{
|max{min fl,min fr} − fl(k)|+ |max{min fl,min fr} − fr(k)| if αr ≤ k < αl

|fl(k)− fr(k)| otherwise.

2.2 Definitions of solution and uniqueness

We are now in position to properly give the definition of solutions for (2.1).

Theorem 2.4. Define G as (2.2) and R as (2.7). Let uo ∈ L∞(R,R) and u ∈ L∞(]0,+∞[×R,R). Then
the following statements are equivalent.
1. For all test functions φ ∈ C∞

c (R+ × R,R+) and for all (kl, kr) ∈ R2,∫ +∞

0

∫
R
|u− κ(x)|∂tφ+Φ(x, u, κ(x))∂xφ dx dt+

∫
R
|uo(x)− κ(x)|φ(0, x) dx

+

∫ +∞

0
R(kl, kr)φ(t, 0) dt ≥ 0. (2.8)

2.(i) For all test functions φ ∈ C∞
c (R+ × R∗,R+) and for all (kl, kr) ∈ R2,∫ +∞

0

∫
R
|u− κ(x)|∂tφ+Φ(x, u, κ(x))∂xφ dx dt+

∫
R
|uo(x)− κ(x)|φ(0, x) dx ≥ 0. (2.9)

2.(ii) For a.e. t ∈ ]0,+∞[, (u(t, 0−), u(t, 0+)) ∈ G.
When one of these statements holds, we say that u is an entropy solution to (2.1) with initial datum uo.

Proof. See the proof of [4, Theorem 3.18]. □

Remark 2.2. In both (2.8) and (2.9), κ denotes the piecewise constant function

κ(x) =

{
kl if x ≤ 0

kr if x > 0.

We see that in the second definition, the traces of the solution along {x = 0} explicitly appear. The
condition

for a.e. t > 0, (u(t, 0−), u(t, 0+)) ∈ G

is to be understood in the sense of strong traces. An important fact we stress is that it is not restrictive
to assume that general entropy solutions, that is to say bounded functions verifying (2.9), admit strong
traces. Usually, it is ensured provided a nondegeneracy assumption on the flux function. Here, since fl
and fr are genuinely nonlinear in the sense that

∀s ∈ R, meas
({

p ∈ R : f ′
l,r(p) = s

})
= 0,

existence of strong traces is well known since [41].
In Theorem 2.4, Definition 1 is well suited for passage to the limit of a.e. convergent sequences of exact or
approximate solutions. This is the one we use to prove existence in the next section. On the other hand,
Definition 2 is well-adapted to prove stability with respect to the initial datum.
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Theorem 2.5. Fix uo, vo ∈ L∞(R,R). We denote by u, resp. v, an entropy solution to (2.1) with initial
datum uo, resp. vo. Set

U := max{∥u∥L∞(]0,+∞[×R), ∥v∥L∞(]0,+∞[×R)}, L := max

{
sup
|p|≤U

|f ′
l (p)|, sup

|p|≤U
|f ′

r(p)|

}
.

Then for all R > 0 and for all t > 0,∫
|x|≤R

|u(t, x)− v(t, x)|dx ≤
∫
|x|≤R+Lt

|uo(x)− vo(x)| dx∫
|x|≤R

(u(t, x)− v(t, x))+ dx ≤
∫
|x|≤R+Lt

(uo(x)− vo(x))
+ dx .

(2.10)

Proof. See the proofs of [4, Theorems 3.11-3.19]. □

2.3 Numerical scheme

We now produce and prove the convergence of a simple finite volume scheme toward an entropy solution
of (2.1) in the sense of (2.8).
Let uo ∈ L∞(R,R). Without loss of generality, we can assume that there exists (m,M) ∈ R2 with
M ≥ max{αl, αr} and m ≤ min{αl, αr}, such that for a.e. x ∈ R, m ≤ uo(x) ≤M .
Fix a spatial mesh size ∆x > 0 and time step ∆t > 0. We assume that the ratio λ := ∆t/∆x satisfies the
CFL condition

2λL ≤ 1, L := max

{
sup

u≤p≤u
|f ′

l (p)|, sup
u≤p≤u

|f ′
r(p)|

}
, (2.11)

with
u := min

{
S−
l (fr(m)), S−

r (fl(m))
}

and u := max
{
S+
l (fr(M)), S+

r (fl(M))
}
. (2.12)

These two values come from the choice of two particular steady states of the scheme, see Lemma 2.7 below.
For all n ∈ N and j ∈ Z, set the notations tn = n∆t, xj = j∆x and discretize the initial datum:

∀j ∈ Z, uoj :=
1

∆x

∫ xj+1

xj

uo(x) dx .

With reference to (2.6), define the numerical flux:

∀j ∈ Z, ∀u, v ∈ R, Fj(u, v) :=


Godl(u, v) if j ≤ −1
Fint(u, v) if j = 0
Godr(u, v) if j ≥ 1,

(2.13)

where Godl,r are the Godunov fluxes associated with fl,r. The marching formula of the scheme reads

un+1
j = unj − λ

(
Fj+1(u

n
j , u

n
j+1)− Fj(u

n
j−1, u

n
j )

)
. (2.14)

It is worth mentioning that by itself, Fint is a monotone, locally Lipschitz, numerical flux, see [2, Section
4]. Also, let us precise that in general, Fint is not consistent, meaning that for all k ∈ R, Fint(k, k) is not
equal to fl(k) or to fr(k). For instance, if min fl ≥ min fr, then we have:

Fint(k, k) =


max{min fl, fr(k)} if k ≤ αl, αr

min fl if αr ≤ k ≤ αl

max{fl(k), fr(k)} if αl < k ≤ αr

fl(k) if k > αl, αr.

(2.15)
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Finally, define the following piecewise constant function:

u∆ :=

+∞∑
n=0

∑
j∈Z

unj 1[tn,tn+1[1[xj ,xj+1[.

It will be convenient to write the scheme under the form:

un+1
j = Hj(u

n
j−1, u

n
j , u

n
j+1), (2.16)

where Hj = Hj(a, b, c) is given by the right-hand side of (2.14).

2.3.1 Stability, entropy inequalities

Definition 2.6. We say that a sequence (vj)j is a steady state of (2.16) if

∀j ∈ Z, Hj(vj−1, vj , vj+1) = vj .

Lemma 2.7. There exist two steady states of (2.16), (mj)j and (Mj)j such that:
(i) supj Mj = max

{
S+
l (fr(M)), S+

r (fl(M))
}

;
(ii) infj mj = min

{
S−
l (fr(m)), S−

r (fl(m))
}

;
(iii) for all j ∈ Z, mj ≤ uoj ≤Mj.

Proof. We only give the details for the construction of (Mj)j . Assume that fl(M) ≤ fr(M). Then, define

∀j ∈ Z, Mj :=

{
S+
l (fr(M)) if j ≤ −1

M if j ≥ 0.

It is readily checked that (S+
l (fr(M)),M) ∈ G. This ensures that (Mj)j is a steady state of the scheme.

Exploiting the monotonicity of fl:

fl
(
S+
l (fr(M))

)
= fr(M) ≥ fl(M) =⇒ S+

l (fr(M)) ≥M.

On the other hand, if fl(M) < fr(M), set instead:

∀j ∈ Z, Mj :=

{
M if j ≤ −1

S+
r (fl(M)) if j ≥ 0.

□

Steady states are now used to derive L∞ bounds.

Theorem 2.8. Consider the two steady states from Lemma 2.7. Then under the CFL condition (2.11)-
(2.12), the scheme (2.16) is monotone, meaning that for all j ∈ Z, Hj is nondecreasing with respect to its
three variables. Consequently, for all n ∈ N,

u ≤ mj ≤ unj ≤Mj ≤ u. (2.17)

Proof. We proceed by induction. By construction of the steady states, (2.17) holds for n = 0. Assume
that it holds for some n ∈ N. The CFL condition ensures that for all j ∈ Z, Hj is nondecreasing with
respect to its three variables. To see it, one simply has to differentiate Hj with respect to its three
variables. By monotonicity, for all j ∈ Z,

mj ≤ unj ≤Mj =⇒ Hj(mj−1,mj ,mj+1) ≤ Hj(u
n
j−1, u

n
j , u

n
j+1) ≤ Hj(Mj−1,Mj ,Mj+1)

=⇒ mj ≤ un+1
j ≤Mj ,

concluding the induction. □

8



Lemma 2.9. Let kl, kr ∈ [u, u]. Define the sequence

∀j ∈ Z, κj :=

{
kl if j ≤ −1
kr if j ≥ 0.

Then, under (2.11)-(2.12), the scheme (2.16) satisfies the following discrete entropy inequalities:

∀n ∈ N, ∀j ∈ Z,
(
|un+1

j − κj | − |unj − κj |
)
∆x+ (Φn

j+1/2 − Φn
j−1/2)∆t

≤
{
|Fint(kl, kr)− fl(kl)|δj=−1 + |Fint(kl, kr)− fr(kr)|δj=0

}
∆t,

(2.18)

where
Φn
j+1/2 := Fj+1(u

n
j ∨ κj , u

n
j+1 ∨ κj+1)− Fj+1(u

n
j ∧ κj , u

n
j+1 ∧ κj+1).

Proof. If j /∈ {−1, 0}, (2.18) is a standard consequence of the monotonicity of the scheme and of the fact
that constants are preserved away from the interface.
Assume now for instance that j = −1. First, notice that

kl = H−1(kl, kl, kr) + λ (Fint(kl, kr)− fl(kl)) ,

implying, by monotonicity, that

H−1(u
n
j−1 ∧ κj−1, u

n
j ∧ κj , u

n
j+1 ∧ κj+1)− λ (Fint(kl, kr)− fl(kl))

−

≤ kl ≤ H−1(u
n
j−1 ∨ κj−1, u

n
j ∨ κj , u

n
j+1 ∨ κj+1) + λ (Fint(kl, kr)− fl(kl))

+ .

Consequently,

|un+1
j − κj | = max{un+1

j , κj} −min{un+1
j , κj}

≤ H−1(u
n
j−1 ∨ κj−1, u

n
j ∨ κj , u

n
j+1 ∨ κj+1) + λ (Fint(kl, kr)− fl(kl))

+

−H−1(u
n
j−1 ∧ κj−1, u

n
j ∧ κj , u

n
j+1 ∧ κj+1) + λ (Fint(kl, kr)− fl(kl))

−

= |unj − κj | − λ
(
Φn
j+1/2 − Φn

j−1/2

)
+ λ|Fint(kl, kr)− fl(kl)|,

which is exactly (2.18) in the case j = −1. The proof for the case j = 0 is similar, so we omit its details.
□

Theorem 2.10. Assume that (2.11)-(2.12) hold. Let φ ∈ C∞
c (R+ ×R,R+) and kl, kr ∈ [u, u]. Let T > 0

such that φ(t, x) = 0 if t ≥ T and x ∈ R. Set κ = kl1R− + kr1R+. Then, there exist c1, c2 > 0 depending
only on u, u, T , φ, fl and fr such that∫ +∞

0

∫
R
|u∆ − κ(x)|∂tφ+Φ(x, u∆, κ(x))∂xφ dx dt

+

∫
R
|u∆(0, x)− κ(x)|φ(0, x) dx+

∫ +∞

0
R(kl, kr)φ(t, 0) dt

≥ −c1(∆t+∆x)− c2

∫ +∞

0

∫
R
|(u∆(t, x+∆x)− u∆(t, x))∂xφ(t, x)| dx dt . (2.19)

9



Proof. Define for all n ∈ N and j ∈ Z, φn
j := 1

∆x

∫ xj+1

xj
φ(tn, x) dx. Multiply (2.18) by φn

j , take the double
sum and apply Abel summation by parts. We obtain A+B + C ≥ 0, where

A =

+∞∑
n=1

∑
j∈Z
|unj − κj |(φn

j − φn−1
j )∆x+

∑
j∈Z
|uoj − κj |φo

j∆x

B =

+∞∑
n=0

∑
j∈Z

Φn
j+1/2(φ

n
j+1 − φn

j )∆t

C =
+∞∑
n=0

{
|Fint(kl, kr)− fl(kl)|φn

−1 + |Fint(kl, kr)− fr(kr)|φn
o

}
∆t.

Term A. Clearly,

A =

∫ +∞

∆t

∫
R
|u∆ − κ(x)|∂tφdx dt+

∫
R
|u∆(0, x)− κ(x)|φ(0, x) dx

≤
∫ +∞

0

∫
R
|u∆ − κ(x)|∂tφdx dt+

∫
R
|u∆(0, x)− κ(x)|φ(0, x) dx+ (u− u)∥∂tφ∥L∞(R+,L1)∆t.

Term B. For all j ∈ N,

Φn
j+1/2 = Godr(u

n
j ∨ kr, u

n
j+1 ∨ kr)−Godr(u

n
j ∨ kr, u

n
j ∨ kr)︸ ︷︷ ︸

B1

+Φr(u
n
j , kr)︸ ︷︷ ︸

B2

+Godr(u
n
j ∧ kr, u

n
j ∧ kr)−Godr(u

n
j ∧ kr, u

n
j+1 ∧ kr)︸ ︷︷ ︸

B3

.

We estimate B1 +B3 as∣∣∣∣∣∣
+∞∑
n=0

∑
j≥0

(B1 +B3)(φ
n
j+1 − φn

j )∆t

∣∣∣∣∣∣ ≤ 2L

(
T∥∂2

xxφ∥L∞(R+,L1) + ∥∂2
txφ∥L1

)
(∆x+∆t)

+ 2L

+∞∑
n=0

∑
j≥0

∫ tn+1

tn

∫ xj+1

xj

|unj+1 − unj | · |∂xφ(t, x)| dx dt .

For B2, we have
+∞∑
n=0

∑
j≥0

B2(φ
n
j+1 − φn

j )∆t

= ∆t
+∞∑
n=0

∑
j≥0

∫ xj+1

xj

Φr(u
n
j , kr)

(
φ(tn, x+∆x)− φ(tn, x)

∆x
− ∂xφ(t

n, x)

)
dx

+

+∞∑
n=0

∑
j≥1

∫ tn+1

tn

∫ xj+1

xj

Φr(u
n
j , kr)(∂xφ(t

n, x)− ∂xφ(t, x)) dx dt

+

∫ +∞

0

∫ +∞

0
Φ(x, u∆, κ(x))∂xφ(t, x) dx dt

≤ T sup
u≤p≤u

|Φr(p, kr)| · ∥∂2
txφ∥L∞(R+,L1)∆x+ sup

u≤p≤u
|Φr(p, kr)| · ∥∂2

txφ∥L1∆t

+

∫ +∞

0

∫ +∞

0
Φ(x, u∆, κ(x))∂xφ(t, x) dx dt .
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We do similar computations for j ≤ −2. For j = −1, write∣∣∣∣∣
+∞∑
n=0

Φn
−1/2(φ

n
j+1 − φn

j )∆t

∣∣∣∣∣ ≤ 2T

{
sup

u≤p≤u
|fl(p)|+ |fr(p)|

}
∥∂xφ∥L∞∆x.

Term C. Finally, write

∣∣∣∣C − ∫ +∞

0
R(kl, kr)φ(t, 0) dt

∣∣∣∣ ≤ 4T

{
sup

u≤p≤u
|fl(p)|+ |fr(p)|

}
(∥∂xφ∥L∞∆x+ ∥∂tφ∥L∞∆t) .

□

2.3.2 Compactness and convergence

The final step is to pass to the limit in (2.19). For that, we prove the strong compactness of (u∆)∆.

Theorem 2.11. Let uo ∈ L∞(R,R) and let (u∆)∆ be the sequence generated by the scheme described
in Section 2.3. Then there exists a subsequence of (u∆)∆ that converges in Lp

loc(]0,+∞[×R,R) for all
p ∈ [1,+∞[ and a.e. on ]0,+∞[×R to some function u ∈ L∞(]0,+∞[×R,R).

Proof. Let us mention that if uo ∈ BVloc(R,R), since (2.1) is invariant by time translation, one can
derive localized BV estimates away from the interface following [7, Lemma 4.2] or [8, Lemmas 5.3, 5.4].
The strict convexity of fl and fr is essential.
If uo /∈ BV(R,R), one can derive one-sided Lipschitz bounds on (u∆)∆, provided that fl and fr are
strictly convex, following [40, Section 4] or [38, Section 2.4]. This approach also requires to choose either
the Godunov flux or the Engquist-Osher flux away from the interface, that is when j ̸= 0 in (2.13). □

Theorem 2.12. Let uo ∈ L∞(R,R) and fix (m,M) ∈ R2 with M ≥ max{αl, αr} and m ≤ min{αl, αr},
such that for a.e. x ∈ R, m ≤ uo(x) ≤ M . Let (u∆)∆ be the sequence generated by the scheme described
in Section 2.3 and let u be the limit function from Theorem 2.11. Then u is an entropy solution to (2.1)
with initial datum uo in the sense of (2.8). Moreover, for a.e. (t, x) ∈ ]0,+∞[×R,

min
{
S−
l (fr(m)), S−

r (fl(m))
}
≤ u(t, x) ≤ max

{
S+
l (fr(M)), S+

r (fl(M))
}
. (2.20)

Proof. It suffices to pass to the limit in (2.19).
Let us just say that since (u∆)∆ converges a.e. on ]0,+∞[×R, for all test functions φ, the sequence
(u∆∂xφ)∆ is strongly compact in L1(]0,+∞[×R,R). As a consequence of the Riesz-Fréchet-Kolmogorov
compactness characterization, for all φ ∈ C∞

c (R+ × R,R), we have

∫ +∞

0

∫
R
|(u∆(t, x+∆x)− u∆(t, x))∂xφ(t, x)|dx dt −→

∆→0
0.

□
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2.4 The Riemann problem

Let us explain how to solve the Riemann problem for (2.1). To fix the ideas, assume that min fl ≤ min fr.
Given (ul, ur) ∈ R2, first compute the interface flux given by (2.6). We have:

Fint(ul, ur) =


fr(ur) if ul ≤ αl and ur ≤ αr (I)
min fr if ul ≤ αl and ur > αr (II)

max{fl(ul), fr(ur)} if ul > αl and ur ≤ αr (III)
max{fl(ul),min fr} if ul > αl and ur > αr (IV)

(2.21)

The value of Fint(ul, ur) imposes the value of one the traces at the interface. For instance, if Fint(ul, ur) =
fr(ur), then the right trace is equal to ur. Then to determine the left trace, one solves fl(γ) = fr(ur),
with the requirement that the solution to the classical Riemann problem with flux fl and states (γ, ur)
only displays waves of negative speeds. We list below the different structure of the solution.

• If (ul, ur) ∈ G, then the solution is a stationary non-classical shock (SNS).
• (I) in (2.21): gluing of shock/rarefaction-SNS-constant ur. In the case min fl ≥ min fr, the solution is
instead the gluing of rarefaction-SNS-shock, or the gluing of shock/rarefaction-SNS-constant ur.

• (II) in (2.21): gluing of shock/rarefaction-SNS-rarefaction. In the case min fl ≥ min fr, the solution is
instead the gluing of rarefaction-SNS-shock/rarefaction.

12



• (III) in (2.21): gluing of shock-SNS-constant ur, or gluing of constant ul-SNS-shock.

• (IV) in (2.21): gluing of shock-SNS-rarefaction, or gluing of constant ul-SNS-shock/rarefaction. In the
case min fl ≥ min fr, the solution is instead the gluing of constant ul-SNS-shock/rarefaction.

2.5 Extension

We now extend the results of Sections 2.1-2.2 to the case where F in (2.1) presents a finite number of space
discontinuities. More precisely, let us fix P ∈ N∗, (yp)p∈[[1;P]] an increasing finite sequence of numbers, and
(hp)p∈[[0;P]] a family of C3(R,R) convex functions satisfying (CVX). For all p ∈ [[0;P]], we call αp the
critical point of hp. Consider

∂tu+ ∂x (F (x, u)) = 0, F (x, u) :=

P∑
p=0

hp(u)1]yp,yp+1[(x), yo := −∞, yP+1 := +∞. (2.22)

For all p ∈ [[1;P]], we can define a germ, following Section 2.1.

Definition 2.13. The admissibility family of germs for (2.22) is the family (Gp)p∈[[1;P]], where for all
p ∈ [[1;P]], Gp is the germ defined as the union of the following subsets:

G1,p :=
{
(kl, kr) ∈ R2 : kl ≥ αp, kr = S+

p+1(hp(kl))
}

G2,p :=
{
(kl, kr) ∈ R2 : kl ≤ αp, kr = S−

p+1(hp(kl))
}

G3,p :=
{
(kl, kr) ∈ R2 : kl > αp, kr = S−

p+1(hp(kl))
}
.

(2.23)
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For all p ∈ [[1;P]], Gp is a maximal L1-dissipative germ in the sense of Proposition 2.2. Then, at each
interface, for all (ul, ur) ∈ R2, we define a flux

F p
int(ul, ur) := max{hp(ul ∨ αp), hp+1(αp+1 ∧ ur)} (2.24)

and the remainder term

RGp(ul, ur) := |F
p
int(ul, ur)− hp(ul)|+ |F p

int(ul, ur)− hp+1(ur)|. (2.25)

Following Section 2.2, we give the definition of solutions.

Theorem 2.14. Let uo ∈ L∞(R,R) and u ∈ L∞(]0,+∞[×R,R). Define Γ :=
⋃P

p=1{(t, yp) : t ≥ 0}.
Then the following statements are equivalent.
1. For all test functions φ ∈ C∞

c (R+ × R,R+) and for all (kp)p∈[[1;P+1]] ∈ RP+1,∫ +∞

0

∫
R
|u− κ(x)| ∂tφ+Φ(x, u, κ(x))∂xφ dx dt+

∫
R
|uo(x)− κ(x)|φ(0, x) dx

+
P∑

p=1

∫ +∞

0
RGp(kp, kp+1)φ(t, yp) dt ≥ 0. (2.26)

2.(i) For all test functions φ ∈ C∞
c (R+ × (R\Γ),R+) and for all (kp)p∈[[1;P+1]] ∈ RP+1,∫ +∞

0

∫
R
|u− κ(x)| ∂tφ+Φ(x, u, κ(x))∂xφ dx dt+

∫
R
|uo(x)− κ(x)|φ(0, x) dx ≥ 0. (2.27)

2.(ii) For all p ∈ [[1;P]], for a.e. t ∈ ]0,+∞[, (u(t, yp−), u(t, yp+)) ∈ Gp.
When one these statements holds, we say that u is an entropy solution to (2.22) with initial datum uo.

Remark 2.3. In both (2.26) and (2.27), κ denotes the piecewise constant function

κ(x) =
P∑

p=0

kp1]yp,yp+1[(x).

The proof of Theorem 2.14 follows from an obvious adaptation of the proof of Theorem 2.4.

Theorem 2.15. Fix uo, vo ∈ L∞(R,R). We denote by u, resp. v, an entropy solution to (2.1) with initial
datum uo, resp. vo. Set

U := max{∥u∥L∞(]0,+∞[×R), ∥v∥L∞(]0,+∞[×R)}, L := sup
p∈[[0;P]]
|k|≤U

|h′p(k)|.

Then for all R > 0 and for all t > 0,∫
|x|≤R

|u(t, x)− v(t, x)|dx ≤
∫
|x|≤R+Lt

|uo(x)− vo(x)| dx∫
|x|≤R

(u(t, x)− v(t, x))+ dx ≤
∫
|x|≤R+Lt

(uo(x)− vo(x))
+ dx .

(2.28)

Proof. Straightforward adaptation of the proof of Theorem 2.5. □

Regarding the existence, let us only stress that for small times (so that the emerging waves from the
discontinuity points of F do not interact), the Riemann problem for (2.22) is solved by patching together
p solutions to “simple” Riemann problems as described in Section 2.4.
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3 From Discontinuous to Continuous

We now take advantage of Section 2 to develop a scheme for (CL). After discretizing the space dependency
of H, we treat each interface as a discontinuous flux problem. Outside the compact [−X,X], the scheme
reduces to a standard three point monotone finite volume scheme. The contribution of the discontinuous
flux theory is in Lemmas 3.3-3.4, where we constructed steady states of the scheme to derive a priori L∞

bounds.

3.1 Definition of the scheme

We describe a semi-Godunov scheme for (CL) under Assumptions (C3)–(CVX).

Lemma 3.1. Assume that H satisfies (C3)–(CVX). Then, there exists a unique function α ∈ C2(R,R)
such that for all x ∈ R, ∂uH(x, α(x)) = 0. Moreover,

∀x ∈ R, |x| ≥ X =⇒ α′(x) = 0.

Proof. Straightforward application of the Implicit Function Theorem. □

Fix a spatial mesh size ∆x > 0 and time step ∆t > 0. For all n ∈ N and j ∈ Z, set the notations

tn = n∆t, xj = j∆x, xj+1/2 = (j + 1/2)∆x, Ij :=]xj−1/2, xj+1/2[, X ∈ IJ , J ∈ N∗.

Discretize the initial datum, α and “the real line”:

∀j ∈ Z, uoj :=
1

∆x

∫
Ij

uo(x) dx , αj := α(xj), w∆(x) :=
∑
j∈Z

xj1Ij (x).

Notice that for all j ∈ Z,

j ≥ J + 1 =⇒ αj = α(X) and j ≤ −J − 1 =⇒ αj = α(−X).

It will be convenient to adopt the notation

∀j ∈ Z, hj(u) := H(xj , u).

Fix n ∈ N. Let us explain how, given (unj )j∈Z, we determine (un+1
j )j∈Z. Set ρn =

∑
j∈Z u

n
j 1Ij . Let us call

Un = Un(t, x) the unique entropy solution to:{
∂tU(t, x) + ∂x (H(w∆(x),U(t, x))) = 0 (t, x) ∈ ]tn, tn+1[×R

U(tn, x) = ρn(x) x ∈ R.

Following Section 2.5, by entropy solution, we mean that for all test functions φ ∈ C∞
c (R+ × R,R+) and

for all (kj)j∈[[−J−1;J+1]] ∈ R2J+3 used tho defined the piecewise constant function κ, which discontinuities
are the edges xj+1/2, j ∈ [[−J − 1; J ]], we have:∫ tn+1

tn

∫
R
|Un − κ(x)|∂tφ+Φ(w∆(x),Un, κ(x))∂xφ dx dt

+

∫
R
|ρn(x)− κ(x)|φ(tn, x) dx−

∫
R
|U(tn+1−, x)− κ(x)|φ(tn+1, x) dx

+

J∑
j=−J−1

∫ tn+1

tn
RGj+1/2

(kj , kj+1)φ(t, xj+1/2) dt ≥ 0,
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where, following Proposition 2.3,

Rj+1/2(a, b) := |F
j+1/2
int (a, b)− hj(a)|+ |F j+1/2

int (a, b)− hj+1(b)|

and

F
j+1/2
int (a, b) := max

{
Godj(a, αj), Godj+1(αj+1, b)

}
,

is the flux across the interface x = xj+1/2, with for all j ∈ Z, Godnj denoting the Godunov numerical flux
associated with hj .
Define un+1

j as

∀j ∈ Z, un+1
j :=

1

∆x

∫
Ij

Un(tn+1−, x) dx . (3.1)

The CFL condition (3.3) will ensure that waves emanating at each interface x = xj+1/2, j ∈ Z do not
interact. Consequently, (3.1) rewrites precisely as

∀j ∈ Z, un+1
j = unj −

∆t

∆x
(F

j+1/2
int (unj , u

n
j+1)− F

j−1/2
int (unj−1, u

n
j )). (3.2)

For the numerical analysis, we defined the approximate solution u∆ the following way:

u∆ :=
+∞∑
n=0

Un1[tn,tn+1[1Ij .

3.2 Stability

Following Section 2.3, we explicitly construct steady states of the scheme (3.2) to derive L∞ bounds.

Lemma 3.2. Let c ∈ R such that c ≥ supR α. Define for all j ∈ Z,

vj+1 :=

{
c if j ≤ −J − 2

S+
j+1(hj(vj)) if j ≥ −J − 1,

wj :=

{
S+
j (hj+1(wj+1)) if j ≤ J

c if j ≥ J + 1.

Then (vj)j and (wj)j are steady states of (3.2) in the sense of Definition 2.6.

Proof. The key point is that for all j ∈ Z, (vj , vj+1) ∈ Gj+1/2, which ensures that

hj(vj) = F
j+1/2
int (vj , vj+1) = hj+1(vj+1).

□

Remark 3.1. Keep the notations of Lemma 3.2.
(i) Notice that (vj)j and (wj)j are stationary. For instance, for all integers j ≥ J + 2,

hj−1(vj−1) = hj(vj) = hj−1(vj) =⇒ vj−1 = vj .

(ii) For all c ∈ R such that c ≤ infR α, the two following sequences are steady states as well:

vj+1 =

{
c if j ≤ −J − 2

S−
j+1(hj(vj)) if j ≥ −J − 1,

wj =

{
S−
j (hj+1(wj)) if j ≤ J

c if j ≥ J + 1.
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Lemma 3.3. Assume that (C3)–(CVX) hold. Let (m,M) ∈ R2 such that m ≤ infR α and M ≥ supR α.
Then there exist two steady states of (3.2), (mj)j and (Mj)j, such that:
(i) (mj)j is bounded by below ;
(ii) (Mj)j is bounded by above ;
(iii) for all j ∈ Z, mj ≤ m and Mj ≥M .

Proof. We only give the details for the construction of (Mj)j .
Set Uh := maxx∈RH(x,M). By monotonicity, for all j ∈ Z, S+

j (Uh) ≥ M . Therefore, if M :=

maxj∈Z S
+
j (Uh), then M ≥M ≥ maxx∈R α(x). Define

∀j ∈ Z, Mj+1 =

{
M if j ≤ −J − 2

S+
j+1(hj(Mj)) if j ≥ −J − 1.

Clearly, (Mj)j is a steady state of the scheme.

Claim 1: for all j ∈ Z, Mj ≥M . Indeed, for all j ∈ Z,

hj(Mj) = hj+1(Mj+1) = h−J−1(max
i∈Z

S+
i (Uh)) ≥ h−J−1(S

+
−J−1(Uh)) = Uh ≥ hj(M),

from which we deduce, by monotonicity, that Mj ≥M . The claim is proved.

Claim 2: (Mj)j is bounded by above. By definition, for all j ∈ Z,

Mj = S+
j

(
H(−X,M)

)
≤ max

x∈R
h−1
+

(
x,H(−X,M)

)
:= u,

where for all x ∈ R, we denote by u 7→ h−1
+ (x, u) the reciprocal of u 7→ h(x, u) on [α(x),+∞[. We see that

u only depends on H and M . □

We can now prove that the scheme (3.2) is stable.

Lemma 3.4. Assume that (C3)–(CVX) hold. Let uo ∈ L∞(R,R). With reference to Lemma 3.1, fix
(m,M) ∈ R2 satisfying m ≤ infR α and M ≥ supR α, such that for a.e. x ∈ R, m ≤ uo(x) ≤M . Consider
(mj)j and (Mj)j, steady states given by Lemma 3.3. Assume that the ratio λ := ∆t

∆x satisfies the CFL
condition:

2λL ≤ 1, L := sup
x∈R

u≤p≤u

|∂uH(x, p)|, u := inf
j∈Z

mj , u := sup
j∈Z

Mj . (3.3)

Then the scheme (3.2) is stable: for all n ∈ N,

∀j ∈ Z, u ≤ mj ≤ unj ≤Mj ≤ u. (3.4)

Proof. Let us define the piecewise functions

(m∆,M∆) :=
∑
j∈Z

(mj ,Mj)1Ij .

The key point is that m∆ and M∆ are both stationary solutions to

∂tU(t, x) + ∂x (H(w∆(x),U(t, x))) = 0.

We prove (3.4) by induction on n. It holds for n = 0 by construction of the sequences (mj)j∈Z, (Mj)j∈Z.
Assume now that for some n ∈ N, (3.4) holds, implying that m∆ ≤ ρn ≤ M∆. Therefore, Theorem 2.15
ensures that

m∆ ≤ ρn ≤M∆ =⇒ ∀t ∈ [tn, tn+1], m∆ ≤ Un(t) ≤M∆ =⇒ ∀(t, x) ∈ [tn, tn+1]× R, u ≤ Un(t, x) ≤ u.

Since un+1
j is obtained as the average of Un(tn+1−) over Ij , we deduce that for all j ∈ Z, u ≤ un+1

j ≤ u.
The proof is concluded. □
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Example 3.1. Assume that H takes the form H(x, u) = θ(x) (u−α(x))2

2 , for a suitable choice of functions

θ and α. Then for all j ∈ Z and h ∈ R+, S+
j (h) = αj +

√
2h
θj

. Applying the procedure of Lemmas 3.3-3.4,
we find the bound

u ≤ sup θ

inf θ
(M + 2(supα− inf α)) .

3.3 Compensated compactness

Throughout the section, we assume that the hypotheses of Lemma 3.4 hold.
The compensated compactness method and its applications to systems of conservation laws is for instance
reviewed in [12, 31]. Modified for our use, the compensated compactness lemma reads as follows.

Lemma 3.5. Assume that H satisfies (CH)–(CVX), ensuring its genuine nonlinearity in the sense of

∀(x, s) ∈ R2, meas
(
{u ∈ R : ∂uH(x, u) = s}

)
= 0. (3.5)

Let (uε)ε be a bounded sequence of L∞(]0,+∞[×R,R) such that for all k ∈ R and for any i ∈ {1, 2}, the
sequence (∂tSi(uε) + ∂xQi(x, uε))ε belongs to a compact subset of H−1

loc(]0,+∞[×R,R), where

S1(u) = u− k Q1(x, u) = H(x, u)−H(x, k)

S2(u) = H(x, u)−H(x, k) Q2(x, u) =

∫ u

k
∂uH(x, ξ)2 dξ.

(3.6)

Then there exists a subsequence of (uε)ε that converges in Lp
loc(]0,+∞[×R,R) for all p ∈ [1,+∞[ and a.e.

on ]0,+∞[×R to some function u ∈ L∞(]0,+∞[×R,R).

To prove the H−1
loc compactness required in Lemma 3.5 we will use the following technical result, see

[34, 17, 36].

Lemma 3.6. Let q, r ∈ R such that 1 < q < 2 < r. Let (µε)ε be a sequence of distributions such that:
(i) (µε)ε belongs to a compact subset of W−1,q

loc (]0,+∞[×R,R).
(ii) (µε)ε is bounded in W−1,r

loc (]0,+∞[×R,R).
Then (µε)ε belongs to a compact subset of H−1

loc(]0,+∞[×R,R).

For the compactness analysis, we take inspiration from [24, 25].
Let (S,Q) be a regular entropy/entropy flux pair, which we recall, means that

∀x, u ∈ R, ∂uQ(x, u) = S′(u) ∂uH(x, u).

Setting Q∆ as the entropy flux of S associated with the flux u 7→ H(w∆(x), u), the entropy dissipation of
u∆ is defined as

E∆(ϕ) :=

∫ +∞

0

∫
R
S(u∆)∂tϕ+Q∆(x, u∆)∂xϕ dx dt , ϕ ∈ C∞

c (R+ × R,R). (3.7)

Fix n ∈ N and j ∈ Z. Let us consider the entropy dissipation in Pn
j+1/2 := [tn, tn+1[×]xj , xj+1[. By
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integration by parts and the fact that u∆ is the exact solution of a Riemann problem in Pn
j+1/2, we write:∫∫

Pn
j+1/2

S(u∆)∂tϕ+Q∆(x, u∆)∂xϕ dx dt

=

∫ xj+1

xj

S(u∆(t
n+1−, x))ϕ(tn+1, x)− S(u∆(t

n, x))ϕ(tn, x) dx

+

∫ tn+1

tn
Q(xj+1, u

n
j+1)ϕ(t, xj+1)−Q(xj , u

n
j )ϕ(t, xj) dt

+

∫ tn+1

tn

(
Q(xj , u∆(t, xj+1/2−))−Q(xj+1, u∆(t, xj+1/2+))

)
ϕ(t, xj+1/2) dt

+

∫ tn+1

tn
[[σS(u∆)−Q∆(x, u∆)]]y ϕ(t, y(t)) dt .

With reference to Section 2.4, in the right-hand side of the previous equality:
• the third integral is the contribution of the (eventual) stationary non-classical shock in the solution.
• The last integral is the contribution of the (eventual) classical shock in the solution. Hence, σ is the
shock velocity, given by the Rankine-Hugoniot condition, y(t) = xj+1/2 + σ(t− tn) is the shock curve and

[[σS(u∆)−Q∆(x, u∆)]]y := (σS(u∆)−Q∆(x, u∆))(t, y(t)+)− (σS(u∆)−Q∆(x, u∆))(t, y(t)−).

It is relevant to say that w∆ is continuous along {x = y(t)}, equal to either xj or xj+1, depending on the
sign of σ.
Taking the sum for n ∈ N and j ∈ Z, we see that the entropy dissipation rewrites as

E∆(ϕ) = −
∫
R
S(u∆(0, x))ϕ(0, x) dx ←− I1(ϕ)

+
+∞∑
n=1

∫
R
(S(u∆(t

n−, x))− S(u∆(t
n, x)))ϕ(tn, x) dx ←− I2(ϕ)

+
+∞∑
n=0

∑
j∈Z

∫ tn+1

tn

(
Q(xj , u∆(t, xj+1/2−))−Q(xj+1, u∆(t, xj+1/2+))

)
ϕ(t, xj+1/2) dt ←− I4(ϕ)

+

+∞∑
n=0

∑
j∈Z

∑
y

∫ tn+1

tn
[[σS(u∆)−Q∆(x, u∆)]]y ϕ(t, y(t)) dt ←− I3(ϕ)

(3.8)
As we previously explained, for all j ∈ Z, the sum

∑
y in (3.8) is either over an empty set, or over a

singleton.

First, let us give a bound on the variation of the approximate solution across the discrete time levels.

Lemma 3.7. Let T > 0 and R > 0. Fix N,K ∈ N∗ such that T ∈ [tN , tN+1[ and R ∈ IK . Then, there
exists a constant c1 > 0 depending on T , R, uo, and H such that

N∑
n=1

∑
|j|≤K

∫
Ij

|u∆(tn, x)− u∆(t
n−, x)|2 dx ≤ c1

and
N∑

n=0

∑
|j|≤K

∑
y

∫ tn+1

tn
[[σS(u∆)−Q∆(x, u∆)]]y dt ≤ c1.

(3.9)
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Proof. For the purpose of this proof, let us choose S(u) = u2

2 and Q = Q(x, u) its entropy flux. Let (ϕk)k
be a sequence of nonnegative test functions that converges to ϕ := 1[0,T ]×[−R,R]. At the limit k → +∞ in
(3.8), we obtain:

I2(ϕ) + I3(ϕ) =

∫
|x|≤R

|u∆(0, x)|2 dx− I4(ϕ) ≤ 2R∥uo∥2L∞ − I4(ϕ).

Note that I3(ϕ) is nonnegative because the (eventual) shock is classical and therefore produces entropy.
Then, notice that by definition of (unj )j,n,

I2(ϕ) =
1

2

N∑
n=1

∑
|j|≤K

∫
Ij

u∆(t
n−, x)2 − u∆(t

n, x)2 dx

=
1

2

N∑
n=1

∑
|j|≤K

{∫
Ij

(u∆(t
n−, x)− u∆(t

n, x))2 + 2u∆(t
n, x)(u∆(t

n−, x)− u∆(t
n, x))

}
dx

=
1

2

N∑
n=1

∑
|j|≤K

∫
Ij

(u∆(t
n−, x)− u∆(t

n, x))2 dx+

N∑
n=1

∑
|j|≤K

uj

∫
Ij

(u∆(t
n−, x)− unj ) dx︸ ︷︷ ︸

=0

.

Finally, as a consequence of Proposition 2.3 (ii), for all k ∈ [u, u],

Φ(xj+1/2−, u∆(t, xj+1/2−), k)− Φ(xj+1/2+, u∆(t, xj+1/2+), k) ≥ −RGj+1/2
(k, k).

Using Remark 2.1, we can bound this remainder term as

RGj+1/2
(k, k) ≤

2∥α′∥L∞ sup
x∈R

p∈[u,u]

|∂uH(x, p)|+ sup
x∈R

p∈[u,u]

|∂xH(x, p)|

∆x.

Using an approximation argument to pass from Kruzhkov entropies to any entropy, see [24], we obtain

I4(ϕ) ≥ −2TR

2∥α′∥L∞ sup
x∈R

p∈[u,u]

|∂uH(x, p)|+ sup
x∈R

p∈[u,u]

|∂xH(x, p)|

 .

Estimate (3.9) follows by putting the bounds on I1(ϕ) and I4(ϕ) together. □

We can convert (3.9) into an estimate on the spatial variation of the approximate solutions, following the
arguments of [18, Page 67]. For the sake of clarity, we set ρn,±j+1/2 := u∆(t

n, xj+1/2±).

Lemma 3.8. Let T > 0 and R > 0. Fix N,K ∈ N∗ such that T ∈ [tN , tN+1[ and R ∈ IK . Then, there
exists a constant c2 > 0 depending on T , R, uo and H such that

N∑
n=0

∑
|j|≤K

{
(ρn,−j+1/2 − ρn,+j+1/2)

2 + (unj − ρn,−j+1/2)
2 + (unj+1 − ρn,+j+1/2)

2
}
∆x ≤ c2. (3.10)

We are now in position to prove the H−1
loc compactness of the sequence of measures that defines the entropy

dissipation.
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Lemma 3.9. Let (Si, Qi)i∈{1,2} be the entropy/entropy flux pairs defined in Lemma 3.5. Then for any
i ∈ {1, 2}, the sequence of distributions µi defined by

µi(ϕ) :=

∫ +∞

0

∫
R
Si(u∆)∂tϕ+Qi(x, u∆)∂xϕ dx dt , ϕ ∈ C∞

c (R+ × R,R)

belongs to a compact subset of H−1
loc(]0,+∞[×R,R).

Proof. We follow the proofs of [24, Lemma 5.5] or [25, Lemma 4.5]. To start, let us fix (S,Q) a smooth
entropy/entropy flux pair.
Let us fix a bounded open subset Ω ⊂]0,+∞[×R, say Ω ⊂ [0, T ] × [−R,R] for some T > 0 and R > 0.
Call N,K ∈ N∗ such that T ∈ [tN , tN+1[ and R ∈ IK , and finally, let ϕ ∈ C∞

c (Ω,R). We split µ as

µ(ϕ) =

∫ +∞

0

∫
R
(Q(x, u∆)−Q∆(x, u∆))∂xϕ dx dt+ E∆(ϕ),

where E∆(ϕ) is given by (3.7).
The definition of w∆ and regularity of H ensures that for any q1 ∈ ]1, 2], the first term of the right-hand
side is strongly compact in W−1,q1(Ω). We now estimate E∆(ϕ).
First, observe that since (u∆)∆ is bounded in L∞(Ω), we have

|E∆(ϕ)| ≤
(

sup
u≤p≤u

|S(p)|+ sup
x∈R

u≤p≤u

|Q(x, p)|
)
· ∥ϕ∥W1,∞ ,

implying that (E∆(ϕ))∆ is bounded in W−1,r
loc (Ω) for any r ∈ ]2,+∞[.

Keeping the notations of (3.8), we bound I1(ϕ) and I3(ϕ) as

|I1(ϕ)| ≤ ∥S(uo)∥L1([−R,R]) ∥ϕ∥L∞(Ω), I3(ϕ) ≤ c1∥ϕ∥L∞(Ω),

where we used Lemma 3.7 for I3(ϕ). Consequently, I1(ϕ) and I3(ϕ) are bounded in the space M(Ω) of
bounded Radon measures, which is compactly embedded in W−1,q2(Ω) if q2 ∈ ]1, 2[. Therefore, I1(ϕ) and
I3(ϕ) belong to a compact subset of W−1,q2(Ω).
Now, to estimate I2(ϕ), split it as I2(ϕ) = I2,1(ϕ) + I2,2(ϕ) where

I2,1(ϕ) =

N∑
n=1

∑
|j|≤K

∫
Ij

(S(u∆(t
n−, x))− S(unj ))ϕ(t

n, xj) dx

I2,2(ϕ) =

N∑
n=1

∑
|j|≤K

∫
Ij

(S(u∆(t
n−, x))− S(unj ))(ϕ(t

n, x)− ϕ(tn, xj)) dx .

We handle I2,1(ϕ) by introducing an intermediary point ωn
j such that

S(u∆(t
n−, x))− S(unj ) = S′(unj )(u∆(t

n−, x)− unj ) +
S′′(ωn

j )

2
(u∆(t

n−, x)− unj )
2.

Taking into account the definition of unj and Lemma 3.8, we obtain

|I2,1(ϕ)| ≤
c1
2

sup
u≤p≤u

S′′(p) · ∥ϕ∥L∞(Ω),

ensuring that I2,1(ϕ) belong to a compact subset of W−1,q2(Ω).
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We continue by choosing α ∈ ]12 , 1[ and then writing:

|I2,2(ϕ)| ≤ ∥ϕ∥C0,α∆xα
N∑

n=1

∑
|j|≤K

∫
Ij

|S(u∆(tn−, x))− S(unj )|dx

≤ ∥ϕ∥C0,α∆xα−1


N∑

n=1

∑
|j|≤K

(∫
Ij

|S(u∆(tn−, x))− S(unj )| dx

)2


1/2
N∑

n=1

∑
|j|≤K

∆x2


1/2

≤
√

2TR

λ
∥ϕ∥C0,α∆xα−1/2


N∑

n=1

∑
|j|≤K

∫
Ij

|S(u∆(tn−, x))− S(unj )|2 dx


1/2

≤
√

2TRc1
λ

sup
u≤p≤u

|S′(p)| · ∥ϕ∥C0,α ∆xα−1/2 Lemma 3.8

We now take advantage of the compact embedding C0,α(Ω) ⊂ W1,p(Ω), p = 2/(1 − α) to be sure that
I2,2(ϕ) belongs to a compact subset of W−1,q3(Ω), q3 := 2/(1 + α) ∈ ]1, 43 [.
Finally, we estimate I4(ϕ). Let k ∈ [u, u] and consider (Si, Qi)i∈{1,2} the entropy/entropy flux pairs defined
in Lemma 3.5.
Because of the Rankine-Hugoniot condition,∣∣∣[[Q∆,1(x, u∆)]]

n
xj+1/2

∣∣∣ = |H(xj , k)−H(xj+1, k)|,

from which we deduce
|I4,1(ϕ)| ≤ 2TR sup

x∈R
|∂xH(x, k)| · ∥ϕ∥L∞(Ω),

ensuring that I4,1(ϕ) belongs to a compact subset of W−1,q2(Ω). On the other hand,

∣∣∣[[Q∆,2(x, u∆)]]
n
xj+1/2

∣∣∣ = ∫ ρn,−
j+1/2

ρn,+
j+1/2

∂uH(xj , ξ)
2 dξ +

∫ ρn,+
j+1/2

k
∂uH(xj , ξ)

2 − ∂uH(xj+1, ξ)
2 dξ

≤
∫ ρn,−

j+1/2

ρn,+
j+1/2

∂uH(xj , ξ)
2 dξ + 2L(u− u) sup

x∈R
u≤p≤u

|∂2
xuH(x, p)|∆x

≤ L

∫ ρ+

ρ−
|∂uH(xj , ξ)|dξ︸ ︷︷ ︸

Q2,1

+2L(u− u) sup
x∈R

u≤p≤u

|∂2
xuH(x, p)|∆x,

where ρ− := min{ρn,−j+1/2, ρ
n,+
j+1/2} and ρ+ := max{ρn,−j+1/2, ρ

n,+
j+1/2}. If u 7→ ∂uH(xj , u) does not change sign

in ]ρ−, ρ+[, then

|Q2,1| = |H(xj , ρ
n,−
j+1/2)−H(xj , ρ

n,+
j+1/2)|

≤ |H(xj , ρ
n,−
j+1/2)−H(xj+1, ρ

n,+
j+1/2)|︸ ︷︷ ︸

=0

+|H(xj+1, ρ
n,+
j+1/2)−H(xj , ρ

n,+
j+1/2)|

≤ sup
x∈R

u≤p≤u

|∂xH(x, p)| ∆x.
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Otherwise, assume to fix the ideas that ρ− ≤ αj ≤ ρ+. Then, setting LH := sup x∈R
u≤p≤u

|∂uuH(x, p)| we

write

Q2,1 =

∫ ρ+

ρ−
|∂uH(xj , ξ)− ∂uH(xj , αj)| dξ

≤ LH

∫ ρ+

ρ−
|ξ − αj |dξ

=
LH

2

(
(ρ+ − αj)

2 + (ρ− − αj)
2
)

≤ LH(ρ+ − ρ−)2 = LH (ρn,−j+1/2 − ρn,+j+1/2)
2.

Taking advantage of Lemma 3.8, we conclude that
N∑

n=0

∆t
∑
|j|≤J

∣∣∣[[Q∆,2(x, u∆)]]
n
xj+1/2

∣∣∣
≤ L

N∑
n=0

∆t
∑
|j|≤J

LH (ρn,−j+1/2 − ρn,+j+1/2)
2 + sup

x∈R
u≤p≤u

|∂xH(x, p)| ∆x+ 2(u− u) sup
x∈R

u≤p≤u

|∂2
xuH(x, p)|∆x


≤ L

LH + sup
x∈R

u≤p≤u

|∂xH(x, p)|+ 2(u− u) sup
x∈R

u≤p≤u

|∂2
xuH(x, p)|

 (λc2 + 2TR),

which ensures I4,2(ϕ) belongs to a compact subset of W−1,q2(Ω).
To summarize, for any i ∈ {1, 2}, (µi)∆ belongs to a compact subset of W−1,q

loc (]0,+∞[×R,R), q =

min{q1, q2, q3} < 2. Additionally, (µi)∆ is bounded in W−1,r
loc (]0,+∞[×R,R) for any r ∈ ]2,+∞[. Lemma

3.6 applies to ensure that any i ∈ {1, 2}, (µi)∆ belongs to a compact subset of H−1
loc(]0,+∞[×R,R). □

Corollary 3.10. Assume that H satisfies (CH)–(CVX). Fix uo ∈ L∞(R,R) and let (u∆)∆ be the
sequence generated by the scheme described in Section 3.1.
Then, there exists a limit function u ∈ L∞(]0,+∞[×R,R) such that along a subsequence as ∆→ 0, (u∆)∆
converges in Lp

loc(]0,+∞[×R,R) for all p ∈ [1,+∞[ and a.e. on ]0,+∞[×R to u.

Proof. Follows from a combination of Lemma 3.7 and Lemma 3.9. □

3.4 Convergence

To prove that the limit function u of Corollary 3.10 is the entropy solution, we will need the following
technical result.

Lemma 3.11. [25, Lemma 4.8] Let Ω ⊂ ]0,+∞[×R be a bounded open set, g ∈ L1(Ω,R) and suppose that
(gε)ε converges a.e. on Ω to g. Then, there exists a set L, at most countable, such that for any k ∈ R\L

sgn(gε − k) −→
ε→0

sgn(g − k) a.e. in Ω.

We can now state the convergence result.

Theorem 3.12. Assume that H satisfies (CH)–(CVX). Fix uo ∈ L∞(R,R), let (u∆)∆ be the sequence
generated by the scheme described in Section 3.1 and let u be the limit function from Corollary 3.10.
Then u is the entropy solution to (CL) with initial datum uo.

Proof. We prove that (1.2) holds.
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Step 1. Let us introduce the piecewise constant function: ρ∆ =

+∞∑
n=0

∑
j∈Z

unj 1tn,tn+1[1Ij .

We claim that ∥u∆ − ρ∆∥L2
loc
−→
∆→0

0. Indeed, for all (t, x) ∈ [tn, tn+1[×]xj+1/2, xj+1[,

|u∆(t, x)− ρ∆(t, x)| = |Un(t, x)− unj+1| ≤ |ρ
n,+
j+1/2 − unj+1|,

since Un is the solution of a Riemann problem with left state unj and right state unj+1 at x = xj+1/2.
Likewise, for all (t, x) ∈ [tn, tn+1[×]xj , xj+1/2[,

|u∆(t, x)− ρ∆(t, x)| = |Un(t, x)− unj | ≤ |ρ
n,−
j+1/2 − unj |.

Therefore, by Lemma 3.8, for all N,K ∈ N∗,

N∑
n=0

∑
|j|≤K

∫ tn+1

tn

∫ xj+1

xj

|u∆(t, x)− ρ∆(t, x)|2 dx dt

≤ 1

2

N∑
n=0

∑
|j|≤K

{
|ρn,+j+1/2 − unj+1|2 + |ρ

n,−
j+1/2 − unj |2

}
∆x∆t ≤ c1

2
∆t,

proving the claim. The claim ensures that (ρ∆)∆ converges a.e. on ]0,+∞[×R to u.

Step 2: Discrete entropy inequalities. Let k ∈ [u, u]. Under the CFL condition (3.3), we derive the
following discrete entropy inequalities, consequence of the monotonicity of the scheme:(

|un+1
j − k| − |unj − k|

)
∆x+ (Φn

j+1/2 − Φn
j−1/2)∆t

≤ − sgn(un+1
j − k)(F

j+1/2
int (k, k)− F

j−1/2
int (k, k))∆t,

(3.11)

where
Φn
j+1/2 := F

j+1/2
int (unj ∨ k, unj+1 ∨ k)− F

j+1/2
int (unj ∧ k, unj+1 ∧ k).

Indeed, on the one hand, by convexity,

|un+1
j −Hj(k, k, k)| ≥ |un+1

j − k + λ(F
j+1/2
int (k, k)− F

j+1/2
int (k, k))|

= |un+1
j − k|+ λ sgn(un+1

j − k)(F
j+1/2
int (k, k)− F

j−1/2
int (k, k)).

On the other hand, by monotonicity of the scheme,

|un+1
j −Hj(k, k, k)| ≤ Hj(u

n
j−1 ∨ k, unj ∨ k, unj+1 ∨ k)−Hj(u

n
j−1 ∧ k, unj ∧ k, unj+1 ∧ k)

= |unj − k| − λ(Φn
j+1/2 − Φn

j−1/2).

Inequality (3.11) follows by combining these two estimates.

Step 3: Convergence. Now let φ ∈ C∞
c (R+ × R,R+) and fix T > 0, R such that the support of φ is

included in [0, T ]× [−R,R]. Define

∀n ∈ N, ∀j ∈ Z, φn
j :=

1

∆x

∫
Ij

φ(tn, x) dx .
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Multiply (3.11) by φn
j and take the double sum. A summation by parts provides A+B + C ≥ 0 with

A =
+∞∑
n=1

∑
j∈Z
|unj − k|(φn

j − φn−1
j )∆x+

∑
j∈Z
|uoj − k|φo

j∆x

B =
+∞∑
n=0

∑
j∈Z

Φn
j+1/2(φ

n
j+1 − φn

j )∆t

C = −
+∞∑
n=0

∑
j∈Z

sgn(un+1
j − k)(F

j+1/2
int (k, k)− F

j−1/2
int (k, k))φn

j∆t.

Clearly,

A −→
∆→0

∫ +∞

0

∫
R
|u− k|∂tφ dx dt+

∫
R
uo(x)φ(0, x) dx dt .

Regarding C, we write:

C = −
+∞∑
n=1

∑
j∈Z

sgn(unj − k)(H(xj , k)−H(xj−1, k))φ
n−1
j ∆t

= −
+∞∑
n=1

∑
j∈Z

sgn(unj − k)(H(xj , k)−H(xj−1, k))(φ
n−1
j − φn

j )∆t

+
+∞∑
n=1

∑
j∈Z

sgn(unj − k)(H(xj−1, k)− 2H(xj , k) +H(xj+1, k))φ
n
j∆t

−
+∞∑
n=1

∑
j∈Z

sgn(unj − k)

{
(H(xj+1, k)−H(xj , k))φ

n
j∆t−

∫ tn+1

tn

∫
Ij

∂xH(x, k)φ(t, x) dx dt

}

−
∫ +∞

∆t

∫
R
sgn(u∆ − k)∂xH(x, k)φ(t, x) dx dt

≤ sup
x∈R
|∂xH(x, k)|

(
∥∂xφ∥L1∆x+ 2TR∥∂tφ∥L∞∆t

)
+ T sup

x∈R
|∂2

xxH(x, k)| · ∥φ∥L∞(R+;L1)∆x

+ 4TR sup
x∈R
|∂2

xxH(x, k)| · ∥φ∥L∞∆x−
∫ +∞

0

∫
R
sgn(ρ∆ − k)∂xH(x, k)φ(t, x) dx dt .

Hence, using Lemma 3.11,

lim
∆→0

C = −
∫ +∞

0

∫
R
sgn(u− k) ∂xH(x, k)φ(t, x) dx dt ,

for any k ∈ [u, u]\L. Then, repeat the argument from [27] to extend it for all k ∈ [u, u].
We finally estimate B. Write:

Φn
j+1/2 = F

j+1/2
int (unj ∨ k, unj+1 ∨ k)− F

j+1/2
int (unj ∨ k, unj ∨ k)︸ ︷︷ ︸

B1

+ F
j+1/2
int (unj ∨ k, unj ∨ k)−H(xj , u

n
j ∨ k)︸ ︷︷ ︸

B2

+Φ(xj , u
n
j , k)︸ ︷︷ ︸

B3

+H(xj , u
n
j ∧ k)− F

j+1/2
int (unj ∧ k, unj ∧ k)︸ ︷︷ ︸
B4

+F
j+1/2
int (unj ∧ k, unj ∧ k)− F

j+1/2
int (unj ∧ k, unj+1 ∧ k)︸ ︷︷ ︸

B5

.

25



We see that∣∣∣∣∣∣
+∞∑
n=0

∑
j∈Z

(B1 +B5)(φ
n
j+1 − φn

j )∆t

∣∣∣∣∣∣ ≤ 2L

(
T∥∂2

xxφ∥L∞(R+,L1) + ∥∂2
txφ∥L1

)
(∆x+∆t)

+ 2L

∫ +∞

0

∫
R
|ρ∆(t, x+∆x)− ρ∆(t, x)| · |∂xφ(t, x)|dx dt .

Since (ρ∆)∆ converges a.e. on ]0,+∞[×R, (ρ∆∂xφ)∆ is strongly compact in L1(]0,+∞[×R,R). As a
consequence of the Riesz-Fréchet-Kolmogorov compactness characterization,∫ +∞

0

∫
R
|ρ∆(t, x+∆x)− ρ∆(t, x)| · |∂xφ(t, x)|dx dt −→

∆→0
0.

We now handle B3. We have
+∞∑
n=0

∑
j∈Z

B3(φ
n
j+1 − φn

j )∆t

= ∆t

+∞∑
n=0

∑
j∈Z

∫
Ij

Φ(xj , u
n
j , k)

(
φ(tn, x+∆x)− φ(tn, x)

∆x
− ∂xφ(t

n, x)

)
dx

+
+∞∑
n=0

∑
j∈Z

∫ tn+1

tn

∫
Ij

Φ(xj , u
n
j , k)(∂xφ(t

n, x)− ∂xφ(t, x)) dx dt

+
+∞∑
n=0

∑
j∈Z

∫ tn+1

tn

∫
Ij

(Φ(xju
n
j , k)− Φ(x, unj , k)) ∂xφ(t, x) dx dt+

∫ +∞

0

∫
R
Φ(x, ρ∆, k)∂xφ(t, x) dx dt

≤ T sup
x∈R

u≤p≤u

|Φ(x, p, k)| · ∥∂2
txφ∥L∞(R+;L1)∆x+ sup

x∈R
u≤p≤u

|Φ(x, p, k)| · ∥∂2
txφ∥L1∆t

+ sup
x∈R

u≤p≤u

|∂xΦ(x, p, k)| · ∥∂xφ∥L1∆x+

∫ +∞

0

∫
R
Φ(x, ρ∆, k)∂xφ(t, x) dx dt ,

ensuring that
+∞∑
n=0

∑
j∈Z

B3(φ
n
j+1 − φn

j )∆t −→
∆→0

∫ +∞

0

∫
R
Φ(x, u(t, x), k)∂xφ(t, x) dx dt .

Now, going back to the definition of the interface flux, see Proposition 2.3, we can estimate B2 and B4 as∣∣∣∣∣∣
+∞∑
n=0

∑
j∈Z

(B2 +B4)(φ
n
j+1 − φn

j )∆t

∣∣∣∣∣∣ ≤ 2( sup
x∈R

u≤p≤u

|∂xH(x, p)|+ L∥α′∥L∞)

+∞∑
n=0

∑
j∈Z
|φn

j+1 − φn
j |∆x∆t

≤ 2T ( sup
x∈R

u≤p≤u

|∂xH(x, p)|+ L∥α′∥L∞) · ∥∂xφ∥L∞(R+,L1)∆x.

By passing to the limit ∆→ 0 in A+B +C ≥ 0, we proved that (1.2) holds, concluding the proof that u
is the entropy solution to (CL). □
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