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Abstract

Identifying transition states – saddle points on the potential energy surface connecting reactant
and product minima – is central to predicting kinetic barriers and understanding chemical reaction
mechanisms. In this work, we train an equivariant neural network potential, NewtonNet, on an ab
initio dataset of thousands of organic reactions from which we derive the analytical Hessians from the
fully differentiable machine learning (ML) model. By reducing the computational cost by several orders
of magnitude relative to the Density Functional Theory (DFT) ab initio source, we can afford to use
the learned Hessians at every step for the saddle point optimizations. We have implemented our ML
Hessian algorithm in Sella, an open source software package designed to optimize atomic systems to
find saddle point structures, in order to compare transition state optimization against quasi-Newton
Hessian updates using DFT or the ML model. We show that the full ML Hessian robustly finds the
transition states of 240 unseen organic reactions, even when the quality of the initial guess structures
are degraded, while reducing the number of optimization steps to convergence by 2–3× compared to
the quasi-Newton DFT and ML methods. All data generation, NewtonNet model, and ML transition
state finding methods are available in an automated workflow.

1 Introduction
Computational identification of transition states (TSs) on the quantum mechanical potential energy surface
(PES) is central to predicting reaction barriers and understanding chemical reactivity.1,2 The height of
the barrier exponentially impacts the reaction rate coefficient via the Eyring equation, and the geometric
character of the metastable state is informative about the kinetic mechanism, making TSs key to describing
a broad range of chemical kinetic outcomes for enzymes, next-generation synthetic catalysts, batteries, and
conformational changes of molecules and materials.

Transition states are first-order saddle points, and locating them via mathematical optimization is
particularly challenging on high dimensional PESs relevant in complex molecular systems. Locating an
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equilibrium geometry, i.e., a local minimum on the PES, can be found using bracketing methods based
on function evaluations (0th order)3,4 and with methods that use gradient information, such as steepest
descent5 or conjugate gradient6 (1st order). Under the quadratic approximation, identification of the
transition state can be more robustly achieved in fewer steps by 2nd order methods7 using the Hessian
matrix, whose elements Hij are defined as the second derivative of the energy E with respect to atomic
positions Ri and Rj . However, a metastable first-order saddle point is characterized by a single negative
Hessian eigenvalue, and hence 2nd order methods are indispensable to optimize for molecular TS energies
and geometries.1 The Newton-Raphson (NR) method and its variants, including restricted and augmented
methods like the trust radius method (TRM) and the rational function optimization (RFO) method, select
the displacement vector ∆R(k) (or in internal coordinates) at step k using the inverse Hessian [H(k)]−1 and
the gradient g(k).8–10 The geometry direct inversion of the iterative subspaces (GDIIS) method and its
variants similarly utilize Hessians and gradients to define a search space for optimization.11

However, the evaluation of analytical Hessians for ab initio methods such as Density Functional
Theory (DFT) requires solving coupled-perturbed equations, which scales one power of system size N
higher than the energy or the gradient and thus can be prohibitively expensive. Consequently, several
TS optimization approaches have been proposed that construct cheaper approximate Hessians using only
gradient information to avoid expensive Hessian calculations, in general referred to as quasi-Newton (QN)
methods.12–18 Arguably the most widely used Hessian approximation for minimization is arguably the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method, where the Hessian is iteratively updated using a
rank-2 matrix generated from the displacements and gradients. Such Hessian updates, however, are
positive definite by design and thus cannot be applied to TS searches. Instead, methods such as symmetric
rank-one (SR1) or Murtagh–Sargent,19 Powell–symmetric-Broyden (PSB), Murtagh–Sargent–Powell (MSP),
Bofill, and TS-BFGS methods are developed for an indefinite approximate Hessian.20–24 On a complex
PES, an optimization step can displace the molecule from the preceding quadratic region such that the
resulting updated approximate Hessian quickly diverges from the true one and thus requires expensive
reconstruction.10 Alternatively, double- and single-ended interpolation methods such as nudged elastic
band (NEB),25,26 quadratic synchronous transit (QST),27 and growing string method (GSM)28 have been
well-established in the field in the past few decades, and are often combined with QN updates. Despite
all these efforts, TS optimization still requires significant user involvement and relies on trial and error
when robust Hessian information is absent. However, if the full Hessian is available at every optimization
step, concerns regarding the quality of the initial Hessian and subsequent updates become much less of a
problem when determining a TS.

The recent development of deep learning models for the PES provides a whole new possibility for
acquiring and applying the Hessian in chemically relevant tasks.29–33 Intuitively, the power of a fully
differentiable machine learning (ML) force field does not stop at forces or gradients but also broadly
applies to second (and higher order) derivative properties such as the Hessian matrix Hij . In this case,
it is possible to calculate Hessians analytically by automatic differentiation, by finite differences using
gradients from the machine learning model, or by estimating Hessians using first order information as per
the Davidson procedure.1 For example, such an idea has recently been explored using Gaussian process
regression, where an ML PES was locally trained on semiempirical energies, forces, and optionally Hessians
and used to estimate the updated Hessians.34,35 Yet, the high memory demand using kernel-based methods
can significantly reduce the applicability on all but small systems, and the semi-empirical level of theory
can be deficient for reliable chemistry.

In this work, we train an equivariant message-passing neural network (eMPNN), NewtonNet,31 on an
augmented version of the Transition-1X (T1x) dataset,36 a new benchmark dataset containing ∼10 million
configurations generated by the NEB method on ∼10 thousand gas-phase organic reactions evaluated
with DFT. Although the full training data is comprised of only energies and gradients of the molecular
configurations, with no Hessians provided, the whole neural network is fully differentiable such that we can

2



generate the Hessian Hij through back propagation. We then apply the ML Hessians to TS optimization
on an independent data set of 240 organic reactions previously proposed by Hermes and co-workers,37,38

and which are outside of the training set. We have adapted the Sella code38 to read in full ML Hessians to
perform TS optimizations for these reactions and utilize the same code and optimization settings in order
to compare against QN Hessian optimization with either ML or DFT.

We find that incorporating explicit Hessians from the NewtonNet ML model into TS optimization
yields a 2–3× reduction in search steps compared to approximate Hessian methods, demonstrating a
remarkable efficiency improvement by ensuring higher-confidence search directions that are closer to the
optimal path. The more accurate description of the Hessian also leads to improved robustness against
structural perturbation such that the TS optimization is less reliant on a good initial guess. With our deep
learning model, the Hessian calculation is over 1000× faster than the corresponding ab initio calculation
and is consistently more robust in finding TSs than quasi-Newton methods using the ML or DFT potential
energy surface. The combination of greater efficiency, reduced reliance on good initial guesses, and robust
TS convergence for unseen reactions unveils a new realm of opportunities to utilize full Hessians for TS
optimizations with appropriately constructed data sets of complex reactive chemistry.

2 Results

2.1 Machine Learned Prediction of DFT Hessians
Figure 1(a) shows the NewtonNet eMPNN model in which the DFT-computed molecular energy E is
predicted by transforming and aggregating atomic features ai that accumulate local chemical environmental
information from spatial neighbors aj and interatomic distances Rij through message passing layers.31 The
molecular energy E is then differentiated with respect to the atomic positions Ri to predict atomic forces
Fi or gradients gi, but of relevance here is that it can be auto-differentiated twice to obtain Hij . We have
demonstrated that the energies and forces can be predicted with excellent accuracy across a whole range of
chemistry including small organic molecules31 as well as for methane and hydrogen combustion, even with
a limited amount of training examples.31,39

Like all ML potentials, the quality of the learned PES and its derivative properties depends on the
availability of relevant training data. Our ML model is pre-trained on the ANI-1 dataset, which contains
more than 20 million off-equilibrium conformations of small organic molecules up to 8 heavy atoms and is
evaluated with the ωB97X density functional40 and 6-31G* basis set.41 Figure 1(b) demonstrates that
the original ANI-1 dataset is mostly composed of near-equilibrium geometries41,42 and that the reaction
pathways are notably undersampled around the metastable states of the reactions.36 As a result, the
pre-trained ML model predicts the energies and forces accurately (with respect to the underlying DFT
data) at the reactant and product states but fails significantly around the TS (Figure1(c,d)).

Hence, it is fortunate to have the T1x dataset,36 which is a new benchmark for TS-related ML tasks,
containing 9,644,740 molecular configurations generated by NEB from 10,073 organic reactions, at a level of
DFT commensurate with the ANI-1 data. This new data better represents the entire reaction pathway as
seen in Figure 1(b) and allows us to fine-tune the pre-trained model. As seen in Figure 1(c,d) when using
the fine-tuned model, the reaction barrier is more smoothly interpolated between NEB images, the false
identification of an energy maximum has been eliminated, and the atomic forces are correctly predicted to
be negligible as expected of a first-order saddle point.

Due to the high cost of the Hessian calculation and storage, the training datasets we use do not contain
ab initio Hessian reference samples. Despite the lack of such training examples, a prediction of the atomic
forces from an ML model that is continuous and smooth strongly suggests the possibility of achieving
Hessian predictions without explicit training on such tasks. Based on this assumption, one approach is a
finite-difference Hessian estimation that can be easily realized using the gradients predicted by our model
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Figure 1: The NewtonNet model and its performance on the ANI-1 and T1-x data sets. (a) the eMPNN designed
for 3D molecular graphs with nodes {Zi} and edges {Rij} to predict molecular energies E and atomic forces Fi.31
In this work, we further differentiate the network to derive Hij for TS optimization tasks. (b) The distribution
of atomic pairwise distances, R, relative to equilibrium bond distances, R0, among datasets we used for training,
where the T1x data set provides more data in the TS region, and further augmented with the ANI-1x data to add
data corresponding to bond compression. The predicted (c) potential energies and (d) forces along the reaction
coordinate for an unseen reaction for the pre-trained and fine-tuned model. A comprehensive statistical analysis of
energy and force prediction errors along the reaction coordinates for 1248 unseen test reactions is summarized in
Supplementary Fig. S1 for the pre-trained and fine-tuned models. Details of the training protocols are described in
Methods and Supplementary Fig. S2 and S3.

by stepping along each Cartesian axis. However, an analytical gradient of the first derivative is more
cost-effective than a finite-difference method, and such a gradient can be performed as long as the neural
network is at least twice differentiable. In this regard, the NewtonNet model is designed using sigmoid
linear unit (SiLU)43 and a polynomial cutoff function44 and is therefore C2 continuous. Utilizing the
automatic differentiation in our neural network, the forces and Hessians can be analytically acquired by
back propagation.

Leveraging the smoothness of the deep learning PES after fine-tuning, Figure 2 shows that reasonably
accurate Hessian predictions of the reference DFT model can be acquired on molecular TSs when compared
to the pre-trained model. The root mean square error (RMSE) of the predictions of eigenvalues is
quantitatively quite good given the range of negative to positive values, and the eigenvector similarity
between the ML and DFT models also improves significantly after fine-tuning the ML model with additional
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T1x data. It is worth noting that the majority of the error arises from the positive eigenspace with a
constant 20% underestimation of Hessian eigenvalues from DFT. This can be understood in part from Figure
1(b) that the T1x dataset we use for training is biased toward weaker bond and greater anharmonicity,
such that lower apparent bond strength and force constants will be observed and modeled. We therefore
augmented the T1x dataset by selecting 1,232,469 molecules from the ANI-1x dataset42 that share the
same chemical formula with the T1x dataset but that exhibit compressed chemical bonds, which further
improves accuracy of the Hessian predictions (Figure 1(c)). We note that some of this improvement may
simply be due to the addition of more data, but it does alleviate some of the underprediction of the positive
eigenvalues. Most importantly, the predicted Hessians by our fine-tuned model using the aug-T1x data
have very accurate leftmost eigenvalue and eigenvector, which are the most critical ingredients in TS
optimization and iterative Hessian diagonalization.10,45

Figure 2: Pre-trained and fine-tuned NewtonNet eMPNN performance on Hessian prediction of the test set. (a) The
pre-trained model accurately predicts Hessians at reactant R and product P minima geometries but fails dramatically
at TSs. (b) The fine-tuned model using the T1x data significantly improves the accuracy at TSs but with notable
underestimation of Hessian eigenvalues. (c) Augmenting the T1x dataset with compressed bond configurations
creates a more balanced training data and improves the overall performance. More comprehensive comparisons of
the pre-trained and fine-tuned ML prediction accuracy for Hessians is provided in Supplementary Figs. S4-S8.

2.2 Transition State Optimization using Machine Learned Hessians
The fine-tuned NewtonNet model for predicting TS properties is subsequently employed in practical TS
optimization scenarios involving new reactions independent of the augmented ANI-1X/T1x training and
test data. These include hydrogen migration reactions, endo- and exo-cyclization, generalized Korcek
step 2 reactions, retro-ene reactions, and reverse 1,2 and 1,3 insertions (see Supplementary Figs. S9–S12);
given the training data these involve only closed-shell molecules. We focus on TS optimization for these
unseen reactions in order to compare a traditional QN method that approximates Hessians using gradient
information from DFT calculations or ML predictions versus a full explicit ML Hessian used at every step.

We interfaced our fine-tuned NewtonNet model with Sella, a state-of-the-art open source TS geometry
optimizer.38 In Sella, the interconversion between the Cartesian coordinates and the redundant internal
coordinates is automatically handled, and the Hessian is iteratively diagonalized for the leftmost eigenvec-
tor10 used in the geodesic saddle point optimization.46 In order to start the TS optimization for the 240
Sella benchmark reactions, we generated initial guesses with KinBot using reaction templates,37 where
each template also defines the intended reactant and product end states for a given reaction. We employed

5



restricted step partitioned rational function optimization (RS-PRFO)47–49 for the TS optimizations, with
dynamically adjusted step sizes determined by evaluating the confidence of each step (see Methods for
details). After TS optimization, we follow the intrinsic reaction coordinate (IRC) from the optimized TS
structure to find the minimum energy path that connects the reactant and product; the robustness of the
TS optimization methods is quantified by comparing the intended reactions and the predicted reactions.
The complete list of found transition states of the 240 predicted benchmark reactions is summarized in
Supplementary Table S1.

Figure 3: Efficiency improvement using full-Hessian TS optimization compared to the quasi-Newton approach. (a)
The full-Hessian TS optimization requires 50% fewer steps to reach convergence than the QN approximate-Hessian
approach, using the identical NewtonNet force field on the same reactions. (b) The improved efficiency of the
full-Hessian TS optimization comes from both more confident steps (top) and more direct paths (bottom) to converge.
In this efficiency comparison, exploration steps of initial Hessian construction or Hessian re-construction for QN
restarts have been excluded, whether using DFT or NewtonNet for gradient calculations.

Figure 3 shows how optimization efficiency is dramatically improved by providing full explicit Hessians
at every optimization step, which is now affordable relative to DFT as illustrated in Supplementary Figure
S13. In Figure 3(a) we find that the number of steps required to converge to a TS can be reduced by
2× of that required by the QN approach using the ML (or DFT; see Supplementary Figure S14). The
trend is notably non-linear, and full-Hessian optimization is even more advantageous for challenging tasks
that require larger numbers of optimization steps. If the iterative diagonalization steps for initial Hessian
construction and Hessian reconstruction when the QN approximation breaks down are included, a reduction
of close to 3× of the required steps is observed when considering these gradient calls. Greater optimization
efficiency can stem from two factors: increased confidence at each optimization step to increase the step
size and a more optimal overall path of optimization. As shown in Figure 3(b), both factors improve the
efficiency of the TS optimization with full analytical Hessians. In particular use of the full analytical
Hessians exhibits an increase in confidence as measured by the RS-PRFO method, which allows for increased
step size on average. A shorter, closer to optimal optimization path also plays a smaller but significant role
with the analytical Hessians compared to the QN approaches whether on the ML or DFT PES.

Next we consider the robustness of TS optimization using the fully analytical Hessians versus approximate
Hessians (using ML or DFT) by comparing the intended reactions from KinBot to those predicted from
the IRC after TS optimization. As shown in Figure 4(a), the NewtonNet full or QN Hessian yielded
the intended IRC reactant and product endpoints (2-end match) more often then the QN Hessian from
DFT. In some cases only a 1-end match is found because the predicted product is more stable, and more
chemically plausible, than the intended product from KinBot. We also characterize the types of TSs found
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Figure 4: The quality of optimized TSs using NewtonNet. (a) NewtonNet predicts reactions that match the intended
reactions with higher success rates, both with and without full Hessians, compared to DFT. The full Hessian also
finds ∼10% more TSs which involve chemical reactions as opposed to conformational changes. (b) The value of the
full Hessians over the approximate QN approaches is apparent when the quality of the initial TS guesses deteriorates.
The QN convergence decays with additional noise to the guess structures, while the full Hessian convergence is more
robust to perturbations. (c) Comparing whether the left most frequency found on the ML PES is also a negative
frequency on the DFT PES using the ML geometry. (d) Reoptimizing the ML transition state structure on the DFT
surface demonstrates superior performance for 2-end matches and identifying chemical reactions compared with
starting from the original KinBot initial guess.

7



in Figure 4(a), in which the graphs of the reactants and products are inequivalent for chemical reactions,
whereas isomorphic endpoints indicate a conformational TS; in either case, both converge to a first-order
saddle point. All KinBot initial guess geometries are intended to yield chemical reaction TSs, and we see
that employing full Hessians in TS optimization yields ∼10% more TSs that involve chemical reactions as
opposed to conformational changes compared to the approximate QN method.

The unreliability of a generated initial guess structure can lead to poor convergence or inaccurate
predictions. Therefore, we consider a measure of robustness in which the TS optimization must recover from
a poor starting structure, which we analyze by systematically introducing random structural perturbations
to the guess structures generated from KinBot. Figure 4(b) demonstrates the robustness of NewtonNet’s
full-Hessian optimization, maintaining consistent performance and even exhibiting slight improvements
as noise levels increase up until 2–3 pm, unlike the QN methods. In contrast, the performance using
approximated QN Hessians rapidly decays, even using DFT, highlighting the importance of accurate
Hessians for robust TS optimization.

A final important metric of robustness is whether NewtonNet predicted TS structures have negative
eigenvalues on the DFT PES and/or improve the outcome of TS optimization on the DFT PES. In Figure
4(c) we compare the vibrational frequencies of the NewtonNet optimized TS saddle point structures, using
both the full Hessian and the QN Hessian, and use those structures as input to calculate the frequencies
from the DFT Hessian. We then identify the DFT frequency mode that corresponds to the negative
frequency mode from NewtonNet. For ∼96% of the reactions, NewtonNet predicts highly accurate imaginary
frequencies, regardless of full or QN Hessians. However, there are 10 cases for the QN-ML saddle points,
and 11 for the full-ML Hessian saddle points, which have positive DFT Hessian eigenvalues. We further
reoptimized all 240 reactions using the full Hessian ML TS structures as initial guesses on the DFT surface
(Figure 4(d)). In comparison with the optimization outcomes when starting with the original KinBot
guess structures, we see an increase in both 2-end matches and chemical transformations under the DFT
reoptimization. Thus, starting from ML optimized TS structures we find overall improved solutions on the
DFT surface.

3 Conclusion
We have presented a highly generalizable approach for predicting ab initio Hessians using machine learning
based solely on energy and gradient data, and only requiring the property of second-order differentiability.
Although Denzel and co-workers found that the feasibility of predicting Hessians using ML without access
to explicit Hessian training data was poor,35 our study shows that solely relying on energy and force data
using a well-trained ML model can efficiently and accurately predict the Hessian for reactive systems.
We attribute our contrasting conclusions to the sufficiently high-quality PES obtained through the deep
equivariant message-passing neural network and the mathematical relationship between the potential energy
and its derivatives using a ML model that is C2 continuous. To our knowledge, none of the widely used
chemical datasets currently include Hessian information, and it is unlikely that such datasets will become
available in the foreseeable future due to the high cost of generating ab initio Hessians. Thus, it is good
news that models trained on energies and forces are sufficient to derive meaningful ML Hessians.

The ability to generate high-quality explicit Hessians by deep learning models obviates the complexities
and assumptions associated with standard TS optimization approaches, in which 240 new reactions never
seen in the training data are predicted with greater efficiency, accuracy, and robustness compared to QN ML
or DFT. The implementation in Sella to utilize the ML Hessians incurs minimal additional computational
overhead and requires no model retraining. Using NewtonNet, the Hessians can be calculated at least three
orders of magnitude faster than the DFT calculation while use of the full ML Hessian takes 2–3× fewer
steps in the TS optimization compared to the QN approach.

This work emphasizes new TS state search methodology and hence used available training data from
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ANI-1, ANI-1X, and T1x that is specialized for applications involving reactive molecular organic systems
but at a low-level of DFT and basis set quality. Hence, for accurate predictions it would be desirable to
recalculate these data sets at a higher level of theory, likely better density functionals and certainly larger
basis sets, in order to predict quantitative barriers. Of course, with appropriate new data sets, we can
generalize the ML-Hessian approach for many practical applications for TS optimization in many areas of
chemical and material sciences. This is made possible by the tight software integration we have developed
for NewtonNet with Sella, and workflows which could be generalized to other relevant systems.

We envision several new areas of TS optimization using the ML approach we have described here.
For example, the TS discovery for a reaction using methods such as NEB,25,26 QST,27 and GSM28 often
turn to local TS optimization methods when a reasonable approximate structure has been obtained.10 We
showed that our ML transition state structures do improve the DFT optimizations. Therefore, a stepwise
procedure that integrates mathematical optimization and machine learning to collaboratively achieve TS
discovery for chemical reactions should be viable. In addition, since we can accurately calculate vibrational
frequencies at the optimized TS structures, molecular free energy can be efficiently derived using the
harmonic approximation. Further, since the quadratic correction can be applied at each step throughout
the optimization process, it is possible to optimize TS structures on the free energy surface rather than
PES, as is extending the feasibility of variational transition state theory (VTST) to larger systems where
ab initio vibrational analysis becomes impractical.50

4 Methods

4.1 Data preparation

The T1x dataset for training is split in two different ways to assess the accuracy of the model predictions,
illustrated in Supplementary Figure S2. The original splitting in the literature is based on molecular
compositions. All geometries with the same formula (equilibrium and non-equilibrium) are part of the
same training, validation, and test set, leading to minimum data leakage. The error from this splitting can
be regarded as the worst-case uncertainty estimation of an unseen configuration for the application on the
real system in Figure 1 and 2. On the other hand, we wish to maximize the chemical knowledge from the
dataset learned by our model, so a more conventional splitting among molecular conformations is devised
to learn the PES of all reactions. Hence in the design of the test set, we ensured that no reaction had both
reactant and product pairs found in the training set.

The reference DFT Hessians are performed using Q-Chem 6.0.0,51 using the ωB97X functional40 and
6-31G* basis set52 in order to maintain compatibility with the T1x dataset.36 The eigenvalues are assigned
based on the cosine similarity between the predicted and reference eigenvectors as a linear sum assignment
problem using the Jonker–Volgenant algorithm.53

The performance of the ML-Hessian and ML- and DFT-QN TS optimizations is evaluated by the
Sella benchmark dataset.38 The dataset contains 500 small organic molecules between 7 and 25 atoms
in configurations that approximate the TS geometries the across reaction families, among which the 240
reactions are closed shell. We regenerate 240 of them with further refinement, in contrast to the original
data, in that the guess structures in our work are constrained minima on ab initio PES instead of saddles
on semi-empirical PES.36 We also inject Gaussian noise up to 50 pm directly onto the atomic positions in
the Cartesian coordinate of the initial guesses in order to degrade them for the purpose of understanding a
given methods ability to still find the TS.
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4.2 NewtonNet Model and training details

The NewtonNet model with three message passing layers is trained using the same architecture as described
in Reference 31. Each node encodes an atomic environment into 128 features initialized by atom types Zi,
and each edge encodes an interatomic distance Rij in 20 radial basis functions with polynomial cutoff of 5
Å.44,54 The node features are equivariantly updated with messages from neighboring nodes and edges. The
molecular energy Ẽ is the sum of all atomic energies Ẽi,55

Ẽ =
A∑
i′

Ẽi′({Zi}, {Rij}) (1)

where atomic energies Ẽi are predicted from the node features at the final layer and A is the total number
of atoms. The predicted atomic forces F̃i are calculated as the first derivative of the molecular energy Ẽ
with respect to atomic positions Ri,56

F̃i = −∇iẼ = − ∂Ẽ

∂Ri
(2)

and the predicted atomic Hessians H̃ij are further calculated as the second analytical derivatives of the
energy,

H̃ij =
∂2Ẽ

∂Rj∂Ri
=

∂2Ẽ

∂Ri∂Rj
(3)

However, only the energy Ẽ and forces F̃i are trained in the loss function L ,

L =
λE

M

M∑
m

(Ẽm − Em)2 +
λF

M

M∑
m

1

3Am

Am∑
i

||F̃mi − Fmi||2 (4)

where M is the total number of molecular graphs, which is 8 million for training, 1 million for validation,
and 1 million for testing.

We use mini-batch gradient descent algorithm with a batch size of 100 to minimize the loss function
using the Adam optimizer57 with initial learning rate of 10−4 and decay rate of 0.7 on plateau. Fully
connected neural networks with sigmoid linear unit (SiLU) nonlinearity43 for all functions were used
throughout the message passing layer. The application of smooth activation functions like SiLU is critical
because the network has to be at least twice differentiable for Hessian calculations. We take λE = 1
and λF = 20 in the loss function in Equation 4 to put more emphasis on forces for derivative properties,
and additional L2 regularization of 10−5 is applied on all trainable parameters to further smooth out the
potential energy surface. Layer normalization58 on the atomic features at every message passing layer is
applied for the stability of training. An ensemble of four models is trained on each splitting manner to
ensure the reproducibility and reliability of the prediction. Outlier among the 4 predictions is removed if
its absolute difference from the closest number compared to the difference from farthest number is larger
than the 95% confidence limit of the Dixon Q’s test.39

4.3 Transition state optimization

For the transition state calculations, we use the Quantum Accelerator (QuAcc),59 a Python package for
high-throughput computations with an easy-to-use interface for Atomic Simulation Environment (ASE)60

optimizers. We utilize Sella38 as the ASE optimizer for TS and intrinsic reaction coordinate (IRC)
calculations. A new feature to Sella is introduced in this work to provide an external Hessian matrix at
each optimization step. Details of the Sella settings are described in the Supplementary Information and
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we refer readers to the Sella paper for more information.10 The comparison of reactants and products
are based on graph isomorphism. Molecular connectivity graphs are created using Open Babel61 with
atom indexing and compared using the VF2 algorithm.62 The optimization path length is calculated in the
Cartesian coordinate with the Kabsch algorithm.63 The path length in Figure 3(b) only accounts ones
with 2-end matches.

5 DATA AVAILABILITY

All data64 including initial transition state guess structures, optimized transition states, and corresponding
reactants and products with their coordinates of geometry, energy, forces and hessians are available at
https://doi.org/10.6084/m9.figshare.25356616. Source data for Figures 1-4 is available with this manuscript.

6 CODE AVAILABILITY

The codebase is comprised of several publicly available packages and tools that contribute to the
project. Sella38 is publicly accessible at https://github.com/zadorlab/sella and comes with compre-
hensive documentation. NewtonNet65, another integral part of the project, is also publicly available at
https://github.com/THGLab/NewtonNet/tree/v1.0.0. The recipes implemented in QuAcc for NewtonNet
and Q-Chem, utilizing Sella as the ASE optimizer for transition state and IRC calculations, are publicly
accessible and accompanied by thorough documentation.59 Wrappers to QuAcc and Q-Chem, employed
for running calculations and storing data in the MongoDB database, are available for NewtonNet at
https://github.com/Quantum-Accelerators/quacc. The full workflow and the analysis scripts66, responsible
for generating molecular graphs, retrieving data from the MongoDB database, and performing graph isomor-
phisms to analyze reactions, are available at https://github.com/THGLab/MLHessian-TSopt/tree/main.
This comprehensive summary provides insights into the availability of the codebase for potential readers
and collaborators.
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