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1 Introduction

There are two approaches to the estimation of risk premia and testing of market effi-

ciency, often referred as the beta and the SDF (stochastic discount factor) methods, see

Jagannathan and Wang (2002). This paper adopts the beta method, and following the

literature uses a linear factor pricing model (LFPM) to explain the time series of excess

returns on individual securities, rit = Rit− rft , where Rit is the return and rft the risk free

rate for i = 1, 2, ..., n; t = 1, 2, ...., T, by a set of observed tradable risk factors. We use

individual securities rather than portfolios since, as we will show, if risk factors are not

strong, large n is required for accurate estimation. Ang, Liu, and Schwarz (2020) discuss

the general issues in the choice between portfolios and individual stocks. Pesaran and

Smith (2023) discuss both the use of portfolios and the relationship between the SDF and

LFPM approaches.

The LFPM explains the excess return on each security, rit, by an intercept, ai, labelled

alpha, and a K × 1 vector of traded risk factors, ft = (f1t, f2t, ..., fKt)
′ with loadings, βi:

rit = ai + β′
ift + uit. (1)

Under the Arbitrage Pricing Theory, APT, due to Ross (1976) we have

E (rit) = c+ β′
iλ+ ηi, (2)

Taking unconditional expectations of (1) and using (2) we have

E(rit) = ai + β′
iµ = c+ β′

iλ+ ηi.

where E(ft) = µ which in turn yields

ai = c+ β′
iϕ+ ηi, (3)

where ϕ = λ − µ. To identify the risk premia λ, most of the literature assumes ηi = 0

for all i, but to allow for non-zero ηi strong restrictions must be imposed on the degree

to which such errors are pervasive. Ross (1976) requires that ηi to be square-summable.

In this paper we relax this condition and impose restrictions on the degree to which

idiosyncratic pricing errors can be pervasive.

If ϕ ̸= 0 one can construct what we call ”phi-portfolios” that exploit the systematic

components of ai, as captured by the non-zero elements of ϕ.1 The idiosyncratic pricing

errors, ηi, cannot be exploited, and our proposed phi-portfolios exist only if ϕ ̸= 0. The

focus of much of the literature has been on testing ai = 0, or on estimating the risk

premium λ and mean-variance (MV) portfolios. But given that estimating a non-zero ϕ

provides a way to identify and exploit the alpha in a linear factor pricing model for large

n, ϕ is an interesting object in itself, which will be the focus of this paper.

First, we introduce our proposed phi-portfolio in terms of the factor loadings Bn =

(β1,β2, ...,βn)
′ and ϕ, and compare its limiting properties (as n → ∞) with the standard

MV portfolio. We show that for known factor loadings and non-zero ϕ there exist phi-

portfolios with strictly positive returns, given by ϕ′ϕ > 0, that are fully diversified (their

1We are grateful to one of the anonymous reviewers for suggesting the idea of phi-portfolios, as a way
of motivating and interpreting the role of ϕ in asset pricing models.
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variance tends to zero with n). The rate at which the variance of phi-portfolio returns

tends to zero will depend on the strength of the traded risk factors compared to the

strength of the missing (latent) factors, highlighting the importance of factor strengths in

portfolio analysis. Since the phi-portfolios have Sharpe ratios that tend to infinity with

n, they dominate MV portfolios whose Sharpe ratio is bounded in n. Note that unlike

MV portfolios, the phi-portfolios do not require knowledge of the inverse of the covariance

matrix of returns, which is particularly difficult to estimate accurately when n is large.

Next we consider estimation of and inference about ϕ using a large number of indi-

vidual securities, taking account of firm-specific pricing errors, traded factors that are not

strong, missing latent factors, and panel data sets where the time dimension, T , is small

relative to n. Factor strength plays a central role in our analysis of ϕ. We use a measure

of factor strength, αk, developed in Bailey, Kapetanios, and Pesaran (2016, 2021), which

is defined in terms of the proportion of non-zero factor loadings, βik.
2 A factor is strong

if this proportion is very close to unity, it is semi-strong if 1 > αk > 1/2, and it is weak if

αk < 1/2. Use of this measure allows us to be precise about the degree of pervasiveness

and show how the strengths of the observed factors, the missing factors and the pricing

errors, each influence estimation and inference about ϕ.

In practice, exploitation of a non-zero ϕ requires n to be large and rebalancing such

long-short portfolios for so many securities may incur high transactions costs or not be

feasible. In addition, model uncertainty, estimation uncertainty, time variation in both

βi and in conditional volatility pose additional difficulties in implementing a strategy to

exploit the potential returns revealed by ϕ. In developing the theory we will abstract from

such practical difficulties, but in the empirical section we illustrate some of these issues

with a comparison of the performance of ϕ based portfolios relative to MV portfolios

which would face similar difficulties.

We estimate ϕ = (ϕ1, ϕ2, ..., ϕK)
′, using a two-step estimator. In the first step we

estimate the intercepts, α̂i, and the factor loadings, β̂i, from least squares regressions of

excess returns on an intercept and risk factors. In the second step, ϕ is estimated from

the cross section regression of α̂i on β̂i. As with the two-step estimator of λ, such a two-

step estimator of ϕk will also be biased, and requires bias-correction. Following Shanken

(1992), we consider a bias-corrected version of the two-step estimator of ϕ, which we

denote by ϕ̃nT . We develop the asymptotic distribution of ϕ̃nT under quite general set of

assumptions regarding the idiosyncratic pricing errors, error cross-sectional dependence,

and the presence of missing (latent) factors. The paper also investigates the implications

of factor strengths for the precision with which ϕ can be estimated. The LFPM, following

Chamberlain and Rothschild (1983), assumes that all the observed factors are strong and

the eigenvalues of the covariance matrix of the errors are bounded.

2Alpha is used both for the LFPM intercepts and the measure of factor strength, because these are
established usages, but it will be clear from context and subscripts which is being referred to.
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In developing the arbitrage pricing theory, APT, Ross (1976), whose concerns were

primarily theoretical, assumed the factors had mean zero: µ = 0, so ϕ = λ, is the risk

premium. For traded factors under market efficiency, where ϕ = 0, the risk premium is

the factor mean µ = λ. Were one interested in estimating λ there may be statistical

reasons to estimate ϕk and µk separately, then summing them to obtain an estimate of

λk. The factor mean, µk = E(fkt), can be estimated consistently at the regular
√
T rate

directly using time series data on the risk factors, fkt, for t = 1, 2, ..., T, and does not

require knowledge of the factor loadings or n. In contrast, estimation of ϕk requires panel

data to estimate the factor loadings and hence both n and T dimensions are important.

In some cases it may be beneficial to use different time series dimensions, Tµ and Tϕ, to

estimate µk and ϕk, respectively. For example, when factor loadings are subject to breaks

it is advisable to use a relatively short sample, and when some factors are not sufficiently

strong a large n is required. Thus one could use large T to estimate µk and small T to

estimate ϕk and λk can be simply estimated by adding the estimates of µk and ϕk. We

do not pursue the use of different T , but if the same T is used to estimate the mean of

factor k, say µ̂k,T , and the bias-corrected ϕ̃k,nT then their sum is the same as the Shanken

(1992) bias-corrected risk premium for factor k, λ̃k,nT . This decomposition can be used to

obtain the rate at which λ̃k,nT converges to its true value, λ0,k = ϕ0,k + µ0,k.

The main theoretical results of the paper are set out around five theorems under a

number of key assumptions, with proofs provided in the mathematical appendix. The

small sample properties of ϕ̃nT are investigated using extensive Monte Carlo experiments,

allowing for a mixture of strong and semi-strong observed factors, latent factors, pricing

errors, GARCH effects and non-Gaussian errors. Small sample results are in line with our

theoretical findings, and confirm that the bias-corrected estimator, ϕ̃nT , has the correct

size and good power properties for samples with time series dimensions of T = 120 and

T = 240. They also show, in accord with the theory, that the precision with which ϕk is

estimated falls with αk, the strength of the kth factor.

Our theoretical derivations and Monte Carlo simulations assume that the list of rel-

evant observed factors is known. But in practice the relevant factors must be selected.

Extending the theory to the high dimensional case where factors are selected, rather than

given, is beyond the scope of the present paper. Since the rate of convergence of ϕ̃nT to

its true value is given by
√
Tn(αk+αmin−1)/2, where αmin is the strength of the least strong

factor included, it seems sensible to select factors on the basis of their factor strength.

Weak factors whose strength is around 1/2 can be ignored and absorbed into the error

term.

The above selection procedure is applied in a high dimensional setting with both a

large number of securities (n from 1, 090 to 1, 175) and a large number of potential risk

factors (m from 177 to 189), taken from the Chen and Zimmermann (2022), which can

all be traded. We used monthly data over the period 1996m1− 2022m12 and considered
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balanced panels obtained by including all existing stocks in a given month for which

there are T observations. We considered T = 120 and 240 months, and focus on the

latter which we found to be more reliable, given the large number of securities being

considered. Various procedures could be used to select risk factors for a given security,

i. We used Lasso for this purpose and then selected a subset of these factors that were

chosen by a sufficiently large number of securities in the sample, and whose estimated

strength were above the given threshold value of αk > 0.75. We refer to this selection

procedure as pooled Lasso. Using this procedure with T = 240 we ended up with 7 risk

factors for the sample ending in 2015, declining to 4 in 2021. Interestingly, the three

Fama-French factors were always included in the set of factors selected by pooled Lasso.

Accordingly, we considered three linear asset pricing models for our portfolio analysis:

the pooled Lasso selected at the start of our evaluation sample, denoted by PL7, the

Fama-French three factors model, FF3, and the Fama-French five factors model, FF5,

which includes two factors not in PL7. The three models are estimated using rolling

samples of size T = 240, starting with a sample ending in 2015m12 and finishing with

a sample ending in 2022m11. The hypothesis that ϕ = 0 was rejected for all 84 rolling

samples and all three models, albeit less strongly over the post Covid-19 period. The

test results suggested possible unexploited return opportunities, and to investigate this

possibility further, we constructed phi-portfolios and compared their Sharpe ratios (SR)

with the ones based on standard MV portfolios over the full sample evaluation sample,

2016m1− 2022m12, and sample ending 2019m12, that excludes the Covid-19 period. We

find that in five out of the six cases (3 models 2 samples) the phi-portfolio has a higher

SR than the corresponding MV portfolio. The exception is the FF5 pre Covid-19. This

illustrates that if ϕ ̸= 0, it is possible to construct a portfolio that outperforms the mean

variance portfolio. In both the pre Covid-19 sample and the full sample the highest SR

was obtained by the PL7 phi-portfolios, which also outperformed the S&P500. The SRs

for the sample ending in 2022 were substantially lower than the sample ending in 2019,

consistent with a falling value of the probability that ϕ was non-zero.

Related literature: On estimation of risk premia, following Fama and MacBeth

and Shanken (1992), estimation of risk premia is further examined by Shanken and Zhou

(2007), Kan, Robotti, and Shanken (2013), and Bai and Zhou (2015). The survey paper

by Jagannathan, Skoulakis, and Wang (2010) provide further references.

Testing for market efficiency dates back to Jensen (1968) who proposes testing ai = 0

for each i separately. Gibbons, Ross, and Shanken (1989) provide a joint test for the case

where the errors are Gaussian and n < T . Gagliardini, Ossola, and Scaillet (2016) develop

two-pass regressions of individual stock returns, allowing time-varying risk premia, and

propose a standardised Wald test. Raponi, Robotti, and Zaffaroni (2019) propose a test

of pricing error in cross section regression for fixed number of time series observations.

They use a bias-corrected estimator of Shanken (1992) to standardise their test statistic.
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Ma, Lan, Su, and Tsai (2020) employ polynomial spline techniques to allow for time

variations in factor loadings when testing for alphas. Feng, Lan, Liu, and Ma (2022)

propose a max-of-square type test of the intercepts instead of the average used in the

literature, and recommend using a combination of the two testing procedures. He, He,

Huang, and Zhou (2022) propose two statistics, a Wald type statistic which require n and

T to be of the same order of magnitude and a standardised t-ratio. Kleibergen (2009)

considers testing in the case where the loadings are small. Pesaran and Yamagata (2012,

2024) consider testing that the intercepts in the LFPM are zero when n is large relative

to T and there may be non Gaussian errors and weakly cross-correlated errors.

A large number of risk factors have been considered in the empirical literature. We

use the Fama and French (1993) three factors in our Monte Carlo design. In our empirical

application we use the five factors proposed by Fama and French (2015) and the large set

of factors provided by Chen and Zimmermann (2022). Harvey and Liu (2019) document

over 400 factors published in top finance journals. Dello Preite, Uppal, Zaffaroni, and

Zviadadze (2022) argue that despite the hundreds of systematic risk factors considered

in the literature, there is still a sizable pricing error and that this can be explained by

asset specific risk that reflects market frictions and behavioral biases. There is a large

Bayesian literature, including Chib, Zeng, and Zhao (2020), and Hwang and Rubesam

(2022) on selecting factor models. The issue of factor selection is also addressed by Fama

and French (2018).

Strong and weak factors in asset returns are considered by Anatolyev and Mikusheva

(2022), Connor and Korajczyk (2022), and Giglio, Xiu, and Zhang (2023). Beaulieu,

Dufour, and Khalaf (2020) discuss the lack of identification of risk premia when many of

the loadings are zero. There has also been concern about the consequences of omitted

factors. Giglio and Xiu (2021) discuss the problem and try to deal with it using a three-

pass method which is valid even when not all factors in the model are specified or observed

using principal components of the test assets. Onatski (2012) and Lettau and Pelger

(2020a,b) provide extensive discussions of weak factor and latent factors, respectively.

More recent contributions include Bai and Ng (2023) and Uematsu and Yamagata (2023).

There is also a large literature on portfolio construction. Herskovic, Moreira, and Muir

(2019) discuss low cost methods of hedging risk factors. Dello Preite, Uppal, Zaffaroni,

and Zviadadze (2024) derive an SDF in which there is compensation for unsystematic

risk within the framework of the APT. Korsaye, Quaini, and Trojani (2021) introduce

model-free smart SDFs which give rise to non-parametric SDF bounds for testing asset

pricing models. Daniel, Mota, Rottke, and Santos (2020) discuss the common practice

of creating characteristic portfolios by sorting on characteristics associated with average

returns and show that these portfolios capture not only the priced risk associated with

the characteristic but also unpriced risk. Quaini, Trojani, and Yuan (2023) propose an

estimator of tradable factor risk premia.
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Paper’s outline: The rest of the paper is organized as follows: Section 2 provides

the framework for estimation of ϕ. Section 3 sets out the assumptions and states the

main theorems. Theorem 1 shows that the standard Fama-MacBeth estimator is valid

only when there are no pricing errors and n/T → 0. Theorem 2 shows that the Shanken

bias-corrected estimator of λk continues to be consistent for a fixed T as n → ∞, even in

presence of weak pricing errors and weak missing common factors. Theorem 3 provides

conditions under which the bias-corrected estimator, ϕ̃nT , is consistent for ϕ0, and derives

the asymptotic distribution of ϕ̃nT , assuming the observed factors are strong (αk = 1 for

all k). Theorem 4 extends the results to cases where one or more risk factors are semi-

strong, and establishes the rate at which ϕ̃nT converges to its true value, assuming the

idiosyncratic pricing errors are sufficiently weak, as discussed after the theorem. For ex-

ample, for a factor with strength αk we show that ϕ̃k,nT−ϕ0,k = Op

(
T−1/2n−(αk+αmin−1)/2

)
,

and as a consequence

λ̃k,nT − λ0,k = Op

(
T−1/2n−(αk+αmin−1)/2

)
+Op

(
T−1/2

)
,

where λ0,k is the true value of the risk premia associated to factor fkt, and αmin is the

strength of the least strong factor included. This consistency condition is weaker than the

one derived by Giglio, Xiu, and Zhang (2023) who also assume ηi = 0, for all i. Finally,

Theorem 5 gives conditions for consistent estimation of the asymptotic variance of ϕ̃nT ,

using a suitable threshold estimator of the covariance matrix. Section 4 presents the

Monte Carlo (MC) design, its calibration and a summary of the main findings. Section 5

discusses the problem of factor selection from a large number of potential factors. Section

6 gives the empirical application using monthly data on a large number of individual US

stocks and risk factors over the period 1996-2021. It selects factors, estimates ϕ, and

compares the performance of MV and phi-portfolios. Section 7 provides some concluding

remarks.

Detailed mathematical proofs are provided in a mathematical appendix. Further in-

formation on data sources, MC calibration plus some supplementary material for the

empirical application are provided in the online supplement A. To save space all MC

results are given in the online supplement B.

2 Identification and estimation of ϕ

Let Rit denote the holding period return on traded security i, which can be bought long

or short without transaction costs, rft is the risk free rate, and rit = Rit− rft is the excess

return. We start with the linear factor pricing model (LFPM)

rit = ai + β′
ift + uit, (4)

for i = 1, 2, ..., n and t = 1, 2, ..., T , where rit is explained in terms of the K × 1 vector of

factors ft = (f1t, f2t, ..., fKt)
′. The intercept ai and the K × 1 vector of factor loadings,

βi = (βi1, βi2, ..., βiK)
′, are unknown. The idiosyncratic errors, uit have zero means and

6



are assumed to be serially uncorrelated. The factors, ft, are assumed to be covariance

stationary with the constant mean µ = E (ft), and Σf = E
[
(ft − µ) (ft − µ)′

]
.

Under the Arbitrage Pricing Theory (APT) due to Ross (1976) the pricing errors, ηi

for i = 1, 2, ..., n defined by

ηi = E (rit)− c− β′
iλ, (5)

are bounded such that
n∑

i=1

η2i < C < ∞, (6)

where c is zero-beta expected excess return, λ is the K × 1 vector of risk premia. Under

APT, we have

E (rit) = c+ β′
iλ+ ηi, (7)

and reduces to the standard beta representation of an unconditional asset pricing model,

if c+ηi = 0. In this case, βi = −Cov(rit,mt)/var(mt), where mt is the stochastic discount

factor (SDF), which satisfies the moment condition Et(ri,t+1mt+1) = 0. See Pesaran and

Smith (2023) for a discussion of the link. For empirical assessment, we consider the more

general unconditional pricing model (7), and relate to the linear factor pricing model. To

this end, taking unconditional expectations of (4) and using the APT condition we have

E(rit) = ai + β′
iµ = β′

iλ+ c+ ηi. (8)

which in turn yields

ai = c+ β′
iϕ+ ηi, for i = 1, 2, ..., n. (9)

where

ϕ = λ− µ, (10)

Under the APT condition, (6), ϕ can be identified from the cross section regression of

ai on βi. We relax the APT condition and derive restrictions on the degree to which

idiosyncratic pricing errors, ηi, can be pervasive to achieve identification.

The focus of the literature has been on testing for alpha, ai = 0, and the estimation of

the risk premia, λ, using panel data on excess returns, {rit, 1, 2, ..., n; t = 1, 2, ..., T} , and
F, the T ×K matrix of observations on the factors. It is clear that ϕ plays an important

role in tests for alpha in LFPM, and a non-zero ϕ implies non-zero alphas, which in turn

implies exploitable excess profitable opportunities. More specifically, we show that for

known values of βi, i = 1, 2, ..., n and when ϕ is non-zero there exist phi-based portfolios

with non-zero means that are fully diversified (their variance tends to zero with n), namely

have Sharpe ratios that tend to infinity with n, and hence dominate mean-variance (MV)

portfolios. For the MV portfolios to be efficient it is necessary that ϕ = 0.

2.1 Why ϕ matters: introduction of the phi-portfolios

Substitute the expression for ai given by (9) in (4) to obtain

rit = c+ β′
iϕ+ ηi + β′

ift + uit, for i = 1, 2, ..., n, (11)

7



and write the n return equations more compactly as

r◦t = cτ n +Bnϕ+Bnft + ηn + u◦t, (12)

where r◦t = (r1t, r2t, ...., rnt)
′, τ n is an n-dimensional vector of ones,Bn = (β◦1,β◦2, ...,β◦K),

β◦k = (β1k, β2k, ..., βnk)
′, u◦t = (u1t, u2t, ...., unt)

′, ηn = (η1, η2, ..., ηn)
′, andVu = E (u◦tu

′
◦t).

Suppose that the factors, ft, are traded, and ϕ′ϕ > 0. Consider the n × 1 vector of phi-

portfolio weights,wϕ, given by

wϕ = MnBn (B
′
nMnBn)

−1
ϕ, (13)

where Mn = In − n−1τ nτ
′
n. Finally, consider the long-short hedged portfolio return

ρt,ϕ = w′
ϕr◦t − ϕ′ft = ϕ′

[
(B′

nMnBn)
−1

BnMnr◦t − ft

]
, (14)

and using (12) note that

ρt,ϕ = ϕ′ϕ+w′
ϕηn +w′

ϕu◦t. (15)

For a given vector of pricing errors, ηn, E (ρt,ϕ) = ϕ′ϕ+w′
ϕηn, and V ar (ρt,ϕ) = w′

ϕVuwϕ,

where Vu = E(u◦tu
′
◦t). Using (13) it follows that∥∥w′

ϕηn

∥∥ ≤ ∥ηn∥ ∥wϕ∥ ≤ ∥ηn∥ ∥ϕ∥λ1/2
max

[
(B′

nMnBn)
−1
]
=

∥ηn∥ ∥ϕ∥
λ
1/2
min (B

′
nMnBn)

. (16)

Similarly,

V ar (ρt,ϕ) ≤ ∥wϕ∥2 λmax (Vu) =
λmax (Vu) ∥ϕ∥2

λmin (B′
nMnBn)

. (17)

Hence, E (ρt,ϕ) → ϕ′ϕ, and V ar (ρt,ϕ) → 0, as n → ∞, if
∥ηn∥

λ
1/2
min (B

′
nMnBn)

→ 0, and
λmax (Vu)

λmin (B′
nMnBn)

→ 0. (18)

The conditions are met if λmin (B
′
nMnBn) → ∞, λmax (Vu) < C, and the APT condition

(6) are met. The first two conditions follow if the LPFM given by (4) is an approximate

factor model as assumed by Chamberlain and Rothschild (1983), namely when the factors

are strong and the errors, uit, are weakly cross correlated.3 Therefore, knowledge of ϕ′ϕ

and its statistical significance can play an important role in portfolio analysis.

In the case where c = 0, ϕ = 0, and ηn = 0, there are no exploitable excess profit

opportunities, and portfolios formed using factor loadings reduce to the standard mean-

variance (MV) portfolio, given by ρMV,t = µ′
RV

−1
R r◦t, where µR = Bnµ and VR =

BnΣfB
′
n + Vu. As shown in Lemma A.1, the squared Sharpe ratio of MV portfolio,

SR2
MV = µ′

RV
−1
R µR, is bounded by µ′Σ−1

f µ, and this upper bound is achieved only if

λmin (B
′
nV

−1
u Bn) → ∞, as n → ∞. Specifically

SR2
MV = µ′

RV
−1
R µR = µ′Σ−1

f µ − µ′B′
n (BnΣfB

′
n +Vu)

−1
Bnµ (19)

≤ µ′Σ−1
f µ

In contrast, if it is similarly assumed that c = 0 and ηn = 0, but ϕ′ϕ > 0, then the

3The diversification conditions in (18) are met more generally, and accommodate the presence of semi-
strong traded factors in ft, and less restrictive conditions on Vu and the pricing errors ηi. See Remark
1.
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following hedged portfolio can be formed4

ρt,ϕ = ϕ′
[(
B′

nV
−1
u Bn

)−1
BnV

−1
u r◦t − ft

]
= ϕ′

[(
B′

nV
−1
u Bn

)−1
B′

nV
−1
u (Bnϕ0 +Bnft + u◦t)− ft

]
= ϕ′ϕ+ ϕ′ (B′

nV
−1
u Bn

)−1
B′

nV
−1
u u◦t,

and its squared Sharpe ratio is given by

SR2
ϕ =

(ϕ′ϕ)
2

ϕ′ (B′
nV

−1
u Bn)

−1ϕ
. (20)

Since,

ϕ′ (B′
nV

−1
u Bn

)−1
ϕ ≤ (ϕ′ϕ)λmax

[(
B′

nV
−1
u Bn

)−1
]
=

ϕ′ϕ

λmin (B′
nV

−1
u Bn)

,

then

SR2
ϕ ≥ (ϕ′ϕ) λmin

(
B′

nV
−1
u Bn

)
. (21)

As a result, if λmin (B
′
nV

−1
u Bn) → ∞ as n → ∞, SR2

ϕ increases in n without bounds if

ϕ′ϕ > 0, and SR2
ϕ will eventually dominate SR2

MV , since the latter is bounded in n.

It is also worth noting that the Sharpe ratio of the MV portfolio continues to be

bounded in n even if ϕ ̸= 0. In this case we have

SR2
MV = λ′Σ−1

f λ − λ′B′
n (BnΣfB

′
n +Vu)

−1
Bnλ,

and SR2
MV ≤ (µ + ϕ)′ Σ−1

f (µ + ϕ) < C. Whether ϕ = 0 or not affects the magnitude

of SR2
MV but does not alter the fact that SR2

MV will be bounded if λmin (B
′
nV

−1
u Bn) → ∞

as n → ∞.

To make sure that the mean-variance portfolio is efficient we must have ϕ′ϕ = 0,

and it is of special interest to estimate ϕ and develop reliable procedures for testing its

statistical significance, using a large number of securities. In practice, the number of

tradeable securities, n, might not be sufficiently large, there are important specification

and estimation uncertainties, and the Sharpe ratio of the phi-based portfolio, ρt,ϕ, is

likely to be bounded even if ϕ′ϕ > 0. We turn to these issues in the empirical application

provided in Section 6.

2.2 Fama-MacBeth and Shanken estimators of risk premia

It will prove convenient to write (4) in matrix notation by stacking the excess returns by

t = 1, 2, ..., T , for each security i

ri◦ = aiτ T + Fβi + ui◦, for i = 1, 2, ..., n, (22)

where ri◦ = (ri1, ri2, ..., riT )
′, F = (f1, f2, ..., fT )

′, ui◦ = (ui1, ui2, ..., uiT )
′, and τ T is a T × 1

vector of ones. Similarly, stacking the excess returns by i for each t we have (12) which

we rewrite as

r◦t = αn +Bnft + u◦t, for t = 1, 2, ..., T, (23)

where an = (a1, a2, ..., ain)
′ = cτ n +Bnϕ+ ηn.

The risk premia are usually estimated using a two-pass procedure suggested by Fama

and MacBeth (1973). The first-pass runs time series regressions of excess returns, rit, on

4When c ̸= 0, it is not possible to eliminate c (which is unpriced), and at the same time exploit the
error covariance matrix Vu.
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the K observed factors to give estimates of the factor loadings, βi :

β̂iT = (F′MTF)
−1

F′MT ri◦. (24)

The second-pass runs a cross section regression of average returns, r̄i◦ = T−1
∑T

t=1 rit, on

the estimated factor loadings, to obtain the FM estimator of λ, namely

λ̂nT =
(
B̂′

nTMnB̂nT

)−1

B̂′
nTMnr̄n◦, (25)

where B̂nT = (β̂1T , β̂2T , ..., β̂nT )
′, r̄n◦ = (r̄1T , r̄2T , ..., r̄nT )

′, MT = IT − T−1τ Tτ
′
T , τ T is a

T -dimensional vector of ones, Mn = In − n−1τ nτ
′
n, and τ n is an n-dimensional vector of

ones.

As is well known, when T is finite FM’s two-pass estimator is biased due the errors

in estimation of factor loadings that do not vanish. The small T bias of the two-pass

estimator of λ has been a source of concern in the empirical literature. Under standard

regularity conditions and as n → ∞, we have

λ̂nT − λ0 →p

[
Σββ +

σ2

T

(
F′MTF

T

)−1
]−1(

ΣββdfT − σ2

T

(
F′MTF

T

)−1

λ0

)
, (26)

where dfT = µ̂T − µ0, λ0 and µ0 are the true values of λ and µ, respectively, Σββ =

limn→∞ (n−1B′
nMnBn), and σ2 = limn→∞ n−1

∑n
i=1 σ

2
i > 0. Following Shanken (1992),

σ2
n can be consistently estimated (for a fixed T ) bŷ̄σ2

nT =

∑T
t=1

∑n
i=1 û

2
it

n(T −K − 1)
, (27)

where

ûit = rit − α̂iT − β̂
′
iT ft, (28)

and as before α̂iT and β̂iT are the OLS estimators of αi and βi. Using these results the

bias-corrected version of the two-pass estimator is given by5

λ̃nT = H−1
nT

(
B̂′

nTMnr̄n◦
n

)
, (29)

where

HnT =
B̂′

nTMnB̂nT

n
− T−1̂̄σ2

nT

(
F′MTF

T

)−1

. (30)

When all the risk factors are strong, under certain regularity conditions, there exists a

fixed T0 such that for all T > T0, then

p lim
n→∞

(
λ̃nT

)
= λ∗

T = λ0 + (µ̂T − µ0) , (31)

where µ0 indicates the true value of the factor mean. Shanken refers to λ∗
T as ”ex-post”

risk premia to be distinguished from λ0, referred to as ”ex ante” risk premia. See also

Section 3.7 of Jagannathan, Skoulakis, and Wang (2010).

In this paper we exploit Shanken’s bias correction procedure by applying it to ϕ =

λ−µ which we identify directly using (9) from the regression of αi on βi for i = 1, 2, ..., n,

assuming the idiosyncratic pricing errors, ηi, are sufficiently weak relative to the strengths

of the risk factors in a sense which will be made precise below.

5See also Shanken and Zhou (2007), Kan, Robotti, and Shanken (2013), and Bai and Zhou (2015),
and the survey paper by Jagannathan, Skoulakis, and Wang (2010) for further references.
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2.3 Estimation of ϕ

In view of (9), the estimation of ϕ can be carried out following a two-step procedure

whereby in the first step ai and βi are estimated from the least squares regressions of rit

on an intercept and ft, and these are then used in a second step regression to estimate ϕ,

namely,

ϕ̂nT =
(
B̂′

nTMnB̂nT

)−1

B̂′
nTMnânT , (32)

where ânT = (â1T , â2T , ..., ânT )
′ = r̄nT − B̂nT µ̂T , and as before B̂nT = (β̂1T , β̂2T , ..., β̂nT )

′.

This estimator is consistent for ϕ0 so long as n and T → ∞, and bias-corrections are

necessary to ensure the large n consistency of the estimator when T is fixed. A Shanken

type bias-corrected estimator of ϕ0 is given by

ϕ̃nT = H−1
nT

[
B̂′

nTMnânT
n

+ T−1̂̄σ2

nT

(
F′MTF

T

)−1

µ̂T

]
, (33)

where HnT and ̂̄σ2

nT are given by (30) and (27), respectively. It is also easily established

that

ϕ̃nT = λ̃nT − µ̂T , (34)

and for a fixed T and as n → ∞, we have

p lim
n→∞

ϕ̃nT = p lim
n→∞

λ̃nT − µ̂T .

Hence, upon using (31)

p lim
n→∞

ϕ̃nT = λ0 + (µ̂T − µ0)− µ̂T = λ0 − µ0 = ϕ0, (35)

and there exists a fixed T0 such that for all T > T0, ϕ̃nT converges to ϕ0 as n → ∞. Also

using (31) and (34), and noting that λ0 − µ0 = ϕ0, interestingly we have

λ̃nT − λ∗
T = ϕ̃nT + µ̂T − λ∗

T = ϕ̃nT − ϕ0.

So inference using the Shanken bias-corrected estimator of λ around λ∗
T , is the same as

making inference using ϕ̃nT around ϕ0.

The asymptotic distribution of ϕ̃nT depends on both n and T . Assuming the observed

factors are strong and under certain regularity conditions, to be introduced below, we

have √
nT
(
ϕ̃nT − ϕ0

)
→d N

(
0,Σ−1

ββVξΣ
−1
ββ

)
, (36)

where

Vξ =
(
1 + λ′

0Σ
−1
f λ0

)
p lim
n→∞

[
n−1B′

nMnVuMnBn

]
.

The variance of ϕ̃nT is consistently estimated by
̂

V ar
(
ϕ̃nT

)
= T−1n−1H−1

nT V̂ξ,nTH
−1
nT , (37)

where HnT is given by (30),

V̂ξ,nT = (1 + ŝnT )
(
n−1B̂′

nMnṼuMnB̂n

)
, (38)

and

ŝnT = λ̃
′

nT

(
F′MTF

T

)−1

λ̃nT , (39)

λ̃nT is defined by (29), and Ṽu is a suitable estimator ofVu = E (u◦tu
′
◦t). How to estimate

11



Vu and the conditions under which V ar
(
ϕ̃nT

)
is consistently estimated by

̂
V ar

(
ϕ̃nT

)
is discussed in sub-section 3.2.

Note that even when Vu = σ2IT the variance of ϕ̃nT does not reduce to σ2Σ−1
ββ , the

standard least squares formula used for the case of known factor loadings. When the

loadings are estimated the scaling term
(
1 + λ′

0Σ
−1
f λ0

)
is required and its neglect can

lead to serious over-rejection even if n/T → 0 as n and T → ∞.

2.4 Factor strength

In this paper we deviate from the standard literature and allow the observed and latent

factors to have different degrees of strength, depending on how pervasively they impact

the security returns. Bailey, Kapetanios, and Pesaran (2021) define the strength of factor,

fkt, in terms of the number of its non-zero factor loadings. For a factor to be strong almost

all of its n loadings must differ from zero. Given our focus on estimation of risk premia,

we adopt the following definition which directly relates to the covariance of βi. See also

Chudik, Pesaran, and Tosetti (2011).

Definition 1 (Factor strengths) The strength of factor fkt is measured by its degree of

pervasiveness as defined by the exponent α
k
in

n∑
i=1

(
βik − β̄k

)2
= ⊖(nαk), (40)

and 0 < αk ≤ 1. We refer to {αk, k = 1, 2, ..., K} as factor strengths. Factor fkt is

said to be strong if αk = 1, semi-strong if 1 > αk > 1/2, and weak if 0 ≤ αk ≤ 1/2.

Condition (40) applies irrespective of whether the loadings, βik, are viewed as deterministic

or stochastic.

In the above definition ⊖p (n
αk) denotes the rate at which additional securities add to

the factor’s strength and αk can be viewed as a logarithmic expansion rate in terms of n

and relates to the proportion of non-zero factor loadings. In the literature it is commonly

assumed that the covariance matrix of factor loadings defined by

Σββ = p lim
n→∞

[
n−1

n∑
i=1

(
βi − β̄n

) (
βi − β̄n

)′]
, (41)

is positive definite, where β̄n = n−1
∑n

i=1 βi = (β̄1, β̄2, ..., β̄k)
′. For Σββ to be positive

definite matrix it is necessary that all the K risk factors under consideration are strong

in the sense that

p lim
n→∞

[
n−1

n∑
i=1

(
βik − β̄k

)2]
> 0, for k = 1, 2, ..., K. (42)

In terms of our definition of factor strength, Σββ will be positive definite if all the observed

factors are strong, namely if αk = 1 for k = 1, 2, ..., K. However, such an assumption is

quite restrictive and is unlikely to be satisfied for many risk factors being considered in

the literature. Bailey, Kapetanios, and Pesaran (2021) show that, apart from the market
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factor, only a handful of 144 factors in the literature considered by Feng, Giglio, and Xiu

(2020) come close to being strong. Giglio, Xiu, and Zhang (2023) consider the estimation

of PCA-based risk premia in the presence of weak factors. However, their definition of

factor strength involves both n and T , and is best viewed as a consistency condition

rather than factor strength as such. See the discussion following Theorem 4. Our notion

of factor strength, αk, is in line with the recent literature. See, for example, Bai and Ng

(2023) and Uematsu and Yamagata (2023).

2.5 Missing factor

We now turn to the structure of the errors, uit, in the returns equations, and consider

two possible sources of error cross-sectional dependence: a missing or latent factor and

production networks. The issue of missing factors has been investigated in the recent

literature by Giglio and Xiu (2021) and Anatolyev and Mikusheva (2022). The issue of

production networks has been investigated in the recent literature by Herskovic (2018),

who derives two risk factors based on the changes in network concentration and network

sparsity, and Gofman, Segal, and Wu (2020), who focus on the vertical dimension of

production by modeling a supply chain, in terms of supplier-customer links. They find

that the further away a firm is from final consumers the higher its return. They use

this to create a factor TMB (top minus bottom). Both sources of cross-sectional error

dependence could be important, since network dependence cannot be represented using

latent factor models. See Section 3 of Chudik, Pesaran, and Tosetti (2011).

To allow for both forms of error cross-sectional dependence we consider the following

decomposition of uit

uit = γigt + vit, (43)

where gt is the missing (latent) factor and vit is weakly cross-correlated in the sense of

approximate factor models due to Chamberlain (1983) and Chamberlain and Rothschild

(1983). Here we allow for a single missing factor to simplify the exposition, but note that

increasing the number of missing factors has little impact on our analysis, so long as the

number of missing factors is fixed. Using the normalization E(g2t ) = 1, and assuming that

γigt and vit are independently distributed then E(uitujt) = σij = γiγj+σv,ij, and as shown

in Lemma A.2, n−1
∑n

i=1

∑n
j=1 |σij| = O(1) so long as the strength of gt, αγ < 1/2 and

λmax(Vv) < ∞. This is despite the fact that λmax(Vu) = O(nαγ ), whereVv = E (viv
′
i) and

Vu = E (uiu
′
i).

6 In the Monte Carlo experiments, we consider the possibility of missing

factors, as well as weak spatial and network cross-dependence that satisfy conditions of

approximate factor models.

6Note that Chamberlain’s approximate factor model specification requires λmax(Vu) = O(1) and is
violated if αγ > 0.
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2.6 Pricing errors

The APT condition (6), given by (18) in Theorem II of Ross (1976), ensures that under

APT the (idiosyncratic) pricing errors are sparse. In this paper we relax Ross’s condition

to
n∑

i=1

η2i = O(nαη), (44)

where the exponent αη measures the degree of pervasiveness of pricing errors. Deviations

from APT are measured in terms of αη (0 ≤ αη < 1). We investigate the robustness

of our proposed estimator of ϕ to αη. This extension is important for tests of market

efficiency where the null of interest is H0 : ai = c for all i in (9). We note that under the

alternative hypothesis H1 : ai = c+β′
iϕ+ ηi, therefore it is desirable to develop a test of

ϕ = 0 which is robust to a wider class of pricing errors than those entertained originally

by Ross, where αη = 0.

Remark 1 Having formalized the concepts of factor strength, missing factors, and the

less restrictive APT condition given by (44), it is now of interest to revisit the conditions

under which the phi-portfolio fully diversifies. Consider (18) and note that
∥ηn∥

λ
1/2
min (B

′
nMnBn)

= O
[
n−(αmin/2−αη)

]
, and

λmax (Vu)

λmin (B′
nMnBn)

= O
[
n−(αmin−αγ)

]
.

Using these results in (15) and (17) and we have

E (ρt,ϕ) = ϕ′ϕ+O
[
n−(αmin/2−αη)

]
, and V ar (ρt,ϕ) = O

[
n−(αmin−αγ)

]
Therefore, for phi-portfolio to dominate the MV portfolio in addition to ϕ′ϕ ̸= 0, it is also

required that the strengths of the traded factors αk, k = 1, 2, ..., K are strictly larger than

the strength of the missing factor, αγ, as well as twice the strength of the idiosyncratic

pricing errors, αη.

3 Assumptions and theorems

We make the following standard assumptions about ft, gt, vit, βi, ηi, and γi (the drivers

of asset returns):

Assumption 1 (Observed common factors) (a) The K×1 vector of observed risk factors,

ft, follows the general linear process

ft = µ+
∞∑
ℓ=0

Ψℓζt−ℓ, (45)

where ∥µ∥ < C, ζt ∼ IID(0, IK), and Ψℓ are K × K exponentially decaying matrices

such that ∥Ψℓ∥ < Cρℓ for some C > 0 and 0 < ρ < 1. (b) The T × K data matrix

F = (f1, f2, ..., fT )
′ is full column rank and there exists T0 such that for all T > T0, Σ̂f =

T−1F′MTF is a positive definite matrix, λmax

[
(T−1F′MTF)

−1] < C, Σ̂f →p Σf =

E (ft − µ0) (ft − µ0)
′ > 0, where µ0 is the true value of µ.
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Assumption 2 (Observed factor loadings) (a) The factor loadings βik for i = 1, 2, ..., n

and k = 1, 2, ..., K are stochastically bounded such that supikE (β2
ik) < C,

n∑
i=1

(
βik − β̄k

)2
= ⊖p(n

αk), for k = 1, 2, ..., K, 0 ≤ αk ≤ 1, (46)

(b)The n×K matrix of factor loadings, Bn = (β◦1,β◦2, ...,β◦K), where β◦k = (β1k, β2k, ..., βnk)
′

satisfy

0 < c < λmin

(
D−1

α B′
nMnBnD

−1
α

)
< λmax

(
D−1

α B′
nMnBnD

−1
α

)
< C < ∞, (47)

for some small and large positive constants, c and C, where Mn = In − n−1τ nτ
′
n, τ n =

(1, 1, ..., 1)′, and Dα is the n× n diagonal matrix

Dα = Diag(nα1/2, nα2/2, ...., nαK/2). (48)

Assumption 3 (latent factor) (a) The latent factor, gt, in (43) is distributed inde-

pendently of ft′ , for all t and t′, gt is serially independent with mean zero, E(gt) = 0,

E(g2t ) = 1, and a finite fourth order moment, suptE(g4t ) < C. (b) The loadings γi are

such that supi |γi| < C and
n∑

i=1

|γi| = O(nαγ ). (49)

Assumption 4 (idiosyncratic errors) (a) The errors {vit, i = 1, 2, ..., n; t = 1, 2, ..., T}
are distributed independently of the factors fk,t′, and gt, for all i, t, t′ and k = 1, 2, ..., K,

and their associated loadings βik, and γi. They are serially independent with E(vit) = 0

and finite fourth order moments E(v4it) < ∞, and covariances E(vitvjt) = σv,ij, such that

sup
i

n∑
j=1

|σv,ij| < ∞, and sup
i

n∑
j=1

Cov(v2it, v
2
jt) < ∞, (50)

with λmin (Vv) > 0, where Vv = (σv,ij). (b) The degree of cross-sectional dependence of

vit is sufficiently weak so that

T−1/2n−1/2

T∑
t=1

n∑
i=1

(βik − β̄k)vit →d N(0, ω2
k), for k = 1, 2, ..., K, (51)

where

ω2
k = p lim

n→∞
n−αk

n∑
i=1

n∑
j=1

(βik − β̄k)(βjk − β̄k)σv,ij. (52)

Assumption 5 (Pricing errors) The pricing errors, ηi, for i = 1, 2, ..., n are individually

bounded, supj |ηj| < C , and are distributed independently of the factor loadings, βjk, and

γj for all i, j and k = 1, 2, ..., K, as well as satisfying the condition
n∑

i=1

|ηi| = O (nαη) , (53)

with αη < 1/2.

Remark 2 Under Assumption 1, E (ft) = µ, and V ar(ft) = Σf =
∑∞

ℓ=0ΨℓΨ
′
ℓ. Also

since ∥Σf∥ ≤
∑∞

ℓ=0 ∥Ψℓ∥2 it then follows from part (a) of Assumption 1 that ∥Σf∥ < C.
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Remark 3 Under Assumption 2

D−1
α B′

nMnBnD
−1
α →p Σββ(α) > 0, (54)

where Σββ(α) is a k × k symmetric positive definite matrix which is a function of α =

(α1, α2, ..., αK)
′. This follows from (47) since for any non-zero n× 1 vector κ,

κ′D−1
α B′

nMnBnD
−1
α κ ≥ (κ′κ)λmin

(
D−1

α B′
nMnBnD

−1
α

)
> 0.

In the standard case where the factors are all strong (αk = 1 for all k), we have n−1B′
nMnBn →p

Σββ(τK) = Σββ > 0.

Remark 4 The high level condition (51) in Assumption 4 is required for establishing the

asymptotic normality of the estimator of ϕ0, and is clearly met when vit and/or βik are

independently distributed. It is also possible to establish (51) under weaker conditions

assuming that vit and/or βik satisfy some time-series type mixing conditions applied to

cross section.

Remark 5 The exponent parameter, αη, of the pricing condition in (53), can be viewed

as the degree to which pricing errors are pervasive in large economies (as n → ∞). Letting

ηn = (η1, η2, ..., ηn)
′ we have
n∑

i=1

η2i = ∥ηn∥
2 ≤ ∥ηn∥∞ ∥ηn∥1 = supj |ηj|

(
n∑

i=1

|ηi|

)
, (55)

and under Assumption 5 it also follows that
n∑

i=1

η2i = O (nαη) . (56)

Similarly
n∑

i=1

γ2
i = O(nαγ ). (57)

Remark 6 Whilst (53) implies (56), the reverse does not follow. By allowing for αη > 0

we are relaxing the Ross’s boundedness condition that requires setting αη = 0.

Remark 7 The assumption that the observed and missing factors, ft and gt′ , are dis-

tributed independently is not restrictive and can be relaxed. For example, suppose that

gt = µg + θ′ft + vgt,

where f t and vgt are independently distributed. Then using (43) we have

uit = γiµg + γi (θ
′ft) + γivgt + vit,

and the return equation (4) can be written as

rit = (ai + γiµg) + (βi + γiθ)
′ ft + γivgt + vit,

with vgt now acting as the missing common factor, which, by construction, is distributed

independently of ft.

Remark 8 Assumptions 3 and 4 allow uit to be cross-sectionally weakly correlated, but

require the errors to be serially uncorrelated. This requirement is not strong for asset

pricing models, since realized returns are only mildly serially correlated and most likely

such serial dependence will be captured by the serial correlation in the observed factors.
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As we shall see, to estimate and conduct inference on the risk premia associated with

the observed factors, fkt, we require αk > αγ < 1/2, where αγ denotes the strength of the

latent factor, gt, and similarly defined by
∑n

i=1 γ
2
i = ⊖(nαγ ). Namely, the latent factor

must be sufficiently weak so that ignoring it will be inconsequential, and observed factors

sufficiently strong so that they can be distinguished from the weak latent factor.

The main theoretical results of the paper are set out around five theorems. Theorem

1 considers the Fama-MacBeth two-step estimator and derives its limiting property as n

and T → ∞. To eliminate the bias of Fama-MacBeth estimator we require n/T → 0, and

to eliminate the effects of pricing errors we need Tnαη/n → 0, which results in a contra-

diction. Thus the Fama-MacBeth estimator is valid only when there are no pricing errors

(ηi = 0 for all i) and when n/T → 0. Theorem 2 provides a proof that the estimator of σ̄2
n

(denoted by ̂̄σ2

nT ) proposed by Shanken (1992) continues to be unbiased for a fixed T as

n → ∞, even under the general setting of the current paper that allows for missing factors

as well as pricing errors. Theorem 2 also establishes that ̂̄σ2

nT − σ̄2
n → Op(n

−1/2T−1/2),

which is essential for establishing the results for the bias-corrected estimator of ϕ0, namely

ϕ̃nT given by (33), summarized in Theorem 3. This theorem provides conditions under

which ϕ̃nT is a consistent estimator of ϕ0, and derives its asymptotic distribution assum-

ing the observed factors are strong, again allowing for pricing errors, a missing factor, and

other forms of weak error cross-sectional dependence. Theorem 4 extends the results of

Theorem 3 to the case where one or more of the observed risk factors are semi-strong and

shows how factor strength impacts the precision with which the elements of ϕ0 are esti-

mated. Finally, Theorem 5 presents the conditions under which the asymptotic variance

of ϕ̃nT can be consistently estimated.

Theorem 1 (Small T bias of Fama-MacBeth estimator of λ) Consider the multi-factor

linear return model (23) with the missing factor gt in uit as defined by (43) and the

associated risk premia, λ, defined by (5). Suppose that Assumptions 1, 2, 4, 3 and 5 hold

and all observed factors are strong. Suppose further that the true value of the risk premia,

λ0, is estimated by Fama-MacBeth two-pass estimator, λ̂nT , defined by (25). Then for

any fixed T > T0 such that λmin (T
−1F′MTF) > 0, we have (as n → ∞)

λ̂nT−λ0 = (µ̂T − µ0)−
σ̄2

T

[
Σββ + σ̄2 1

T

(
F′MTF

T

)−1
]−1(

F′MTF

T

)−1

λ∗
T+op(1), (58)

where µ̂T = T−1
∑T

t=1 ft,

Σββ = lim
n→∞

(
B′

nMnBn

n

)
, and σ2 = lim

n→∞
n−1

n∑
i=1

σ2
i > 0.

The proof is provided in Section B.1 of the mathematical appendix.

To derive the asymptotic distribution of λ̂nT − λ0 it is required that both n and

T → ∞, jointly. Also, noting that

λ̂nT − λ0 = (µ̂T − µ0) +
(
ϕ̂nT − ϕ0

)
,
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it is clear that increasing n is not relevant for the distribution of µ̂T −µ0, but joint n and

T asymptotics are required when investigating the distribution of ϕ̂nT − ϕ0. Focussing

on the latter, and using result (B.12) in the Appendix, we have(
n−1B̂′

nTMnB̂nT

)√
nT
(
ϕ̂nT − ϕ0

)
= n−1/2T 1/2B′

nMnηn + n−1/2T 1/2G′
TU

′
nTMnηn

+ n−1/2T 1/2G′
TU

′
nTMnūn◦ − n−1/2T 1/2G′

TU
′
nTUnTGTλ

∗
T .

Where UnT = (u1◦,u2◦, ...,un◦)
′ , ui◦ = (ui1, ui2, ..., uiT )

′ , GT = MTF (F′MTF)
−1,

un◦ = (u1◦, u2◦, ..., un◦)
′, and ui◦ = T−1

∑T
t=1 uit. Consider first the terms that include the

pricing errors, ηn, and using the results in Lemma A.3 note that

n−1/2T 1/2B′
nMnηn = Op

(
T 1/2n−1/2+αη

)
, n−1/2T 1/2G′

TU
′
nTMnηn = Op

(
n−1/2+

αη+αγ
2

)
.

It is clear that the effects of pricing errors on the distribution of ϕ̂nT vanish only if

T 1/2n−1/2+αη → 0, and αη + αγ < 1. Also

n−1/2T 1/2G′
TU

′
nTMnūn◦ = Op

(
T−1/2

)
,

n−1/2T 1/2G′
TU

′
nTUnTGTλ

∗
T =

√
n

T
σ̄2
n

(
F′MTF

T

)−1

λ∗
T +Op

(
T−1/2

)
.

Finally, for the first two terms involving Bn and UnT we have

n−1/2T 1/2B′
nMn (ūn◦ −UnTGTλ

∗
T ) = Op (1) . (59)

It is clear that the small T bias of the asymptotic distribution of the two-step estimator,

given by
√

n
T
σ̄2
n

(
F′MTF

T

)−1

λ∗
T , does not vanish unless, n/T → 0. At the same time for

the pricing errors to have no impact on the distribution of the two-step estimator we must

have Tnaη/n → 0. Both conditions cannot be met simultaneously. It is possible to derive

the asymptotic distribution of ϕ̂nT , and hence that of λ̂nT , when n/T → 0 and η = 0,

but these are quite restrictive conditions, and to avoid them we follow Shanken (1992)

and instead consider a bias-corrected version of ϕ̂nT , namely ϕ̃nT given by (33). As noted

earlier ϕ̃nT = λ̃nT −µ̂T , where λ̃nT is the bias-corrected version of λ̂nT originally proposed

by Shanken.

To investigate the asymptotic properties of ϕ̃nT we first need to establish conditions

under which ̂̄σ2

nT , defined by (27), is a consistent estimator of σ̄2
n = n−1

∑n
i=1 σ

2
i , which

enters the bias-corrected estimator. The proof of consistency in the literature does not

allow for missing factors or pricing errors and only considers the case where T is fixed

as n → ∞. For derivation of asymptotic distribution of ϕ̃nT we also need to consider

the limiting properties of ̂̄σ2

nT under joint n and T asymptotics. The following theorem

provides the required results for ̂̄σ2

nT as an estimator of σ̄2
n.

Theorem 2 Consider ̂̄σ2

nT , the estimator of σ̄2
n given by (see (27)),̂̄σ2

nT =

∑T
t=1

∑n
i=1 û

2
it

n(T −K − 1)
, (60)

and suppose that Assumptions 1, 3, and 4, are satisfied. Then for a fixed T

lim
n→∞

E
(̂̄σ2

nT

)
= σ̄2, (61)

where σ̄2 = limn→∞ σ̄2
n, and σ̄2

n = n−1
∑n

i=1 σ
2
i . Furthermorê̄σ2

nT − σ̄2
n = Op

(
T−1/2n−1/2

)
. (62)
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For a proof see sub-section B.2 in the Appendix.

Result (62) shows that ̂̄σ2

nT continues to be a consistent estimator of σ̄2 = limn→∞ σ̄2
n

for a fixed T as n → ∞, even in the presence of pricing errors and a missing common

factor. This result also holds when one or more of the factors are semi-strong.

Equipped with the above result we are now in a position to present the theorem that

sets out the asymptotic distribution of ϕ̃nT .

Theorem 3 Consider ϕ̃nT , the bias-corrected estimators of ϕ0 given by (33). Suppose

Assumptions 1, 2, 4, 3 and 5 hold, all the observed factors are strong, (αk = 1, for

k = 1, 2, ..., K), and the strength of the missing factor, αγ defined by (49), satisfies αγ

< 1/2. Then

ϕ̃nT − ϕ0 = Op

(
T−1/2n

−1/2
)
+Op

(
T−1/2n−1+

αη+αγ
2

)
(63)

+Op

(
n−1+αη

)
+Op

(
T−1n−1/2

)
,

where αη denotes the degree of pervasiveness of the pricing errors defined by (44). (a)

When T is fixed, αγ < 1/2 and αη < 1, then there exists T0 such that for all T > T0

p lim
n→∞

(
ϕ̃nT

)
= ϕ0. (64)

Also√
nT
(
ϕ̃nT − ϕ0

)
= Σ−1

ββξnT +Op

(
n− 1

2
+

αη+αγ
2

)
+Op

(
T 1/2n−1/2+αη

)
+Op

(
T−1/2

)
, (65)

where Σββ = p limn→∞ (n−1B′
nMnBn ) ,

ξnT = n−1/2T−1/2B′
nMnUnTaT , (66)

and aT = τ T −MTF(T
−1F′MTF)

−1λ∗
T . (b) If αγ < 1/2, αη < 1/2, and

√
T
n
nαη → 0, as

n and T → ∞ jointly, then√
nT
(
ϕ̃nT − ϕ0

)
→d N

(
0,Σ−1

ββVξΣ
−1
ββ

)
, (67)

where

Vξ =
(
1 + λ′

0Σ
−1
f λ0

)
p lim
n→∞

(
n−1B′

nMnVuMnBn

)
. (68)

For a proof see sub-section B.3 in the Appendix.

Result (63) establishes the finite T consistency of ϕ̃nT for ϕ0 so long as αγ < 1/2 and

αη < 1, thus extending the Shanken result to a much more general setting. To the best of

our knowledge the asymptotic distribution in (67) is new and shows that the asymptotic

covariance matrix of ϕ̃nT includes the term λ∗′
T (T

−1F′MTF)
−1λ∗

T , that arises from the

first stage estimation of the factor loadings, and must be included in the analysis for valid

inference. It is also clear that this additional term does not vanish with T → ∞, and

tends to λ′
0Σ

−1
f λ0 ≥ (λ′

0λ0)λmax

(
Σ−1

f

)
= (λ′

0λ0)λmin (Σf ) > 0, which is strictly non-

zero unless λ0 = 0. Shanken type bias correction addresses the mean of the asymptotic

distribution of ϕ̃nT , but not its covariance.

The Op

(
T−1/2

)
term in (65) arises from the sampling errors involved in the estimation

of the factor loadings and σ̄2
n, and tends to zero at the regular

√
T rate. But n has to

be sufficiently large to eliminate the effects of pricing errors on identification of ϕ0, as
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dictated by condition
√

T
n
nαη → 0, as n and T → ∞.7 The requirement that T need not

be too large relative to n for estimation of ϕ0 is consistent with separating the estimation

of ϕ0 from that of µ0, allowing the use a relatively small T and a large n to estimate ϕ0

and a relatively large T when estimating µ0.

3.1 What if one or more of the risk factors are semi-strong?

We now turn to an intermediate case where one or more of the observed factors are semi-

strong, in the sense that their factor strength, αk lies between 1/2 and 1. The case of

weak risk factors is already covered in the proceeding analysis, and such factors can be

included in the error term, uit, with little consequence for the estimation of risk premia

of the remaining factors that are strong or semi-strong. Weak factors do not have any

explanatory power and can be dropped from the analysis.

When one or more of the observed factors is semi-strong Σββ is no longer positive

definite and Theorem 3 does not apply, but it is possible to adapt the proofs to establish

the limiting properties of ϕ̃k,nT (the kth element of ϕ̃nT ) for different values of αk .

To this end, analogously to ϕ̃nT , we introduce the following estimator of ϕ0

ϕ̃nT (α) = H−1
nT (α)

[
D−1

α B̂′
nTMnânT +

n

T
̂̄σ2

nTD
−1
α

(
F′MTF

T

)−1

µ̂

]
, (69)

where

HnT (α) = D−1
α B̂′

nTMnB̂nTD
−1
α − n

T
̂̄σ2

nTD
−1
α

(
F′MTF

T

)−1

D−1
α . (70)

It is now easily seen that

Dα

(
ϕ̃nT (α)− ϕ0

)
= H−1

nT (α)qnT (α) , (71)

where

qnT (α) = D−1
α B̂′

nTMnânT +
n

T
̂̄σ2

nTD
−1
α

(
F′MTF

T

)−1

µ̂T −HnT (α)Dαϕ0. (72)

Dα is defined by (48), and α = (α1, α2, ..., αK)
′. It is easily established that numerically

ϕ̃nT (α) is identical to ϕ̃nT , and its introduction is primarily for the purpose of establishing

the limiting properties of ϕ̃k,nT − ϕ0,k that do depend on αk. Note that

HnT (α) = nD−1
α HnTD

−1
α , and qnT (α) = nD−1

α snT

where snT and HnT are already defined by (B.23) and (B.24). Using these in (71) we have

Dα

(
ϕ̃nT (α)− ϕ0

)
=
(
nD−1

α HnTD
−1
α

)−1
nD−1

α snT = DαH
−1
nT snT ,

and it follows that ϕ̃nT (α)− ϕ0 = H−1
nT snT = ϕ̃nT (τK) = ϕ̃nT . See (B.22).

The convergence results for ϕ̃nT (α) are set out in the following theorem.

Theorem 4 Consider ϕ̃nT (α), the bias-corrected estimators of ϕ0 given by (69), and

suppose Assumptions 1, 2, 4, 3 and 5 hold, the strength of observed factors, f t =

(f1t, f2t, ..., fKt)
′, is given by α= (α1, α2, ..., αK)

′, and the strength of the missing factor,

7The condition
√

T
nn

αη → 0 can be weakened somewhat to
√

T
nn

αη/2 → 0 if we also assume that

βik − β̄k are independently distributed over i, but will still require n to be larger than T .
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gt, defined by (49) is αγ. Let αmin = mink(αk) and suppose that αγ < 1/2. Then

HnT (α) = D−1
α B′

nMnBnD
−1
α +Op

(
T−1n−αmin+1/2

)
,

where HnT (α) is given by (70), and by part (b) of Assumption 2, HnT (α) →p Σββ(α) >

0, for any fixed T > T0 such that λmax

(
F′MTF

T

)−1

< C and αmin > 1/2 > αγ. Also

ϕ̃k,nT (α)− ϕ0,k = Op

(
n−(αk+αmin)/2+1/2T−1/2

)
+Op

(
n

−(αk+αmin)+(αη+αγ )
2 T−1/2

)
(73)

+Op

(
n−(αk+αmin)/2+αη

)
+Op

(
n−(αk+αmin)/2+1/2T−1

)
.

See sub-section B.4 of the Appendix for a proof.

The result in (73) establishes the consistency of ϕ̃k,nT (α) = ϕ̃k,nT even if fkt is semi-

strong so long as n → ∞, and αmin > 1/2, αk + αmin > αη + αγ, and αk + αmin > 2αη.

Clearly, these results reduce to the case of strong factors where αmin = αk = 1. Turning

to the asymptotic distribution of ϕ̃k,nT (α), again only convergence rates are affected, and

instead of the regular rate of
√
nT , we have

√
Tn(αk+αmin−1)/2, and using (73) we have√

Tn(αk+αmin−1)/2
(
ϕ̃k,nT (α)− ϕ0,k

)
(74)

= Op(1) +Op

(
n−1/2+

(αη+αγ)
2

)
+Op

(√
Tn−1/2+αη

)
+Op

(
T−1/2

)
.

The conditions needed for eliminating the effects of the pricing errors are the same as

before and are given by αη+αγ < 1 and
√
Tn−1/2+αη → 0. The asymptotic distribution is

unaffected except for the slower rate of convergence alluded to above. It is also of interest

to note that adding semi-strong factors can adversely affect the convergence rate of the

strong factor with αk = 1. As an example suppose the asset pricing model contains two

factors, one strong, α1 = 1 and one semi strong with α2 < 1. Then the convergence rate

of ϕ̃1,nT (α)− ϕ0,1 is given by
√
T n(1+α2−1)/2 which is slower than the rate we would have

obtained for ϕ̃1,nT (α) − ϕ0,1 if both factors were strong (αmin = αk = 1), namely the

regular rate of
√
nT .

Furthermore, when conditions αη + αγ < 1 and
√
Tn−1/2+αη → 0 are met we have

ϕ̃k,nT (α)− ϕ0,k = Op

(
T−1/2n−(αk+αmin−1)/2

)
, (75)

and ϕ0,k is consistently estimated if T−1/2n−(αk+αmin−1)/2 → 0. Also, using (34), an es-

timator of the risk premia, λk, is given by λ̃k,nT (α) = ϕ̃k,nT (α) + µ̂k,T , where µ̂k,T =

T−1
∑T

t=1 fkt. Hence

λ̃k,nT (α)− λ0,k =
[
ϕ̃k,nT (α)− ϕ0,k

]
+ (µ̂k,T − µ0,k) .

Under Assumption 1 µ̂k,T − µ0,k = Op

(
T−1/2

)
, and using (75) it then follows that

λ̃k,nT (α)− λ0,k = Op

(
T−1/2n−(αk+αmin−1)/2

)
+Op

(
T−1/2

)
, (76)

and λ̃k,nT (α) is a consistent estimator of λ0,k if T → ∞ as well as T−1/2n−(αk+αmin−1)/2 →
0. More specifically, suppose T = ⊖

(
nd
)
for some d > 0, where ⊖ (·) denotes T and nd

are of the same order of magnitude. Then for any d > 0, the condition for consistency of

λ̃k,nT (α) is given by αk + αmin + d > 1 and d > 0. In the case where all risk factors have

the same strength, α, the consistency condition reduces to α > (1− d) /2, which is weaker

than the one derived by Giglio, Xiu, and Zhang (2023), namely n/(∥β∥2 T ) → 0, where,
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in terms of our notation, ∥β∥2 = ⊖ (nα). This latter condition will be met if α > 1 − d.

In practice where T is small relative to n, the accuracy of λ̃k,nT (α) as an estimator λ0,k

does depend on α, and our weaker condition on α > (1− d) /2 is advantageous.

3.2 Consistent estimation of the variance of ϕ̃nT

To carry out inference on ϕ0, or any of its elements individually, we require a consistent

estimator of V ar
(
ϕ̃nT

)
. Using (67) and (68) we first note that Σββ is consistently

estimated by HnT given by (30). Therefore, it is sufficient to find a suitable estimator of

Vu = (σij) such that Vξ given by (68) is consistently estimated. Under suitable sparsity

restrictions Vu can be consistently estimated using the various thresholding procedures

advanced in the statistical literature by Bickel and Levina (2008a,b), Cai and Liu (2011),

and Bailey, Pesaran, and Smith (2019, BPS). Fan, Liao, and Mincheva (2011, 2013) also

show that the adaptive threshold technique of Cai and Liu applies equally to the residuals

from an approximate factor model. Here we consider the threshold estimator proposed by

BPS which does not require cross-validation and is shown to have desirable small sample

properties. It is given by Ṽu = (σ̃ij)

σ̃ii = σ̂ii

σ̃ij = σ̂ij1
[
|ρ̂ij| > T−1/2cα(n, δ)

]
, i = 1, 2, . . . , n− 1, j = i+ 1, . . . , n, (77)

where

σ̂ij =
1

T

T∑
t=1

ûitûjt, ρ̂ij =
σ̂ij√
σ̂iiσ̂jj

, ûit = rit − α̂i,T − β̂
′
i,T ft, (78)

and cp(n, δ) = Φ−1
(
1− p

2nδ

)
, is a normal critical value function, p is the the nominal size

of testing of σij = 0, (i ̸= j) and δ is chosen to take account of the n(n − 1)/2 multiple

tests being carried out. Monte Carlo experiments carried out by BPS suggest setting

δ = 2. The variance estimator given by (77) does not require a knowledge of the factor

strength and applies to risk factors of differing degrees.

Under Assumptions 1, 3, and 4, ∥Vu∥ = O (nαγ ), and using results in Fan, Liao, and

Mincheva (2011, 2013) we have∥∥∥Ṽu −Vu

∥∥∥ = Op

(
nαγ

√
ln(n)

T

)
. (79)

Consider the following estimator of Vξ

V̂ξ,nT = (1 + ŝnT )
(
n−1B̂′

nTMnṼuMnB̂nT

)
.

where ŝnT = λ̃
′

nT (T−1F′MTF)
−1

λ̃nT . Under Assumption 1, T−1F′MTF →pΣf and using

the results above we have λ̃nT = ϕ̃nT + µ̂T →p ϕ0 + µ0 = λ0. Hence, ŝnT →p λ′
0Σ

−1
f λ0

as n, T → ∞, jointly, and it is sufficient to show that

n−1B̂′
nTMnṼuMnB̂nT − n−1B′

nMnVuMnBn →p 0. (80)

The following theorem provides a formal statement of the conditions under which V̂ξ,nT

is a consistent estimator of Vξ.
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Theorem 5 Suppose Assumptions 1, 2, 4, 3 and 5 hold, and all the observed factors are

strong, (αk = 1, for k = 1, 2, ..., K), and the strength of the missing factor, gt, defined by

(49), αγ < 1/2. Then ∥∥∥V̂ξ,nT −Vξ

∥∥∥ = Op

(
nαγ

√
ln(n)

T

)
, (81)

where

V̂ξ,nT = (1 + ŝnT )
(
n−1B̂′

nTMnṼuMnB̂nT

)
, (82)

Ṽu = (σ̃ij), σ̃ij is the threshold estimator of σij given by (77), and

Vξ =
(
1 + λ′

0Σ
−1
f λ0

)
p lim
n→∞

(
n−1B′

nMnVuMnBn

)
, (83)

For a proof see sub-section B.5 in the Appendix.

This theorem shows that consistent estimation of V ar
(
ϕ̃nT

)
can be achieved by using

a suitable threshold estimator of Vu, so long as the strength of the missing factor, αγ, is

sufficiently weak in the sense that nαγ
√
ln(n)/T → 0 as n, T → ∞.

4 Small sample properties of the estimators and tests

for ϕ

4.1 Monte Carlo Design

This section presents Monte Carlo simulations to investigate the small sample properties

of estimators and tests for ϕ0. In the empirical application of the next section the factors

are selected from a large list. But here we assume K = 3 and mimic the 3 Fama-French

factors, namely the market return minus the risk free rate, MKT, the value factor (high

minus low book to market portfolios, HML) and the size factor (small minus big portfolios,

SMB). These are denoted by fkt, k = M,H, S.8 For further details see Section S3 of the

online supplement A.

4.1.1 Loadings and factor strengths

To calibrate the loadings, βik, we used excess returns on a large number securities observed

over the shorter sample covering the 20 years 2002m1 −2021m12 (T = 240). Monthly

returns for NYSE and NASDAQ stocks code 10 and 11 from CRSP were downloaded

from Wharton Research Data Services and converted to excess returns over the risk free

rate, taken from Kenneth French’s webpages, in percent per month. Only stocks with

available data for the full sample were included, yielding a balanced panel, and to avoid

outliers influencing the results, stocks with a kurtosis greater than 16 were excluded.

There were 1289 stocks before exclusion on the basis of kurtosis and 1175 after. The

8Data on factors and the risk free rate are downloaded from Kenneth French’s data library:
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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summary statistics giving mean, median, standard deviation of the estimates of βik and

their histograms are provided in the online supplement A.

For factor strength, we considered a range of DGPs. Given the evidence that most

factors, other than the market factor, are not strong, we focus on the case where there is

one strong factor, namely the market factor with αM = 1, plus two semi-strong factors,

with the value factor, HML, being quite strong with αH = 0.85, and the size factor,

SMB, being only moderately strong with αS = 0.65. These estimates are also informed

by the results provided in Bailey, Kapetanios, and Pesaran (2021) who propose methods

for estimation of factor strength. For a given factor strength, αk, the associated loadings,

βik, are generated as βk = (β1k, β2k, , ..., βαk
, 0, 0, ...0) where nαk

= ⌊nαk⌋ the integer part

of nαk , with non-zero and zero values of βk given by

βik ∼ IIDN(µβk
, σ2

βk
), for i = 1, 2, ...., ⌊nαk⌋,

βik = 0 for i = ⌊nαk⌋+ 1, ⌊nαk⌋+ 2, ..., n,

where ⌊nαk⌋ denotes the integer part of nαk . Since the security returns are randomly

generated, it does not matter how zero and non-zero values of βik are distributed across

i. Also, the zero loadings can also be replaced by an exponentially decaying sequence

without any implications for the simulation results.9 We also set

µβM
= 1, σβM

= 0.4; µβH
= 0.2, σβH

= 0.5

µβS
= 0.6, σβS

= 0.5,

which match the mean and standard deviation of the estimates of βik. See above.

4.1.2 Generation of pricing errors

The pricing errors in (6) can be considered as firm-specific characteristics and are set as

ηn =
(
η1, η2, ..., ηnη , 0, 0, ..., 0

)′
. The non-zero loadings of ηn for i ≤ nη = ⌊nαη⌋ are drawn

from IIDU(0.7, 0.9), and ηi = 0 for i = nη + 1, nη + 2, ...., n. We consider αη = (0, 0.3).

When αη = 0 we have ηi = 0 , for all i. As in the case of factor loadings the non-zero

values of ηn must be randomly allocated to different groups.

4.1.3 Generation of return equation errors

The return equation errors, uit, are generated following (43) as a combination of a

missing factor, gt ∼ IIDN (0, 1) plus an idiosyncratic error, vjt. The loadings γ =(
γ1, γ2, ..., γnγ , 0, 0, ..., 0

)′
of the missing factor are set as

γi ∼ IIDU(0.7, 0.9), for i = 1, 2, ...., ⌊nαγ⌋,

γi = 0, for i = ⌊nαγ⌋+ 1, ⌊nαγ⌋+ 2, ..., n,

where αγ is the strength of the missing factor gt. We consider αγ = 1/4 and 1/2.

For the idiosyncratic errors, vit, we consider spatial as well as a block diagonal specifi-

cation, with the spatial specification including a diagonal specification as the special case.

9See also footnote 5 of Bailey, Kapetanios, and Pesaran (2016, p.942).
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Under the spatial specification the idiosyncratic errors are generated as the first order

spatial autoregressive model vit = ρε
∑n

j=1wijvjt + κεit, which can be written in matrix

notation as vt = ρεWvt + κεt, and solved for as vt = κ (In − ρεW)−1 εt. Adding the

missing factor now yields

ut = γ gt + κ (In − ρεW)−1 εt. (84)

The spatial coefficient ρε is such that |ρε| < 1, W = (wij) with wii = 0, and
∑n

j=1wij = 1.

The diagonal case is obtained by setting ρε = 0, with ρε = 0.5 characterizing the SAR

specification. The weight matrix W = (wij) is set to follow the familiar rook pattern

where all its elements are set to zero except for wi+1,i = wj−1,j = 0.5 for i = 1, 2, ..., n− 2

and j = 3, 4..., n, with w1,2 = wn,n−1 = 1.

Under the block error covariance specification, vt is generated as vt = κŜεt, where

Ŝ is a block diagonal matrix with its bth block given by Ŝb for b = 1, 2, ..., B, and εt =

(ε′1t, ε
′
2t, ..., ε

′
Bt)

′, and εbt = (εb,1t, εb,2t, ..., εb,nb,t)
′. Ŝ is set as a Cholesky factor of the

correlation matrix of ut. Denoting this correlation matrix by R̂u,

R̂u =
[
Diag(V̂Bu)

]−1/2

V̂Bu

[
Diag(V̂Bu)

]−1/2

= Diag(R̂bu, b = 1, 2, ..., B),

where V̂Bu is the threshold estimator of Vu subject to the additional restriction that Vu

is block diagonal. For each block R̂bu we set the number of distinct non-zero elements of

this block equal to the integer part of [nb(nb−1)/2]×qb where qb is the proportion of non-

zero distinct elements in block b of our calibrated sample and computed by the calibration

over the sample 2001m10 − 2021m9. The non-zero elements are drawn randomly from

IIDU(0, 0.5). Similarly, adding the missing factor, we have

ut = γgt + κŜεt. (85)

The block diagonal structure is intended to capture possible within industry correla-

tions not picked up by observed or weak missing factors, with each block representing an

industry or sector. To calibrate the block structure estimates of the pair-wise correlations

between the residuals of the return regressions using the Fama-French three factors of

the T = 240 sample ending in 2021 were obtained. Then all the statistically insignificant

correlations were set to zero, allowing for the multiple testing nature of the tests. For

the majority of securities (668 out of the 1168), the pair-wise return correlations were

not statistically significant. The securities with a relatively large number of non-zero cor-

relations were either in the banking or energy related industries. Considering stocks by

2-digit SIC classifications, a division into B = 14 contiguous groups ranging in size from

33 to 145 stocks, seemed sensible. More detail on the process is given in Section S4 of the

online supplement A.

The primitive errors, εit for i = 1, 2, ..., n in (84) and (85) are generated as εit =
√
σiiϖit, where ϖit ∼ IIDN (0, 1), and εit =

√
σii

[√
v−2
v
ϖit

]
, where ϖit ∼ IID t(v),

with t(v) denotes a standard t distributed variate with v = 5 degrees of freedom. Also

σii ∼ IID 0.5(1+χ2
1) , for i = 1, 2, ..., nb and b = 1, 2, ..., B. In this way, it is ensured that

V ar(εb,it) = σb,ii, and on average E [V ar(εb,it)] = E(σii) = 1, under both Gaussian and
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t-distributed errors. Note that V ar (νb,it) = v/(v − 2). All the experiments are designed

to give an R2 of about 0.3, similar to that obtained in the empirical applications. For

further details see sub-section S-3.5 of the online supplement A.

4.1.4 Experiments

In total, we consider 12 experimental designs: six designs with Gaussian errors and six

with t(5) distributed errors. We considered designs with GARCH effects, with and without

pricing errors, ηi, and with and without the missing factor, gt. We also considered designs

with spatial patterns in the idiosyncratic errors, vit. All experiments are implemented

using R = 2, 000 replications. Details of of the 12 experiments are summarized in Table

S-1 of the online supplement B (MC results).

4.1.5 Alternative estimators of Vu

Subsection 3.2 considered consistent estimation of the variance of ϕ̃nT using Ṽu a threshold

estimator for Vu, given by equation (77). For comparison purposes we also considered two

other estimators of Vu. These were the sample covariance matrix V̂u =
∑T

t=1 ûtû
′
t/T and

a diagonal covariance matrix, where the off-diagonal elements of V̂u, σ̂ij, are set to zero.

Thus we have three designs for the return error covariance matrix, Vu, and three different

estimators of it. A comparison of the results for the different covariance matrices is

available on request. The diagonal estimator, as to be expected, performed poorly when

the true covariance matrix was not diagonal, particularly for the spatial error covariance

matrix and when the strength of the missing factor was close to 1/2. For these designs the

sample and threshold estimators of the covariance matrix generally performed similarly

and given that there is a theoretical justification for the threshold estimator and there

are structures of the error covariance matrix for which the sample estimator is unlikely to

perform well we report the results using the threshold estimator in the simulations below.

4.2 Monte Carlo results

We focus on a comparison of two-step (defined by (32) and the bias-corrected (BC) es-

timator (defined by (33)), and report bias, root mean square error (RMSE) and size

for testing H0j : ϕ0k = 0, k = M,H, S at the five per cent nominal level, for all

n = 100, 500, 1, 000, 3, 000 and T = 60, 120, 240 combinations. The results for all 12

experiments are summarized in Tables S-A-E1 to S-A-E12 in the online supplement B. In

terms of bias and RMSE the two-step estimator does much better than the bias-corrected

(BC) estimator when T = 60 and n = 100, but this gap closes quickly as n is increased.

In fact for T = 60 and n = 3, 000, the bias and RMSE of the BC estimator (at 0.0010 and

0.0607) are much less than those of the two-step estimator (at -0.0080 and 0.1489). This

pattern continues to hold when T = 120 and 240. Bias correction can cause the RMSE
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to ”blow up” for small samples, such as n = 100 and T = 60, but for n = 500 and above

the bias-corrected estimator always has a smaller RMSE than the two-step estimator. As

discussed in the theoretical section, having a large n is important for the properties of the

estimators.

But most importantly, the two-step estimator is subject to substantial size distortions,

particularly when T is small relative to n. As predicted by the theory, the degree of over-

rejection of the tests based on FM estimator falls with T, but increases with n. For

example, the two-step test sizes rise from 11.1% when T = 60 and n = 100 to 60.9%

when T = 60 and n = 3, 000. Increasing T reduces the size distortion of the two-step

estimator but test sizes are still substantially above the 5% nominal value when n is

large. The strong tendency of the tests based on the two-step estimator to over-reject

could be an important contributory factor leading to false discovery of a large number

of apparently significant factors in the literature. In contrast, sizes of the tests based on

the BC estimator, using the variance estimator given by (37), are all close to its nominal

value, irrespective of the factor strength or sample size combinations. We only note some

elevated test sizes in the case of the experimental design 12, and when we consider the

semi-strong factors. The highest test size of 7.85 per cent is obtained for the least strong

factor, fst, when n = 3000 and T = 60. See Table S-A-E12 of the online supplement B.

We also experimented with raising αη from 0.3 to 0.5, making the pricing errors much

more pervasive and ρε from 0.5 to 0.85, introducing more spatial correlation. This in-

creased the rejection rate in experiments 9 and 10.

4.2.1 Empirical power functions

Plots of the empirical power functions for testing the null hypothesis H0j : ϕ0k = 0,

k = M,H, S, are also provided in the online supplement B (Figures S-A-E1 to S-A-E12).

All power curves have the familiar bell curve shape and tend to unity as n and/or T

are increased, showing the test has satisfactory power, particularly for n sufficiently large

even when T = 60. Again the power functions are quite similar across the 12 different

experiments and show similar patterns for strong and semi-strong factors. However, this

similarity hides the fact that the test of ϕk = 0 for the strong factor is much more powerful

than corresponding tests for the semi-strong factors, with the test power declining as factor

strength is reduced.

4.2.2 Differences in performance of strong and semi-strong factors

These differences in the effects of factor strength on the power of the test of ϕk = 0 are

in line with our theoretical results, and are also reflected in the rate at which the RMSE

of the estimators of ϕM , ϕH and ϕS fall with n. For example, using results in Table S-A-

E12, for the bias-corrected estimator and design 12 with T = 240, the ratio of RMSE of

n = 3, 000 to n = 100 is 17% for the strong factor (αM = 1), 23% for the first semi-strong
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factor with αH = 0.85, and 36% for the second semi-strong factor with αS = 0.65. As

strength falls one needs larger cross section samples of securities to attain the same level

of precision. In the case of the two-step estimator there was the same pattern, but the

fall in the RMSE with n was much slower. The ratio for T = 240 of RMSE of n = 3, 000

to n = 100 is 25% for ϕM , rather than 17%, which it was for the bias-corrected estimator;

48% rather than 23% for ϕH , and the coefficient of the third least strong factor the RMSE

fell then increased with n.

4.2.3 Semi-strong versus weak factors

So far, we have assumed that the DGP is correctly specified with two semi-strong and no

observed weak factors. Here we consider the implications of incorrectly excluding semi-

strong factors or correctly including weak factors on the small sample properties of the

BC estimator of ϕM , the coefficient of the strong factor. Using the same DGP (which

includes one strong factor and two semi-strong factors), we carried out additional MC

experiments (designs 1-12) where we also estimated ϕM without the semi-strong factors

being included in the regression. Comparative results, with and without the semi-strong

factors, are summarized in Tables S-B-E1 to S-C-E12 of the online supplement B. We find

that incorrectly excluding semi-strong factors can be quite costly, both in terms of bias

and RMSE as well as size distortions. In terms of RMSE it was almost always better to

estimate the model with the semi strong factors included. The exception was for the case

of T = 60, n = 100, where including the semi-strong factors with a very small sample size

caused the RMSE to blow up. Size distortions resulting from the exclusion of the semi-

strong factors tended to be more pronounced for large n and T samples. These conclusions

were not sensitive to the choice of the experimental design. For these experiments the

lesson seems to be that it is important to have n large and include relevant semi-strong

factors providing that they are sufficiently strong.

When the DGP includes one strong factor (αM = 1) and two weak factors (αH =

αS = 0.5), in terms of the bias and RMSE for ϕM it is unambiguously better to exclude

the weak factors from the regression, even though they are in the DGP. Weak factors are

best treated as missing and absorbed in the error term.

4.3 Main conclusions from MC experiments

The conclusions from the Monte Carlo simulations are that the bias corrected estimator

of ϕ0, generally works well. Although, it can generate a large RMSE for small n and T ,

this can be solved by increasing n. This performance is robust to non-Gaussian errors,

GARCH effects, missing weak factors, pricing errors and cross-sectional dependence of

the types considered in these experiments. The size is generally correct and the power

good. The rate at which RMSEs decline with n depends on the strength of the underlying
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factors. Semi-strong factors need much larger values of n for precise estimation. Tests of

the joint significance of ϕM = ϕH = ϕS = 0, not reported here, also performed well, as

might be expected given the good power performance of the separate induced tests which

are reported. Including weak factors could be harmful, but there are potential advantages

of adding semi-strong factors, although issue of how best to select such factors is an open

question to which we now turn.

5 Factor selection when the number of securities and

the number of factors are both large

Our theoretical derivations and Monte Carlo simulations both assume that the number

of risk factors included in the return regressions is fixed and the factors are known. For

the empirical application we face the additional challenge of selecting a small number of

relevant risk factors from a possibly large number of potential factors, m. This problem

has been the subject of a number of recent studies. Harvey, Liu, and Zhu (2016) propose

a multiple testing approach aimed at controlling the false discovery rate in the process of

factor selection, and in a more recent paper Harvey and Liu (2020) suggest using a double-

bootstrap method to calibrate the t-statistic used for controlling the desired level of the

false discovery rate. Giglio and Xiu (2021) suggest applying the double-selection Lasso

procedure by Belloni, Chernozhukov, and Hansen (2014) to second pass regressions. None

of these methods distinguish between strong, semi-strong or weak factors in their selection

process, whereas the theory and simulations presented above indicate the importance of

factor strength for estimation and inference.

Here we propose an alternative selection procedure where we first estimate the strength

of all them factors under consideration, and then select factors with strength above a given

threshold, the value of which is informed by the convergence results of Theorem 4. This

theorem showed that if factor fkt has strength αk, then for a given T the BC estimator of

ϕk converges to its true value, ϕ0k, at the rate of n
(αk+αmin−1)/2, where αmin = mini(αi). As

is recognized in non-parametric estimation literature, if the rate of convergence is less than

1/3, the gain in precision with n is so slow that the estimator may not be that useful.10

To achieve rate of n1/3 we need to set the threshold value of αk, denoted by α, such that

α+ αmin > 1 + 2/3. The smallest value of such a threshold is obtained when αmin = α or

if α > 1/2 + 1/3. Given the threshold the main issue is how to estimate factor strength.

This problem is already addressed in Bailey, Kapetanios, and Pesaran (2021, BKP) when

m is fixed. In this setting they base their estimation on the statistical significance of

fkt in the first stage time-series regressions of excess returns on all the factors under

10The Manski (1985) maximum score estimator for a binary response model has n1/3 convergence and
this is regarded as very slow and there are suggested modifications such as Horowitz (1992) to increase
the rate of convergence to n2/5.
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consideration, whilst allowing for the n multiple testing problem which their approach

entails. When m (the number of factors) is also large the first stage regressions will also

be subject to the multiple testing problem and penalized regression techniques such as

Lasso or the one covariate at a time (OCMT) selection procedure technique proposed by

Chudik, Kapetanios, and Pesaran (2018) could be used. Irrespective of selection technique

used at the level of individual security returns, we end up with n different subsets of the

m factors under consideration. Factor strengths can then be estimated similarly to BKP

from their selection frequencies across the n securities.

To be more specific, denote the set of m factors under consideration by S and denote

the set of selected factors for security i by Ŝi and their numbers by m̂i = |Ŝi|. Clearly

Ŝi ⊆ S, and m̂i ≤ m, for i = 1, 2, ..., n. Then compute the proportion of stocks in

which the kth factor is selected, π̂k, for k ∈ {1, 2, ...,m} based on Ŝi, i = 1, 2, ..., n by

π̂k =
1
n

∑n
i=1 I{k ∈ Ŝi}. Then the strength of the kth factor is measured by

α̂k =

1 + ln π̂k

lnn
, if π̂k > 0,

0, if π̂k = 0.
(86)

The transformation from π̂k to α̂k is explained and justified in BKP, where it is shown that

considering strength aids interpretation because it is not dependent on n. It is beyond

the scope of the present paper to provide theoretical justification for the proposed factor

selection procedure, but using extensive Monte Carlo experiments Yoo (2022) has shown

that the proposed method has desirable small sample properties whether Lasso or OCMT

is used for factor selection at the level of individual security returns.

6 An empirical application using a large number of

U.S. securities and a large number of risk factors

This section uses the results above in the explanation of monthly returns for a large

number, n, of U.S. securities, by a large active set of m potential risk factors. We first

briefly describe the sources and characteristics of the data for the stock returns and

factors, which cover different sub-samples over the period 1996m1 − 2022m12. We then

consider the selection of a subset of K factors from the active set. Finally we test ϕ = 0,

and construct and evaluate phi-portfolios and corresponding mean-variance portfolios for

alternative models.

Monthly returns (inclusive of dividends) for NYSE and NASDAQ stocks from CRSP

with codes 10 and 11 were downloaded from Wharton Research Data Services. They

were converted to excess returns by subtracting the risk free rate, which was taken from

Kenneth French’s data base. To obtain balanced panels of stock returns and factors,

only variables for which there was data for the full sample under consideration were

used. Excess returns are measured in percent per month. To avoid outliers influencing
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the results, stocks with a kurtosis greater than 16 were excluded. To examine factor

selection, four samples were considered, each had 20 years of data, T = 240, ending in

2015m12, 2017m12, 2019m12, 2021m12. Filtering out the stocks with kurtosis larger than

16 removed about 100 of the roughly 1200 stocks. The number of stocks (n) considered

for each of the four T = 240 samples are given in panel A of Table 1. Further detail is

given in Section S5 of the online supplement A.11 For analysis of the phi-portfolios, the

factors selected in the sample ending in 2015m12 were used to construct portfolios up to

2022m12.

6.1 Factor selection

For factor selection we used a sample of T = 240 observations12. The set of factors

considered combine the 5 Fama-French factors with the 207 factors from the Chen and

Zimmermann (2022), Open Source Asset Pricing webpages, both downloaded July 6 2022.

Only factors with data for the full sample were considered so the return regressions con-

stitute a balanced panel. The number of factors in each of the four 20 year samples ending

in the years 2015, 2017, 2019, 2021 is also given in panel A of Table 1, and range between

187 to 199. Summary statistics for the factors in the active set are given in S-5.2 of the

online supplement A.

To implement the factor selection procedure set out in Section 5, Lasso is used to carry

out selection in the return regressions for individual securities and we refer to the factor

selection procedure as pooled Lasso (PL). As is well known, Lasso does not work well

with too many highly correlated regressors, therefore, factors with an absolute correlation

with the market factor greater than 0.70 were dropped. This still left between 177 and

190 risk factors in the active set S, depending on the sample period (see panel A of Table

1).

Specifically, Lasso was applied n times to the regressions of excess returns, rit =

Rit−rft , for i = 1, 2, ..., n, on the 177 to 190 factors in the active set, S, to select the sub-set
Ŝi for each i over the four 20-year samples, separately. Following the literature, the tuning

parameters in the Lasso algorithm were set by ten-fold cross-validation.13 Interestingly,

the market factor was selected by Lasso for almost all the securities, thus confirming the

pervasive nature of the market factor. No other factor came close to being selected for

all the securities. Lasso tended to choose a lot of non-market factors and every factor got

chosen in at least one return regression. The mean number of non-market factors chosen

by Lasso fell from 11.6 in the 2015 sample to 9.9 in the 2021 sample. The median was

11Summary statistics for the excess returns across the different samples are given in Table SA-7 of the
online supplement A.

12Some results for T = 120 are included in the online supplement.
13The post-Lasso and one covariate multiple testing (OCMT) approach of Chudik, Kapetanios, and

Pesaran (2018, CKP). were also investigated, but Lasso seemed to work reasonably well. The details of
the Lasso procedure used are given in Section 2.2 of the online supplement of CKP paper.
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lower, falling from 10 to 8. There was a long right tail because Lasso tended to choose a

very large number of non-market factors for some securities, ranging from a maximum of

48 in the 2021 sample to 54 in the 2017 sample.

Apart from the market factor, there are no systematic patterns for the rest of selected

factors in the return equations for the individual securities. Following the theory set out

in Section 5, the K factors used to estimate ϕ are chosen on the basis of their factor

strength.14 A minimum threshold of 0.7 was used. This is below the threshold value of

α = 1/2+1/3 required to achieve the convergence rate of n1/3, and is intended to capture

borderline semi-strong factors. We also consider the values of 0.75,and 0.80 that are quite

close to α. The number of selected factors for different choices of factor strength threshold

is given in panel B of Table 1, for the four different samples.

Using the threshold of 0.70, 17 factors (inclusive of the market factor) were selected for

the sample ending in 2015, with the number of selected factors declining to 15, 13 and 11,

for the samples ending 2017, 2019 and 2021, respectively. At the other extreme, setting

the threshold at 0.80, the number of selected factors dropped to 4 for the samples ending

in 2015, 2017 and 2021, and 2 for the sample ending in 2021. Since 17 factors seemed

too large and 2 factors too small, the threshold value was set at the intermediate value

of 0.75. We considered always conditioning on the market factor, but since Lasso almost

always selected it, this was unnecessary.

Table 1: Summary statistics for the number of stocks and number of selected factors
using the factor strength threshold of 0.75, for four twenty years (T = 240) samples ending
in 2021, 2019, 2017 and 2015

T = 240 with end dates 2021 2019 2017 2015

Panel A: Number of stocks and factors under consideration
Number of stocks 1289 1276 1243 1181

Number of stocks with kurtosis < 16 1175 1143 1132 1090
Number of non-market factors 187 198 199 197

Number of non-market factors with r < 0.70 177 189 190 189

Panel B: Number of selected factors by strength threshold
Number with strength > 0.80 2 4 4 4
Number with strength > 0.75 4 6 7 7
Number with strength > 0.70 11 13 15 17

Note: Panel A shows the number of stocks and risk factors used before and after filtering by the specified

criterion. Panel B shows the number of risk factors selected with strength greater than the specified

threshold level using Lasso to select factors at the level of individual securities.

The list of factors selected by pooled Lasso for the four samples are given in Table

14The idea of using factor strength could also be viewed as a kind of averaging of the factors selected
in individual return regressions.
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2. The three Fama-French factors, Market, HML and SMB, are all selected in all four

periods.15 Of the Fama-French three, only the market factor is strong, with estimated

strength in excess of 0.98 across the four periods.16 The other factor which is selected

across all the four periods is ”short selling”. This is proposed by Dechow, Hutton, Meul-

broek, and Sloan (2001) who argue that short-sellers target firms that are priced high

relative to fundamentals. It measures the extent to which investors are shorting the mar-

ket as reflected in Compustat data. Two additional factors are selected in periods ending

in 2019 and earlier. One is ”Beta Tail Risk” proposed by Kelly and Jiang (2014) which

estimates a time-varying tail exponent from the cross section of returns. The other is

”Cash Based Operating Profitability” (CBOP) suggested by Ball, Gerakos, Linnainmaa,

and Nikolaev (2016). This is operating profit less accruals, with working capital and R&D

adjustments. For periods ending in 2017 and 2015 the ”Sin Stock” indicator proposed

by Hong and Kacperczyk (2009) is also selected. It takes the value of unity if the stock

in question is involved in producing alcohol, tobacco, and gaming. They find that such

stocks are held less by norm-constrained institutions such as pension plans.

The factor strengths are relatively stable across the periods, with many of the estimates

close to the threshold value of 0.75. Apart from the market factor only SMB, Short

Selling and Beta Tail Risk factors have strengths in excess of 0.85 when averaged across

the four periods. From the large number of factors in the active set we have ended up

with relatively few factors that are reasonably strong and for which ϕ0 can be estimated

reasonably accurately.17

The strengths of the selected factors are also closely related to the average measures

of fit often used in the literature. Here we consider both AveR̄2 = n−1
∑n

i=1 R̄
2
i , a simple

average of the fit of the individual return regressions adjusted for degrees of freedom,

R̄2
i = 1−(T−K−1)−1

∑T
t=1 û

2
it/T

−1
∑T

t=1 (rit − r̄i◦)
2, and the adjusted pooled R2 defined

by PR
2
= 1− ̂̄σ2

nT/s
2
r,nT , where ̂̄σ2

nT is the bias-corrected estimator of σ̄2
n defined by (60)

and = (nT )−1∑n
i=1

∑T
t=1 (rit − r̄i◦)

2. Both of these measures behave very similarly, but

the pooled version is less sensitive to outliers. As shown in Appendix S6, for sufficiently

large n and T , PR
2
is dominated by the contribution of the most strong factor(s). Since

the only strong factor selected is the market factor in Table 3 we report the AveR̄2 and

PR
2
in the case of return regressions which just include the market factor and those

which include all other factors with strength in excess of 0.75. First, we note that the

15We also considered selecting the risk factors using the generalized one covariate at a time (OCMT)
method proposed by Sharifvaghefi (2023). Using GOCMT the Fama-French three factors were again
amongst the five strongest factors selected. The use of GOCMT for factor selection is also investigated
by Yoo (2022), using Monte Carlo and empirical applications.

16These results also support the choice of 3 Fama-French factors and their strength used in our Monte
Carlo simulations.

17We do not report estimates of individual ϕk. Because of correlations between the loadings, the sign,
size and significance of the coefficients are difficult to interpret and for phi-portfolio construction, discussed
below, what matters is ϕ′ϕ which determines the return on the portfolio.
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Table 2: Selected factors with estimated strength in excess of the threshold 0.75 for the
samples of size T=240 ending in 2021, 2019, 2017 and 2015

End date 2021 2019 2017 2015
Selected Factors Estimated strength (α)

Mkt. 0.99 0.98 0.98 0.98
SMB 0.90 0.84 0.86 0.86

Short Selling 0.77 0.85 0.85 0.83
HML 0.76 0.77 0.76 0.75

BetaTailRisk 0.87 0.86 0.86
CBOP 0.76 0.77 0.77

Sin Stock . 0.76 0.76

Note: The risk factors listed are the market factor (Mkt.), size (SMB), Short Selling that measures the

extent of short sales in the market, the value factor (HML), the cash-based operating profitability factor

(CBOP), Beta Tail Risk, and Sin Stock which is a binary indicator taking the value of unity if the stock

in question is involved in so called ”Sin” industries producing alcohol, tobacco, and gaming. Further

details on these risk factors are provided by Chen and Zimmermann (2022).

PR
2
values are generally lower than the AveR̄2. Second, the additional factors do add to

the fit, but their relative contributions vary considerably across sample sizes and periods.

In general, the marginal contribution of non-market factors tend to be smaller when T is

larger, which is consistent with the theory for adjusted pooled R2 set out in Section S6

of the online supplement A.

Table 3: Average and pooled R squared for the return regressions when using market
factor alone or factors chosen by Pooled Lasso plus 0.75 threshold

End Year 2021 2019 2017 2015
No. of stocks, n 1175 1143 1132 1090

No. of selected factors 4 6 7 7
Mkt. Selected Mkt. Selected Mkt. Selected Mkt. Selected

T
AveR̄2 240 0.23 0.29 0.19 0.28 0.17 0.27 0.17 0.27

120 0.24 0.33 0.25 0.35 0.26 0.38 0.26 0.37

PR
2

240 0.20 0.26 0.17 0.26 0.16 0.26 0.16 0.26
120 0.19 0.27 0.20 0.29 0.23 0.34 0.23 0.34

Note: This table shows for each of the four end years and the two sample sizes the adjusted average

and pooled R2(AveR̄
2
and PR

2
) for the return regressions when using market factor alone or factors

selected with strength higher than 0.75. The list of selected factors are given in Table 2.
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6.2 Testing for non-zero ϕ

In principle, if ϕ ̸= 0 there are potentially exploitable excess returns. In practice, to

construct an effective phi-portfolio a large number of securities is required and rebalancing

such long-short portfolios for so many securities may not be feasible or may incur high

transactions costs. In addition, model uncertainty, estimation uncertainty, time variation

in both βi and in conditional volatility pose additional difficulties in implementing a

strategy to exploit the potential returns revealed by ϕ. We will abstract from such

practical difficulties to provide some indication of the performance of phi-portfolios relative

to alternatives which would face similar difficulties.

As our preferred asset pricing model, we consider the seven factors selected by pooled

Lasso using the sample ending in 2015m12, which we label as PL7.18 Recall that the

PL7 includes the 3 Fama-French factors (Mkt., SMB, and HML) plus the four risk fac-

tors, Short Selling, CBOP, Beta Tail Risk, and Sin Stocks. But given uncertainties that

surround the problem of model selection we also considered the two popular FF factor

models, namely FF3 and FF5. The latter augments FF3 with RMW (robust minus weak

operating profitability) and CMA (conservative minus aggressive investment portfolios).

The three models are estimated using twenty-year rolling windows covering the 84 months

from 2015m12 to 2022m11, so that we can generate out of sample return forecasts for the

months 2016m1− 2022m12.19 For all 3× 84 model-sample interactions we computed the

following Wald test statistics

W 2
t|T = ϕ̃

′
t|T

[
̂

V ar
(
ϕ̃t|T

)]−1

ϕ̃t|T ,

for testing the null hypothesis ϕ = 0, where ϕ̃t|T and
̂

V ar
(
ϕ̃t|T

)
denote the rolling

versions of (33) and (37).20 For the PL7 the range of the test statistic was from 141.8 to

25.8, as compared to the 5 per cent χ2(7) critical value of 14.07. Thus the hypothesis that

ϕ = 0 is strongly rejected in all the 84 rolling sample for PL7. This is also true for the

FF5 and FF3 models where the test statistic ranged from 162.7 to 25.0, and from 67.9 to

25.8, compared to the 5 per cent critical values of 11.07 and 7.8, respectively.

The rolling values of the Wald statistics for testing ϕ = 0 for the three models are

shown in Figure 1. The horizontal line (pink) represents the critical value of the χ2
7

distribution at the 5 per cent level. The time profiles of these test statistics clearly show

that ϕ = 0 is rejected for all rolling samples and for all three models. But there is also a

18The selection of the PL7 model was reported in the earlier version of the paper submitted for pub-
lication and was not informed by the performance the phi-portfolio that we report in this version of the
paper.

19Due to entry and exit of securities the number of securities included in our analysis varied across
the rolling sample periods. We started with n = 1, 090 securities for the first rolling sample ending in
2015m12, with the number of available securities with 240 months of data falling to 953 by 2017, 838 by
2019, 767 by 2021, and 736 by 2022.

20The formulae for the rolling estimates are provided in the sub-section S-3.8 of the online appendix.
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Figure 1: Rolling chi-squared statistics for testing ϕ = 0 using a window of size 240 for
FF3, FF5, and PL7 models.

clear downward trend showing that the evidence against ϕ = 0 has been getting weaker

over time, irrespective of the choice of asset pricing model.

6.3 Comparative performance of phi and MV portfolios

Having established that most likely ϕ ̸= 0 for the asset pricing models we have considered,

we now turn to the performance of phi-portfolios based on these models. Using the

recursive version of the phi-portfolio given by (14), we consider the following phi-portfolio

returns

ρ̂t+1,ϕ = ϕ̃t|T

[(
B̂′

t|T MnB̂t|T

)−1

B̂t|T Mnr◦,t+1 − ft+1

]
,

for t = 2016m1, 2016m2, ..., 2022m12, using the rolling estimates B̂t|T =
(
β̂1t|T , β̂2t|T ...., β̂nt|T

)′
with T = 240, for each of the three factor models, FF3, FF5 and PL7. We compare the

annualised Sharpe ratios of phi-portfolios with the ones based on associated MV port-

folios, given by ρt+1,MV = µ′
RV

−1
R r◦,t+1.

21 Although in principle, MV portfolios can be

constructed without a reference to a particular factor model, reliable estimation of µR and

V−1
R are challenging when n is relatively large. For example, the rolling sample covariance

matrix estimator of VR, given by V̊R,t|T = T−1
∑t

τ=t−T+1

(
r◦,τ − r̄◦,t|T

) (
r◦,τ − r̄◦,t|T

)′
,

with r̄◦,t|T = T−1
∑t

τ=t−T+1 r◦,τ , will be singular when n > T , and can be very poorly

estimated if T is not sufficiently large relative to n. There is a vast literature on consis-

tent estimation of high dimensional covariance matrices like VR. Fan, Liao, and Mincheva

(2011) use observed factors while Fan, Liao, and Mincheva (2013) use principal compo-

21Given our focus on the Sharpe ratios, we have set the scaling of the MV portfolio to unity.
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nents to filter out the effects of strong factors, in both cases assuming Vu is sparse, and

then using a threshold method to estimate it. Shrinkage estimators of VR are also pro-

posed in the literature with a recent survey provided by Ledoit and Wolf (2022). However,

the shrinkage estimators require n and T to be of the same order of magnitude and do

not work well when n is much larger than T , as in the present application. We follow Fan,

Liao, and Mincheva (2011) and base our estimation of µR and VR on the same factor

model used to construct the phi-portfolio. For a given factor model, characterized by c,B,

and F, we compute the MV portfolio returns as

ρ̂t+1.MV = µ̂′
R,t|T V̂

−1
R,t|T r◦,t+1,

where µ̂R,t|T = ĉt|T τn + B̂t|T λ̃t|T , λ̃t|T = ϕ̃t|T + µ̂t|T ,

V̂R,t|T = B̂′
t|T

(
F′

t|T MTFt|T

T

)−1

B̂t|T +Ṽu,t|T ,

µ̂t|T = f̄ t|T = T−1
∑t

τ=t−T+1 fτ , and Ṽu,t|T is the rolling estimate of Vu. The algorithms

used to compute the recursive estimates for the MV portfolio can be found in the sub-

section S-3.8 in the online supplement A.

Table 4 presents annualised SR of the phi-portfolios, for the FF3, FF5, and PL7

models, and their corresponding MV portfolios for two samples, both beginning in 2016m1,

one ending in 2019m12, pre Covid-19, and one ending in 2022m12. In five of the six SR

ratios reported in this table, the phi-portfolio has a higher SR than the corresponding

MV portfolio. The exception is the SR associated to the FF5 model for the pre Covid-19

sample. This illustrates that if ϕ ̸= 0, it is possible to construct portfolios that outperform

the mean-variance portfolio. Amongst the 3 models considered, the phi-portfolio based

on the PL7 model performed best during the pre Covid-19 and the full sample, even

beating the S&P 500. The Sharpe ratio of the phi-portfolio based on the PL7 model was

1.95 compared to 0.94 for the S&P 500 during the pre Covid-19 period, and fell sharply

to 0.65 for the full sample as compared to 0.58 for the S&P 500. The SR for the MV

portfolio using the same model were 0.87 and 0.42 for the two samples, respectively.

The sharp decline in the SRs as we add the post Covid-19 years is in line with the

strong downward trend in the Wald statistics for the test of ϕ = 0 shown in Figure 1.

As is well known SRs have large standard errors, and in the case of our application that

are around 1, so none of the SRs are significantly different from zero, with the possible

exception of the largest SR of 1.95 for phi-portfolio based on PL7 model for the pre Covid-

19 period. We also note that the reported Sharpe ratios do not allow for transaction costs

and the fact that shorting might not be feasible for all the securities.
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Table 4: Annualised Sharpe ratios of realized monthly returns for alternative portfolios
based on 240 month rolling window estimates.

Mean-variance portfolios Phi-portfolios
2016m1 - 2019m12 2016m1 - 2022m12 2016m1-2019m12 2016m1-2022m12

Models Pre Covid-19 Full sample Pre Covid-19 Full sample

FF3 0.57 0.35 0.86 0.51
FF5 0.49 0.43 0.35 0.57

Lasso 7 0.87 0.42 1.95 0.65

Note: The annualised Sharpe ratio (SR) is computed as
√
12ρ̄/sρ, where ρ̄ is the mean of monthly re-

turns, and sρ is the standard deviation of monthly returns. For comparison the SR of the monthly returns

on S&P 500 were 0.94 and 0.58 over the periods 2016m1-2019m12, and 2016m1-2022m12, respectively.

7 Concluding remarks

In this paper we have highlighted the importance of decomposing the risk premia, λ, into

the factor mean, µ, and ϕ, and writing the alpha of security i, αi, in terms of ϕ and the

idiosyncratic pricing errors. We have shown that when ϕ ̸= 0, it is possible to construct a

portfolio, denoted as phi-portfolio, that dominates the associated mean-variance portfolio

if the number of securities, n, is sufficiently large and the risk factors are sufficiently strong.

Given the pivotal role played by ϕ for estimating the risk premia, for formation of large

portfolios, and for tests of market efficiency, we have exclusively focussed on estimation

of ϕ, and its asymptotic distribution under quite a general setting that allows for missing

factors and idiosyncratic pricing errors. Since factor means, µ, can be estimated at the

regular rate of T−1/2 from time series data, it is relatively straightforward to develop

a mixed strategy for estimation of λ by adding a time series estimate of µ to the bias-

corrected estimator of ϕ. If we use the same time series sample, such an estimator reduces

to the Shanken bias-corrected estimator of λ. But in practice, given the concern over the

instability of the factor loadings βik over time, one could use relatively long time series,

say Tµ, when estimating µ, and a shorter time series, say Tϕ < Tµ, when estimating ϕ.

The distributional and small sample properties of such a mixed estimator of risk premia

is a topic for further research.

Our theoretical and Monte Carlo results further highlight the important role played by

factor strengths in estimation and inference on ϕ, and hence on λ. For a fixed Tϕ, factors

with strength below 2/3 lead to estimates of ϕ with convergence rate of n−1/3 or worse,

and their use in asset pricing models can be justified only when n is very large. We have

also shown that weak factors, with strength below 1/2 are best treated as missing and

absorbed in the error term. We have shown that estimation of ϕ for strong or semi-strong

factors is robust to weak missing factors, and the explicit inclusion of weak factors in

the empirical analysis is likely to have adverse spill over effects on the estimates of ϕ
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for strong and semi-strong factors. In view of these results we have proposed a factor

selection procedure where only factors with strength above 1/2 + 1/3 are included in the

asset pricing model. Developing a formal statistical theory for the proposed selection is

another topic for future research.

The paper also provides an empirical application to a large number of U.S. securi-

ties with risk factors selected from a large number of potential risk factors according to

their strength, and use a pooled Lasso approach to select 7 risk factors out of over 180.

We find strong statistical evidence against ϕ = 0 for the selected model as well as for

the two popular Fama-French models (FF3 and FF5). Using rolling estimates of ϕ we

also construct phi portfolios with better Sharpe ratios as compared to associated mean-

variance portfolios. But we also warn that these portfolio comparisons are preliminary

and need to be further investigated by allowing for transaction costs, and the feasibility

of the long-short trading strategies that are involved.
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A Mathematical Appendix

A.1 Introduction

In this mathematical appendix we first introduce the notations used in our mathematical treat-

ment, and state and establish a number of lemmas. We then provide detailed proofs of Theorems

1, 2, 3, 4 and 5 presented in the paper.

Notations: Generic positive finite constants are denoted by C when large, and c when

small. They can take different values at different instances. λmax (A) and λmin (A) denote the

maximum and minimum eigenvalues of A. A > 0 denotes that A is a positive definite matrix.

∥A∥ = λ
1/2
max(A′A), ∥A∥F = [Tr(A′A)]1/2, ∥A∥p = (E ∥A∥p)1/p, for p ≥ 2 denote spectral,

Frobenius, and ℓp norms of matrix A, respectively. If {fn}∞n=1 is any real sequence and {gn}∞n=1

is a sequences of positive real numbers, then fn = O(gn), if there exists C such that |fn| /gn ≤ C

for all n. fn = o(gn) if fn/gn → 0 as n → ∞. Similarly, fn = Op(gn) if fn/gn is stochastically

bounded, and fn = op(gn), if fn/gn →p 0, where →pdenotes convergence in probability. If

{fn}∞n=1 and {gn}∞n=1 are both positive sequences of real numbers, then fn = ⊖ (gn) if there

exists n0 ≥ 1 such that infn≥n0 (fn/gn) ≥ C, and supn≥n0
(fn/gn) ≤ C.

A.2 Statement of lemmas and their proofs

Lemma A.1 Suppose the linear factor pricing model (12) holds subject to the restrictions

c = 0, ϕ = 0, η = 0, ∥µ∥ < C, and λmin

(
Σ−1

f

)
> 0. Consider the K × 1 beta-based portfolio

ρB,t = W′r◦t formed from the factor loadings, Bn, where W′ =
(
B′

nV
−1
u Bn

)−1
B′

nV
−1
u . Then

the mean-variance portfolio return, given by ρMV,t = µ′
RV

−1
R r◦t, where µR = Bnµ and VR =

BnΣfB
′
n +Vu, and the optimal portfolio return formed using the K underlying beta portfolios,

ρB,t, have the same Sharpe ratio:

SR2
B = SR2

MV ≤ µ′Σ−1
f µ. (A.1)

Further if the factors are sufficiently strong such that λmin

(
B′

nV
−1
u Bn

)
→ ∞, then

SR2
B = SR2

MV → µ′Σ−1
f µ, as n→ ∞. (A.2)

Proof. Under c = 0 and ϕ = 0, r◦t = Bf t + u◦t, ρB,t = ft +W′u◦t, and

E (ρB,t) = µ, and V ar (ρB,t) = Σf +W′VuW = Σf +
(
B′V−1

u B
)−1

.

The best linear combination of theseK portfolios is obtained by finding theK×1 vector weights,

wf , that minimizes the V ar
(
w′

fρt

)
for a given mean, w′

fµ. The solution to this optimization

problem is given by

wf = κ−1
(
Σf +

(
B′

nV
−1
u Bn

)−1
)−1

µ,

A1



where κ is a risk aversion coefficient. The squared Sharpe ratio of ρB,t = w′
fρB,t is given by

SR2
B = µ′

(
Σf +

(
B′

nV
−1
u Bn

)−1
)−1

µ, (A.3)

which can be written equivalently as

SR2
B = µ′

[(
B′

nV
−1
u Bn

)−1
(
Σ−1

f +B′
nV

−1
u Bn

)
Σf

]−1
µ (A.4)

= µ′Σ−1
f

(
Σ−1

f +B′
nV

−1
u Bn

)−1 (
B′

nV
−1
u Bn

)
µ

The squared Sharpe ratio of the mean-variance efficient portfolio is given by

SR2
MV = µ′B′

n

(
BnΣfB

′
n +Vu

)−1
Bnµ.

However, since BnΣfB
′
n is rank deficient then

(
BnΣfB

′
n +Vu

)−1
= V−1

u −V−1
u B

(
Σ−1

f +B′
nV

−1
u Bn

)−1
B′

nV
−1
u ,

and

SR2
MV = µ′B′

n

[
V−1

u −V−1
u B

(
Σ−1

f +B′
nV

−1
u Bn

)−1
B′

nV
−1
u

]
Bnµ

= µ′B′
nV

−1
u Bnµ− µ′B′

nV
−1
u Bn

(
Σ−1

f +B′
nV

−1
u Bn

)−1
B′

nV
−1
u Bnµ

Furthermore,

µ′B′
nV

−1
u Bn

(
Σ−1

f +B′
nV

−1
u Bn

)−1
B′

nV
−1
u Bnµ

= µ′
(
B′

nV
−1
u Bn +Σ−1

f −Σ−1
f

)(
Σ−1

f +B′
nV

−1
u Bn

)−1
B′

nV
−1
u Bnµ

= µ′B′
nV

−1
u Bnµ− µ′Σ−1

f

(
Σ−1

f +B′
nV

−1
u Bn

)−1
B′

nV
−1
u Bnµ.

Hence

SR2
MV = µ′Σ−1

f

(
Σ−1

f +B′
nV

−1
u Bn

)−1
B′

nV
−1
u Bnµ. (A.5)

The first part of result (A.1) now follows from a direct comparison of (A.5) and (A.4). To

establish the second part note that

SR2
MV − µ′Σ−1

f µ = µ′
[
Σ−1

f

(
Σ−1

f +B′
nV

−1
u Bn

)−1
B′

nV
−1
u Bn −Σ−1

f

]
µ

= µ′
[
Σ−1

f

(
Σ−1

f +B′
nV

−1
u Bn

)−1 (
B′

nV
−1
u Bn +Σ−1

f −Σ−1
f

)
−Σ−1

f

]
µ

= µ′
[
Σ−1

f

(
Ik −

(
Σ−1

f +B′
nV

−1
u Bn

)−1
Σ−1

f

)
−Σ−1

f

]
µ

= −µ′Σ−1
f

(
Σ−1

f +B′
nV

−1
u Bn

)−1
Σ−1

f µ.

Since µ′Σ−1
f

(
Σ−1

f +B′
nV

−1
u Bn

)−1
Σ−1

f µ ≥ 0, it then follows that SR2
MV ≤ µ′Σ−1

f µ. To
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establish result (A.2), we first note that∣∣∣SR2
MV − µ′Σ−1

f µ
∣∣∣ ≤ ∥µ∥2

∥∥∥Σ−1
f

∥∥∥2 ∥∥∥∥(Σ−1
f +B′

nV
−1
u Bn

)−1
∥∥∥∥ .

where ∥µ∥ < C, and
∥∥∥Σ−1

f

∥∥∥2 = λmax

(
Σ−1

f

)
= 1/λmin (Σf ) < C, since by Assumption

λmin (Σf ) > 0. Also∥∥∥∥(Σ−1
f +B′

nV
−1
u Bn

)−1
∥∥∥∥ = λmax

[(
Σ−1

f +B′
nV

−1
u Bn

)−1
]

=
1

λmin

(
Σ−1

f +B′
nV

−1
u Bn

) .
Since Σ−1

f and B′
nV

−1
u Bn are both symmetric matrices, then (see Section 5.3.2 in Lutkepohl,

1996)

λmin

(
Σ−1

f +B′
nV

−1
u Bn

)
≥ λmin

(
Σ−1

f

)
+ λmin

(
B′

nV
−1
u Bn

)
,

and ∥∥∥∥(Σ−1
f +B′

nV
−1
u Bn

)−1
∥∥∥∥ ≤ 1

λmin

(
Σ−1

f

)
+ λmin

(
B′

nV
−1
u Bn

) .
Hence ∥∥∥SR2

MV − µ′Σ−1
f µ

∥∥∥ ≤
∥µ0∥2

∥∥∥Σ−1
f

∥∥∥2
λmin

(
Σ−1

f

)
+ λmin

(
B′

nV
−1
u Bn

) ,
∥∥∥SR2

MV − µ′Σ−1
f µ

∥∥∥→ 0, if λmin

(
B′

nV
−1
u Bn

)
→ ∞, and result (A.2) follows.

Lemma A.2 Consider the errors {uit, i = 1, 2, ..., n; t = 1, 2, ..., T} defined by (43) and suppose

that Assumptions 3 and 4 hold with αγ < 1/2, and Vu = (σij). Set ui◦ = T−1
∑T

t=1 uit, and

E(u2it) = σ2i . Then

∥Vu∥ = λmax (Vu) ≤ sup
i

n∑
j=1

|σij | = O (nαγ ) , (A.6)

n−1
n∑

i=1

n∑
j=1

|σij | = O (1) , and n−1
n∑

i=1

n∑
j=1

σ2ij = O(1). (A.7)

Also, for any t and t′

an,tt =
1

n

n∑
i=1

(
u2it − σ2i

)
= Op

(
n−1/2

)
, (A.8)

V ar(an,tt) =
1

n2

n∑
i=1

n∑
j=1

Cov(u2it, u
2
jt) = O(n−1), (A.9)

an,tt′ = n−1
n∑

i=1

uituit′ = Op

(
n−1/2

)
, for t ̸= t′, (A.10)

V ar
(
an,tt′

)
= n−2

n∑
i=1

n∑
j=1

σ2ij = O
(
n−1

)
, for t ̸= t′, (A.11)
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bn,t =
1

n

n∑
i=1

(uitui◦ − T−1σ2i ) = Op

(
T−1/2n−1/2

)
, (A.12)

and

V ar(bn,t) = O
(
T−1n−1

)
. (A.13)

Proof. Result (A.6) follows noting that under Assumptions 3 and 4, σij = γiγj + σv,ij ,∑n
j=1 |σij | ≤ supi |γi|

∑n
j=1 |γj |+

∑n
j=1 |σv,ij | , and by assumption supi |γi| < C, supi

∑n
j=1 |σv,ij | <

C, and
∑n

j=1 |γj | = O (nαγ ). To prove (A.7)

n−1
n∑

i=1

n∑
j=1

|σij | ≤ n−1
n∑

i=1

n∑
j=1

|γi| |γj |+ n−1
n∑

i=1

n∑
j=1

|σv,ij |

= n−1

(
n∑

i=1

|γi|

)2

+ n−1
n∑

i=1

n∑
j=1

|σv,ij | .

By assumption n−1
∑n

i=1

∑n
j=1 |σv,ij | = O(1), and

∑n
i=1 |γi| = O(nαγ ), then, in view of (49)

and (50) n−1
∑n

i=1

∑n
j=1 |σij | = O

(
n−1+2αγ

)
+ O(1) = O(1), since αγ < 1/2. Similarly σ2ij =

γ2i γ
2
j + σ2v,ij + 2γiγjσv,ij , and

n−1
n∑

i=1

n∑
j=1

σ2ij = n−1Tr(V2
u) = n−1

(
n∑

i=1

γ2i

)2

+ n−1
n∑

i=1

n∑
j=1

σ2v,ij + 2n−1γ′Vvγ.

But

n−1
n∑

i=1

n∑
j=1

σ2v,ij = n−1Tr
(
V2

v

)
≤ λ2max (Vv) = O(1), (A.14)

γ ′Vvγ ≤
(
γ ′γ
)
λmax (Vu) = O (nαγ ) .

Overall

n−1
n∑

i=1

n∑
j=1

σ2ij = O
(
n−1+2αγ

)
+O(1) +O

(
n−1+αγ

)
,

and since αγ < 1/2, then it follows that n−1
∑n

i=1

∑n
j=1 σ

2
ij = O(1). To prove (A.8) we first

note that (using the normalization E(g2t ) = 1)

u2it − E(u2it) = (g2t − 1)γ2i +
(
v2it − σv,ii

)
+ 2gtγivit, (A.15)

and

an,tt = (g2t − 1)

(
n−1

n∑
i=1

γ2i

)
+ n−1

n∑
i=1

(
v2it − σv,ii

)
+ 2gt

(
n−1

n∑
i=1

γivit

)
= O

(
n−1+αγ

)
+Op

(
n−1/2

)
+O

(
n−1+αγ/2

)
= Op(n

−1/2), since αγ < 1/2.

To establish (A.9), using (A.15) we first note that ( for given loadings γi)

Cov
(
u2it, u

2
jt

)
= γ2i γ

2
j

[
E
(
g2t − 1

)2]
+ Cov(v2it, v

2
jt) + 4E

(
g2t
)
γiγjσv,ij ,
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V ar(an,tt) = n−2
n∑

i=1

n∑
j=1

Cov(u2it, u
2
jt) = V ar(g2t )

(
n−1

n∑
i=1

γ2i

)2

+ n−2
n∑

i=1

n∑
j=1

Cov(v2it, v
2
jt) + 4E

(
g2t
)
n−2γ′Vvγ = O

(
n−2+2αγ

)
+O(n−1) +O

(
n−2+αγ

)
,

and since αγ < 1/2, then V ar(an,tt) = O
(
n−1

)
, as required (which also corroborate (A.8)).

Consider now (A.10) and since uit is serially independent then E
(
an,tt′

)
= 0 for t ̸= t′, and we

have

E
(
uituit′ujtujt′

)
= E

(
uitujtuit′ujt′

)
= E (uitujt)E

(
uit′ujt′

)
= σ2ij for t ̸= t′,

and

V ar
(
an,tt′

)
= E

(
a2n,tt′

)
= n−2

n∑
i=1

n∑
j=1

E
(
uituit′ujtujt′

)
, for t ̸= t′

= n−2
n∑

i=1

n∑
j=1

σ2ij = O
(
n−1

)
, using (A.7),

which establishes (A.11) and (A.10). To prove (A.12) set zit = uitui◦ − T−1σ2i , and write

bn,t = 1
n

∑n
i=1 zit. Also note that uitui◦ = T−1

∑T
s=1 uituis, and given that {uit} is serially

independent then E(zit) = 0 and E(bn,t) = 0. and

V ar(bn,t) = n−2
n∑

i=1

n∑
j=1

E (zitzjt) = n−2
n∑

i=1

n∑
j=1

E(uitujtui◦uj◦)− T−2σ̄4n

= n−2T−2
n∑

i=1

n∑
j=1

T∑
s=1

T∑
s′=1

E
(
uitujtuisujs′

)
− T−2σ̄4n. (A.16)

Also E
(
uitujtuisujs′

)
= 0 for all t if s ̸= s′. We are left with one case where s = s′ = t, and one

case where s = s′ ̸= t. Hence

n∑
i=1

n∑
j=1

T∑
s=1

T∑
s′=1

E
(
uitujtuisujs′

)
=

n∑
i=1

n∑
j=1

T∑
s=1

E (uitujtuisujs)

=
n∑

i=1

n∑
j=1

T∑
s=1,s=t

E (uitujtuisujs) +
n∑

i=1

n∑
j=1

T∑
s=1,s ̸=t

E (uitujtuisujs)

=

n∑
i=1

n∑
j=1

E
(
u2itu

2
jt

)
+

n∑
i=1

n∑
j=1

T∑
s=1,s ̸=t

E (uitujt)E (uisujs)

=
n∑

i=1

n∑
j=1

[
Cov

(
u2it, u

2
jt

)
+ σ2i σ

2
j

]
+ (T − 1)

n∑
i=1

n∑
j=1

σ2ij ,

and hence

n∑
i=1

n∑
j=1

T∑
s=1

T∑
s′=1

E
(
uitujtuisujs′

)
=

n∑
i=1

n∑
j=1

Cov
(
u2it, u

2
jt

)
+

(
n∑

i=1

σ2i

)2

+ (T − 1)

n∑
i=1

n∑
j=1

σ2ij ,
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V ar(bn,t) =n
−2T−2

n∑
i=1

n∑
j=1

T∑
s=1

T∑
s′=1

E
(
uitujtuisujs′

)
− T−2σ̄4n

= T−2n−2
n∑

i=1

n∑
j=1

Cov
(
u2it, u

2
jt

)
+ T−2σ̄4n + (T − 1)

n∑
i=1

n∑
j=1

σ2ij − T−2σ̄4n.

Using this result in (A.16) we have

V ar(bn,t) = n−2T−2
n∑

i=1

n∑
j=1

Cov
(
u2it, u

2
jt

)
+
T − 1

T 2

n−2
n∑

i=1

n∑
j=1

σ2ij

 .

Now using (A.9) and (A.7) we have V ar(bn,t) = O
(
T−1n−1

)
, which establishes (A.13), and

result (A.12) follows by Markov inequality.

Lemma A.3 Consider the n×T error matrix UnT = (u1◦,u2◦, ...,un◦)
′ , where ui◦ = (ui1, ui2, ..., uiT )

′ ,

the n × k matrix of factor loadings, Bn = (β◦1,β◦2, ...,β◦K), where β◦k = (β1k, β2k, ..., βnk)
′,

the n × 1 vector of pricing errors ηn = (η1, η2, ..., ηn)
′, with the pervasiveness coefficient, αη,

the observed factors, fk = (fk1, fk2, ..., fkT )
′ are strong (with αk = 1, for k = 1, 2, ...,K),

the missing factor gt, has strength αγ < 1/2, GT = MTF (F′MTF)
−1, F = (f1, f2, ..., fK),

Mn = In − 1
nτnτ

′
n, un◦ = (u1◦, u2◦, ..., un◦)

′, ui◦ = T−1
∑T

t=1 uit, σ
2
n = n−1

∑n
i=1 σ

2
i , and τn

and τT are, respectively, n× 1 and T × 1 vectors of ones. Suppose that Assumptions 1, 3, 4, 2

and 5 hold. Then

n−1B′
nMnηn = Op

(
n−1+αη

)
, (A.17)

n−1B′
nMnun◦ = Op

(
T−1/2n−1/2

)
, (A.18)

n−1B′
nMnUnTGT = Op

(
T−1/2n−1/2

)
, (A.19)

n−1G′
TU

′
nTMnηn = Op

(
T−1/2n−1+

αη+αγ
2

)
, (A.20)

n−1G′
TU

′
nTMnun◦ = Op

(
T−1n−1/2

)
, (A.21)

G′
T

(
n−1U′

nTMnUnT − σ̄2nIT
)
GT = Op

(
T−1n−1/2

)
. (A.22)

Proof. To establish (A.17) we first note that the kth element of n−1B′
nMnηn can be written

as

πk,n = n−1
n∑

i=1

(
βik − β̄k

)
ηi, (A.23)

where β̄k = n−1τ ′
nβ◦k. Since ηj and βik are distributed independently for all i and j, then

E (πk,n) = 0, 22

E (|πk,n| |ηn ) = n−1
n∑

i=1

E
∣∣βik − β̄k

∣∣ |ηi| ≤ [sup
i,k

E
∣∣βik − β̄k

∣∣](n−1
n∑

i=1

|ηi|

)
= O

(
n−1+αη

)
,

for k = 1, 2, ...,K, and by Markov inequality we have n−1B′
nMnηn = Op

(
n−1+αη

)
, as required.

22Note that supik E
∣∣βik − β̄k

∣∣ < C follows from supiE |βik|2 < C, required by Assumption 2.
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To establish (A.18), noting that

n−1u′
n◦MnBn =

[
n−1ū′

n◦
(
β◦1 − τnβ̄1

)
, n−1ū′

n◦
(
β◦2 − τnβ̄2

)
, ..., n−1ū′

n◦
(
β◦K − τnβ̄K

)]
,

and the kth element of n−1B′
nMnun◦ is given by ck,nT = n−1

∑n
i=1

(
βik − β̄k

)
ūi◦. We have

E (ck,nT ) = 0, and V ar (ck,nT |β◦k ) = n−2
∑n

i=1

∑n
j=1

(
βik − β̄k

) (
βjk − β̄k

)
E (ui◦uj◦) , with

E (ui◦uj◦) = T−1σij . Hence (recalling that Vu = (σij))

V ar (cnT,k) = T−1n−2
n∑

i=1

n∑
j=1

σijE
[(
βik − β̄k

) (
βjk − β̄k

)]
, (A.24)

and by Cauchy–Schwarz inequality and Assumption 2 we have E
[(
βik − β̄k

) (
βjk − β̄k

)]
≤[

E
(
βik − β̄k

)2]1/2 [
E
(
βjk − β̄k

)2]1/2
< C. Hence, V ar (cnT,k) ≤ CT−1n−2

∑n
i=1

∑n
j=1 |σij |.

Since αγ < 1/2, then by (A.7) we have n−1
∑n

i=1

∑n
j=1 |σij | = O(1) and V ar (cnT,k) = O(T−1n−1).

Thus by Markov inequality it follows that cnT,k = Op

(
T−1/2n−1/2

)
, for k = 1, 2, ...,K, and

(A.18) follows. To establish (A.19) using GT = MTF (F′MTF)
−1 we have

n−1B′
nMnUnTGT = n−1T−1

(
B′

nMnUnTMTF
) (
T−1F′MTF

)−1
,

and since
(
T−1F′MTF

)−1
is a positive definite matrix then it is sufficient to consider the prob-

ability order of the K ×K matrix T−1n−1B′
nMnUnTMTF = (qkk′), where

qkk′ = T−1n−1
n∑

i=1

T∑
t=1

(
βik − β̄k

) (
fk′t − f̄k′

)
uit = n−1

n∑
i=1

(
βik − β̄k

)
ψiT ,

where ψiT = T−1
∑T

t=1

(
fk′t − f̄k′

)
uit. Thus

V ar (qkk′ |β◦k ) = n−2
n∑

i=1

n∑
j=1

(
βik − β̄k

) (
βjk − β̄k

)
Cov (ψiT , ψjT ) . (A.25)

Also

Cov (ψiT , ψjT |F) = E (ψiTψjT |F) = T−2
T∑
t=1

T∑
t′=1

(
fk′t − f̄k′

) (
fk′t′ − f̄k′

)
E
(
uitujt′

)
,

and E(uitujt′) = σij for t = t′ and 0 otherwise (t ̸= t′). Then,

Cov (ψiT , ψjT |F) = T−2
T∑
t=1

(
fk′t − f̄k′

)2
E (uitujt) = σijT

−2
T∑
t=1

(
fk′t − f̄k′

)2
.

Using this result in (A.25) now yields

V ar (qkk′) = T−1n−1

[
T−1

T∑
t=1

E
(
fk′t − f̄k′

)2]
n−1

n∑
i=1

n∑
j=1

σijE
[(
βik − β̄k

) (
βjk − β̄k

)]
.

The first term of the above is bounded since by assumption ft is stationary. The second

term is bounded as established above (see the derivations below (A.24)). Hence V ar (qkk′) =

O(T−1n−1) and result (A.19) follows. To establish (A.20) note that n−1G′
TU

′
nTMnηn =
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(
T−1F′MTF

)−1 (
n−1T−1F′MTU

′
nTMnηn

)
, where

(
T−1F′MTF

)−1
= Op(1). Also the kth

element of n−1T−1F′MTU
′
nTMnηn is given by pk = T−1

∑T
t=1

(
fkt − f̄k

)
cn,t, where cn,t =

n−1
∑n

i=1 uitηi = n−1η′
nu◦t. Under Assumption (4) fkt and cn,t are distributed independently,

E(pn,t) = 0, and cn,t are also serially uncorrelated we have V ar(pk) = T−2
∑T

t=1E
(
fkt − f̄k

)2
V ar(cn,t).

Also noting that V ar(cn,t |η ) = n−2η′nVuηn, then

V ar(pk) =

[
T−1

T∑
t=1

E
(
fkt − f̄k

)2] (
T−1n−2η′

nVuηn

)
.

The first term is bounded, and it follows that

V ar(pk |ηn ) < CT−1n−2η′
nVuηn ≤ CT−1n−2

(
η′
nηn

)
λmax(Vu) = O

(
T−1n−2+αη+αγ

)
,

and (A.20) follows. To establish (A.21) note that

n−1G′
TU

′
nTMnun◦ =

(
T−1F′MTF

)−1 (
n−1T−1F′MTU

′
nTMnun◦

)
,

and the kth element of n−1T−1F′MTU
′
nTMnun◦ = (dk) is given by

dk =
1

nT

T∑
t=1

(fkt − f̄k)
n∑

i=1

(uit − ūi◦) ūi◦ =
1

nT

T∑
t=1

n∑
i=1

(fkt − f̄k)(uitūi◦ − ūi◦ūi◦)

=
1

T

T∑
t=1

(fkt − f̄k)

[
n−1

n∑
i=1

(
uitūi◦ − T−1σ̄2n

)]
=

1

T

T∑
t=1

(fkt − f̄k)bn,t,

where bn,t = n−1
∑n

i=1

(
uitūi◦ − T−1σ2i

)
. By assumption uit and fkt′ are distributed indepen-

dently and bn,t are also serially independent. Then E(dk) = 0, and

V ar(dk) =
1

T 2

T∑
t=1

(fkt − f̄k)
2V ar(bn,t).

Now using (A.13) in Lemma A.2, V ar(bn,t) = O
(
T−1n−1

)
, and overall we have V ar(dk) =

O
(
T−2n−1

)
, and by Markov inequality dk = Op

(
T−1n−1/2

)
, as required. Finally, consider

(A.22) and note that

G′
T

(
n−1U′

nTMnUnT − σ̄2nIT
)
GT

= T−2
(
T−1F′MTF

)−1
F′MT

[
n−1U′

nTMnUnT − σ̄2nIT
]
MTF

(
T−1F′MTF

)−1
.

Since by assumption
(
T−1F′MTF

)−1
is a positive definite matrix for all T , and K is fixed then

it is sufficient to derive the probability order of the (k, k′) element of of the K × K matrix

∆nT = (δkk′)

∆nT = T−2F′MT

[
n−1U′

nTMnUnT − σ̄2nIT
]
MTF

= T−1
[
n−1T−1F′MTU

′
nTMnUnTMTF− σ̄2nT

−1F′MTF
]

= T−1
(
n−1T−1AMnA

′−σ̄2nT−1F′MTF
)
= T−1 (S−R) , (A.26)

where A = F′MTU
′
nT = (aki). Denote the (k, k′) elements of S = n−1T−1AMnA

′ and R =
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σ̄2nT
−1F′MTF by skk′ and rkk′ , respectively, and note that

rkk′ =

(
n−1

n∑
i=1

σ2i

)[
T−1

T∑
t=1

(fkt − f̄k)(fk′t − f̄k′)

]
(A.27)

and skk′ = n−1T−1
∑n

i=1 (aki − āk) ak′i, where aki =
∑T

t=1 f̃ktuit, and āk =
∑T

t=1 f̃ktū◦t, where

f̃kt = fkt − f̄k. Then

skk′ = n−1T−1
n∑

i=1

[
T∑
t=1

f̃kt (uit − ū◦t)

][
T∑
t=1

f̃k′tuit,

]

= n−1T−1
T∑
t=1

T∑
t′=1

n∑
i=1

(uit − ū◦t)uit′ f̃ktf̃k′t′

= n−1T−1
T∑
t=1

T∑
t′=1

n∑
i=1

uituit′ f̃ktf̃k′t′ − T−1
T∑
t=1

T∑
t′=1

ū◦tū◦t′ f̃ktf̃k′t′ . (A.28)

Using this result and rkk′ given by (A.27) in (A.26) now yields

Tδkk′ = (skk′ − rkk′)

= n−1T−1
T∑
t=1

T∑
t′=1

n∑
i=1

uituit′ f̃ktf̃k′t′ − T−1
T∑
t=1

T∑
t′=1

ū◦tū◦t′ f̃ktf̃k′t′

− σ̄2n

(
T−1

T∑
t=1

f̃ktf̃k′t

)
− σ̄2n

(
T−1

T∑
t=1

f̃ktf̃k′t

)
.

Also writing the first two terms as sums of the elements with t = t′ and those with t ̸= t′, we

have

Tδkk′ = n−1T−1
T∑
t=1

n∑
i=1

u2itf̃ktf̃k′t − σ̄2n

(
T−1

T∑
t=1

f̃ktf̃k′t

)
− T−1

T∑
t=1

ū2◦tf̃ktf̃k′t+

+ n−1T−1
T∑

t̸=t′

n∑
i=1

uituit′ f̃ktf̃k′t′ − T−1
T∑

t̸=t′

ū◦t′ f̃ktf̃k′t′

= T−1
T∑
t=1

an,ttf̃ktf̃k′t − T−1
T∑
t=1

T∑
t′=1

ū◦tū◦t′ f̃ktf̃k′t + T−1
T∑

t̸=t′

an,tt′ f̃ktf̃k′t′ ,

T δkk′ = Akk′ −Bkk′ + Ckk′ , (A.29)

where an,tt = n−1
∑n

i=1

(
u2it − σ2i

)
, and an,tt′ = n−1

∑n
i=1 uituit′ . Since uit and fkt′ are dis-

tributed independently then E (Akk′) = 0, and

V ar (Akk′) = T−2
T∑
t=1

T∑
t′=1

E
(
an,ttan,tt′

)
E
(
f̃ktf̃kt′ f̃k′tf̃k′t′

)
.

Since uit is serially independent, then E
(
an,ttan,tt′

)
= 0 for t ̸= t′ and

V ar (Akk′) = T−2
T∑
t=1

E
(
a2n,tt

)
E
(
f̃2ktf̃

2
k′t

)
≤

[
sup
k,k′,t

E
(
f̃2ktf̃

2
k′t

)][
T−2

T∑
t=1

E
(
a2n,tt

)]
.
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supk,k′,tE
(
f̃2ktf̃

2
k′t

)
< C since by assumption supt,kE

(
f̃4kt

)
< C. Also (using (A.8) of Lemma

A.2)

E
(
a2n,tt

)
= n−2

n∑
i=1

n∑
j=1

Cov
(
u2it, u

2
jt

)
= O

(
n−1

)
,

and we have Akk′ = Op

(
T−1n−1/2

)
. Now write Bkk′ as

Bkk′ = T−1
T∑
t=1

T∑
t′=1

ū◦tū◦t′ f̃ktf̃k′t =

(
T−1/2

T∑
t=1

ū◦tf̃kt

)(
T−1/2

T∑
t=1

ū◦tf̃k′t

)
= q◦kq◦k′ ,

where q◦k = T−1/2
∑T

t=1 ū◦tf̃kt. Also E(q◦k) = 0, and V ar (q◦k) = T−1
∑T

t=1E
(
ū2◦t
)
E
(
f̃2kt

)
=

E
(
ū2◦t
) [
T−1

∑T
t=1E

(
f̃2kt

)]
, where E

(
ū2◦t
)
= n−2

∑n
i=1

∑n
j=1 σij = O

(
n−1

)
. Hence, T−1/2

∑T
t=1 ū◦tf̃kt =

Op

(
n−1/2

)
, and Bkk′ = Op

(
n−1

)
. Finally, consider Ckk′ = T−1

∑T
t̸=t′ an,tt′ f̃ktf̃k′t′ , and note that

E
(
an,tt′

)
= n−1

∑n
i=1E (uituit′) = 0 for all t ̸= t′,which ensures that E (Ckk′) = 0. Further,

V ar (Ckk′) = T−2
T∑

t̸=t′

T∑
s ̸=s′

E
(
an,tt′an,ss′

)
E
(
f̃ktf̃k′t′ f̃ksf̃k′s′

)
= T−2

T∑
t̸=t′

E
(
a2n,tt′

)
E
(
f̃2ktf̃

2
k′t′

)
,

E
(
a2n,tt′

)
= n−2

∑n
i=1

∑n
j=1 σ

2
ij . See (A.11) in Lemma A.2. Since by assumption E

(
f̃4kt

)
< C,

then we have

V ar (Ckk′) =

n−2
n∑

i=1

n∑
j=1

σ2ij

T−2
T∑

t̸=t′

E
(
f̃2ktf̃

2
k′t′

) < C

n−2
n∑

i=1

n∑
j=1

σ2ij

 ,

and using (A.7), it follows that V ar (Ckk′) = O
(
n−1

)
, and hence Ckk′ = Op

(
n−1/2

)
. Using this

result and the ones obtained for Akk′ and Bkk′ in (A.29) now yields

δkk′ = T−1
[
Op

(
T−1n−1/2

)
+Op

(
n−1
)
+Op

(
n−1/2

)]
= Op

(
T−1n−1/2

)
,

as required.

B Proof of theorems in the paper

B.1 Proof of theorem 1

Consider the two-pass estimator of λ defined by (25), which we reproduce here for convenience

λ̂nT =
(
B̂′

nTMnB̂nT

)−1
B̂′

nTMnr̄n◦,

where B̂nT = (β̂1, β̂2, ..., β̂n)
′, r̄n◦ = (r̄1◦, r̄2◦, ..., r̄n◦)

′, r̄i◦ = T−1
∑T

t=1 rit,

β̂i = (F′MTF)
−1F′MT ri◦, (B.1)

and ri◦ = (ri1, ri2, ..., riT )
′. Under the factor model (22)

ri◦ = aiτT + Fβi + ui◦, (B.2)
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where ui◦ = (ui1, ui2, ..., uiT )
′, and hence

β̂i = βi + (F′MTF)
−1F′MTui◦. (B.3)

Stacking these results over i yields

B̂nT = Bn +UnTGT , (B.4)

where UnT = (u1◦,u2◦, ...,un◦)
′, and

GT = MTF(F
′MTF)

−1. (B.5)

Also

r◦t = αn +Bnft + u◦t, (B.6)

where u◦t = (u1t, u2t, ..., unt)
′, αn = (α1,α2, ..., αn)

′. Using (9) in the paper,

αn = cτn +Bnϕ0 + ηn, (B.7)

and (B.6) can be written as r◦t = cτn +Bn (ϕ0 + ft) + u◦t + ηn. Now averaging over t yields

r̄n◦ = cτn +Bnλ
∗
T + ūn◦+ηn, (B.8)

where r̄n◦ = T−1
∑T

t=1 r◦t = (r̄1◦, r̄2◦, ..., r̄n◦)
′, ūn◦ = T−1

∑T
t=1 u◦t = (ū1◦, ū2◦, ..., ūn◦)

′, and

λ∗
T = ϕ0 + µ̂T = λ0 + (µ̂T − µ0) . (B.9)

Using (B.8) in (25) we have

λ̂nT =
(
B̂′

nTMnB̂nT

)−1
B̂′

nTMn (cτn +Bnλ
∗
T + ūn◦+ηn)

=
(
B̂′

nTMnB̂nT

)−1
B̂′

nTMn

[
B̂nTλ

∗
T −

(
B̂nT −Bn

)
λ∗
T + ūn◦+ηn

]
. (B.10)

Also using (B.9), and recalling that λ0 = ϕ0+µ0, we have λ̂nT −λ∗
T = λ̂nT −λ0− (λ∗

T − λ0) =(
λ̂nT − λ0

)
− (ϕ0 + µ̂T − λ0) , which yields λ̂nT − λ0 = λ̂nT − λ∗

T + (µ̂T − µ0) . Furthermore,

λ̂nT − λ∗
T = ϕ̂nT − ϕ0,where ϕ̂nT is the two-step estimator of ϕ0 given by (32). This results

follows noting that λ̂nT = ϕ̂nT + µ̂T , and λ∗
T = ϕ0 + µ̂T . Therefore,

λ̂nT − λ0 =
(
ϕ̂nT − ϕ0

)
+ (µ̂T − µ0) . (B.11)

We focus on deriving the asymptotic distribution of λ̂nT −λ∗
T = ϕ̂nT −ϕ0 since the panel (cross

section) dimension does not apply to the second component, (µ̂T − µ0). Now using (B.4) in

(B.10) and after some simplifications we have(
B̂′

nTMnB̂nT

)
λ̂nT = B̂′

nTMn

[
B̂nTλ

∗
T −

(
B̂nT −Bn

)
λ∗
T + ūn◦+ηn

]
,

or (
n−1B̂′

nTMnB̂nT

)(
ϕ̂nT − ϕ0

)
= pnT , (B.12)
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where

pnT = n−1B′
nMnηn + n−1G′

TU
′
nTMnηn + n−1B′

nMnūn◦ + n−1G′
TU

′
nTMnūn◦ (B.13)

− n−1B′
nMnUnTGTλ

∗
T − n−1G′

TU
′
nTMnUnTGTλ

∗
T ,

also

n−1B̂′
nTMnB̂nT = n−1 (Bn+UnTGT )

′Mn (Bn+UnTGT ) (B.14)

= n−1
(
B′

nMnBn

)
+ n−1

(
G′

TU
′
nTMnBn

)
+

n−1
(
B′

nMnUnTGT

)
+ n−1

(
G′

TU
′
nTMnUnTGT

)
,

Now using the results in Lemma A.3 for case where all the observed factors are strong, for a

fixed T and as n→ ∞ we have

n−1
(
B̂′

nTMnB̂nT

)
= Σββ + σ̄2G′

TGT + op(1), (B.15)

where, using (B.5),

G′
TGT =

1

T

(
F′MTF

T

)−1

. (B.16)

Similarly, for the terms on the right hand side of (B.13) we have

pnT = − σ̄
2

T

(
F′MTF

T

)−1

λ∗
T +Op

(
n−1+αη

)
+Op

(
T−1/2n−1/2

)
+Op

(
T−1/2n−1+

αη+αγ
2

)
.

It is now easily seen that for a fixed T , and if αη < 1 and αγ < 1/2, then as n→ ∞

pnT →p −
σ̄2

T

(
F′MTF

T

)−1

λ∗
T .

Also, for a fixed T by Assumption 1, σ̄2

T

(
FMTF

T

)−1
is a positive definite matrix, and by (B.15)

n−1B̂′
nTMnB̂nT →p Σββ + σ̄2

T

(
FMTF

T

)−1
which is also a positive definite matrix, noting that

under Assumption 2 Σββ is a positive definite matrix. Using these results in (B.12) we now have

ϕ̂nT−ϕ0 = − σ̄
2

T

[
Σββ + σ̄2

1

T

(
F′MTF

T

)−1
]−1(

F′MTF

T

)−1

λ∗
T+op(1), for a fixed T as n→ ∞.

The bias of estimating λ0 by the two-step estimator also contains the bias of estimating µ0.

Using the above result in (B.11) we now have (for a fixed T and as n→ ∞)

λ̂nT − λ0 = (µ̂T − µ0)−
σ̄2

T

[
Σββ + σ̄2

1

T

(
F′MTF

T

)−1
]−1(

F′MTF

T

)−1

λ∗
T + op(1),

which establishes Theorem 1.
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B.2 Proof of theorem 2

Using the expression for ûit given by (28), we have ûit = ai − α̂iT −
(
β̂i,T − βi

)′
ft + uit. Since

ûit are OLS residuals then for each i, we also have T−1
∑T

t=1 ûit = 0, and the above can be

written equivalently as ûit = uit − ūi◦ −
(
β̂i,T − βi

)′
(ft − µ̂T ) , for i = 1, 2, ..., n, and stacking

over i now yields

ût = ut − ū−
(
B̂nT−Bn

)
(ft − µ̂T ) = ut − ū−UnTGT (ft − µ̂T ) , (B.17)

and stacking over t

ÛnT = UnTMT −UnTGTF
′MT = UnT

(
MT −GTF

′MT

)
.

But GT= MTF (F′MTF)
−1 , and we have

ÛnT = UnTRT , RT = MT −MTF
(
F′MTF

)−1
F′MT ,

where R2
T = RT = R′

T , Tr (RT ) = T − 1−K. Then

̂̄σ2nT =

∑T
t=1

∑n
i=1 û

2
it

n(T −K − 1)
=
Tr
(
n−1Û′

nT ÛnT

)
T −K − 1

.

Also

n−1T−1E
[
Tr
(
U′

nTUnT

)]
= n−1T−1E

(
T∑
t=1

n∑
i=1

u2it

)
= n−1

n∑
i=1

σ2i = σ̄2n,

E
(
n−1U′

nTUnT

)
= n−1

n∑
i=1

E
(
ui◦u

′
i◦
)
= σ̄2nIT .

Let v = T −K − 1 and note that

v̂̄σ2nT = Tr
(
n−1Û′

nT ÛnT

)
= Tr

(
n−1U′

nTUnTRT

)
=

= Tr
(
n−1U′

nTUnTMT

)
− Tr

(
n−1F′MTU

′
nTUnTMTF

(
F′MTF

)−1
)

= Tr
(
n−1U′

nTUnT

)
− T−1τ ′T

(
n−1U′

nTUnT

)
τT − Tr

[
Q′ (n−1U′

nTUnT

)
Q
]

where Q = MTF
(
T−1F′MTF

)−1/2
. Consider the first term and note that

n−1Tr
(
U′

nTUnT

)
=

T∑
t=1

[
n−1

n∑
i=1

(
u2it − σ2i

)]
+ T σ̄2n. (B.18)

Similarly

T−1τ ′T
(
n−1U′

nTUnT

)
τT = T−1n−1τ ′T

[
U′

nTUnT − E
(
U′

nTUnT

)]
τT + σ̄2n,

T r
[
Q′ (n−1U′

nTUnT

)
Q
]
= Tr

[
Q′ [U′

nTUnT − E
(
U′

nTUnT

)]
Q
]
+Kσ̄2n.

Hence ̂̄σ2nT − σ̄2n = (T/v) (anT + bnT + cnT ) , (B.19)
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where anT = T−1
∑T

t=1

[
n−1

∑n
i=1

(
u2it − σ2i

)]
, bnT = T−2n−1τ ′T [U′

nTUnT − E (U′
nTUnT )] τT ,

and cnT = T−1n−1Tr [Q′ [U′
nTUnT − E (U′

nTUnT )]Q]. Due to the independence of F and UnT ,

we have E(anT ) = 0, E(bnT ) = 0 and E(cnT ) = 0, and for any fixed n and T E
(̂̄σ2nT − σ̄2n

)
= 0,

and for a fixed T, limn→∞E
(̂̄σ2nT) = σ̄2, and result (61) follows. To establish the probability

order of ̂̄σ2nT − σ̄2n, we consider the probability orders of anT , bnT , and cnT in turn, noting that

that T/v = T/(T −K − 1) = O(1). For anT , using result (A.8) in Lemma A.2, and noting that

uit are serially independent we have

anT = Op

(
T−1/2n−1/2

)
. (B.20)

Consider now bnT and note that bnT = T−2n−1
∑n

i=1 [τ
′
Tui◦u

′
i◦τT − E (τ ′Tui◦u

′
i◦τT )] .Also τ

′
Tui◦u

′
i◦τT =∑T

t=1

∑T
t′=1 uituit′ , and

bnT = T−2n−1
n∑

i=1

T∑
t=1

T∑
t′=1

[uituit′ − E (uituit′)]

= T−2
T∑
t=1

n−1
n∑

i=1

(
u2it − σ2i

)
+ T−2

T∑
t̸=t′

(
n−1

n∑
i=1

uituit′

)

= T−2
T∑
t=1

an,tt + T−2
T∑

t̸=t′

an,tt′ ,

where an,tt and an,tt′ are both shown in Lemma A.2 to be Op(n
−1/2). See equations (A.8) and

(A.10). Therefore, given that an,tt and an,tt′ with t ̸= t′ are also distributed independently over

t we have

bnT = Op(n
−1/2T−1/2). (B.21)

Denote the kth column of Q by qk = (qk1, q2k, ..., qTk)
′ (a T × 1 vector) and write cnT as

cnT =

K∑
k=1

T−1

[
n−1

n∑
i=1

q′
k

[
ui◦u

′
i◦ − E

(
ui◦u

′
i◦
)]

qk

]

=
K∑
k=1

T−1

[
n−1

n∑
i=1

T∑
t=1

T∑
t′=1

qktqkt′ [uituit′ − E (uituit′)]

]
.

Consider the kth term of the above sum, and note that

cnT,k = T−1n−1
n∑

i=1

T∑
t=1

T∑
t′=1

qktqkt′ [uituit′ − E (uituit′)] = T−1
T∑
t=1

T∑
t′=1

qktqkt′an,tt′ ,

where an,tt′ = n−1
∑n

i=1 [uituit′ − E (uituit′)]. is defined by (A.8) and (A.10) in Lemma A.2,

with V ar(an,tt′) = O
(
n−1

)
for all t and t′. Also an,tt′ and an,ss′ are distributed independently

if t or t′ differ from s or s′. Therefore, for all t and t′ for all t

V ar (cnT,k) = T−2
T∑
t=1

T∑
t′=1

q2ktq
2
kt′V ar(an,tt′) ≤ O

(
n−1

)(
T−2

T∑
t=1

q2kt

)
.

But it is easily verified thatQ′Q = IK which yields
∑T

t=1 q
2
kt = 1, and V ar (cnT,k) = O

(
T−2n−1

)
.
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Hence, cnT,k = Op(T
−1n−1/2), for k = 1, 2, ...,K, which establishes that cnT = Op(T

−1n−1/2)̇.

The order result in (62) now follows using this result, (B.20) and (B.21) in (B.19).

B.3 Proof of theorem 3

The bias-corrected estimator of ϕ0 is given by (33) which we reproduce here and re-write as

HnT

(
ϕ̃nT − ϕ0

)
= snT , (B.22)

where

snT =
B̂′

nTMnânT
n

+ T−1̂̄σ2nT (F′MTF

T

)−1

µ̂T −HnT ϕ0, (B.23)

HnT =
B̂′

nTMnB̂nT

n
− T−1̂̄σ2nT (F′MTF

T

)−1

. (B.24)

Also ânT= r̄n◦ − B̂nT µ̂T , and r̄n◦ = cτn +Bnλ
∗
T + ūn◦+ηn (see (B.8)). Using these results and

noting that λ∗
T = λ0 + (µ̂T − µ0) = ϕ0 + µ̂T , we have

α̂nT = cτn +Bnϕ0 + ūn◦ + ηn −
(
B̂nT −Bn

)
µ̂T

and ūn◦ = (ū1◦, ū2◦, ..., ūn◦)
′. Then,

B̂′
nTMnânT =

(
B̂′

nTMnBn

)
ϕ0 + B̂′

nTMnūn◦ (B.25)

+ B̂′
nTMnηn − B̂′

nTMn

(
B̂nT −Bn

)
µ̂T .

Also

B̂nT = Bn+UnTGT , (B.26)

where UnT = (u1◦,u2◦, ...,un◦)
′ and GT is defined by (B.16). Using these results together with

(B.24), the right hand side of (B.22) can be written as

snT =
B′

nMnηn

n
+

G′
TU

′
nTMnηn

n
+

G′
TU

′
nTMnūn◦
n

− B′
nMnUnTGTλ

∗
T

n

−G′
T

(
U′

nTMnUnT

n
− ̂̄σ2nT)GTλ

∗
T ,

where the last term can be decomposed as

G′
T

(
U′

nTMnUnT

n
− ̂̄σ2nT)GTλ

∗
T = G′

T

(
U′

nTMnUnT

n
− σ̄2n

)
GTλ

∗
T −

(̂̄σ2nT − σ̄2n

)
G′

TGTλ
∗
T .

Similarly, using (B.14), we have

HnT = n−1
(
B′

nMnBn

)
+ n−1

(
G′

TU
′
nTMnBn

)
+

n−1
(
B′

nMnUnTGT

)
+G′

T

(
U′

nTMnUnT

n
− σ̄2n

)
GT − T−1

(̂̄σ2nT − σ̄2n

)(F′MTF

T

)−1

.
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Using Theorem 2 and since by assumption T−1F′MTF is positive definite, then(̂̄σ2nT − σ̄2n

)(F′MTF

T

)−1

= Op

(
T−1/2n−1/2

)
.

Also using results in Lemma A.3, we have

HnT = n−1
(
B′

nMnBn

)
+Op

(
T−1/2n−1/2

)
. (B.27)

Hence, HnT →p Σββ for a fixed T as n→ ∞, so long as αγ < 1/2. Note also that by Assumption

Σββ is positive definite. Further

snT = n−1
(
B′

nMnūn◦ −B′
nMnUnTGTλ

∗
T

)
+ n−1

(
B′

n +G′
TU

′
nT

)
Mnηn + n−1G′

TU
′
nTMnūn◦

(B.28)

−G′
T

(
U′

nTMnUnT

n
− σ̄2n

)
GTλ

∗
T + T−1

(̂̄σ2nT − σ̄2n

)(F′MTF

T

)−1

λ∗
T .

Using (A.17) and (A.20) (in Lemma A.3) we have

n−1B′
nMnηn + n−1G′

TU
′
nTMnηn = Op

(
n−1+αη

)
+Op

(
T−1/2n−1+

αη+αγ
2

)
,

and (A.21) and (A.22)

n−1G′
TU

′
nTMnūn◦ −G′

T

(
U′

nTMnUnT

n
− σ̄2n

)
GTλ

∗
T = Op

(
T−1n−1/2

)
.

Further by (62)

T−1
(̂̄σ2nT − σ̄2n

)(F′MTF

T

)−1

λ∗
T = Op

(
T−3/2n−1/2

)
. (B.29)

Hence

snT = n−1
(
B′

nMnūn◦ −B′
nMnUnTGTλ

∗
T

)
+Op

(
n−1+αη

)
(B.30)

+Op

(
T−1/2n−1+

αη+αγ
2

)
+Op

(
T−1n−1/2

)
+Op

(
T−3/2n−1/2

)
.

Using this result and (B.27) in (B.22) now yields (63), as required. To derive the asymptotic

distribution of ϕ̃nT − ϕ0 since by assumption αη + αγ < 1, then the dominant term of snT is

given by

n−1
(
B′

nMnūn◦ −B′
nMnUnTGTλ

∗
T

)
= Op

(
T−1/2n−1/2

)
, (B.31)

and to ensure that we end up with a non-degenerate, stable limiting distribution,
(
ϕ̃nT − ϕ0

)
needs to be scaled by

√
nT with n and T → ∞, jointly. To this end we first note that when T

is fixed HnT →p Σββ , as n→ ∞ and we have

√
nT
(
ϕ̃nT − ϕ0

)
a∼ Σ−1

ββ

(√
nT snT

)
. (B.32)
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Using (B.30)

√
nT snT = ξnT +Op

(
n−

1
2
+

αη+αγ
2

)
+Op

(
T 1/2n−1/2+αη

)
+Op

(
T−1/2

)
,

where

ξnT = T 1/2n−1/2
(
B′

nMnūn◦ −B′
nMnUnTGTλ

∗
T

)
. (B.33)

Using the above results in (B.32) we now have

√
nT
(
ϕ̃nT − ϕ0

)
a∼ Σ−1

ββ

[
ξnT +Op

(
n−

1
2
+

αη+αγ
2

)
+Op

(
T 1/2n−1/2+αη

)
+Op

(
T−1/2

)]
.

(B.34)

Therefore, when condition (T/n)1/2nαη → 0, as n and T → ∞, is met we have

√
nT
(
ϕ̃nT − ϕ0

)
a∼ Σ−1

ββξnT + op(1).

To derive the asymptotic distribution of ξnT , we note that ūn◦ = T−1UnTτT , and GTλ
∗
T =

T−1MTF(T
−1F′MTF)

−1λ∗
T . Then, using these results in (B.33)

ξnT = (ξk,nT ) = n−1/2T−1/2B′
nMnUnTaT , (B.35)

where aT = τT −MTF(T
−1F′MTF)

−1λ∗
T = (at). Also

s2a,T = T−1
T∑
t=1

a2t = T−1a′TaT = 1 + λ∗′
T (T

−1F′MTF)
−1λ∗

T , (B.36)

where λ∗
T = ϕ0 + µ̂T = λ0 + (µ̂T − µ0), and (µ̂T − µ0) = Op

(
T−1/2

)
. Further

s2a,T ≥ 1 and s2a,T ≤ 1 +
(
λ∗′
Tλ

∗
T

)
λmax

[
(T−1F′MTF)

−1
]
< C, (B.37)

and s2a = limT→∞ s2a,T = 1 + λ′
0Σ

−1
f λ′

0. The k
th element of ξnT is given by

ξk,nT = n−1/2T−1/2

n∑
i=1

T∑
t=1

at(βik − β̄k)uit,

and using (43) we have

ξk,nT =

(
T−1/2

T∑
t=1

atgt

)[
n−1/2

n∑
i=1

(βik − β̄k)γi

]

+ n−1/2T−1/2
n∑

i=1

T∑
t=1

at(βik − β̄k)vit.

Under Assumption 3 gt is distributed independently of f t (and hence of at), as well as being se-

rially independent. Also V ar(T−1/2
T∑
t=1

atgt) = s2a,T (recall that E(gt) = 0 and E(g2t ) = 1), and we

have T−1/2
T∑
t=1

atgt = Op(1). Further E
∣∣n−1/2

∑n
i=1(βik − β̄k)γi

∣∣ ≤ supi,k E
∣∣βik − β̄k

∣∣ (n−1/2
∑n

i=1 |γi|
)
=
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O(n−1/2+αγ ). Hence

ξk,nT = n−1/2T−1/2
T∑
t=1

n∑
i=1

at(βik − β̄k)vit +O(n−1/2+αγ )

= T−1/2
T∑
t=1

athnt +O(n−1/2+αγ ), (B.38)

where hnt = n−1/2
∑n

i=1(βik − β̄k)vit. Under Assumption 2, hnt = n−1/2
∑n

i=1(βik − β̄k)vit →d

N(0, ω2
k), for k = 1, 2, ...,K, where

ω2
k = p lim

n→∞
n−1

n∑
i=1

n∑
j=1

(βik − β̄k)(βjk − β̄k)σv,ij > 0,

and ω2
k ≤ supi,k E(βik − β̄k)

2 limn→∞ n−1
∑n

i=1

∑n
j=1 |σv,ij | < C. Also, since vit are serially

independent then there exists T0 such that for any fixed T > T0 and as n→ ∞

T−1/2
T∑
t=1

athnt →d N
(
0, ω2

k

(
1 + s2aT

))
,

where s2aT is defined by (B.36). Using this result in (B.38) and noting that αγ < 1/2, we also

have for any fixed T and as n→ ∞,

ξk,nT →d N
(
0, ω2

k

(
1 + s2aT

))
, for a fixed T > T0 and as n→ ∞.

This result extends readily to the case where n and T → ∞, jointly. In this case

ξk,nT →d N
(
0, ω2

k

(
1 + s2a

))
, where s2a = 1 + λ′

0Σ
−1
f λ0.

Similarly, We have (using uit = γigt + vit)

Cov
(
ξk,nT , ξk′,nT

)
= n−1T−1

n∑
i=1

n∑
j=1

T∑
t=1

a2t (βik − β̄k)(βjk′ − β̄k′)E (uitujt) =

(
1 + s2aT

)n−1
n∑

i=1

n∑
j=1

γiγj(βik − β̄k)(βjk′ − β̄k′)


+
(
1 + s2aT

)n−1
n∑

i=1

n∑
j=1

σv,ij(βik − β̄k)(βjk′ − β̄k′)

 .
But

E

∣∣∣∣∣∣n−1
n∑

i=1

n∑
j=1

γiγj(βik − β̄k)(βjk′ − β̄k′)

∣∣∣∣∣∣ ≤ sup
i,k,k′

∣∣(βik − β̄k)(βjk′ − β̄k′)
∣∣E(βik − β̄k)

2

n−1/2
n∑

j=1

|γi|


≤ sup

i,k
E(βik − β̄k)

2

n−1/2
n∑

j=1

|γi|

2

= O
(
n−1+2αγ

)
.
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and similarly∣∣∣∣∣∣n−1
n∑

i=1

n∑
j=1

σv,ij(βik − β̄k)(βjk′ − β̄k′)

∣∣∣∣∣∣ ≤ sup
i,k

E(βik − β̄k)
2n−1

n∑
i=1

n∑
j=1

|σv,ij | < C.

Hence Cov
(
ξk,nT , ξk′,nT

)
< C, for all k and k′. Using the above results in (B.35, and noting

that K is fixed, we have ξnT →d N
(
0,Vξ

)
, as n and T → ∞,where

Vξ =
(
1 + λ′

0Σ
−1
f λ0

)
p lim
n→∞

(
n−1B′

nMnVuMnBn

)
,

noting that s2a,T →p 1 + λ′
0Σ

−1
f λ0, where s

2
a,T is given by (B.36). Also recall from (B.34) that

√
nT
(
ϕ̃nT − ϕ0

)
= Σ−1

ββξnT + Op

(
n−

1
2
+

αη+αγ
2

)
+ Op

(
T 1/2n−1/2+αη

)
+ Op

(
T−1/2

)
. Hence,

result (67) follows since by assumption αη < 1/2, αγ < 1/2, and (T/n)1/2nαγ → 0.

B.4 Proof of theorem 4

Using (71) and (70) and replacing T−1
(
T−1F′MTF

)−1
by G′

TGT we have (see (B.5))

HnT (α)Dα

(
ϕ̃nT (α)− ϕ0

)
= qnT (α) , (B.39)

where

qnT (α) = D−1
α B̂′

nTMnânT + n̂̄σ2nTD−1
α G′

TGT µ̂T −HnT (α)Dαϕ0,

and

HnT (α) = D−1
α B̂′

nTMnB̂nTD
−1
α − n̂̄σ2nTD−1

α G′
TGTD

−1
α .

But

HnT (α) = nD−1
α HnTD

−1
α , and qnT (α) = nD−1

α snT , (B.40)

where snT andHnT are already defined by (B.23) and (B.24). Consider first the limiting property

of HnT (α), and using (B.26) note that

HnT (α) = D−1
α B′

nMnBnD
−1
α +D−1

α G′
TU

′
nTMnBnD

−1
α +

D−1
α B′

nMnUnTGTD
−1
α +D−1

α G′
TU

′
nTMnUnTGTD

−1
α − n̂̄σ2nTD−1

α G′
TGTD

−1
α ,

or

HnT (α) = D−1
α B′

nMnBnD
−1
α +D−1

α G′
TU

′
nTMnBnD

−1
α +D−1

α B′
nMnUnTGTD

−1
α

+ nD−1
α

[
G′

T

(
n−1U′

nTMnUnT

)
GT − ̂̄σ2nTG′

TGT

]
D−1

α .

Further

nD−1
α

[
G′

T

(
n−1U′

nTMnUnT

)
GT − ̂̄σ2nTG′

TGT

]
D−1

α

= nD−1
α

[
G′

T

(
n−1U′

nTMnUnT

)
GT − σ̄2nG

′
TGT

]
D−1

α −
(̂̄σ2nT − σ̄2n

)
nD−1

α G′
TGTD

−1
α .

But by (62) ̂̄σ2nT − σ̄2n = Op(T
−1/2n−1/2), and

∥∥D−1
α

∥∥ = λ
1/2
max

(
D−2

α

)
= n−αmin/2. Then, using
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results in Lemma A.3 we have∥∥D−1
α B′

nMnUnTGTD
−1
α

∥∥ ≤ n
∥∥D−1

α

∥∥2 ∥∥n−1B′
nMnUnTGT

∥∥ = Op

(
T−1/2n−αmin+1/2

)
,

and ∥∥∥nD−1
α G′

T

(
n−1U′

nTMnUnT − ̂̄σ2nT IT)GTD
−1
α

∥∥∥
≤ n

∥∥D−1
α

∥∥∥∥∥G′
T

(
n−1U′

nTMnUnT − ̂̄σ2nT IT)GT

∥∥∥ = Op

(
T−1n−αmin+1/2

)
.

Hence

HnT (α) = D−1
α B′

nMnBnD
−1
α +Op

(
T−1n−αmin+1/2

)
,

and HnT (α) →p Σββ(α), as n→ ∞, for a fixed T , so long as αmin > 1/2 > αγ . By Assumption

2, limn→∞
(
D−1

α B′
nMnBnD

−1
α

)
= Σββ(α) is a positive definite matrix. Using this result in

(B.39) we have

Dα

(
ϕ̃nT (α)− ϕ0

)
a∼ Σ−1

ββ (α)qnT (α), (B.41)

and (since Σββ(α) is positive definite,
∥∥∥Σ−1

ββ (α)
∥∥∥ < C)∥∥∥ϕ̃nT (α)− ϕ0

∥∥∥ ≤
∥∥D−1

α

∥∥∥∥∥Σ−1
ββ (α)

∥∥∥ ∥qnT (α)∥ ≤ Cn−αmin/2 ∥qnT (α)∥ .

Using (B.40)

∥qnT (α)∥ =
∥∥nD−1

α snT
∥∥ ≤ n1−αmin/2 ∥snT ∥ . (B.42)

Also from (B.30) we have

snT = n−1
(
B′

nMnūn◦ −B′
nMnUnTGTλ

∗
T

)
+Op

(
n−1+αη

)
(B.43)

+Op

(
T−1/2n−1+

αη+αγ
2

)
+Op

(
T−1n−1/2

)
.

Also using (B.31))

n−1
(
B′

nMnūn◦ −B′
nMnUnTGTλ

∗
T

)
= Op

(
T−1/2n−1/2

)
. (B.44)

Substituting (B.44) in (B.43) and using the result in (B.42) we have

∥qnT (α)∥ = Op

(
n−αmin/2+1/2T−1/2

)
+Op

(
T−1/2n

−αmin+(αη+αγ )
2

)
(B.45)

+Op

(
n−αmin/2+αη

)
+Op

(
n−αmin/2+1/2T−1

)
.

Denote the kth element of qnT (α) by qk,nT (α), we also have

qk,nT (α) = Op

(
n−αmin/2+1/2T−1/2

)
+Op

(
T−1/2n

−αmin+(αη+αγ )
2

)
+Op

(
n−αmin/2+αη

)
+Op

(
n−αmin/2+1/2T−1

)
.

Also note that the kth element of Dα

(
ϕ̃nT (α)− ϕ0

)
is given by nαk/2

(
ϕ̃k,nT (α)− ϕ0,k

)
.

Hence, in view of (B.41) and since Σ−1
ββ (α) is a positive definite matrix then the probability
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order of nαk/2
(
ϕ̃k,nT (α)− ϕ0,k

)
must be the same as that of qk,nT , and hence (as required)

ϕ̃k,nT (α)− ϕ0,k = Op

(
n−(αk+αmin)/2+1/2T−1/2

)
+Op

(
n

−(αk+αmin)+(αη+αγ )
2 T−1/2

)
+Op

(
n−(αk+αmin)/2+αη

)
+Op

(
n−(αk+αmin)/2+1/2T−1

)
.

B.5 Proof of theorem 5

Using (82) and noting that ŝnT →p λ
′
0Σ

−1
f λ0, then

V̂ξ,nT −Vξ =
(
1 + λ′

0Σ
−1
f λ0

) [
n−1B̂′

nTMnṼuMnB̂nT − p lim
n→∞

(
n−1B′

nMnVuMnBn

)]
+ op(1)

=
(
1 + λ′

0Σ
−1
f λ0

) [
n−1B̂′

nTMnṼuMnB̂nT − n−1B′
nMnVuMnBn

]
+ op(1).

(B.46)

Also using (B.4) we have

n−1B̂′
nTMnṼuMnB̂nT = n−1 (Bn +UnTGn)

′Mn

(
Ṽu −Vu +Vu

)
Mn (Bn +UnTGn) ,

which, after some algebra, yields

n−1B̂′
nTMnṼuMnB̂nT − n−1B′

nMnVuMnBn =

7∑
j=1

Aj,nT ,

where

A1,nT = n−1B′
nMn

(
Ṽu −Vu

)
MnBn, A2,nT = n−1G′

nU
′
nTMn

(
Ṽu −Vu

)
MnUnTGn,

A3,nT = n−1G′
nU

′
nTMnVuMnUnTGn, A4,nT = n−1G′

nU
′
nTMn

(
Ṽu −Vu

)
MnBn,

A5,nT = n−1G′
nU

′
nTMnVuMnBn, A6,nT = n−1B′

nMn

(
Ṽu −Vu

)
MnUnTGn,

A7,nT = n−1B′
nMnVuMnUnTGn.

Considering the above terms in turn we note that

∥A1,nT ∥ ≤ n−1
∥∥B′

nMn

∥∥2 ∥∥∥Ṽu −Vu

∥∥∥ = λmax

(
n−1B′

nMnBn

) ∥∥∥Ṽu −Vu

∥∥∥ .
Also, under Assumption 2 λmax

(
n−1B′

nMnBn

)
< C and using (79) we have ∥A1,nT ∥ = Op

(
nαγ

√
ln(n)
T

)
.

Similarly

∥A2,nT ∥ ≤ n−1
∥∥G′

nU
′
nTMn

∥∥2 ∥∥∥Ṽu −Vu

∥∥∥ = λmax

(
n−1G′

nU
′
nTMnUnTGn

) ∥∥∥Ṽu −Vu

∥∥∥ .
Then using (A.22) n−1G′

nU
′
nTMnUnTGn →p σ̄

2
nG

′
TGT = T−1σ̄2n(T

−1F′MTF)
−1 = O(T−1),

and it follows that ∥A2,nT ∥ = Op

(
T−1nαγ

√
ln(n)
T

)
. Turning to the third term

∥A3,nT ∥ ≤ n−1
∥∥G′

nU
′
nTMnUnTGn

∥∥ ∥Vu∥ = λmax

(
n−1G′

nU
′
nTMnUnTGn

)
∥Vu∥ .
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Also, by Lemma A.2 ∥Vu∥ = O(nαγ ), and hence ∥A3,nT ∥ = Op

(
T−1nαγ

)
, and ∥A4,nT ∥ ≤∥∥n−1/2G′

nU
′
nTMn

∥∥∥∥n−1/2MnBn

∥∥∥∥∥Ṽu −Vu

∥∥∥. Also, as shown above
∥∥n−1/2MnBn

∥∥ = Op(1),∥∥n−1/2G′
nU

′
nTMn

∥∥ = Op(T
−1/2), then

∥A4,nT ∥ = Op

(
T−1/2nαγ

√
ln(n)

T

)
,

∥A5,nT ∥ ≤
∥∥∥n−1/2G′

nU
′
nTMn

∥∥∥∥∥∥n−1/2MnBn

∥∥∥ ∥Vu∥ = Op

(
T−1/2nαγ

)
,

∥A6,nT ∥ ≤
∥∥∥n−1/2G′

nU
′
nTMn

∥∥∥∥∥∥n−1/2MnBn

∥∥∥∥∥∥Ṽu −Vu

∥∥∥ = Op

(
T−1/2nαγ

√
ln(n)

T

)
,

and ∥A7,nT ∥ ≤
∥∥n−1/2B′

nMn

∥∥ ∥Vu∥
∥∥n−1/2MnUnTGn

∥∥ = Op

(
T−1/2nαγ

)
. Overall,

∥∥∥n−1B̂′
nMnṼuMnB̂n − n−1B′

nMnVuMnBn

∥∥∥ = Op

(
nαγ

√
ln(n)

T

)
,

which if used in (B.46) establishes (81), as required.
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S1 Introduction

This online supplement provides the details of data sources for the risk factors and the excess

returns on securities used to calibrate the Monte Carlo designs and to carry out the empirical

applications reported in Sections 4 and 6 of the main paper. Section S2 describes the data

used to calibrate the Monte Carlo (MC) designs, and Section S3 provides the estimates that

formed the basis of the calibration of the parameters of the MC designs. Section S4 provides

evidence for the choice of 14 blocks used in calibration of error covariances in the Monte Carlo

experiments. Section S5 describes the data for factors and excess returns used in the empirical

applications, and Section S6 derives the relationship between pooled R2 of return regressions

and the factor strengths used in the discussion of the empirical results.

S2 Data used to calibrate the Monte Carlo designs

S-2.1 Factors

To calibrate the parameters of the three factor model used in the Monte Carlo experiments

we used monthly Fama-French three factor data series over the long sample 1963m8-2021m12,

downloaded from Kenneth French’s webpage.1 The factors are the market return minus the risk

free rate, denoted by MKT, the value factor (high book to market minus low portfolios, HML)

and the size factor (small minus big portfolios, SMB). The risk free rate is also downloaded from

French’s webpage. First order autoregressions, AR(1), were estimated for all the three factors

using the full data set, 1963m8-2021m12. Then GARCH(1,1) models were then estimated on

the residuals from the fitted AR(1) regressions.

S-2.2 Excess returns

To calibrate the factor loadings and other parameters of the excess return regressions we used

the shorter sample over the 20 years 2002m1 - 2021m12 (T = 240). Monthly returns (inclusive

of dividend payment) over 2002m1 - 2021m12 (T = 240) for NYSE and NASDAQ stocks with

share codes of 10 and 11 from CRSP were downloaded from Wharton Research Data Services

and transformed to firm-specific excess returns using the risk free rate from French’s webpage,

and measured in percent, per month. Only stocks with data over the period 2002m1-2021m12

were used to arrive at a balanced panel with T = 240 monthly observations and a total number

of n = 1, 289, securities.

To avoid extreme outliers influencing the estimates we first computed mean, median, stan-

dard deviation, skewness and kurtosis for each security over 2002m1 - 2021m12. Table SA-1

reports the mean, standard deviations and interquartile range of these statistics over all the

1, 289 securities in our sample. The histograms of these summary statistics (mean, median,

standard deviation, skewness and kurtosis) of the individual stock returns for the full sample

over 2002m1 - 2021m12 are shown in Figure SA-1. As can be seen from these summary statis-

tics, there are outlier security returns with very large standard deviations. This is clear from

the cross firm standard deviation of 13.97 which is much larger than the kurtosis of 9.24 (See

Table SA-1), resulting from a number of extreme outliers also seen from the long right tail of

the histogram for the distribution of kurtosis across firms.

1See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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Figure SA-1: Histogram and density function of the individual stock returns (n = 1, 289)
over 2002m1-2021m12 (T = 240)

S-2.3 Stocks with the kurtosis less than or equal to 14 and less than 16

To reduce the influence of outlier returns on our results we considered dropping stock excess

returns having kurtosis in excess of 14 and 16. Excluding stocks with kurtosis less than or equal

to 14, resulted in a sample with n = 1, 148 securities, whilst if we use the cut off point of 16
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we ended up with n = 1, 175 securities. The mean, median, standard deviation, skewness and

kurtosis for each security over 2002m1 - 2021m12 of the whole and two sub-samples, (1, 289,

1, 148 and 1, 175). Then the average, standard deviation and interquartile range (IQR) for each

summary statistic of the stocks from the two sub-sample are summarized respectively in Table

SA-1.

Table SA-1: The average, standard deviation and interquartile range of the summary
statistics of the individual stocks over 2002m1 - 2021m12 (T = 240)

Average Standard deviation Interquartile range

Panel A: All stocks (n = 1289)
stock.mean 1.3666 0.6593 0.7511
stock.median 0.8360 0.9970 0.9310
stock.standard deviation 11.9030 6.0082 6.5248
stock.skewness 0.6411 1.3766 0.9290
stock.kurtosis 9.2407 13.9786 4.0183

Panel B : Kurtosis ≤ 14 (n = 1148)
stock.mean 1.3303 0.5898 0.7032
stock.median 0.9474 0.8816 0.8654
stock.standard deviation 10.8837 4.3944 5.6429
stock.skewness 0.2976 0.5996 0.7270
stock.kurtosis 5.9885 2.3932 2.7762

Panel B : Kurtosis ≤ 16 (n = 1175)
stock.mean 1.3336 0.5922 0.7081
stock.median 0.9363 0.8878 0.8764
stock.standard deviation 10.9943 4.4695 5.6836
stock.skewness 0.3219 0.6285 0.7607
stock.kurtosis 6.1947 2.7222 2.9819

Histograms for mean, median, standard deviation, skewness and kurtosis of the individual

stock returns for two sub-samples are shown in Figure SA-2 for the sub-sample with the kurtosis

less than or equal to 14 over 2002m1 - 2021m12 (n = 1, 148), and Figure SA-3 are for the

sub-sample with the kurtosis less than 16 over 2002m1 - 2021m12 (n = 1, 175).
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Figure SA-2: Histogram and density function of the individual stock returns with kur-
tosis less than or equal to 14 over 2002m1-2021m12 (T = 240) and n = 1, 148
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Figure SA-3: Histogram and density function of the individual stock returns with kur-
tosis less than or equal to 16 over 2002m1-2021m12 (T = 240) and n = 1, 148
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S3 The MC design and its calibration

S-3.1 Generation of returns

Excess returns, rit, are generated as

rit = ai +
∑

k=M,H,S

βikfkt + uit, (S3.1)

= ai + β′
ift + uit,

for i = 1, 2, .., n; t = 1, 2, ..., T , with

ai = c+ β′
iϕ+ ηi, (S3.2)

where ft = (fMt, fHt, fSt)
′, and βi = (βMi, βHi, βSi)

′, and ϕ = (ϕM , ϕH , ϕS)
′.

S-3.2 Generation of factors

Factors are generated as first-order autoregressive, AR(1), processes with GARCH(1,1) effects:

fkt = µk(1− ρk) + ρkfk,t−1 +
(
1− ρ2k

)1/2
σktζkt, (S3.3)

σ2kt = (1− bk − ck)σ
2
k + bkσ

2
k,t−1 + ckσ

2
k,t−1ζ

2
k,t−1, (S3.4)

for k = M,H,S, starting from t = −49, ...0, 1, 2, ..., T, with fk,−50 = 0 (and σk,−50 = 0 in the

case where ck ̸= 0) to minimize the effects of the initial values on the sample fkt, t = 1, 2, ..., T

used in the simulations.
The data generating process for the factors is calibrated using the full set of Fama-French

three factor data set covering the period 1963m8-2021m12. The calibrated parameter values
are µ = (µM , µH , µS)

′ = (0.59, 0.27, 0.23)′ , σ = (σM , σH , σS)
′ = (4.45, 2.86, 3.03)′, and ρ =

(ρM , ρH , ρS)
′ = (0.06, 0.17, 0.07)′. Note that V ar(fkt) = σ2k. The parameters of (S3.2) are also

estimated using the bias-corrected procedure and are set as c = 0.83 and ϕ = (−0.49,−0.35, 0.16)′.
To ensure that correlation across the three factors match the Fama-French data we generated
ζt = (ζMt, ζHt, ζSt)

′ as ζt = Qζωt, where Qζ is the Cholesky factor of Rζ , the correlation matrix
of ft given by

Rζ =

 1 −0.21 0.28
−0.21 1 −0.02
0.27 −0.02 1

 .

We consider both Gaussian and non-Gaussian errors and generate ωt as IID(0, I3), as well as a

multivariate t with 5 degrees of freedom, namely t(0, I3, 5). The remaining parameters are set

as bk = ck = 0 to generate homoskedastic errors, and bk = 0.8 and ck = 0.1 for k = M,H,S to

generate GARCH effects.

S-3.3 Estimation of factor models

Consider the AR(1) processes with a GARCH(1,1) errors

fkt = µk(1− ρk) + ρkfk,t−1 +
(
1− ρ2k

)1/2
σktζkt, (S3.5)

σ2kt = (1− bk − ck)σ
2
k + bkσ

2
k,t−1 + ckσ

2
k,t−1ζ

2
k,t−1, (S3.6)
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where fkt, k =M,H,S and t = 1, ..., T , denote the the values of three factorsMKT,HML,SMB

in month t, respectively. The estimates of GARCH parameters obtained using the sample

2002m1 - 2021m12 (T = 240) are summarized in Table SA-2.

Table SA-2: GARCH parameters for the models of three Fama-French factors for the
sample over 2002m1 - 2021m12 (T = 240)

µ̂ ρ̂ σ̂ b̂ ĉ

MKT 0.8030 0.0711 4.5703 0.6781 0.2395
(0.3035) (0.0648) (·) (0.0854) (0.0627)

HML –0.0805 0.1816 3.1513 0.7582 0.1987
(0.2194) (0.0639) (·) (0.0986) (0.0686)

SMB 0.1718 –0.0267 2.5815 0.8353 0.0680
(0.1651) (0.0649) (·) (0.1845) (0.0606)

The correlation matrix of three factorsMKT , HML, SMB over 2001m1-2021m9 (T = 240)
is 1.00 0.20 0.35

0.20 1.00 0.35
0.35 0.35 1.00

 .

S-3.4 Factor loadings estimates

For each of the securities i = 1, 2, ..., 1175 (with kurtosis below 16), and t = 1, 2, ..., 240, OLS
regressions excess returns yit for security i was run on an intercept and the three FF factors

yit = rit − rft = αi +
∑

k∈{M,H,S}

βikfkt + uit,

where rit is the return of ith security at time t, inclusive of dividend (if any), and rft is the
risk free rate. The sample mean and standard deviation of the excess return for each individual
stock, denoted as ȳiT and syiT are computed as

ȳiT = T−1
T∑
t=1

yit, (S3.7)

sdiT (y) =

√√√√(T − 1)−1

T∑
t=1

(yit − ȳiT )2. (S3.8)

The estimates α̂i,T , β̂ik,T , k =M,H,S are given by(
α̂i,T , β̂iM,T , β̂iH,T , β̂iS,T

)′
= (F ′

0F 0)
−1F ′

0yi◦, (S3.9)

where F 0 = (τT ,F), F =(f1,f2, ...,fT )
′, f t = (fMt, fHt, fSt)

′ and yi◦ = (yi1, yi2, ..., yiT )
′. The

standard error of the ith regression, denoted as siT , is given by

σ̂2iT = (T −K − 1)−1
T∑
t=1

û2it, (S3.10)
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where ûit = yit−α̂iT−
∑

k∈{M,H,S} β̂ik,T fkt. The coefficient of determination of the ith regression,

denoted by R2
iT , is given by

R2
iT = 1−

∑T
t=1 û

2
it∑T

t=1(yit − ȳiT )2
. (S3.11)

We compute the summary statistics: mean, median, standard deviation (S.D.), skewness, kurto-

sis, interquartile range, minimum, maximum for the sample mean and standard deviation of the

excess returns, the estimates and the corresponding standard error, R-squared of the regressions

over 2002m1 - 2021m12 (T = 240), for the n = 1, 175 securities: ȳiT , sdi,T (y), âi,T , β̂iM,T ,

β̂iH,T , β̂iS,T , σ̂
2
iT and R2

iT for i = 1, 2, ..., 1175, computed using (S3.7)-(S3.11). The results are

summarized in Table SA-3.

Table SA-3: The summary statistics of the estimates, standard error and R-squared of
the panel regression over 2002m1 - 2021m12 (T = 240) and n = 1, 175

mean median S.D. skewness kurtosis IQR min max

ȳ 1.2366 1.1572 0.5922 0.6219 4.9697 0.7085 –1.5971 3.7434
sd(y) 11.0006 10.1115 4.4695 1.1241 4.4498 5.6826 4.1706 31.3322
â 0.3749 0.3562 0.5810 –0.1980 5.5804 0.6493 –2.8882 2.9736

β̂M 0.9714 0.9362 0.4279 0.5352 3.3349 0.5810 –0.0689 2.8590

β̂H 0.2235 0.2093 0.5276 –0.0916 4.7150 0.5915 –2.4498 2.9788

β̂S 0.6061 0.5790 0.5381 0.3552 3.2197 0.7495 –0.7504 2.7474
σ̂ 9.4123 8.2297 4.2794 1.3292 5.0599 5.3811 3.4523 30.6953
R2 0.2840 0.2782 0.1383 0.2172 2.2941 0.2131 0.0050 0.6814

The histogram for the α̂T and the β̂k,T for k =M,H,S over 2002m1 - 2021m12 (T = 240),

each using 1175 data points α̂i,T and the β̂ik,T for k = M,H,S, i = 1, 2, ..., 1175, is shown in

the Figure SA-4.

Figure SA-4: Histogram and density function of the coefficients of the panel regression
over 2002m1-2021m12 (T = 240) and n = 1, 775

The histogram for the R2
T over 2002m1 - 2021m12 (T = 240), using 1,175 data points R2

iT

SA-8



for i = 1, 2, ..., 1175, is shown in the Figure SA-5.

Figure SA-5: Histogram and density function of the R-squared of the panel regression
over 2002m1-2021m12 (T = 240) and n = 1, 775

S-3.5 Calibrating the fit of return regressions

To see how κ controls the regression fit, note that the n return processes (S3.1) can be written
more compactly in vector form as

rt = α+Bf t + ut,

where ut = γgt + κŜεt,α= (α1, α2, ..., αn )
′, with αi given by αi = c+ β′

iϕ+ ηi, and

Ŝ =Diag(Ŝb, b = 1, 2, ..., B).

Overall, the DGP for the return regressions can be written compactly as

rt = cτn +B (ft + ϕ) + γgt + κŜεt + ηn,

where ηn = (η1, η2, ..., ηn)
′. We abstract from pricing errors and weak latent factor and ηi = 0,

gt = 0, and set κ such that the pooled R2 (PR2) of return regressions can be controlled to be
around R2

0 = 0.30. We have

PR2
nT = 1−

n−1T−1
∑T

t=1

∑n
i=1E

(
u2it
)

n−1T−1
∑T

t=1

∑n
i=1 V ar(rit)

.

V ar(rit) = V ar
(
β′
ift
)
+ V ar(uit) = E

(
β′
iΣfβi

)
+ E(u2it)

= Tr
[
ΣfE

(
βiβ

′
i

)]
+ E(u2it).

Denote the kth element of βi by βik, then if βik ∼ IIDN(µβk
, σ2βk

), and βik are distributed
independently over k = 1, 2, ...,K, we have

E
(
βiβ

′
i

)
= Diag

(
µ2βk

+ σ2βk
, for k = 1, 2, ...,K

)
.
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Then,

V ar(rit) = Tr
[
ΣfE

(
βiβ

′
i

)]
+ E(u2it) =

K∑
k=1

σ2fk
(
µ2βk

+ σ2βk

)
+ E(u2it).

Also,
n∑

i=1

E(u2it) = Tr
[
E
(
utu

′
t

)]
,

and (when gt = 0) we have

E
(
utu

′
t

)
= Vu = κ2ŜE

(
εtε

′
t

)
Ŝ′ = κ2ŜVεŜ

′,

where Vε = Diag(V
(r)
bε , b = 1, 2, ..., B)′. Hence,

n−1T−1
T∑
t=1

n∑
i=1

E
(
u2it
)
= n−1Tr(Vu) = κ2n−1Tr

(
ŜVεŜ

′
)

and

PR2
nT = 1−

κ2n−1Tr
(
ŜVεŜ

′
)

∑K
k=1 σ

2
fk

(
µ2βk

+ σ2βk

)
+ κ2n−1Tr

(
ŜVεŜ′

) .
To achieve limn→∞PR

2
nT = R2

0, we need to set (assuming all K factors are strong)

κ2 =

∑K
k=1 σ

2
fk

(
µ2βk

+ σ2βk

)
n−1Tr

(
ŜVεŜ′

) (
1−R2

0

R2
0

)
. (S3.12)

When there are no idiosyncratic error dependence, namely when Ŝ = In, the above expression
simplifies to

κ2 =

∑K
k=1 σ

2
fk

(
µ2βk

+ σ2βk

)
n−1Tr (Vε)

(
1−R2

0

R2
0

)
. (S3.13)

If we only use the market factor, we have

κ2 =
σ2M

(
µ2βM

+ σ2βM

)
n−1Tr (Vε)

(
1−R2

0

R2
0

)
. (S3.14)

We expect that n−1Tr (Vε) → 1, if E(σii) = 1, as under our DGP.

S-3.6 Estimation of FF factor strengths

Denote by tik,T = β̂ik,T / s.e.
(
β̂ik,T

)
, the t-statistic corresponding to βik. The total number of

factor loadings of factor k, that are statistically significant over i = 1, 2, . . . , n, n = 1, 175, is:

D̂nT,k =
n∑

i=1

d̂ik,nT =
n∑

i=1

1 [|tik,T | > cp(n)] ,

where 1 (A) = 1 if A > 0, and zero otherwise, and the critical value function that allows for the
multiple testing nature of the problem, cp(n, δ), is given by

cp(n, δ) = Φ−1
(
1− p

2nδ

)
, (S3.15)
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where p is the nominal size, set, following Bailey, Kapetanios, and Pesaran (2021, BKP), as
p = 0.1, δ > 0 is the critical value exponent, set δ = 0.25, and Φ−1(·) is the inverse cumulative
distribution function of the standard normal distribution. Let π̂nT,k be the fraction of significant

loadings of factor k, and note that π̂nT,k = D̂nT,k/n. The strength of factor k, denoted by αk0,
for k = 1, 2, . . . ,K, K = 3, is estimated by

α̂k =

{
1 +

ln π̂nT,k

lnn , if π̂nT,k > 0,

0, if π̂nT,k = 0.
(S3.16)

The variance of the estimated strength of factor k is given by

V ar(α̂k) = (lnn)−2ψn(αk0),

where
ψn(αk0) = p(n− nαk0)n−δ−2αk0

(
1− p

nδ

)
.

So the standard error of the estimated strength of factor k can be computed by:

s.e.(α̂k) =

√
ψn(α̂k)

lnn
. (S3.17)

Mean and variance of the loadings associated with factor k are given by

µ̂βkT
(α̂k) =

∑n
i=1 1 [|tikT | > cp(n)] β̂ikT∑n

i=1 1 [|tikT | > cp(n)]
, (S3.18)

σ̂2βk
(α̂k) =

∑n
i=1 1 [|tikT | > cp(n)]

(
β̂ikT − µ̂βkT

(α̂k)
)2∑n

i=1 1 [|tikT | > cp(n)]
. (S3.19)

In the case where a factor is strong, namely αk = 1, then it must be that 1 [|tikT | > cp(n)] = 1

for all i. The estimated factor strengths α̂k and corresponding standard errors for k =M,H,S,

using the sample over 2002m1 - 2021m12 (T = 240) and n = 1, 175 are reported in SA-4.

Table SA-4: Strength of three FF factors estimated over 2001m1-2021m9 (T = 240 and
n = 1, 175)

M H S

α̂ 0.9941 0.8373 0.9023
(0.0001) (0.0014) (0.0008)

Note: This table reports the estimates of the factor strength using (S3.16) and the standard errors

that are reported in () using (S3.17), for three factors MKT,HML and SMB, using the sample over

2001m1-2021m9 (T = 240) and n = 1, 175, K = 3.
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S-3.7 Estimates of ϕ for the FF3 factors

Table SA-5: The bias-corrected estimates of c0 (intercept) and ϕM , ϕH , and ϕS for the
sample 2002m1 - 2021m12 (T = 240) with n = 1175 securities

ĉ0 ϕ̂M ϕ̂H ϕ̂S
0.8423 –0.4808 –0.3259 0.1195

(0.0971) (0.0780) (0.0846)

S-3.8 Rolling estimates used in portfolio construction

The rolling estimates for month t are computed using analogous expressions to those provided
in sub-sections 2.3 and 3.2 of the main paper with a rolling window size of T = 240. For ease of
replication, the algorithms used to estimate the rolling estimates for t = 2015m12, ....., 2022m11
are set out below:

β̂it|T =

[
t∑

τ=t−T+1

(
fτ − f̄t|T

) (
fτ − f̄t|T

)′]−1 t∑
τ=t−T+1

(
fτ − f̄t|T

)
riτ ,

f̄t|T = T−1
t∑

τ=t−T+1

fτ ,

ϕ̃t|T = Ĥ−1
t|T

B̂′
t|T Mnα̂t|T

n
+ T−1̂̄σ2t|T

(
F′
t|T MTFt|T

T

)−1

f̄t|T

 ,
B̂t|T =

(
β̂1t|T , β̂2t|T ...., β̂nt|T

)′
,

α̂t|T = r̄t|T − B̂t|T f̄t|T ,

Ĥt|T =
B̂′

t|T MnB̂t|T

n
− T−1̂̄σ2t|T

(
F′
t|T MTFt|T

T

)−1

,

̂̄σ2t|T =

∑t
t=τ−T+1

∑n
i=1 û

2
i,τ |T

n(T −K − 1)
,

ûi,τ |T = riτ − α̂i,τ |T − β̂′iτ |T fτ , for τ = t, t− 1, ..., t− T + 1,

r̄t|T =
(
r̄1,t|T , r̄2,t|T , ..., r̄nt|T

)′
, r̄i,t|T = T−1

t∑
τ=t−T+1

riτ ,

̂
V ar

(
ϕ̃t|T

)
= T−1n−1H−1

t|T V̂ξ,t|T H
−1
t|T ,

,

V̂ξ,t|T =
(
1 + ŝt|T

) (
n−1B̂′

t|T MnṼu,t|T MnB̂t|T

)
,

ŝt|T = λ̃
′

t|T

(
F′
t|T MTFt|T

T

)−1

λ̃t|T ,

λ̃t|T = ϕ̃t|T + f̄t|T ,
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ct|T =
(
τ ′
nτn

)−1
τ ′
nα̂t|T −

(
τ ′
nτn

)−1
τ ′
nB̂t|T ϕ̃t|T ,

where MT = IT − T−1τTτ
′
T , τT is a T -dimensional vector of ones, Mn = In − n−1τnτ

′
n, and

τn is an n-dimensional vector of ones. Finally,

Ṽu,t|T =
(
σ̃ij,t|T

)
,

σ̃ij,t|T = σ̂ii,t|T

σ̃ij,t|T = σ̂ij,t|T 1
[∣∣ρ̂ij,t|T ∣∣ > T−1/2cα(n, δ)

]
, i = 1, 2, . . . , n− 1, j = i+ 1, . . . , n,

where

σ̂ij,t|T =
1

T

T∑
t=1

ûi,τ |T ûj,τ |T , ρ̂ij,t|T =
σ̂ij,t|T√

σ̂ii,t|T σ̂ii,t|T
,

ûi,τ |T = riτ − α̂i,τ |T − β̂′iτ |T fτ , and cp(n, d) = Φ−1
(
1− p

2nd

)
, is a normal critical value function,

p is the the nominal size of testing of σij = 0, (i ̸= j) and d = 2 is chosen to take account of the

n(n− 1)/2 multiple tests being carried out.

S4 Grouping of securities by their pair-wise correlations

The T = 240 sample ending in 2021 was used to estimate the pair-wise correlations of the

residuals from the n = 1, 168 returns regressions using the Fama-French three factors. Then all

the statistically insignificant correlations were set to zero. Significance was determined allowing

for the multiple testing nature of the tests, using the critical value cp(n, δ) = Φ−1
(
1− p

2nδ

)
,

with p = 0.05 and δ = 2, since the number of pair-wise correlations is of order O(n2). See also

Bailey, Pesaran, and Smith (2019). For the majority of securities (668 out of the 1,168), the

pair-wise return correlations were not statistically significant. The securities with a relatively

large number of non-zero correlations were either in the banking or energy related industries.

Initially, the securities were grouped using the two digit codes from the 1987 standard in-

dustrial classification (SIC 1987). But this gave too many groups, 62. Many of the groups

had very few members: only one security for 3 out of the 62 groups and less than 10 for 36

groups. However, code 60 (banking) had 145 securities. Therefore, it was decided to work with

the industrial classification based on a one digit level, and to aggregate the codes with a small

number of securities, taking out two digit codes where there were large numbers in that code.

We ended up with 14 contiguous groups ranging in size from 33 to 145. Average correlations

were low overall, but the average absolute correlation of securities within the groups was around

10 times that with firms outside the group. See Table SA-6, which gives averages of pair-wise

correlations without thresholding. These estimates suggested that a block diagonal structure

with 14 blocks was a reasonable characterization which is used in the Monte Carlo analysis. See

Section 4 of the main paper.
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Table SA-6: Sector groupings by SIC codes and within and outside sector average
pair-wise correlations.

SIC Number Average correlations
codes of stocks within outside

Agriculture & mining 0-17 51 0.0848 –0.0043
Food processing etc 20-27 82 0.0382 0.0074
Chemicals & refining 28-29 78 0.0234 0.0027
Metals 30-34 65 0.0439 0.0070
Machinery & equipment 35 72 0.0380 0.0037
Electrical Equipment 36 77 0.0601 0.0001
Transport equipment 37 33 0.0800 0.0105
Misc. manufacturing 38-39 78 0.0155 0.0027
Transport etc. 40-49 108 0.0810 0.0035
Wholesale & retail trade 50-59 122 0.0357 0.0034
Banking 60 145 0.1240 –0.0037
Other finance 61-67 98 0.0273 0.0061
Commercial Services 70-79 114 0.0149 0.0031
Professional Services 80-89 45 0.0172 0.0023
Total 1168

Note: This table gives the average correlations within and between 14 groups selected based on one

and two digits SIC codes. It shows the number of stocks in each sector, the average pair-wise correlation

of stock returns within the sector as well as the average pair-wise correlations of returns of stocks in a

given sector with those outside the sector.

S5 Data used in the empirical application

S-5.1 Security excess returns

Monthly returns (inclusive of dividends) for NYSE and NASDAQ stocks from CRSP with codes

10 and 11 were downloaded on July 2 2022 from Wharton Research Data Services. They were

converted to excess returns by subtracting the risk free rate, which was taken from Kenneth

French’s data base. To obtain balanced panels of stock returns and factors only variables where

there was data for the full sample under consideration were used. Excess returns are measured

in percent per month. To avoid outliers influencing the results, stocks with a kurtosis greater

than 16 were excluded.

Four main samples were considered, each had 20 years of data, T = 240, ending in 2015m12,

2017m12, 2019m12, 2021m12. Thus the earliest observation used is for 1996m1. Sub-samples of

the main samples of size T = 120 and T = 60 ending at the same dates were also examined. Table

SA-7 gives averages of the summary statistics across the individual stocks for the various samples.

These are very similar over these four periods. Mean returns were high and substantially greater

than the median reflecting the skewness of returns, which was slightly less in the last period.

Filtering out the stocks with very high kurtosis removed about 100 of the roughly 1,200 stocks

in each period and reduced mean return, standard deviation, skewness as well as kurtosis.

The 5 (T = 60) and 10 (T = 120) year sub-samples of the main samples, ending at the same

dates, showed very similar patterns. Because of a requirement for a balanced panel, the shorter

the sample the more stocks will be eligible for inclusion. Compared with around 1,200 in the

20 year sample there were around 2,000 in the 10 year sub-sample and around 2,500 in the 5
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year sub-sample. Again filtering by kurtosis reduced the number of stocks by about 100. There

is more variation in means and medians in the shorter sub-samples and the shorter the sample

the lower the average kurtosis is.

Table SA-7: Summary statistics for monthly returns in percent for NYSE and NASDAQ
stocks code 10 and 11 for 20 year (T = 240), 10 year (T = 120) and 5 year (T = 60)
samples ending at end of specified year

All stocks Stocks with kurtosis < 16
End date 2015 2017 2019 2021 2015 2017 2019 2021

Panel A: 20 year period, T = 240
Mean 1.38 1.35 1.30 1.37 1.33 1.28 1.25 1.33
Median 0.74 0.70 0.76 0.84 0.80 0.78 0.85 0.94
S.D. 12.44 12.61 12.22 11.90 11.60 11.64 11.31 10.99
Skewness 0.69 0.74 0.72 0.64 0.42 0.44 0.40 0.32
Kurtosis 8.68 9.08 9.22 9.24 6.10 6.29 6.29 6.19
n 1181 1243 1276 1289 1090 1132 1143 1175

Panel B : 10 year period, T = 120
Mean 1.00 1.22 1.24 1.55 0.98 1.17 1.23 1.49
Median 0.52 0.70 0.78 0.89 0.59 0.77 0.84 1.01
S.D. 12.36 12.68 10.70 11.83 11.67 11.80 10.27 10.70
Skewness 0.48 0.50 0.44 0.50 0.29 0.30 0.35 0.28
Kurtosis 6.93 7.08 5.32 7.02 5.57 5.62 4.64 5.33
n 2045 2024 1925 1871 1929 1907 1873 1766

Panel C : 5 year period, T = 60
Mean 0.98 1.39 0.82 1.60 0.96 1.35 0.80 1.47
Median 0.42 0.77 0.20 0.43 0.49 0.82 0.29 0.61
S.D. 10.89 10.62 11.88 14.91 10.41 10.15 11.28 13.28
Skewness 0.44 0.46 0.38 0.48 0.35 0.38 0.29 0.28
Kurtosis 4.84 4.74 4.68 6.21 4.34 4.29 4.20 5.04
n 2600 2425 2497 2512 2541 2373 2439 2388

Note: This table shows the average values of the summary statistics of individual stocks described

in Section 3, and the number of stocks (n), for each sample.

S-5.2 Risk factors

For the empirical applications we combined the 5 Fama-French factors with the 207 factors of

Chen and Zimmermann (2022), both downloaded on 6 July 2022. The available risk factors at

the end of each of the four 240 months samples ending in 2015, 2017, 2019 and 2021 were then

screened and factors whose correlations (in absolute value) with the market factor were larger

than 0.70 were dropped. The basic idea was to remove factors that were closely correlated with

market factor. However, the application of this filter only reduced the number of factors in the

active set by around 9-11. See Table 4 of the main paper. The summary statistics for the factors

in the active set are summarized in Table S-5.2. It reports mean, median, pair-wise correlation,

standard deviation (S.D.), skewness and kurtosis of the statistics indicated in the sub-headings

of the tables for the K factors included in the active set for samples of size T = 240 months
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ending in December of 2015, 2017, 2019 and 2021. The summary statistics reported for the

”Mean” on the left panel of Table S-5.2 are based on the time series means of the individual

factors, those under ”Median” are based on the time series medians of the individual factors,

and so on.

Table SA-8: Summary statistics for mean, median, standard deviation, pairwise corre-
lations, skewness and kurtosis of factors for T = 240 samples at the end of specified years
(2015, 2017, 2019 and 2021)

End date 2015 2017 2019 2021 2015 2017 2019 2021
m(# Factors) 190 191 190 178 190 191 190 178

Mean Median
Mean 0.51 0.47 0.41 0.32 0.42 0.37 0.31 0.28
Median 0.45 0.39 0.33 0.26 0.31 0.28 0.22 0.20
S.D. 0.40 0.40 0.38 0.30 0.53 0.50 0.50 0.44
Skewness 1.88 2.50 2.28 0.76 1.59 1.89 1.58 1.38
Kurtosis 10.54 16.35 14.42 3.82 8.99 10.37 9.16 6.68

Standard deviation Pair-wise correlation
Mean 3.97 3.90 3.78 3.33 0.22 0.22 0.22 0.21
Median 3.51 3.47 3.37 2.99 0.18 0.17 0.17 0.16
S.D. 2.21 2.16 2.12 1.68 0.17 0.17 0.17 0.17
Skewness 1.15 1.23 1.29 1.05 0.86 0.88 0.88 0.92
Kurtosis 4.25 4.69 4.96 4.17 2.88 2.93 2.93 2.98

Skewness Kurtosis
Mean 0.14 0.21 0.23 0.04 8.51 8.79 9.42 7.03
Median 0.13 0.18 0.14 0.06 6.44 6.66 7.09 5.86
S.D. 1.15 1.21 1.27 1.01 5.76 6.55 7.12 5.28
Skewness 0.15 0.55 0.61 -1.03 2.34 3.18 2.96 5.01
Kurtosis 3.98 5.28 5.24 7.82 9.65 17.71 15.70 37.21

Note: The T=240 sample was used to select factors and only factors where the absolute correlation

coefficient with the market factor is less than 0.70 are included.

S6 Pooled R squared and factor strengths

Lemma S6.1 Consider the factor model

rit = ai +
K∑
k=1

βikfkt + uit = ai + β′
ift + uit, for i = 1, 2, ..., n; t = 1, 2, ..., T, (S6.1)

and consider the following adjusted pooled measure of fit

PR
2
= 1−

̂̄σ2nT
(nT )−1∑n

i=1

∑T
t=1 (rit − r̄i◦)

2
, (S6.2)
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where ̂̄σ2nT is the bias-corrected estimator of (nT )−1∑n
i=1

∑T
t=1E

(
u2it
)
= n

∑n
i=1 σ

2
i = σ̄2n, given

by (60) r̄i◦ = T−1
∑T

t=1 rit, and ūi◦ = T−1
∑T

t=1 uit. Then under Under Assumptions 4, 1 and
2 we have

PR
2
nT =

K∑
k=1

⊖
(
nαk−1

)
+Op

(
T−1/2n−1+

αmax+αγ
2

)
, (S6.3)

where αk is the strength of factor ftk, αmax = maxk(αk), and αγ is the strength of the missing

factor.

Proof. Using (62) we first recall that

̂̄σ2nT − σ̄2n = Op

(
T−1/2n−1/2

)
. (S6.4)

Now averaging (S6.1) over t and forming deviations of rit from its time average, r̄i◦, we have
(note that µ̂T = T−1

∑T
t=1 ft)

rit − r̄i◦ = uit − ūi◦ + β′
i (ft − µ̂T ) .

Using this result we have

(nT )−1
n∑

i=1

T∑
t=1

(rit − r̄i◦)
2 = (nT )−1

n∑
i=1

T∑
t=1

(uit − ūi◦)
2 + n−1

n∑
i=1

β′
iΣ̂fβi (S6.5)

− 2 (nT )−1
n∑

i=1

T∑
t=1

(uit − ūi◦)β
′
i (ft − µ̂T ) ,

where Σ̂f = T−1
∑T

t=1 (ft − µ̂T ) (ft − µ̂T )
′. For the first term we have

(nT )−1
n∑

i=1

T∑
t=1

(uit − ūi◦)
2 − σ̄2n = Op(n

−1/2T−1/2), (S6.6)

which follows from the proof of Theorem 2 by setting βi = 0 and ft = 0 in Section B.2. For the
cross product term we have

(nT )−1
n∑

i=1

T∑
t=1

(uit − ūi◦)β
′
i (ft − µ̂T )

= (nT )−1
n∑

i=1

β′
i

T∑
t=1

(ft − µ̂T ) (uit − ūi◦) = (nT )−1
n∑

i=1

β′
i

T∑
t=1

(ft − µ̂T )uit

− (nT )−1
n∑

i=1

ūi◦β
′
i

T∑
t=1

(ft − µ̂T ) = (nT )−1
n∑

i=1

β′
i

T∑
t=1

(ft − µ̂T )uit = pnT .

Also, using (43),

pnT = (nT )−1
n∑

i=1

β′
i

T∑
t=1

(ft − µ̂T ) (γigt + vit) = p1,nT + p2,nT ,

where

p1,nT =

(
n−1

n∑
i=1

γiβ
′
i

)[
T−1

T∑
t=1

(ft − µ̂T ) gt

]
,
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and

p2,nT = (nT )−1
n∑

i=1

β′
i

T∑
t=1

(ft − µ̂T ) vit.

Under Assumption 3, (ft − µ̂T ) and gt are distributed independently and gt are serially inde-
pendent with E (gt) = 0 and E(g2t ) = 1, and it follows that

V ar

[
T−1

T∑
t=1

(ft − µ̂T ) gt

]
= E

[
T−2

T∑
t=1

(ft − µ̂T )
2E
(
g2t
)]

= T−1E
(
T−1F′MTF

)
= O

(
T−1

)
.

Hence, T−1
∑T

t=1 (ft − µ̂T ) gt = Op

(
T−1/2

)
. Also (see (46) and (57))∥∥∥∥∥n−1

n∑
i=1

γiβ
′
i

∥∥∥∥∥ ≤ n−1
n∑

i=1

|γi| ∥βi∥ = n−1
n∑

i=1

|γi|
(
β′
iβi

)1/2
≤

(
n−1

n∑
i=1

|γi|2
)1/2(

n−1
n∑

i=1

β′
iβi

)1/2

= Op

(
n

−1+αγ
2

)
Op

(
n

−1+αmax
2

)
= Op

(
n−1+

αmax+αγ
2

)
.

Hence, p1,nT = Op

(
T−1/2n−1+

αmax+αγ
2

)
. Consider p2,nT and recall that under Assumption 4 vit

are serially independent, have zero means and are distributed independently of (ft − µ̂T ) and
βi . Then E (p2,nT ) = 0 and

V ar (p2,nT |F) =
1

nT

 1

n

n∑
i=1

n∑
j=1

σij,vβ
′
iΣ̂fβi

 ,

where E(vitvjt) = σij,v. Also,∥∥∥∥∥∥ 1n
n∑

i=1

n∑
j=1

σij,vβ
′
iΣ̂fβi

∥∥∥∥∥∥ ≤ (supi ∥βi∥)
2
∥∥∥Σ̂f

∥∥∥
 1

n

n∑
i=1

n∑
j=1

|σij,v|

 ,

and by assumption supi ∥βi∥ < C, E
∥∥∥Σ̂f

∥∥∥ < C, and n−1
∑n

i=1

∑n
j=1 |σij,v| = O(1). Hence,

V ar (p2,nT ) = Op(n
−1T−1), and it follows that p2,nT = Op(T

−1/2n−1/2), and overall (since
αγ < 1/2 and αmax ≤ 1)

pnT = Op(T
−1/2n−1/2) +Op

(
T−1/2n−1+

αmax+αγ
2

)
= Op

(
T−1/2n−1+

αmax+αγ
2

)
. (S6.7)

Using (S6.6) and (S6.7) in (S6.5), we now have

(nT )−1
n∑

i=1

T∑
t=1

(rit − r̄i◦)
2 = σ̄2n + n−1

n∑
i=1

β′
iΣ̂fβi +Op

(
T−1/2n−1+

αmax+αγ
2

)
.

Using this result and (S6.4) in (S6.2) yields

PR
2
nT = 1− σ̄2n +Op(T

−1/2n−1/2)

σ̄2n + n−1
∑n

i=1 β
′
iΣ̂fβi +Op(T−1/2n−1/2) +Op

(
T−1/2n−1+

αmax+αγ
2

) .
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Since Op(T
−1/2n−1/2) is dominated by

(
T−1/2n−1+

αmax+αγ
2

)
, we end up with

PR
2
nT =

n−1
∑n

i=1 β
′
iΣ̂fβi/σ̄

2
n +Op

(
T−1/2n−1+

αmax+αγ
2

)
1 + n−1

∑n
i=1 β

′
iΣ̂fβi/σ̄

2
n +Op

(
T−1/2n−1+

αmax+αγ
2

) . (S6.8)

Hence, the order of PR
2
nT is governed by the pooled signal-to-noise ratio defined by

s2nT =
n−1

∑n
i=1 β

′
iΣ̂fβi

σ̄2n
.

However, under Assumption 1

λmin(Σ̂f )
n−1

∑n
i=1 β

′
iβi

σ̄2n
≤ s2nT ≤ λmax(Σ̂f )

n−1
∑n

i=1 β
′
iβi

σ̄2n
, (S6.9)

where c < λmin(Σ̂f ) < λmax(Σ̂f ) < C. Hence,

c

(
n−1

∑n
i=1 β

′
iβi

σ̄2n

)
≤ s2nT ≤ C

(
n−1

∑n
i=1 β

′
iβi

σ̄2n

)
,

and it must be that

s2nT = ⊖

(
n−1

n∑
i=1

β′
iβi

)
= ⊖

[
K∑
k=1

(
n−1

n∑
i=1

β2ik

)]
.

Also, under Assumption 2, n−1
∑n

i=1 β
2
ik = ⊖

(
nαk−1

)
. Hence,

s2nT =

K∑
k=1

⊖
(
nαk−1

)
,

which in view of (S6.8) now yields (S6.3), as desired.
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S1 Introduction

This online supplement provides detailed Monte Carlo results for all experiments and
risk factors. The summary tables below give the bias, RMSE and size (×100), for the
DGP with one strong (αM = 1) and two semi-strong factors (αH = 0.85, αS = 0.65) for
the two-step and the bias-corrected estimators of ϕ = (ϕM , ϕH , ϕS)

′, for different sample
sizes. These are given for the twelve experimental designs listed in Table S-1 below. For
experiments 8 and 9 we also report the results with larger values for the parameter of the
pricing errors (αη = 0.50) and the spatial coefficients (ρε = 0.85), denoted as Experiments
8a and 9a, respectively. Following each table the empirical power functions for the bias
corrected estimator of ϕ are displayed for different sample sizes. The threshold estimator
of the covariance matrix described in Section 3.2 of the main paper is used in computing
the standard errors of the tests.

S2 List of Monte Carlo Experiments

The full list of Monte Carlo experimenst is provided in Table S-1. Six designs, the odd
numbered ones, have errors in the return equations that are Gaussian, six, the even
numbered ones, have errors that are t distributed with 5 degrees of freedom. Designs 3
and 4 add GARCH effects in the factor errors to designs 1 and 2, respectively. Designs
5 and 6, add the pricing error, ηi, to designs 3 and 4, and designs 7 and 8 further add
the missing factor, gt, to the error of the return equations. Designs 1-8 have a diagonal
covariance matrix for the idiosyncratic errors, vit. Designs 9 and 10 introduce spatial
errors in the idiosyncratic errors, vit, and continue to allow for GARCH effects, pricing
errors, and a missing factor. Designs 11 and 12 generate vit with a block covariance matrix
structure, instead of the spatial pattern assumed in designs 9 and 10. All experiments are
implemented using R = 2, 000 replications.
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Table S-1: List of experimental designs and their parameter values

Error GARCH Pricing Missing Error

distribution effects errors factor covariance

1 Gaussian bk= 0, ck= 0 No No σij = 0, i ̸= j
2 t(5) bk= 0, ck= 0 No No σij = 0, i ̸= j
3 Gaussian bk= 0.8, ck= 0.1 No No σij = 0, i ̸= j
4 t(5) bk= 0.8, ck= 0.1 No No σij = 0, i ̸= j
5 Gaussian bk= 0.8, ck= 0.1 αη= 0.3 No σij = 0, i ̸= j
6 t(5) bk= 0.8, ck= 0.1 αη= 0.3 No σij = 0, i ̸= j
7 Gaussian bk= 0.8, ck= 0.1 αη= 0.3 αγ= 0.5 σij = 0, i ̸= j
8 t(5) bk= 0.8, ck= 0.1 αη= 0.3 αγ= 0.5 σij = 0, i ̸= j
9 Gaussian bk= 0.8, ck= 0.1 αη= 0.3 αγ= 0.5 ρε= 0.5
10 t(5) bk= 0.8, ck= 0.1 αη= 0.3 αγ= 0.5 ρε= 0.5
11 Gaussian bk= 0.8, ck= 0.1 αη= 0.3 αγ= 0.5 Block

12 t(5) bk= 0.8, ck= 0.1 αη= 0.3 αγ= 0.5 Block

Notes: t-distributed errors are denoted by t(5), bk and ck are the parameters of the GARCH(1,1), αη is

the strength of the pricing errors, αγ refers to the strength of the missing factor, σij = 0, i ̸= j means

that the error covariance is diagonal, ρε is the coefficient of spatial error process, and ”Block” means

that the error covariance matrix is block diagonal. See he online supplement A for further details.

The simulation design, as presented in Table S-1, is aligned with the naming conven-
tion employed for tables and figures. Specifically, if a table is denoted as Table S-A-EX,
it signifies that the table pertains to Experiment X when the GDP and the panel re-
gressions correctly include one strong and two semi-strong factors. On the other hand,
a table labeled as Table S-B-EX relates to Experiment X when the DGP includes one
strong and two semi-strong factors, comparing the results when strong and semi-strong
factors are included (correct specification) with the ones where only the strong factor is
included (incorrect specification). Likewise, Table S-C-EX provides the summary results
for Experiment X, when the DGP contains one strong and two weak factors, comparing
the results to the case when strong and weak factors are included (correct specification)
with the results obtained when the weak factors are excluded (incorrect specification).
The aforementioned nomenclature also applies to the figures that present the empirical
power functions.
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Table S-A-E1: Bias, RMSE and size for the two-step and bias-corrected (BC) estimators
of ϕ, for Experiment 1 with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
ϕM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 0.51 -1.55 26.19 86.14 11.10 4.00
500 -0.06 0.28 17.05 14.33 28.25 5.40

1,000 -0.43 0.10 15.80 10.12 41.35 6.20
3,000 -0.86 -0.01 14.77 5.56 60.90 5.70

T = 120 100 0.24 1.84 17.47 91.35 7.70 4.70
500 0.18 0.15 9.34 8.99 13.95 6.15

1,000 -0.04 0.01 7.57 6.22 19.15 5.65
3,000 -0.32 -0.06 6.27 3.49 36.65 4.95

T = 240 100 0.24 -0.15 12.11 13.11 5.40 4.55
500 0.31 0.09 5.75 5.75 8.00 4.85

1,000 0.22 0.03 4.34 4.06 10.60 5.30
3,000 0.07 -0.00 3.06 2.35 18.80 5.10

ϕH=−0.35, αH=0.85
T = 60 100 2.63 -0.89 29.26 140.65 17.55 3.65

500 4.07 -1.16 25.10 24.87 45.65 5.90
1,000 4.58 -0.12 25.19 18.25 57.25 6.30
3,000 4.81 0.30 26.13 11.76 75.10 5.90

T = 120 100 2.51 3.60 19.56 190.94 9.95 4.75
500 2.97 -0.47 13.83 13.46 25.65 5.55

1,000 3.34 0.02 13.68 10.20 39.85 6.00
3,000 3.57 0.15 13.85 6.48 61.55 5.50

T = 240 100 1.64 -0.50 13.44 16.67 7.75 6.15
500 1.99 -0.39 7.87 8.01 12.95 5.55

1,000 2.29 -0.15 7.28 6.04 23.05 5.40
3,000 2.64 0.02 6.97 3.82 44.55 4.70

ϕS=0.16, αS=0.65
T = 60 100 -20.09 1.57 37.57 256.48 24.55 2.60

500 -23.78 1.80 37.42 37.75 56.20 4.05
1,000 -25.54 1.05 38.85 32.14 68.60 5.45
3,000 -28.27 0.35 42.26 24.96 82.80 7.00

T = 120 100 -12.99 -6.16 25.50 378.75 16.25 4.90
500 -16.99 0.65 23.97 19.49 46.85 4.80

1,000 -18.80 0.56 25.41 16.40 62.60 5.55
3,000 -22.08 0.44 28.91 12.73 80.55 5.75

T = 240 100 -8.52 0.16 17.30 19.66 10.80 4.55
500 -11.19 0.19 15.08 11.66 36.15 4.90

1,000 -12.71 0.34 15.72 9.27 55.90 4.60
3,000 -15.93 0.18 18.70 7.02 81.90 5.60

Notes: The DGP for Experiment 1 allows for Gaussian errors, no GARCH effects, without pricing

errors, no missing factors, and without spatial/block error cross dependence. For further details of the

experiments, see Table S-1.
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Figure S-A-E1: Power functions of the bias-corrected estimators of ϕM , ϕH and ϕS for
Experiment 1

Note: See the notes to Table S-A-E1.
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Table S-A-E2: Bias, RMSE and size for the two-step and bias-corrected (BC) estimators
of ϕ, for Experiment 2 with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
ϕM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 0.65 0.27 26.62 45.08 11.75 3.70
500 -0.07 0.27 17.26 14.47 28.25 5.75

1,000 -0.50 0.04 15.74 10.24 39.75 6.10
3,000 -0.87 -0.05 14.80 5.72 60.70 5.90

T = 120 100 0.42 0.02 17.50 20.45 7.05 4.90
500 0.25 0.23 9.47 9.16 14.80 6.60

1,000 -0.03 0.03 7.46 6.12 19.20 5.55
3,000 -0.36 -0.09 6.31 3.52 36.70 5.65

T = 240 100 0.27 -0.14 12.17 13.18 6.20 5.05
500 0.34 0.11 5.84 5.81 8.15 5.05

1,000 0.22 0.04 4.34 4.07 10.40 5.55
3,000 0.04 -0.03 3.07 2.36 19.15 5.25

ϕH=−0.35, αH=0.85
T = 60 100 2.88 -2.77 29.60 81.53 17.70 3.25

500 4.18 -0.95 25.36 25.93 44.85 5.80
1,000 4.62 -0.02 25.27 18.42 57.40 5.00
3,000 4.75 0.13 26.17 12.23 74.80 5.95

T = 120 100 2.49 -0.71 19.67 28.58 9.70 4.85
500 3.17 -0.13 13.89 13.46 25.75 5.10

1,000 3.30 -0.05 13.75 10.34 40.05 6.00
3,000 3.52 0.08 13.84 6.61 62.40 6.05

T = 240 100 1.75 -0.39 13.41 16.61 7.70 5.65
500 2.08 -0.27 7.96 8.01 13.75 5.10

1,000 2.23 -0.23 7.22 6.08 22.20 5.15
3,000 2.64 0.02 6.95 3.83 43.50 4.60

ϕS=0.16, αS=0.65
T = 60 100 -20.16 5.40 37.93 125.25 24.85 3.60

500 -23.88 1.79 37.72 40.47 55.30 4.25
1,000 -25.44 1.10 38.75 33.04 67.85 5.35
3,000 -28.24 0.82 42.24 25.93 82.05 6.45

T = 120 100 -13.00 2.26 25.41 38.09 16.65 5.40
500 -17.08 0.48 24.21 20.35 46.35 5.55

1,000 -18.80 0.53 25.43 16.73 62.75 5.50
3,000 -22.12 0.38 28.88 12.87 79.90 5.70

T = 240 100 -8.38 0.35 17.38 19.88 10.75 4.90
500 -11.10 0.33 14.99 11.64 35.40 5.35

1,000 -12.66 0.43 15.60 9.15 55.40 4.55
3,000 -15.88 0.29 18.65 6.97 80.75 4.95

Notes: The DGP for Experiment 2 allows for t(5) distributed errors, no GARCH effects, without pricing

errors, no missing factors, and without spatial/block error cross dependence. For further details of the

experiments, see Table S-1.
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Figure S-A-E2: Empirical Power Functions, experiment 2, for coefficient of the semi-
strong factors

Note: See the notes to Table S-A-E2.
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Table S-A-E3: Bias, RMSE and size for the two-step and bias-corrected (BC) estimators
of ϕ, for Experiment 3 with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
ϕM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 0.51 -6.00 26.18 227.89 11.05 3.40
500 -0.14 0.29 17.03 14.71 28.20 5.65

1,000 -0.51 0.09 15.81 10.33 40.30 6.35
3,000 -0.92 0.00 14.83 5.65 61.15 5.65

T = 120 100 0.21 -0.19 17.45 20.63 7.85 4.50
500 0.13 0.15 9.35 9.05 13.80 6.25

1,000 -0.09 0.02 7.61 6.25 19.95 5.75
3,000 -0.37 -0.05 6.31 3.50 36.65 4.90

T = 240 100 0.25 -0.13 12.15 13.17 5.35 4.45
500 0.31 0.10 5.77 5.78 8.00 5.20

1,000 0.21 0.05 4.36 4.07 11.15 5.25
3,000 0.06 0.00 3.07 2.36 18.80 5.20

ϕH=−0.35, αH=0.85
T = 60 100 2.67 -7.85 28.98 155.63 17.70 3.80

500 4.06 -1.08 24.84 26.10 45.75 6.05
1,000 4.57 -0.15 24.93 18.93 56.85 6.35
3,000 4.80 0.28 25.82 12.24 75.55 5.40

T = 120 100 2.51 -0.70 19.41 28.86 10.05 4.25
500 2.95 -0.46 13.76 13.63 25.90 5.55

1,000 3.31 0.05 13.56 10.28 39.70 5.70
3,000 3.52 0.17 13.70 6.56 61.60 5.30

T = 240 100 1.64 -0.53 13.42 16.73 7.65 6.15
500 2.02 -0.38 7.86 8.04 13.35 5.65

1,000 2.32 -0.13 7.24 6.05 22.35 5.45
3,000 2.65 0.03 6.93 3.82 44.45 4.35

ϕS=0.16, αS=0.65
T = 60 100 -20.59 25.62 37.71 892.51 25.80 2.50

500 -24.12 1.65 37.45 40.44 57.75 3.90
1,000 -25.89 1.16 38.88 34.07 68.95 5.40
3,000 -28.50 0.41 42.22 26.13 82.65 6.70

T = 120 100 -13.31 2.54 25.72 37.94 16.80 4.95
500 -17.21 0.73 24.19 19.85 47.55 5.25

1,000 -19.04 0.61 25.61 16.70 63.75 5.65
3,000 -22.27 0.51 29.04 12.99 80.65 5.95

T = 240 100 -8.63 0.19 17.37 19.69 10.70 4.55
500 -11.31 0.21 15.22 11.72 36.85 5.15

1,000 -12.87 0.33 15.91 9.31 56.35 4.75
3,000 -16.07 0.17 18.87 7.04 81.75 5.60

Notes: The DGP for Experiment 3 allows for Gaussian errors, with GARCH effects, without pricing

errors, no missing factors, and without spatial/block error cross dependence. For further details of the

experiments, see Table S-1.
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Figure S-A-E3: Empirical Power Functions, experiment 3, for coefficient of the semi-
strong factors

Note: See the notes to Table S-A-E3.
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Table S-A-E4: Bias, RMSE and size for the two-step and bias-corrected (BC) estimators
of ϕ, for Experiment 4 with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
ϕM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 0.59 0.17 26.59 107.83 12.15 3.75
500 -0.16 0.23 17.26 14.75 28.05 5.65

1,000 -0.57 0.05 15.76 10.43 39.95 6.10
3,000 -0.93 -0.04 14.85 5.82 60.70 5.95

T = 120 100 0.37 -0.86 17.48 44.37 7.05 4.95
500 0.20 0.21 9.49 9.24 15.15 6.45

1,000 -0.08 0.03 7.50 6.16 19.45 4.90
3,000 -0.40 -0.08 6.35 3.53 36.70 5.85

T = 240 100 0.27 -0.13 12.20 13.22 6.35 4.85
500 0.34 0.12 5.86 5.83 8.80 5.10

1,000 0.22 0.05 4.36 4.08 10.60 5.60
3,000 0.03 -0.02 3.08 2.36 19.15 5.25

ϕH=−0.35, αH=0.85
T = 60 100 2.92 -5.32 29.30 146.82 17.95 3.15

500 4.18 -0.76 25.12 27.25 44.65 5.80
1,000 4.61 -0.06 25.02 19.04 56.50 4.85
3,000 4.73 0.12 25.86 12.64 74.85 5.60

T = 120 100 2.50 -3.13 19.53 113.15 9.75 4.55
500 3.16 -0.11 13.84 13.64 25.65 5.25

1,000 3.27 -0.02 13.64 10.41 40.10 6.05
3,000 3.47 0.10 13.70 6.67 60.75 6.25

T = 240 100 1.75 -0.41 13.39 16.66 7.85 5.75
500 2.12 -0.25 7.97 8.07 13.90 5.05

1,000 2.25 -0.22 7.17 6.09 21.70 5.40
3,000 2.65 0.02 6.92 3.85 43.35 4.70

ϕS=0.16, αS=0.65
T = 60 100 -20.62 12.61 38.03 267.24 25.90 3.60

500 -24.23 1.81 37.80 44.22 56.50 3.85
1,000 -25.79 1.07 38.78 34.41 68.90 5.45
3,000 -28.50 0.96 42.21 27.28 81.45 6.20

T = 120 100 -13.32 7.33 25.66 214.62 16.60 5.25
500 -17.29 0.59 24.43 20.72 46.95 5.50

1,000 -19.05 0.56 25.63 16.96 62.30 5.80
3,000 -22.32 0.41 29.03 13.12 80.50 5.85

T = 240 100 -8.49 0.40 17.46 19.99 10.75 5.10
500 -11.22 0.35 15.14 11.73 36.10 5.20

1,000 -12.80 0.44 15.77 9.19 55.95 4.40
3,000 -16.02 0.29 18.80 6.99 81.40 5.00

Notes: The DGP for Experiment 4 allows for t(5) distributed errors, with GARCH effects, without pricing

errors, no missing factors, and without spatial/block error cross dependence. For further details of the

experiments, see Table S-1.

SB-9



Figure S-A-E4: Empirical Power Functions, experiment 4, for coefficient of the semi-
strong factors

Note: See the notes to Table S-A-E4.
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Table S-A-E5: Bias, RMSE and size for the two-step and bias-corrected (BC) estimators
of ϕ, for Experiment 5 with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
ϕM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 0.42 -7.58 26.27 285.21 11.35 3.75
500 -0.15 0.28 17.05 14.79 28.10 5.80

1,000 -0.49 0.10 15.81 10.35 40.35 6.25
3,000 -0.92 -0.00 14.83 5.65 61.10 5.75

T = 120 100 0.06 -0.35 17.63 20.82 7.85 4.95
500 0.13 0.14 9.40 9.15 14.85 6.45

1,000 -0.07 0.04 7.60 6.28 20.00 5.90
3,000 -0.37 -0.06 6.32 3.50 37.00 4.80

T = 240 100 0.08 -0.31 12.48 13.53 6.30 5.35
500 0.31 0.10 5.83 5.84 8.35 5.35

1,000 0.23 0.07 4.38 4.11 10.95 5.20
3,000 0.06 0.00 3.08 2.36 18.75 5.25

ϕH=−0.35, αH=0.85
T = 60 100 2.58 -8.49 28.97 174.83 18.20 3.30

500 4.10 -1.01 24.82 26.10 45.25 6.15
1,000 4.58 -0.12 24.96 18.91 57.15 6.50
3,000 4.80 0.28 25.82 12.25 75.60 5.60

T = 120 100 2.44 -0.79 19.68 28.94 10.35 4.70
500 2.98 -0.43 13.78 13.79 25.75 5.60

1,000 3.32 0.07 13.57 10.29 40.00 6.05
3,000 3.52 0.17 13.70 6.56 61.85 5.45

T = 240 100 1.57 -0.63 13.97 17.37 8.25 6.75
500 2.04 -0.35 7.92 8.17 13.85 5.75

1,000 2.33 -0.12 7.28 6.09 22.70 5.50
3,000 2.66 0.04 6.94 3.83 44.70 4.55

ϕS=0.16, αS=0.65
T = 60 100 -20.57 31.92 37.88 1112.05 25.45 2.55

500 -24.15 1.61 37.49 40.53 57.90 3.95
1,000 -25.88 1.16 38.88 34.12 68.80 5.70
3,000 -28.51 0.40 42.23 26.13 82.65 6.60

T = 120 100 -13.21 2.55 26.09 37.89 16.70 5.50
500 -17.24 0.70 24.27 20.01 47.90 5.40

1,000 -19.03 0.62 25.61 16.77 63.50 5.85
3,000 -22.26 0.53 29.04 13.01 80.55 6.05

T = 240 100 -8.55 0.29 18.03 20.67 11.85 6.25
500 -11.35 0.16 15.31 11.89 37.35 5.85

1,000 -12.87 0.33 15.91 9.37 56.40 4.75
3,000 -16.07 0.18 18.86 7.07 81.75 5.65

Notes: The DGP for Experiment 5 allows for Gaussian errors, with GARCH effects, with pricing errors

(αη = 0.3), no missing factors, and without spatial/block error cross dependence. For further details of

the experiments, see Table S-1.
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Figure S-A-E5: Empirical Power Functions, experiment 5, for coefficient of the semi-
strong factors

Note: See the notes to Table S-A-E5.
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Table S-A-E6: Bias, RMSE and size for the two-step and bias-corrected (BC) estimators
of ϕ, for Experiment 6 with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
ϕM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 0.49 0.05 26.69 103.65 12.25 3.95
500 -0.17 0.24 17.27 14.81 28.25 5.95

1,000 -0.56 0.06 15.75 10.44 39.60 6.00
3,000 -0.93 -0.05 14.85 5.82 60.75 5.80

T = 120 100 0.22 -0.76 17.65 33.47 7.45 5.15
500 0.20 0.22 9.54 9.32 15.30 6.95

1,000 -0.06 0.05 7.49 6.18 19.50 5.30
3,000 -0.40 -0.09 6.36 3.54 37.05 5.70

T = 240 100 0.11 -0.30 12.57 13.63 7.55 6.10
500 0.33 0.11 5.91 5.88 8.60 5.10

1,000 0.24 0.07 4.38 4.13 10.30 5.80
3,000 0.03 -0.03 3.09 2.37 19.25 5.45

ϕH=−0.35, αH=0.85
T = 60 100 2.83 -5.32 29.34 144.70 18.05 3.40

500 4.22 -0.67 25.10 27.28 44.70 5.45
1,000 4.62 -0.03 25.04 19.02 56.30 4.80
3,000 4.73 0.12 25.86 12.64 74.70 5.65

T = 120 100 2.42 -2.45 19.82 78.69 11.40 4.90
500 3.19 -0.06 13.87 13.81 25.85 5.45

1,000 3.28 -0.00 13.65 10.44 40.80 6.35
3,000 3.47 0.11 13.70 6.67 61.05 6.10

T = 240 100 1.68 -0.51 13.94 17.33 8.35 6.70
500 2.15 -0.22 8.05 8.22 14.70 5.60

1,000 2.26 -0.20 7.23 6.14 21.75 5.65
3,000 2.65 0.03 6.93 3.86 43.85 5.00

ϕS=0.16, αS=0.65
T = 60 100 -20.59 12.67 38.25 257.83 25.55 3.70

500 -24.27 1.73 37.83 44.57 56.60 3.95
1,000 -25.78 1.10 38.79 34.52 68.85 5.30
3,000 -28.50 0.95 42.22 27.27 81.40 6.05

T = 120 100 -13.22 5.85 26.06 146.46 16.95 5.40
500 -17.32 0.55 24.50 20.89 47.05 5.55

1,000 -19.04 0.58 25.64 17.05 62.35 5.95
3,000 -22.32 0.42 29.03 13.16 80.25 5.90

T = 240 100 -8.41 0.50 18.09 20.93 12.15 6.40
500 -11.25 0.31 15.25 11.95 36.35 5.70

1,000 -12.80 0.44 15.77 9.26 55.35 5.05
3,000 -16.02 0.29 18.80 7.02 81.00 5.10

Notes: The DGP for Experiment 6 allows for t(5) distributed errors, with GARCH effects, with pricing

errors (αη = 0.3), no missing factors, and without spatial/block error cross dependence. For further

details of the experiments, see Table S-1.
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Figure S-A-E6: Empirical Power Functions, experiment 6, for coefficient of the semi-
strong factors

Note: See the notes to Table S-A-E6.
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Table S-A-E7: Bias, RMSE and size for the two-step and bias-corrected (BC) estimators
of ϕ, for Experiment 7 with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
ϕM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 -0.33 -14.31 26.54 555.11 11.80 3.20
500 -0.50 -0.18 17.67 15.13 29.80 6.40

1,000 -0.73 -0.15 15.95 10.41 42.20 6.25
3,000 -0.91 0.04 14.87 5.81 61.20 5.90

T = 120 100 -0.13 -0.49 17.44 20.30 7.55 5.05
500 0.01 0.01 9.49 8.86 14.20 5.85

1,000 -0.11 0.04 7.74 6.31 20.50 6.60
3,000 -0.27 0.08 6.40 3.60 36.65 5.65

T = 240 100 -0.00 -0.39 12.82 14.02 7.30 6.75
500 0.15 -0.08 6.14 6.13 9.85 6.95

1,000 0.14 -0.03 4.52 4.22 11.90 5.80
3,000 0.07 0.01 3.05 2.32 18.30 5.15

ϕH=−0.35, αH=0.85
T = 60 100 3.05 -222.60 29.40 9435.95 17.55 2.70

500 4.42 -0.75 25.03 26.57 46.25 4.95
1,000 4.43 -0.56 25.18 19.01 58.75 5.45
3,000 4.63 -0.15 25.85 12.14 76.15 5.75

T = 120 100 2.45 -0.89 19.84 28.94 10.55 4.95
500 3.24 -0.00 13.84 13.44 26.75 5.95

1,000 3.30 0.05 13.47 9.91 41.30 5.20
3,000 3.29 -0.25 13.67 6.56 62.45 5.75

T = 240 100 1.67 -0.55 13.68 16.80 7.45 6.10
500 2.28 -0.04 8.00 8.00 13.35 5.50

1,000 2.42 -0.02 7.22 6.00 22.60 5.10
3,000 2.54 -0.13 6.85 3.82 44.00 5.25

ϕS=0.16, αS=0.65
T = 60 100 -20.23 62.14 37.82 2347.80 25.15 2.70

500 -24.55 1.18 37.58 46.58 59.25 4.40
1,000 -26.04 0.76 38.91 33.25 69.25 5.25
3,000 -28.68 0.06 42.34 26.75 82.30 6.90

T = 120 100 -12.90 2.52 25.93 38.03 16.35 5.70
500 -17.48 0.44 24.54 21.10 50.00 6.00

1,000 -19.25 0.09 25.81 16.81 63.35 5.45
3,000 -22.34 0.29 29.12 13.12 80.15 6.15

T = 240 100 -8.13 0.84 17.77 20.91 11.30 5.65
500 -11.31 0.30 15.26 11.79 37.05 5.70

1,000 -12.84 0.38 15.96 9.45 56.40 5.15
3,000 -16.09 0.21 18.91 7.26 80.95 6.30

Notes: The DGP for Experiment 7 allows for Gaussian errors, with GARCH effects, with pricing errors

(αη = 0.3), with one weak missing factor (αγ = 0.5), and without spatial/block error cross dependence.

For further details of the experiments, see S-1.
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Figure S-A-E7: Empirical Power Functions, experiment 7 for coefficient of the semi-
strong factors

Note: See the notes to Table S-A-E7.
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Table S-A-E8: Bias, RMSE and size for the two-step and bias-corrected (BC) estimators
of ϕ, for Experiment 8 with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
ϕM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 -0.27 9.06 27.12 251.34 11.45 3.75
500 -0.74 -0.67 17.81 16.71 29.75 6.30

1,000 -0.64 0.01 16.06 10.38 40.90 5.70
3,000 -0.85 0.12 14.90 5.96 59.65 6.15

T = 120 100 0.04 -0.32 17.49 20.53 7.35 4.75
500 -0.06 -0.04 9.49 8.89 13.95 5.80

1,000 0.01 0.19 7.78 6.40 20.90 6.10
3,000 -0.24 0.14 6.39 3.63 37.25 5.90

T = 240 100 0.09 -0.29 12.84 14.07 7.10 6.35
500 0.20 -0.01 6.08 6.06 9.50 6.05

1,000 0.17 0.01 4.52 4.25 11.55 6.30
3,000 0.06 0.01 3.07 2.35 18.15 5.15

ϕH=−0.35, αH=0.85
T = 60 100 3.41 39.71 29.84 1913.29 17.65 3.15

500 4.52 -1.03 25.21 30.79 44.70 4.95
1,000 4.47 -0.47 25.14 19.34 57.65 5.85
3,000 4.59 -0.21 25.88 12.19 75.20 5.45

T = 120 100 2.68 -0.54 20.19 28.91 11.20 5.05
500 3.38 0.31 13.97 13.39 26.60 5.35

1,000 3.36 0.14 13.38 9.90 40.55 4.90
3,000 3.33 -0.18 13.64 6.52 61.95 5.20

T = 240 100 1.77 -0.40 13.95 17.05 7.45 6.00
500 2.38 0.12 8.01 7.92 14.30 4.70

1,000 2.58 0.20 7.25 5.99 23.15 4.75
3,000 2.54 -0.13 6.81 3.84 42.85 4.95

ϕS=0.16, αS=0.65
T = 60 100 -20.01 -141.72 37.89 5932.49 25.40 3.15

500 -24.52 3.22 37.63 77.87 57.05 4.45
1,000 -26.14 0.57 39.14 34.26 69.30 5.10
3,000 -28.54 0.84 42.33 26.81 81.00 5.85

T = 120 100 -13.01 2.45 26.01 36.96 16.80 5.60
500 -17.52 0.34 24.66 20.94 48.35 6.55

1,000 -19.32 -0.11 25.88 16.81 64.05 5.80
3,000 -22.35 0.26 29.14 13.22 79.70 6.20

T = 240 100 -8.14 0.79 17.57 20.56 11.15 5.85
500 -11.42 0.12 15.36 11.78 37.65 5.55

1,000 -13.01 0.12 16.02 9.32 55.70 5.20
3,000 -16.10 0.20 18.91 7.40 80.10 6.70

Notes: The DGP for Experiment 8 allows for t(5) distributed errors, with GARCH effects, with pricing

errors (αη = 0.3), with one weak missing factor (αγ = 0.5), and without spatial/block error cross

dependence. For further details of the experiments, see S-1.
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Table S-A-E8a: Bias, RMSE and size for the two-step and bias-corrected (BC) estima-
tors of ϕ for Experiment 8 with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
ϕM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 -0.16 12.00 27.46 356.79 12.85 4.05
500 -0.77 -0.71 17.89 16.74 29.55 6.50

1,000 -0.66 -0.02 16.09 10.45 40.95 5.70
3,000 -0.86 0.10 14.91 5.99 59.85 6.20

T = 120 100 0.19 -0.16 18.02 21.26 8.25 5.30
500 -0.09 -0.08 9.66 9.09 14.80 6.00

1,000 -0.01 0.16 7.84 6.51 20.95 6.70
3,000 -0.25 0.12 6.40 3.65 38.10 6.35

T = 240 100 0.27 -0.10 13.79 15.14 8.85 8.70
500 0.19 -0.03 6.34 6.36 11.05 7.05

1,000 0.14 -0.03 4.63 4.40 12.05 7.50
3,000 0.05 -0.00 3.09 2.39 18.85 5.70

ϕH=−0.35, αH=0.85
T = 60 100 3.10 55.07 29.92 2828.62 18.85 3.10

500 4.53 -0.98 25.32 30.87 45.10 5.45
1,000 4.46 -0.51 25.19 19.42 58.20 5.45
3,000 4.59 -0.21 25.88 12.26 75.20 5.75

T = 120 100 2.39 -0.98 20.59 29.45 11.90 5.85
500 3.39 0.32 14.17 13.75 27.35 5.45

1,000 3.34 0.10 13.45 10.09 40.55 5.00
3,000 3.33 -0.18 13.63 6.58 62.30 5.20

T = 240 100 1.52 -0.70 14.82 18.29 10.60 8.55
500 2.38 0.12 8.27 8.27 15.65 6.05

1,000 2.55 0.15 7.35 6.23 23.20 5.65
3,000 2.54 -0.13 6.83 3.90 42.75 5.95

ϕS=0.16, αS=0.65
T = 60 100 -19.86 -210.04 38.24 8784.76 26.15 3.40

500 -24.49 3.17 37.68 75.99 56.80 4.95
1,000 -26.11 0.71 39.11 34.49 69.05 4.95
3,000 -28.55 0.78 42.34 26.88 81.20 6.05

T = 120 100 -12.88 2.68 26.48 38.62 17.60 5.85
500 -17.41 0.56 24.62 21.19 47.90 6.25

1,000 -19.28 -0.02 25.86 17.01 63.85 6.00
3,000 -22.36 0.23 29.18 13.36 79.65 6.75

T = 240 100 -8.03 0.96 18.42 22.23 13.25 7.35
500 -11.34 0.24 15.47 12.20 36.80 6.50

1,000 -12.95 0.21 16.03 9.63 56.70 6.20
3,000 -16.10 0.19 18.96 7.59 80.25 7.25

Notes: The DGP for Experiment 8 allows for t(5) distributed errors, with GARCH effects, with pricing

errors (αη = 0.5), with one weak missing factor (αγ = 0.5), and without spatial/block error cross

dependence. For further details of the experiments, see S-1.
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Figure S-A-E8: Empirical Power Functions, experiment 8 for coefficient of the semi-
strong factors

Note: See the notes to Table S-A-E8.
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Figure S-A-E8a: Empirical Power Functions, experiment 8a for coefficient of the semi-
strong factors

Note: See the notes to Table S-A-E8a.
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Table S-A-E9: Bias, RMSE and size for the two-step and bias-corrected (BC) estimators
of ϕ, for Experiment 9 with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
ϕM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 -0.51 -15.47 27.16 662.68 11.80 3.40
500 -0.55 1.29 18.02 84.39 31.25 7.75

1,000 -0.85 -0.47 16.24 11.31 43.00 8.50
3,000 -0.99 -0.16 14.97 6.25 61.30 7.75

T = 120 100 -0.17 -0.59 17.92 21.49 7.15 4.50
500 0.03 -0.01 9.70 9.20 13.95 6.15

1,000 -0.17 -0.07 7.88 6.53 20.35 6.30
3,000 -0.33 -0.01 6.45 3.71 36.90 6.50

T = 240 100 -0.12 -0.54 12.73 14.02 6.80 6.85
500 0.13 -0.12 6.18 6.19 9.65 6.55

1,000 0.11 -0.08 4.57 4.30 11.75 6.60
3,000 0.06 -0.00 3.09 2.37 17.90 5.45

ϕH=−0.35, αH=0.85
T = 60 100 2.80 3.36 30.96 683.86 19.20 3.90

500 4.18 2.34 25.47 189.26 47.10 8.65
1,000 4.41 -0.83 25.43 22.18 59.30 9.35
3,000 4.63 -0.28 25.90 14.12 76.45 10.60

T = 120 100 2.27 -1.02 20.81 33.62 10.25 4.50
500 3.04 -0.39 14.24 14.82 24.60 5.70

1,000 3.17 -0.24 13.77 11.21 38.65 6.10
3,000 3.24 -0.40 13.74 7.47 60.05 7.75

T = 240 100 1.62 -0.61 14.29 17.94 7.20 5.75
500 2.25 -0.09 8.26 8.60 13.10 5.35

1,000 2.36 -0.10 7.47 6.57 21.10 5.65
3,000 2.57 -0.10 6.99 4.27 41.70 5.85

ϕS=0.16, αS=0.65
T = 60 100 -19.57 38.19 40.89 1634.08 26.25 4.75

500 -24.60 -17.77 38.37 944.75 59.35 10.05
1,000 -26.04 1.99 39.30 41.96 70.30 11.50
3,000 -28.69 0.77 42.55 32.04 82.85 11.70

T = 120 100 -12.73 4.51 29.32 56.35 14.45 5.50
500 -17.45 0.82 25.67 26.62 44.50 8.70

1,000 -19.16 0.54 26.31 20.96 58.65 8.40
3,000 -22.27 0.58 29.33 16.06 77.55 8.95

T = 240 100 -8.13 1.07 21.26 26.72 10.60 6.50
500 -11.34 0.35 16.58 15.28 31.25 7.40

1,000 -12.81 0.50 16.52 11.98 46.35 6.40
3,000 -16.03 0.35 19.08 9.09 75.35 7.25

Notes: The DGP for Experiment 9 allows for Gaussian errors, with GARCH effects, with pricing errors

(αη = 0.3), with one weak missing factor (αγ = 0.5), and with spatial error cross dependence (ρε = 0.5).

For further details of the experiments, see Table S-1.
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Table S-A-E9a: Bias, RMSE and size for the two-step and bias-corrected (BC) estima-
tors of ϕ for Experiment 9 with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
ϕM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 -0.48 24.91 29.91 1802.71 10.25 3.05
500 -0.58 -1.22 19.37 92.46 26.95 6.75

1,000 -0.92 -0.95 17.00 17.30 37.20 8.60
3,000 -1.03 -0.35 15.24 8.41 55.50 8.65

T = 120 100 -0.02 -1.97 19.95 35.08 8.60 6.20
500 0.03 -0.10 10.58 10.55 13.75 6.10

1,000 -0.24 -0.22 8.38 7.44 17.85 6.55
3,000 -0.40 -0.12 6.67 4.26 33.75 6.90

T = 240 100 0.02 -0.44 13.81 15.39 8.65 7.40
500 0.12 -0.14 6.62 6.70 10.25 6.35

1,000 0.06 -0.15 4.86 4.72 10.85 7.45
3,000 0.04 -0.03 3.26 2.62 16.95 6.45

ϕH=−0.35, αH=0.85
T = 60 100 1.63 29.05 36.11 1916.43 14.35 1.95

500 3.76 1.48 27.36 303.36 36.10 7.25
1,000 4.26 -1.84 26.21 39.83 48.45 8.20
3,000 4.56 -0.62 26.15 22.78 69.25 11.05

T = 120 100 1.79 -3.12 24.84 50.47 9.30 4.50
500 2.85 -0.87 16.01 19.66 18.60 5.60

1,000 3.03 -0.57 14.77 15.08 28.80 6.90
3,000 3.13 -0.68 14.02 10.07 49.45 8.40

T = 240 100 1.21 -1.21 17.34 22.52 8.30 6.75
500 2.22 -0.15 9.58 10.83 11.00 5.95

1,000 2.27 -0.24 8.46 8.56 18.20 6.15
3,000 2.60 -0.08 7.42 5.55 33.25 7.10

ϕS=0.16, αS=0.65
T = 60 100 -18.49 110.60 50.00 7440.55 17.75 2.35

500 -24.61 18.11 41.10 1183.88 44.00 6.75
1,000 -26.08 6.93 40.81 118.48 58.05 8.75
3,000 -28.71 2.78 43.19 66.65 75.45 11.30

T = 120 100 -12.19 13.59 37.47 192.49 10.25 4.45
500 -17.28 2.13 28.78 40.29 30.50 8.05

1,000 -19.06 1.36 27.98 31.28 44.05 8.90
3,000 -22.25 1.02 30.06 23.69 66.95 8.90

T = 240 100 -8.15 1.74 28.35 38.76 8.85 5.65
500 -11.28 0.68 19.74 22.51 19.25 7.65

1,000 -12.72 0.82 18.22 17.60 31.20 7.15
3,000 -15.99 0.51 19.76 13.26 62.25 8.00

Notes: The DGP for Experiment 9 allows for Gaussian errors, with GARCH effects, with pricing errors

(αη = 0.5), with one weak missing factor (αγ = 0.5), and with spatial error cross dependence (ρε = 0.85).

For further details of the experiments, see Table S-1.
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Figure S-A-E9: Empirical Power Functions, experiment 9 for coefficient of the semi-
strong factors

Note: See the notes to Table S-A-E9.
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Figure S-A-E9a: Empirical Power Functions, experiment 9a for coefficient of the semi-
strong factors

Note: See the notes to Table S-A-E9a.
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Table S-A-E10: Bias, RMSE and size for the two-step and bias-corrected (BC) estima-
tors of ϕ, for Experiment 10 with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
ϕM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 -0.39 -1.61 27.55 151.91 11.70 3.75
500 -0.82 -0.69 18.11 17.07 30.40 7.70

1,000 -0.73 -0.31 16.33 11.30 42.50 7.05
3,000 -0.92 -0.06 14.97 6.36 60.05 8.00

T = 120 100 0.02 -1.86 18.04 69.05 7.65 4.80
500 -0.07 -0.09 9.78 9.29 15.05 6.10

1,000 0.01 0.15 7.90 6.62 19.70 6.75
3,000 -0.29 0.05 6.42 3.72 37.55 5.80

T = 240 100 0.01 -0.39 12.87 14.17 6.30 6.35
500 0.17 -0.05 6.13 6.15 9.25 6.05

1,000 0.17 0.00 4.55 4.30 11.30 6.40
3,000 0.06 0.00 3.12 2.40 17.65 5.75

ϕH=−0.35, αH=0.85
T = 60 100 3.25 -8.09 31.16 504.30 19.35 3.65

500 4.29 -1.32 25.64 33.61 46.05 8.10
1,000 4.50 -0.68 25.36 22.95 58.25 9.70
3,000 4.57 -0.37 25.89 14.12 76.05 9.50

T = 120 100 2.48 -1.13 21.16 32.42 11.15 4.50
500 3.15 -0.09 14.31 14.78 25.55 5.70

1,000 3.25 -0.07 13.66 11.19 38.65 5.55
3,000 3.31 -0.26 13.70 7.36 60.50 6.70

T = 240 100 1.78 -0.40 14.58 18.18 8.25 6.05
500 2.35 0.08 8.31 8.60 13.35 5.20

1,000 2.53 0.12 7.51 6.58 21.05 5.00
3,000 2.57 -0.10 6.96 4.28 41.35 6.00

ϕS=0.16, αS=0.65
T = 60 100 -19.35 25.35 40.86 579.34 25.25 4.60

500 -24.56 2.56 38.40 68.65 57.50 9.85
1,000 -26.17 1.78 39.59 43.66 69.65 10.70
3,000 -28.53 1.55 42.55 32.38 81.95 11.90

T = 120 100 -12.71 10.19 29.68 304.30 14.70 6.05
500 -17.42 0.86 25.76 26.78 43.95 8.75

1,000 -19.30 0.15 26.41 20.74 59.65 8.50
3,000 -22.31 0.47 29.35 16.12 77.35 8.95

T = 240 100 -8.09 1.05 21.11 26.50 10.55 6.65
500 -11.52 0.08 16.67 15.20 30.35 7.15

1,000 -12.98 0.22 16.56 11.84 47.50 6.80
3,000 -16.05 0.32 19.11 9.25 75.50 8.00

Notes: The DGP for Experiment 10 allows for t(5) distributed errors, with GARCH effects, with pricing

errors (αη = 0.3), with one weak missing factor (αγ = 0.5), and with spatial error cross dependence

(ρε = 0.5). For further details of the experiments, see Table S-1.
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Figure S-A-E10: Empirical Power Functions, experiment 10 for coefficient of the semi-
strong factors

Note: See the notes to Table S-A-E10.
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Table S-A-E11: Bias, RMSE and size for the two-step and bias-corrected (BC) estima-
tors of ϕ, for Experiment 11 with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
ϕM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 -0.05 -0.72 26.31 47.59 11.30 3.40
500 -0.33 -0.07 17.63 15.12 29.40 6.70

1,000 -0.71 -0.22 16.06 10.46 41.95 6.35
3,000 -0.85 0.05 14.87 5.91 60.85 7.00

T = 120 100 0.10 -0.46 17.08 19.81 7.15 4.55
500 0.13 0.10 9.51 8.93 13.90 6.40

1,000 -0.11 -0.01 7.80 6.28 20.65 6.15
3,000 -0.21 0.09 6.41 3.60 37.25 6.20

T = 240 100 0.20 -0.24 12.33 13.43 6.15 5.30
500 0.24 0.01 6.12 6.11 10.05 6.75

1,000 0.13 -0.07 4.52 4.19 11.75 5.85
3,000 0.11 0.02 3.05 2.32 18.35 4.75

ϕH=−0.35, αH=0.85
T = 60 100 2.50 -2.25 29.66 103.01 18.75 3.35

500 3.74 -0.07 24.90 25.61 45.55 5.45
1,000 3.60 -0.52 24.93 18.83 59.20 6.05
3,000 3.98 0.01 25.84 12.59 75.45 7.90

T = 120 100 1.81 -0.44 19.83 27.88 10.00 4.95
500 2.49 0.09 13.69 13.12 26.00 6.15

1,000 2.45 0.01 13.32 10.12 40.65 6.00
3,000 2.63 0.01 13.61 6.86 62.05 7.20

T = 240 100 0.97 -0.57 13.36 16.38 6.90 5.55
500 1.60 -0.05 7.76 8.01 13.50 5.40

1,000 1.72 0.01 6.95 5.93 20.35 5.20
3,000 1.85 -0.07 6.58 3.89 41.35 5.95

ϕS=0.16, αS=0.65
T = 60 100 -20.60 -0.57 38.15 212.41 27.80 2.75

500 -23.77 2.07 36.92 42.46 58.25 5.55
1,000 -25.88 1.00 39.00 34.14 69.55 6.15
3,000 -28.31 0.81 41.99 28.50 82.20 7.90

T = 120 100 -12.85 2.34 26.13 35.00 17.60 4.80
500 -16.99 0.79 23.96 20.38 47.50 5.65

1,000 -19.15 0.29 25.77 16.81 64.20 5.85
3,000 -21.97 0.81 28.73 13.50 80.80 7.00

T = 240 100 -7.60 1.18 17.18 20.04 10.50 5.15
500 -10.88 0.56 14.80 11.65 35.40 5.55

1,000 -12.61 0.61 15.89 9.46 55.65 5.80
3,000 -15.72 0.52 18.57 7.12 80.50 5.35

Notes: The DGP for Experiment 11 allows for Gaussian errors, with GARCH effects, with pricing errors

(αη = 0.3), with one weak missing factor (αγ = 0.5), and with block error cross dependence. For further

details of the experiments, see Table S-1.
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Figure S-A-E11: Empirical Power Functions, experiment 11 for coefficient of the semi-
strong factors

Note: See the notes to Table S-A-E11.
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Table S-A-E12: Bias, RMSE and size for the two-step and bias-corrected (BC) estima-
tors of ϕ, for Experiment 12 with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
ϕM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 0.09 -0.14 27.00 129.71 11.65 4.10
500 -0.57 -0.25 17.72 15.76 29.85 6.10

1,000 -0.60 -0.04 16.17 10.48 41.65 5.65
3,000 -0.80 0.10 14.89 6.07 60.25 6.75

T = 120 100 0.22 -0.35 17.19 20.06 6.90 4.15
500 0.07 0.06 9.47 8.91 13.70 5.40

1,000 0.04 0.16 7.81 6.35 20.50 6.00
3,000 -0.18 0.14 6.40 3.62 37.75 5.60

T = 240 100 0.30 -0.13 12.34 13.45 6.50 5.90
500 0.30 0.07 6.02 6.01 8.90 6.30

1,000 0.17 -0.02 4.50 4.21 11.40 5.80
3,000 0.10 0.02 3.09 2.35 18.15 5.05

ϕH=−0.35, αH=0.85
T = 60 100 2.62 9.84 29.60 432.72 18.55 2.75

500 3.90 0.37 25.08 28.76 45.25 5.35
1,000 3.57 -0.62 24.92 19.22 58.20 5.95
3,000 3.94 -0.10 25.92 12.64 74.50 6.90

T = 120 100 1.82 -0.38 19.87 27.99 9.25 4.65
500 2.59 0.31 13.82 13.27 25.70 5.85

1,000 2.45 0.02 13.31 10.26 39.70 5.95
3,000 2.70 0.11 13.61 6.85 61.20 7.15

T = 240 100 0.92 -0.65 13.61 16.79 7.15 4.90
500 1.65 0.02 7.79 8.06 12.50 5.05

1,000 1.77 0.07 7.03 6.03 21.70 5.55
3,000 1.87 -0.05 6.57 3.93 41.05 6.05

ϕS=0.16, αS=0.65
T = 60 100 -20.25 1.01 38.24 407.11 26.15 3.00

500 -23.75 1.77 36.94 55.06 55.90 5.30
1,000 -26.03 0.80 39.26 35.51 69.75 6.50
3,000 -28.18 1.33 41.98 27.55 81.60 7.85

T = 120 100 -13.05 2.21 26.45 36.34 18.15 5.05
500 -16.97 0.78 24.00 20.16 47.40 5.40

1,000 -19.18 0.24 25.77 17.03 64.35 6.10
3,000 -21.96 0.84 28.73 13.65 80.55 7.20

T = 240 100 -7.73 1.03 17.33 20.17 11.10 5.40
500 -10.89 0.50 14.85 11.67 34.35 5.40

1,000 -12.73 0.44 15.92 9.49 54.85 5.60
3,000 -15.75 0.49 18.58 7.25 80.80 5.65

Notes: The DGP for Experiment 12 allows for t(5) distributed errors, with GARCH effects, with pricing

errors (αη = 0.3), with one weak missing factor (αγ = 0.5), and with block error cross dependence. For

further details of the experiments, see S-1.
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Figure S-A-E12: Empirical Power Functions, experiment 12 for coefficient of the semi-
strong factors

Note: See the notes to Table S-A-E12.
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S-2.1 Estimators of ϕ for one strong and two semi-strong fac-
tors, threshold estimator of the covariance matrix with
and without misspecification

This subsection examines the effects of either erroneously omitting semi-strong factors
or appropriately including semi-strong factors on the small sample characteristics of the
bias-corrected (BC) estimator of ϕM , the coefficient associated with the strong factor.
Each table presents results from three of the 12 experiments detailed in Table S-1, along
with their respective empirical power functions.
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Table S-B-E1-3: Bias, RMSE and size for the bias-corrected estimators of ϕM=−0.49,
αM=1 with and without semi-strong factors (αH = 0.85, αS = 0.65) included in the re-
gression for the cases of experiments 1, 2 and 3

Bias(x100) RMSE(x100) Size(x100)
Experiment 1 n With Without With Without With Without

semi-strong factors semi-strong factors semi-strong factors
T = 60 100 -1.55 5.63 86.14 31.56 4.00 7.60

500 0.28 3.72 14.33 14.60 5.40 8.80
1,000 0.10 2.96 10.12 11.02 6.20 10.85
3,000 -0.01 1.96 5.56 6.98 5.70 13.50

T = 120 100 1.84 4.96 91.35 20.49 4.70 7.50
500 0.15 3.36 8.99 9.93 6.15 10.50

1,000 0.01 2.72 6.22 7.40 5.65 12.15
3,000 -0.06 1.88 3.49 4.71 4.95 15.80

T = 240 100 -0.15 5.00 13.11 14.46 4.55 7.90
500 0.09 3.33 5.75 7.03 4.85 11.90

1,000 0.03 2.73 4.06 5.33 5.30 14.40
3,000 -0.00 1.95 2.35 3.52 5.10 19.95

Experiment 2
T = 60 100 0.27 6.04 45.08 32.20 3.70 7.25

500 0.27 3.69 14.47 14.60 5.75 7.75
1,000 0.04 2.85 10.24 11.07 6.10 11.10
3,000 -0.05 1.94 5.72 7.03 5.90 14.45

T = 120 100 0.02 5.24 20.45 20.58 4.90 8.30
500 0.23 3.46 9.16 10.04 6.60 10.35

1,000 0.03 2.73 6.12 7.37 5.55 11.35
3,000 -0.09 1.83 3.52 4.70 5.65 16.10

T = 240 100 -0.14 5.08 13.18 14.44 5.05 8.75
500 0.11 3.39 5.81 7.06 5.05 11.65

1,000 0.04 2.74 4.07 5.35 5.55 15.50
3,000 -0.03 1.92 2.36 3.51 5.25 20.55

Experiment 3
T = 60 100 -6.00 5.70 227.89 31.96 3.40 7.55

500 0.29 3.68 14.71 14.81 5.65 9.10
1,000 0.09 2.94 10.33 11.25 6.35 11.55
3,000 0.00 1.96 5.65 7.18 5.65 14.55

T = 120 100 -0.19 4.89 20.63 20.51 4.50 7.45
500 0.15 3.32 9.05 9.98 6.25 10.65

1,000 0.02 2.68 6.25 7.46 5.75 12.15
3,000 -0.05 1.85 3.50 4.75 4.90 15.20

T = 240 100 -0.13 4.96 13.17 14.48 4.45 7.90
500 0.10 3.32 5.78 7.05 5.20 11.85

1,000 0.05 2.72 4.07 5.34 5.25 14.10
3,000 0.00 1.93 2.36 3.53 5.20 19.90

Notes: The DGP includes one strong αM = 1 and two semi-strong (αH = 0.85, αS = 0.65) factors, the

regression with the two semi-strong factors includes them, the regression without excludes them. For

further details of the experiments, see S-1.
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Figure S-B-E1: Empirical Power Functions, experiment 1, for coefficient of the ϕM

factor with and without misspecification

Note: See the notes to Table S-B-E1-3.
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Figure S-B-E2: Empirical Power Functions, experiment 2, for coefficient of the ϕM

factor with and without misspecification

Note: See the notes to Table S-B-E1-3.
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Figure S-B-E3: Empirical Power Functions, experiment 3, for coefficient of the ϕM

factor with and without misspecification

Note: See the notes to Table S-B-E1-3.
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Table S-B-E4-6: Bias, RMSE and size for the bias-corrected estimators of ϕM =−0.49,
αM=1 with and without semi-strong factors (αH = 0.85, αS = 0.65) included in the re-
gression for the cases of experiments 4, 5 and 6

Bias(x100) RMSE(x100) Size(x100)
Experiment 4 n With Without With Without With Without

semi-strong factors semi-strong factors semi-strong factors
T = 60 100 0.17 6.08 107.83 32.68 3.75 7.25

500 0.23 3.64 14.75 14.88 5.65 7.85
1,000 0.05 2.84 10.43 11.29 6.10 10.85
3,000 -0.04 1.94 5.82 7.21 5.95 14.15

T = 120 100 -0.86 5.15 44.37 20.62 4.95 8.10
500 0.21 3.42 9.24 10.11 6.45 10.75

1,000 0.03 2.69 6.16 7.41 4.90 11.05
3,000 -0.08 1.81 3.53 4.75 5.85 15.55

T = 240 100 -0.13 5.03 13.22 14.46 4.85 8.70
500 0.12 3.37 5.83 7.07 5.10 11.15

1,000 0.05 2.72 4.08 5.36 5.60 15.50
3,000 -0.02 1.90 2.36 3.52 5.25 20.00

Experiment 5
T = 60 100 -7.58 5.70 285.21 31.96 3.75 7.55

500 0.28 3.68 14.79 14.86 5.80 9.05
1,000 0.10 2.92 10.35 11.25 6.25 11.80
3,000 -0.00 1.97 5.65 7.19 5.75 14.70

T = 120 100 -0.35 4.89 20.82 20.51 4.95 7.45
500 0.14 3.32 9.15 10.03 6.45 10.30

1,000 0.04 2.67 6.28 7.48 5.90 12.20
3,000 -0.06 1.86 3.50 4.76 4.80 15.45

T = 240 100 -0.31 4.96 13.53 14.48 5.35 7.90
500 0.10 3.31 5.84 7.08 5.35 11.50

1,000 0.07 2.71 4.11 5.36 5.20 14.10
3,000 0.00 1.94 2.36 3.53 5.25 20.30

Experiment 6
T = 60 100 0.05 6.08 103.65 32.68 3.95 7.25

500 0.24 3.63 14.81 14.93 5.95 8.25
1,000 0.06 2.82 10.44 11.30 6.00 11.00
3,000 -0.05 1.95 5.82 7.22 5.80 14.40

T = 120 100 -0.76 5.15 33.47 20.62 5.15 8.10
500 0.22 3.42 9.32 10.16 6.95 10.65

1,000 0.05 2.68 6.18 7.43 5.30 11.25
3,000 -0.09 1.82 3.54 4.75 5.70 15.40

T = 240 100 -0.30 5.03 13.63 14.46 6.10 8.70
500 0.11 3.37 5.88 7.10 5.10 11.85

1,000 0.07 2.71 4.13 5.38 5.80 15.50
3,000 -0.03 1.91 2.37 3.52 5.45 20.40

Notes: The DGP includes one strong αM = 1 and two semi-strong (αH = 0.85, αS = 0.65) factors, the

regression with the two semi-strong factors includes them, the regression without excludes them. For

further details of the experiments, see S-1.
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Figure S-B-E4: Empirical Power Functions, experiment 4, for coefficient of the ϕM

factor with and without misspecification

Note: See the notes to Table S-B-E4-6.
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Figure S-B-E5: Empirical Power Functions, experiment 5, for coefficient of the ϕM

factor with and without misspecification

Note: See the notes to Table S-B-E4-6.
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Figure S-B-E6: Empirical Power Functions, experiment 6, for coefficient of the ϕM

factor with and without misspecification

Note: See the notes to Table S-B-E4-6.
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Table S-B-E7-9: Bias, RMSE and size for the bias-corrected estimators of ϕM =−0.49,
αM=1 with and without semi-strong factors (αH = 0.85, αS = 0.65) included in the re-
gression for the cases of experiments 7, 8 and 9

Bias(x100) RMSE(x100) Size(x100)
Experiment 7 n With Without With Without With Without

semi-strong factors semi-strong factors semi-strong factors
T = 60 100 -14.31 4.76 555.11 31.07 3.20 5.35

500 -0.18 3.25 15.13 15.20 6.40 9.65
1,000 -0.15 2.62 10.41 11.29 6.25 11.35
3,000 0.04 1.99 5.81 7.17 5.90 14.95

T = 120 100 -0.49 4.70 20.30 19.98 5.05 6.55
500 0.01 3.15 8.86 9.80 5.85 10.15

1,000 0.04 2.62 6.31 7.45 6.60 11.85
3,000 0.08 1.99 3.60 4.80 5.65 17.05

T = 240 100 -0.39 4.91 14.02 14.48 6.75 8.50
500 -0.08 3.13 6.13 7.18 6.95 12.85

1,000 -0.03 2.67 4.22 5.45 5.80 15.15
3,000 0.01 1.97 2.32 3.50 5.15 20.90

Experiment 8
T = 60 100 9.06 4.80 251.34 31.95 3.75 6.85

500 -0.67 2.88 16.71 15.13 6.30 9.95
1,000 0.01 2.75 10.38 11.32 5.70 10.25
3,000 0.12 2.09 5.96 7.25 6.15 14.70

T = 120 100 -0.32 4.83 20.53 20.18 4.75 6.25
500 -0.04 3.05 8.89 9.73 5.80 10.20

1,000 0.19 2.76 6.40 7.60 6.10 12.70
3,000 0.14 2.01 3.63 4.81 5.90 17.05

T = 240 100 -0.29 5.00 14.07 14.58 6.35 9.40
500 -0.01 3.19 6.06 7.15 6.05 12.05

1,000 0.01 2.68 4.25 5.46 6.30 15.90
3,000 0.01 1.96 2.35 3.52 5.15 20.95

Experiment 9
T = 60 100 -15.47 4.04 662.68 33.36 3.40 6.95

500 1.29 2.84 84.39 15.74 7.75 11.40
1,000 -0.47 2.26 11.31 11.50 8.50 12.25
3,000 -0.16 1.69 6.25 7.20 7.75 15.35

T = 120 100 -0.59 4.09 21.49 21.20 4.50 7.00
500 -0.01 2.95 9.20 9.95 6.15 9.15

1,000 -0.07 2.40 6.53 7.37 6.30 10.80
3,000 -0.01 1.74 3.71 4.68 6.50 14.30

T = 240 100 -0.54 4.06 14.02 14.60 6.85 8.50
500 -0.12 2.85 6.19 7.11 6.55 10.80

1,000 -0.08 2.42 4.30 5.27 6.60 13.35
3,000 -0.00 1.75 2.37 3.37 5.45 17.50

Notes: The DGP includes one strong αM = 1 and two semi-strong (αH = 0.85, αS = 0.65) factors, the

regression with the two semi-strong factors includes them, the regression without excludes them. For

further details of the experiments, see S-1.
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Figure S-B-E7: Empirical Power Functions, experiment 7, for coefficient of the ϕM

factor with and without misspecification

Note: See the notes to Table S-B-E7-9.
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Figure S-B-E8: Empirical Power Functions, experiment 8, for coefficient of the ϕM

factor with and without misspecification

Note: See the notes to Table S-B-E7-9.
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Figure S-B-E9: Empirical Power Functions, experiment 9, for coefficient of the ϕM

factor with and without misspecification

Note: See the notes to Table S-B-E7-9.
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Table S-B-E10-12: Bias, RMSE and size for the bias-corrected estimators of ϕM

=−0.49, αM=1 with and without semi-strong factors (αH = 0.85, αS = 0.65) included
in the regression for the cases of experiments 10, 11 and 12

Bias(x100) RMSE(x100) Size(x100)
Experiment 10 n With Without With Without With Without

semi-strong factors semi-strong factors semi-strong factors
T = 60 100 -1.61 4.07 151.91 33.92 3.75 7.45

500 -0.69 2.46 17.07 15.76 7.70 11.35
1,000 -0.31 2.39 11.30 11.47 7.05 10.90
3,000 -0.06 1.79 6.36 7.31 8.00 14.95

T = 120 100 -1.86 4.22 69.05 21.53 4.80 7.25
500 -0.09 2.81 9.29 9.92 6.10 9.85

1,000 0.15 2.59 6.62 7.51 6.75 11.40
3,000 0.05 1.76 3.72 4.69 5.80 14.55

T = 240 100 -0.39 4.20 14.17 14.82 6.35 8.60
500 -0.05 2.87 6.15 7.09 6.05 10.80

1,000 0.00 2.46 4.30 5.28 6.40 13.65
3,000 0.00 1.75 2.40 3.40 5.75 18.80

Experiment 11
T = 60 100 -0.72 4.82 47.59 31.18 3.40 5.90

500 -0.07 3.31 15.12 15.30 6.70 10.30
1,000 -0.22 2.56 10.46 11.28 6.35 11.45
3,000 0.05 1.96 5.91 7.26 7.00 16.00

T = 120 100 -0.46 4.75 19.81 20.00 4.55 6.60
500 0.10 3.25 8.93 9.83 6.40 10.00

1,000 -0.01 2.59 6.28 7.41 6.15 11.95
3,000 0.09 1.99 3.60 4.83 6.20 16.70

T = 240 100 -0.24 4.94 13.43 14.51 5.30 8.45
500 0.01 3.22 6.11 7.23 6.75 12.95

1,000 -0.07 2.64 4.19 5.42 5.85 14.65
3,000 0.02 1.97 2.32 3.50 4.75 20.55

Experiment 12
T = 60 100 -0.14 4.87 129.71 32.05 4.10 6.75

500 -0.25 2.94 15.76 15.19 6.10 9.45
1,000 -0.04 2.71 10.48 11.34 5.65 10.40
3,000 0.10 2.05 6.07 7.34 6.75 15.20

T = 120 100 -0.35 4.86 20.06 20.21 4.15 6.35
500 0.06 3.16 8.91 9.76 5.40 10.35

1,000 0.16 2.76 6.35 7.57 6.00 12.75
3,000 0.14 2.01 3.62 4.82 5.60 16.95

T = 240 100 -0.13 5.03 13.45 14.61 5.90 9.25
500 0.07 3.27 6.01 7.18 6.30 12.40

1,000 -0.02 2.66 4.21 5.41 5.80 15.70
3,000 0.02 1.96 2.35 3.52 5.05 20.65

Notes: The DGP includes one strong αM = 1 and two semi-strong (αH = 0.85, αS = 0.65) factors, the

regression with the two semi-strong factors includes them, the regression without excludes them. For

further details of the experiments, see S-1.
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Figure S-B-E10: Empirical Power Functions, experiment 10, for coefficient of the ϕM

factor with and without misspecification

Note: See the notes to Table S-B-E10-12.
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Figure S-B-E11: Empirical Power Functions, experiment 11, for coefficient of the ϕM

factor with and without misspecification

Note: See the notes to Table S-B-E10-12.
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Figure S-B-E12: Empirical Power Functions, experiment 12, for coefficient of the ϕM

factor with and without misspecification

Note: See the notes to Table S-B-E10-12.
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S-2.2 Estimators of ϕ for one strong and two weak factors,
threshold estimator of the covariance matrix with and
without misspecification

This subsection examines the effects of incorrectly omitting weak factors (αS = αH = 1/2)
and correctly including them on the small sample properties of the bias-corrected (BC)
estimator ϕM associated with the strong factor (αM = 1). Each table presents results from
three of the 12 experiments detailed in Table S-1, along with their respective empirical
power functions.
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Table S-C-E1-3: Bias, RMSE and size for the bias-corrected estimators of ϕM = −0.49,
αM=1 with and without weak factors included in the regression for the cases of experi-
ments 1,2 and 3

Bias(x100) RMSE(x100) Size(x100)
Experiment 1 n With Without With Without With Without

weak factors weak factors weak factors
T = 60 100 22.05 3.67 454.21 30.53 1.15 6.10

500 -10.55 1.66 332.83 13.13 2.25 6.15
1,000 -1.33 1.10 382.27 9.48 1.65 6.65
3,000 -19.15 0.58 932.38 5.38 2.00 6.20

T = 120 100 6.52 3.04 237.70 19.49 2.90 5.80
500 0.73 1.37 35.05 8.75 3.20 7.30

1,000 4.61 0.94 152.17 6.12 3.60 6.50
3,000 0.02 0.50 6.94 3.42 2.90 5.00

T = 240 100 8.56 2.91 385.16 13.50 3.45 6.45
500 0.22 1.24 7.22 5.80 4.00 5.80

1,000 0.06 0.90 4.23 4.14 4.00 6.50
3,000 0.01 0.51 2.41 2.38 4.90 5.25

Experiment 2
T = 60 100 -13.53 4.08 774.85 31.16 1.40 6.00

500 -11.15 1.63 755.67 13.33 2.10 5.65
1,000 10.51 1.01 256.15 9.61 2.00 6.55
3,000 -0.10 0.56 71.71 5.50 2.25 6.60

T = 120 100 468.29 3.25 20351.06 19.57 2.25 6.60
500 5.00 1.46 141.50 8.89 3.85 7.55

1,000 -0.54 0.97 16.07 6.06 2.80 5.75
3,000 0.00 0.45 9.71 3.45 3.35 5.45

T = 240 100 -1.38 2.96 67.20 13.49 4.15 7.50
500 0.04 1.28 6.83 5.85 4.15 5.60

1,000 0.11 0.91 4.59 4.15 4.65 7.15
3,000 -0.03 0.48 2.46 2.39 5.15 6.10

Experiment 3
T = 60 100 11.17 3.75 686.97 30.84 1.00 6.25

500 -10.50 1.65 377.36 13.28 2.00 6.15
1,000 -4.65 1.09 120.83 9.59 1.50 6.15
3,000 -4.51 0.59 134.45 5.45 1.90 6.25

T = 120 100 5.69 3.01 267.53 19.52 2.65 5.65
500 -5.01 1.36 140.66 8.79 3.15 7.45

1,000 -0.91 0.94 23.35 6.14 3.35 6.45
3,000 -0.35 0.50 20.92 3.43 2.70 4.75

T = 240 100 1.04 2.89 38.32 13.51 3.45 6.35
500 0.32 1.24 8.13 5.82 3.95 5.90

1,000 0.08 0.90 4.42 4.14 4.00 6.45
3,000 0.04 0.51 2.59 2.39 4.85 5.45

Notes: The DGP includes one strong factor, αM = 1, and two weak factors, αH = αS = 0.5. The

results labelled ”With” include the weak factors correctly, and those labelled ”Without” exclude the

weak factors. For further details of the experiments, see Table S-1.
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Figure S-C-E1: Empirical Power Functions, experiment 1, for coefficient of the ϕM

factor with and without misspecification

Note: See the notes to Table S-C-E1-3.
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Figure S-C-E2: Empirical Power Functions, experiment 2, for coefficient of the ϕM

factor with and without misspecification

Note: See the notes to Table S-C-E1-3.
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Figure S-C-E3: Empirical Power Functions, experiment 3, for coefficient of the ϕM

factor with and without misspecification

Note: See the notes to Table S-C-E1-3.
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Table S-C-E4-6: Bias, RMSE and size for the bias-corrected estimators of ϕM = −0.49,
αM=1 with and without weak factors included in the regression for the cases of experi-
ments 4, 5 and 6

Bias(x100) RMSE(x100) Size(x100)
Experiment 4 n With Without With Without With Without

weak factors weak factors weak factors
T = 60 100 -24.42 4.12 1165.53 31.54 1.35 6.15

500 -11.84 1.61 302.88 13.49 1.95 5.55
1,000 5.16 1.01 229.86 9.72 1.90 6.75
3,000 -8.17 0.57 450.22 5.57 2.05 6.60

T = 120 100 -4.28 3.22 452.39 19.63 2.30 6.30
500 -0.54 1.44 26.55 8.94 3.80 7.85

1,000 0.98 0.96 31.58 6.08 2.75 5.80
3,000 -0.17 0.45 8.84 3.46 3.25 5.40

T = 240 100 -0.11 2.94 31.04 13.51 3.95 7.55
500 -0.50 1.28 27.63 5.85 4.05 5.90

1,000 -0.05 0.91 5.23 4.16 4.65 6.90
3,000 0.02 0.48 3.36 2.39 4.85 6.05

Experiment 5
T = 60 100 12.72 3.75 679.29 30.84 0.95 6.25

500 -10.07 1.66 364.25 13.34 2.10 6.15
1,000 -5.01 1.07 122.63 9.60 1.45 5.90
3,000 -4.43 0.60 133.49 5.47 1.90 6.25

T = 120 100 6.87 3.01 277.10 19.52 2.55 5.65
500 -4.67 1.36 127.57 8.85 3.65 7.60

1,000 -0.85 0.92 24.13 6.16 3.60 6.40
3,000 -0.35 0.51 20.50 3.44 2.65 5.20

T = 240 100 0.54 2.89 31.90 13.51 4.15 6.35
500 0.29 1.25 7.91 5.86 3.85 6.00

1,000 0.10 0.89 4.44 4.16 4.30 6.75
3,000 0.04 0.52 2.58 2.40 5.20 5.45

Experiment 6
T = 60 100 -27.78 4.12 905.91 31.54 1.45 6.15

500 -11.62 1.60 305.30 13.55 2.05 5.95
1,000 5.28 0.99 231.07 9.73 1.65 6.50
3,000 -7.16 0.58 412.98 5.59 2.05 6.95

T = 120 100 -2.66 3.22 451.26 19.63 2.30 6.30
500 -0.54 1.44 26.52 9.00 4.15 7.85

1,000 0.92 0.94 30.26 6.10 2.90 6.30
3,000 -0.18 0.46 8.91 3.47 3.25 5.55

T = 240 100 -0.18 2.94 29.74 13.51 5.10 7.55
500 -0.49 1.29 27.08 5.89 4.40 6.30

1,000 -0.02 0.90 5.12 4.17 5.20 6.80
3,000 0.03 0.49 3.47 2.40 4.50 6.45

Notes: The DGP includes one strong αM = 1 and two weak (αH = αS = 0.5) factors, the regression with

weak factors includes them, the regression without excludes them. For further details of the experiments,

see Table S-1.
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Figure S-C-E4: Empirical Power Functions, experiment 4, for coefficient of the ϕM

factor with and without misspecification

Note: See the notes to Table S-C-E4-6.
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Figure S-C-E5: Empirical Power Functions, experiment 5, for coefficient of the ϕM

factor with and without misspecification

Note: See the notes to Table S-C-E4-6.
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Figure S-C-E6: Empirical Power Functions, experiment 6, for coefficient of the ϕM

factor with and without misspecification

Note: See the notes to Table S-C-E4-6.
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Table S-C-E7-9: Bias, RMSE and size for the bias-corrected estimators of ϕM = −0.49,
αM=1 with and without weak factors included in the regression for the cases of experi-
ments 7, 8 and 9

Bias(x100) RMSE(x100) Size(x100)
Experiment 7 n With Without With Without With Without

weak factors weak factors weak factors
T = 60 100 3.08 2.82 859.39 30.18 1.30 5.35

500 24.88 1.20 840.21 13.62 1.85 6.65
1,000 0.24 0.84 79.72 9.64 1.35 6.25
3,000 -4.91 0.61 528.52 5.51 2.20 6.40

T = 120 100 4.42 2.67 216.43 19.15 2.10 6.00
500 1.74 1.23 147.10 8.59 2.95 6.05

1,000 -3.59 0.89 154.11 6.12 3.75 5.90
3,000 -0.84 0.61 41.40 3.52 3.75 5.75

T = 240 100 -0.94 2.74 22.50 13.27 4.95 5.80
500 -0.83 1.11 38.11 6.04 6.15 7.15

1,000 -0.06 0.84 4.85 4.25 4.95 7.00
3,000 -0.01 0.55 2.46 2.38 4.70 6.50

Experiment 8
T = 60 100 -18.57 2.85 1090.60 31.04 1.30 5.70

500 3.08 0.84 248.52 13.70 1.90 6.10
1,000 11.56 0.98 511.88 9.66 1.60 5.60
3,000 -0.24 0.71 45.00 5.66 2.05 6.50

T = 120 100 15.36 2.83 488.96 19.33 2.40 5.00
500 -8.41 1.12 424.57 8.53 3.55 5.70

1,000 -1.21 1.04 42.58 6.25 3.65 6.25
3,000 -0.68 0.64 43.26 3.56 3.60 6.00

T = 240 100 -4.70 2.85 184.48 13.30 5.10 6.30
500 0.07 1.17 7.15 5.98 5.45 6.30

1,000 -0.07 0.85 4.44 4.27 5.10 6.60
3,000 0.01 0.54 2.41 2.40 4.80 6.70

Experiment 9
T = 60 100 16.90 1.71 1051.65 32.31 1.35 6.65

500 -10.51 0.95 739.68 14.35 2.35 7.50
1,000 -2.96 0.53 160.31 10.26 2.65 8.75
3,000 -0.09 0.43 106.32 5.80 2.70 8.35

T = 120 100 61.02 1.74 2471.10 20.37 2.05 6.25
500 -9.78 1.08 365.78 8.87 2.70 6.00

1,000 0.35 0.73 77.55 6.36 3.00 7.30
3,000 1.23 0.46 48.78 3.59 3.85 6.55

T = 240 100 0.51 1.73 52.46 13.89 4.55 6.90
500 -0.22 0.91 8.62 6.08 5.75 6.40

1,000 -0.20 0.71 7.44 4.27 5.50 7.15
3,000 -0.04 0.43 2.52 2.37 4.30 5.60

Notes: The DGP includes one strong αM = 1 and two weak (αH = αS = 0.5) factors, the regression with

weak factors includes them, the regression without excludes them. For further details of the experiments,

see Table S-1.
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Figure S-C-E7: Empirical Power Functions, experiment 7, for coefficient of the ϕM

factor with and without misspecification

Note: See the notes to Table S-C-E7-9.
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Figure S-C-E8: Empirical Power Functions, experiment 8, for coefficient of the ϕM

factor with and without misspecification

Note: See the notes to Table S-C-E7-9.
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Figure S-C-E9: Empirical Power Functions, experiment 9, for coefficient of the ϕM

factor with and without misspecification

Note: See the notes to Table S-C-E7-9.
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Table S-C-E10-12: Bias, RMSE and size for the bias-corrected estimators of ϕM =
−0.49, αM=1 with and without weak factors included in the regression for the cases of
experiments 10, 11 and 12

Bias(x100) RMSE(x100) Size(x100)
Experiment 10 n With Without With Without With Without

weak factors weak factors weak factors
T = 60 100 -1.30 1.80 581.15 33.08 1.55 6.95

500 19.94 0.54 738.70 14.45 2.10 8.20
1,000 1.31 0.69 76.46 10.23 1.85 7.35
3,000 1.02 0.53 333.48 5.91 2.70 8.30

T = 120 100 27.62 1.91 810.64 20.78 1.90 6.30
500 -4.30 0.95 195.46 8.90 2.40 6.25

1,000 7.68 0.93 212.90 6.46 3.45 7.25
3,000 -0.46 0.49 34.61 3.60 3.20 5.50

T = 240 100 0.01 1.87 109.19 14.08 4.60 7.30
500 0.27 0.94 19.59 6.08 5.20 6.50

1,000 0.41 0.76 21.39 4.28 5.50 6.55
3,000 -0.04 0.76 2.57 2.40 4.70 7.10

Experiment 11
T = 60 100 17.29 2.89 696.53 30.28 1.45 5.40

500 -5.92 1.27 510.19 13.71 2.00 6.80
1,000 45.15 0.78 2091.69 9.66 2.00 6.45
3,000 2.77 0.59 75.60 5.61 2.65 7.05

T = 120 100 4.02 2.73 135.30 19.16 2.55 6.20
500 0.44 1.34 24.35 8.61 3.50 5.60

1,000 10.16 0.86 415.98 6.09 3.85 6.10
3,000 0.10 0.62 7.88 3.54 4.65 6.70

T = 240 100 -0.31 2.77 14.31 13.28 4.10 6.15
500 0.07 1.19 6.78 6.06 5.45 6.90

1,000 -0.06 0.81 4.40 4.23 5.45 6.65
3,000 0.01 0.55 2.37 2.38 4.65 6.50

Experiment 12
T = 60 100 0.33 2.93 531.55 31.13 1.35 5.75

500 -16.77 0.90 496.29 13.75 1.70 5.60
1,000 17.22 0.93 766.48 9.68 1.65 6.15
3,000 -0.91 0.68 162.80 5.75 2.40 7.00

T = 120 100 -11.47 2.88 529.74 19.36 2.55 5.15
500 -16.06 1.23 555.75 8.55 3.55 5.80

1,000 0.99 1.03 20.02 6.22 3.50 6.50
3,000 -2.21 0.64 100.80 3.57 4.00 5.90

T = 240 100 -0.27 2.88 19.39 13.31 4.20 6.30
500 0.10 1.24 6.30 5.99 5.35 6.25

1,000 -0.05 0.83 4.37 4.23 5.10 6.70
3,000 0.01 0.54 2.39 2.41 4.95 6.50

Notes: The DGP includes one strong αM = 1 and two weak (αH = αS = 0.5) factors, the regression with

weak factors includes them, the regression without excludes them. For further details of the experiments,

see Table S-1.
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Figure S-C-E10: Empirical Power Functions, experiment 10, for coefficient of the ϕM

factor with and without misspecification

Note: See the notes to Table S-C-E10-12.
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Figure S-C-E11: Empirical Power Functions, experiment 11, for coefficient of the ϕM

factor with and without misspecification

Note: See the notes to Table S-C-E10-12.
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Figure S-C-E12: Empirical Power Functions, experiment 12, for coefficient of the ϕM

factor with and without misspecification

Note: See the notes to Table S-C-E10-12.
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