arXiv:2405.02275v1 [math.AG] 3 May 2024

GOTZMANN’S PERSISTENCE THEOREM FOR SMOOTH PROJECTIVE
TORIC VARIETIES

PATIENCE ABLETT

ABSTRACT. Gotzmann’s persistence theorem enables us to confirm the Hilbert polynomial of a
subscheme of projective space by checking the Hilbert function in just two points, regardless of
the dimension of the ambient space. We generalise this result to products of projective spaces,
and then extend our result to any smooth projective toric variety. In the case of products of
projective spaces, the number of points depends solely on the Picard rank of the ambient space,
rather than on the dimension. For a more general smooth projective toric variety this number
depends on the number of Hilbert basis elements of the nef cone.

1. INTRODUCTION

The Hilbert scheme Hilbp(P™) is a widely studied object in algebraic geometry. From an alge-
braic perspective this scheme parameterises homogeneous saturated ideals with a given Hilbert
polynomial. In |[HS04] Haiman and Sturmfels extended these ideas to the multigraded setting,
where the Hilbert scheme parameterises homogeneous ideals with a given Hilbert function in
a ring R graded by some abelian group. A case of particular interest is when the multigraded
ring in question is the Cox ring R of a smooth projective toric variety X. In this case the
Hilbert function of a homogeneous ideal in R eventually agrees with a polynomial for degrees
sufficiently far into the nef cone of X. We can therefore define Hilbp(X) in an analogous manner
to Hilbp(P™). We consider the parameter space of homogeneous ideals in R which are saturated
with respect to the irrelevant ideal of X and have Hilbert polynomial P.

It is natural to ask what properties of standard-graded Hilbert schemes have an extension to
the smooth projective toric variety case. Of particular interest are two theorems of Gotzmann,
regularity and persistence, which are used in the explicit construction of the Hilbert scheme.
Gotzmann’s regularity theorem gives a bound on the Castelnuovo-Mumford regularity of a
standard-graded ideal as introduced in [Mum66|. Let I C S be a homogeneous ideal in a
standard-graded polynomial ring. The Hilbert function of I is Hy(b) = dimy((S/I)p). Similarly,
P;(t) will denote the Hilbert polynomial of I. Using this language, Gotzmann’s persistence
theorem can be informally restated in the following way. For a homogeneous ideal I in a
standard-graded polynomial ring, a Hilbert polynomial P(¢), and sufficiently large d € N,
checking that Hj(d) = P(d) and Hy(d + 1) = P(d + 1) guarantees that P;(t) = P(t). For a
formal statement, see Theorem The surprising aspect here is that by checking the value of
Hi(t) in just two points we have identified the polynomial P(t), as opposed to the expected
deg(Pr) + 1 points. Combining this result with Gotzmann’s regularity theorem allows us to
obtain explicit equations for the Hilbert scheme Hilbp(P").

Maclagan and Smith define Castelnuovo-Mumford regularity for the multigraded case [MS04]
and generalise Gotzmann’s regularity theorem |[MS05] to any smooth projective toric variety.
Their generalisation recovers Gotzmann’s original result when X = P”. Work of Crona |Cro06]
gives a persistence theorem for ideals in the Cox ring of P™* x P™. Further work in this area
includes that of Favacchio [Fav20] which characterises the Hilbert functions of ideals in the
Cox ring of P™ x P™, and work of Gasharov |Gas97] which generalises Gotzmann’s persistence
theorem to finitely generated modules over a standard-graded polynomial ring.

We are able to extend Crona’s theorem to the product of s projective spaces; see Theorem
[3.11] we then use this to give a result akin to the earlier restatement of Gotzmann’s persistence
theorem for products of projective spaces. We introduce some terminology that will allow us to
state this theorem. For a homogeneous ideal J lying in the Z™-graded Cox ring R of a smooth



projective toric variety X, Definition gives a formal description of the associated polynomial
Pj(t1,...,t,). We say that P € Q[t1,...,ts] is a Hilbert polynomial on R if there exists some
ideal J C R, homogeneous with respect to the Z™-grading, such that P; = P.

Theorem 1.1. Let S = k[z10,...,Z1n1s- - Ls0,- -, Lsn,] be the Cox ring of P™ x - x P,
with deg(z; ;) = e;. Let I C S be an ideal, homogeneous with respect to the Z°-grading, and let
P € Q[t1,...,ts| be a Hilbert polynomial on S. Then there exists a point (dy,...,ds) € N® such
that if Hy(by,...,bs) = P(b1,...,bs) for all points in {(b1,...,bs) € N° | b; € {d;,d; + 1}}, then
Py =P.

Theorem says that for an ideal I in the Cox ring of the product of s projective spaces
we can confirm Pr(ty,...,ts) = P(t1,...,ts) simply by checking Hy(by,...,bs) at the vertices
of an s-dimensional hypercube in N°. This is therefore a generalisation of our earlier informal
restatement of Gotzmann’s original persistence result.

We then extend Theorem to more general smooth projective toric varieties. The situation
is particularly nice for Picard-rank-2 varieties, whose Cox rings are described explicitly at the
beginning of Section [

Theorem 1.2. Let J C R, where R is the Cox ring of a smooth Picard-rank-2 toric variety and
J is an ideal homogeneous with respect to the Z?-grading. Let S be the Cox ring of P* x P™,
with n = dimy(R(10)) — 1, m = dimg(R,1)) — 1. Let P(t1,t2) be a Hilbert polynomial on R.
Then there exists (d1,ds) € N? such that if

Hj(dy,d2) = P(d1,d2), Hy(di+1,d2) = P(dy +1,d),
HJ(dl,dQ + 1) = P(dl,dg + 1), HJ(d1 +1,dy + 1) = P(d1 +1,ds + 1),
then Py = P.

For a smooth projective toric variety X the semigroup of nef line bundles on X is finitely
generated, and the nef cone of X is a convex pointed polyhedral cone with unique minimal
Hilbert basis. This fact is useful for varieties with higher Picard rank, where we obtain the
following theorem.

Theorem 1.3. Let X be a smooth projective toric variety of Picard rank n. Let R be the Cox
ring of X, with a Z™-grading resulting from the identification Pic(X) = Z™. Let J C R be an
ideal, homogeneous with respect to the Z"-grading. Suppose the nef cone of X has a Hilbert
basis with j generators. Let P(t1,...,t,) be a Hilbert polynomial on R. Then there exists at
most 2911 points (ry,...,rn) € N® such that checking Hy(r1,...,rn) = P(r1,...,rn) for all of
these points guarantees that Py = P.

The 27+ points of Theoremform a zonotope, see Remark generalising the hypercube
seen in Theorem [L1l

The rest of this paper is laid out as follows. In Section [2] we outline necessary background on
strongly multistable ideals, allowing us to prove results relating to the product of s projective
spaces in Section [3] We conclude Section [3] with a proof of Theorem [I.1]and related remarks. In
Section 4| we see how Theorem can be applied to smooth projective toric varieties of Picard
rank n > 2, where we prove Theorems [1.2] and
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2. STRONGLY MULTISTABLE IDEALS

2.1. Gotzmann’s persistence theorem. In this section we outline some necessary back-
ground to prove Theorem We begin by stating Gotzmann’s original persistence theorem.
To do so we require the following lemma and definition.



Lemma 2.1 ([BH93, Lemma 4.2.6]). Fiz d € Z~¢ and a € N. Then a can be written uniquely

in the form
_ (r(d) r(d—1) k(1)
a= < d > + ( d—1 + + 1)
where k(d) > k(d—1) > --- > k(1) > 0.
Definition 2.2. Let a € N, d € Z~(. Define

k(d) +1 k(d—1)+1 k(1) +1
a<d):< (dll >+< (d—ll—l >+"'+< (111 )
with &(d),..., (1) as above. We set 0{® =0,
A key result of Macaulay [Mac27| shows that for b € Z~ we have
Hy(b+1) < H(b)®.
We now state Gotzmann’s persistence theorem.

Theorem 2.3 (|[Got78], see also [BH93| Theorem 4.3.3). Let S = k[xo,...,x,] be a standard-
graded polynomial ring, and let I C S be a homogeneous ideal generated in degrees < d. Suppose
Hy(d+ 1) = Hy(d)'®. Then Hy(b+ 1) = Hy (b)) for all b > d.

As highlighted in the introduction, we can relate this theorem to the Hilbert polynomial of
I. In general, any Hilbert polynomial P(t) € Q[t] of a standard-graded ideal can be written in

the form 5
tta;—i+1
P(t) =
o= (")

for some D € Z~g and a1 > ag > --- > ap > 0. This number D is called the Gotzmann number
of P(t). For t > D — 1, we observe that P(t+1) = P(t)*, which we expect from Theorem

2.2. Strongly multistable ideals. We now outline some necessary background on strongly
multistable ideals. Throughout the rest of Sections 2| and [3] let

S=k[z10,.. . T1ns o Ts05- -5 Lsny)

be the Cox ring of the product of s projective spaces P! x --- x P, with deg(z; ;) = e; € Z°.
We give S the degree lexicographic monomial ordering induced by z19 > -+ > Z1p, > -+ >
Zs0 > -+ > Tsn,. More succinctly, we have x; ; = x3; if ¢ > k, or ¢ = k and j > [. We use =%
as shorthand for a monomial in S, with &% = [ ;}’ for some u;; € N.

We also set the following piece of notation. An ideal I is generated in degrees < (a1, ...,as) €
N* if there exist homogeneous generators {f1,..., f;} for I such that for each (d;i,...,d;s) =
deg(fi), we have d;; < a;.

Definition 2.4. A monomial ideal I C S is strongly multistable if for all monomials % € I,
1 <i<sand0<j<n;, we have that if ; ; | ® then xz,kf—u elforall0<k<y.
¥
Definition 2.5. For a monomial " € S define
m' (") = max{j: z;; | **},
mi(x*) = min{j: z; ; | *}.

For every homogeneous ideal of S there exists a strongly multistable ideal with the same
Hilbert function. One key example is the multigeneric initial ideal, multigin(/) as outlined
in [CDNG22|. Work of Crona |Cro06] focuses on the specific case of strongly bistable ideals,
which lie in the Cox ring of P" x P™, which we denote S5. In this case the bigeneric initial ideal
was first defined in [ACDNOO].

Lemma 2.4 of [Cro06| leads to a partial decomposition of the quotient ring So/I for a strongly
bistable ideal I C So, with similarities to Stanley decompositions. This partial decomposition
allows us to understand the Hilbert function of a strongly bistable ideal. We can generalise this

lemma to the strongly multistable case, with the proof being a direct generalisation of Crona’s
proof.



Lemma 2.6. Let I C S be a strongly multistable ideal generated in degrees < (aq,...,as). For
a monomial T € S(q,, . q,) and integers {v; > a;} define

H(z") = {z 2" | 2” € Sty —ay,..vy—a)» mi(x?) = m'(z*)}.

Then H = Um“EI(al ..... as)

4 . . .
0 for x% # %', so H is a monomial basis for Tiy,v0)

H(x™) generates the vector space Iy, . .- Moreover H(z™)NH (z*') =

Proof. To show that H generates I(,, . .,) as a k-vector space, we show that for any monomial

x® € Ia,,..a.)
and monomial ¥ € S(q, v, ... .a,—v,), then z¥x? lies in H. Suppose m;(z?¥) < m'(x®) for some
i. It follows from the strongly bistable property that

uz __ w
T - miymi(itv)z,

i,mi (@) € I(alv---7a5) :

Further if we let

v2 xv

xr = $i’mi (mu) z

im; (2")

then x%x? = x¥2x%2, m;(x?2?) > m;(z¥) and m*(z%2) < mi(x*). We now repeat the above
process for 2 and 2. If k is the maximum power of x; . (zv) dividing x” then k repeats
is enough to ensure that m;(x¥) > m;(x?). It follows that after a finite number n of repeats
m;(x?) > mt(x¥). Thus we can assume m;(x?¥) > mi(z®) for all i, completing the first part
of the proof. To see that H(z%) N H (™) = (0 for * # x*', let

/ /
¥ =c1...c5, T =c]...¢

with ¢;, ¢; monomials in Sy,e;. Suppose & # % . Then without loss of generality there exists
a pair {c;, c’z} with ¢; > cg. Let j be the smallest index such that the power of x; ; is larger for ¢;
than ¢,. Note that m’(z*") = m’(c}) > j since ¢; and ¢, have equal degree. Tt therefore follows
that for a monomial ¥ € H(x") the power of z; ; dividing «” is strictly larger than for any

monomial lying in H(z*'). Thus H(x*) N H(z*) = (. O

Note that

and

(2.1) U H(x®)

partition the monomials forming a basis for Ir,, .. and (S/I),,.. v,) respectively. For o =
{c1,...ym1,00, 000 nay ety Coy ey g ) let

Se =k[zij| ¢ < j <yl
Then the partition (2.1) shows that for

ou = {mi(x®),...,ny,ma(x®),...,na,...,mg(x"),...,ng},
® s

is a decomposition of (S/I)(>q,,.. >a,)- This leads to the following definition.



Definition 2.7. Let I C S be a strongly multistable ideal generated in degrees < (a,...,as).
A partial Stanley decomposition of S/I is a set

Say,.as) = {(z%,04) | ¥ is a monomial in S(ar,..as) \I(a17_”7a5)}.
We have
dimk((S/I)(t1,...,tS)) = z dimk((Sdu)(h—al,...,ts—as))

for (t1,...,ts) with t; > a; for all i.

This partial Stanley decomposition therefore allows us to calculate the Hilbert function of
S/I in sufficiently high degrees. By passing from an ideal I to multigin(I) we can apply this
idea to more general ideals.

Example 2.8. Let Sy = k[zg, 21,0, v1] be the Cox ring of P! x P!, and let I = (xg,z1y0) C So
be an ideal. Since [ is strongly bistable and generated in degrees < (2,2) we can construct a
partition using the monomials of degree (2,2). The only monomial in S22 \(22) is % = z2y3.
Here my(z*) = 1 = my(z*) and oy, = {1,1}. Therefore &35 = (x2y?,{1,1}), and

dimy,((S2/1) (1, 1)) = dimg(k[z1, Y1), —2,0—2))
for t1 > 2, to > 2.

2.3. Multilex ideals. Aramova, Crona and De Negri [ACDNO0, Section 4] give a generalisation
of lexicographic ideals for the bigraded case, called bilex ideals. We will end this section by
extending this definition to the multigraded case, and proving some useful results.

Definition 2.9. Let M C S(,, .. q,) be a set of monomials. Then:
(i) M is m;-lex if for all ¥ € Sye;s ¥ € Sy, ai-1,0,ai51,0as)
implies that ¥ z% € M for all ¥’ € Sa;e; With ¥ - 2.
(ii) M is multilex if it is a;-lex for all 1 <4 < s. Itis a1, ..., z-lex if it is xj-lex for 1 < j <.
(iii) A monomial ideal I C S is multilex if (4, o) is generated by a multilex set for all
(a1,...,as) € N°.

we have that x%x" ¢ M

Observe that a multilex ideal is always strongly multistable. In the bigraded case, where
s = 2, Aramova Crona and De Negri [ACDNO00, Lemma 4.13] show that for every strongly
bistable ideal I, there is a multilex ideal I°1°* with the same Hilbert function. We show that
this result can be extended to the strongly multistable case. To do so, we will need the following
definitions.

Definition 2.10. For a set of monomials M C S, ... 4,) We can decompose

k
M = | ) Mz
j=1
for some "7 € S4, . a;_1,0,a551,....a5) aRd Mj C Sg,e;. Define
k
Ma:ilex — U Mjl'exmuj‘
j=1

Let Mxl...xilex — (((Mxﬂex)xglex)...)zilex'

Remark 2.11. For any sets of monomials A C B C S(,,,..q,), and any 1 < i <'s, Amilex
Bzilex'

Definition 2.12. Given a monomial % € S(,, . 4,), write " = xyt ... x¥, with each x}" €
Sq;e;- Define the multi-lexsegment of * by

’ u;. u;. uj .
S]ccj € Saje;; T =z, for all j}.

L(z") = {z*...z¥ j

5



Remark 2.13. For a set of monomials M C S,
x¥x? € M, with % € S(al,...,ai,o,...,O)’ x¥ € S(O

M is x1,...,z;-lex if and only if for all
we have L(x")x" C M.

jerny@s )
33050541 500505) 0

To generalise the results in Section 4 of [ACDNO00|, we will focus on the case that M is a
strongly multistable set of monomials. We begin by generalising [ACDNO00, Theorem 4.8].

Lemma 2.14. Suppose the strongly multistable set M is x1,...,x;—1-lex for some 2 < i < s.
Then M® % js xq, ... x;-lex.

Proof. The proof is essentially the same as [ACDNO0O, Theorem 4.8]. We decompose M as

follows:
I s

M= J U = M
j=1k=1

where % € S(4,  a;_1,0,..0)» Mjk C Saze; and %% € So . 0.4;:1,...a5)- We will order the x*
and £ such that %’ = x%i if and only if j/ < j, and similar for the ?¢. Observe that

ol

M:cilex _ U U xuijl‘?li{ka'

j=1k=1
An element in M%1°* can therefore be written as x®ax¥a, with % € S(a1,sai—1,0,..,0)3
¥ € Mjle,;‘ and " € S )- We need to check that

7"'707ai+17“'7a5
L(z% g¥)xve C Mrilex,

To see that this is true, let % e S(a1,nai—1,0,...,0) and = Saie; With ¥ € L(x¥) and

= L(x™). We wish to show that ¥ v gv € M Since M is x1, . ..,xi_1-lex it follows

that for any % € L(x%) and any %" ¢ M; i, %z g ¢ M. In particular % = x%’

for some j/ < j and %" € M .. Since this holds for any = M;y, M, C Mj ;. and

consequently M ]le,i‘ Cc M ]l?’fc In particular, % € M ]l?’fc and so % x¥x? € M*°* By definition

Ml g . _lex so it then follows that % z% z¥ € M®ilex, O

To define Mmultilex — preiaslex we now need only check that if M is strongly multistable
and 1, ..., z;_1-lex, then M%!® is also strongly multistable. It then follows that M/™ultilex jg
indeed multilex by Lemma

Lemma 2.15. Let M be a strongly multistable set, and let 1 <1i < s. Ifi > 2, suppose further
that M is also x1, ..., x;_1-lex. Then M%*'* js strongly multistable.

Proof. We again follow the proof of [ACDNO0, Theorem 4.8]. As in Lemma for i > 2 we

decompose
l1 2
M= J UMt
j=1k=1
where "7 € S, . a;_1.0,..0)s Mjk C Sase; and % € S

M = U2 M, yz*

for My C Saye; and % € S(g.q,,..a,)- We need to show that for m € MElex if x1,p divides
m, then xl,q% € M®e for all 0 < ¢ < p. If | < i then this holds by Lemma [2.14] since M¥ilex

»P
is z1,...,z;-lex. Otherwise, note that the X = {x¥,... &2} form a strongly multistable set

since M is strongly multistable. For [ > 4, if 2;,, divides * for some k then xl,qﬁlﬁ € X for
P

= xV for some k' < k. Since M is strongly multistable, for

305034 1500,05) If i = 1, we simply have

z%
Ti,p

all 0 < g < p. We write ;4
fixed j, we have M;; C M, and consequently M]le,;‘ C Mjle,f, It follows that if x;, divides
m € M for | > i then Ty g € M&ilex for all 0 < g < p. O

Zl,p

To generalise the result of [ACDNOO], we prove the following lemma.



Lemma 2.16. Let I C S be a strongly multistable ideal. Then
Imultilex _ @ ( I( ))multilex
ai,...,as
(at,...,as)ENS

1s an ideal.

Proof. We now follow the proof of [ACDN(0, Lemma 4.12]. For a set of monomials M C S,
define X,M = {z,,m | 0 < q < n,,m € M}. To verify that I™Wex i5 an ideal, we need

only check that for any (aj,...,as) € Nand 1 < p < s, we have Xp(I(al,m,aS))multﬂeX C
(I(a17---,ap+1,.._,as))mUItileX- Note that XPI(aL---,as) C I(a17_n7ap+17_._7as), hence (Xpl(al,...,as))multilex C
(I(a17_..7ap+17_._7a8))m“ltﬂex. It follows that if we can show that Xp(Z(4,, 00))™ " C (Xpl(ay,.. a0)) ™ >
then we are done. Decompose I, 4, as

al,, UM:(;

1;--50

for Mj C S, L0 and % € S 0.4,,....a,)- Observe that

<y ap— 17 N
Iy
T1...Tp—1lex __ T1...Tp_1lex 4.
(Tapsany) 165 = | p7vsrtesgn;
Jj=1
Let Xp{x",..., &%} = {z",... "2} We similarly decompose

la
as) — U Nkwwk
k=1

for N, C S(ay,....ap-1,0,...,0) and % € S 04, Forall 1 < j <l and 0 < g < mn
we have z,,x% = W for some 1 < k < [y, with M; C Nj. If M; C Ny, it follows that

M;Ul"'xpfllex - N,fl"'xpfllex by Remark [2.11] Consequently,

l1 l2
Xp U M;cl...xp_1lexwvj - U NZL..xp_llexmwk‘
j=1 k=1

In other words, Xp(I(4,,. a,))*" P~ tlex - (X/pI(ah,__,aS))xl"'zp—llex. A similar argument shows
that Xy, (La,,....a0) ymultilex C (Xp(L(a,,....a ))xl"'Iplex)’”ﬁl'“‘”slex. The strategy here is to decompose

(I(al,...,as) 351 Rl — U M iz’

with M; C S,...0,aps1,..,a.) and % € S(al,...,ap,o,...,o)a and observe that (I(q,, . 4, ymultilex
Uél 1 M; 1T pv;  We then consider the decomposition

Xp(I(al,.,., xl xplex U Nkcc“”“

with Xp{x",...,z%} = {&"1,. ., "2} and N, C 5(07_._70@“1’._7%). As before, we see that
forall 1 <j <ly and 0 < ¢ < ny, we have z,, ;&% = x* for some 1 < k <y, and consequently
M; C Nj, for this value of k. By Remark [2.11f we then have M;"“"'mslex C lep““'xslex. It
follows that

Iy l2
Xp U M;p+1--.l'slexwvj C U N]prrl”.xSleXxwk’
j=1 k=1
or in other WOYdS, XP(I(a1,...,aS))mUItﬂeX C (XP(I(M,...,as))xl..‘xplex)xijl.'.ZSleX'
We have a chain of inclusions

Xp([(al,m’as))xl...zplex C (Xp(f( )my..:pp_lleX):pplex C (XpI(al,...,as))mlmxplex'

ai,...,as)



The second inclusion follows immediately from the previous part and Remark The first
inclusion is a direct generalisation of the first part of the proof of [ACDNO00, Lemma 4.12].
Combining everything, we obtain

Xp(I(al,...,aS))mUItﬂex C (XP(I(CLL.MGS)):pl...xplex)mp+1...xslex C (Xpl(al,“.,a )

) multilex
s .

This completes the proof. O

Theorem 2.17. For every ideal I C S which is homogeneous with respect to the Z°-grading,
there exists a multilex ideal with the same Hilbert function.

Proof. As highlighted in Section for every I there exists a strongly multistable ideal with
the same Hilbert function. The ideal multigin(/) is one such example. Lemmas and
then show that for any strongly multistable ideal there exists a multilex ideal with the
same Hilbert function. O

We will exploit Theorem [2.17]in Section 3| to find the degrees in which persistence occurs.

3. PERSISTENCE TYPE RESULTS FOR PRODUCTS OF PROJECTIVE SPACES

We now establish some preliminary results required to prove Theorem We begin by
understanding the structure of Hilbert polynomials on S. We then relate multilex ideals and
bilex ideals, and use this to generalise a theorem of Crona [Cro06, Theorem 4.10]. We conclude
with the proof of Theorem and a comparison to the original result of Gotzmann.

3.1. The structure of Hilbert polynomials on S. In this subsection we will apply the
results of Section [2 on strongly multistable and multilex ideals to better understand the structure
of P](tl, ves ,ts).

Lemma 3.1. Let Iy,...,I; C S be homogeneous monomial ideals, generated in degrees <
(a1,...,as), with each a; > 2. Then for b; > 1,

H[l(bl,...,bs)—|-"~—|-H[l(b1,...,bs):HJ(bl,...,bs)

for a monomial ideal J generated in degrees < (a1, ...,as) in the Cox ring of Plr+D)—1 5 L x
Pirs D=1 Tt follows that

Pj(tl,...,ts) :le(tl,---,ts)+"'+P[l(t1,---,ts)-

Proof. We begin by relabelling the variables of I, replacing x;; with y; ;, to obtain an ideal
I, C kY105 s Ylmgs---sYs0s - Ysmsl- Let

SI = k[fl}'LO, ctty xl,n17y1,07 A 7y1,n17 st 7:1:8707 ct xs,ns7y8,07 e 7y8,n5]7
with deg(z; ;) = deg(yi ;) = e;. Note that S’ is the Cox ring of

]P)2n1+1 Y X P2ns+1.

Consider the ideal J; = I1 + I}, + K C S’, where K is generated by all monomials of the form
Zi jYp,q- The Hilbert function of this ideal agrees with Hy, (b1,...,bs)+Hrp, (b1, ..., bs) for b > 1.
Note that each z; jy, 4 has degree < (2,...,2), so J; is generated in degrees < (a,...,as). We
also observe that J; is a monomial ideal. Now applying the same argument to J; and I3 allows
us to obtain a monomial ideal J5 in the Cox ring of P3(m1+D—1 s ... P3(ns+1)=1 geperated in
degrees < (ai,...,as), and with Hy, (b1,...,bs)+Hr,(b1,...,bs) = Hy,(b1,...,bs). We continue
to repeat this argument to obtain the ideal J, which is a monomial ideal in the Cox ring of
[P)l(n1+1)—1 N, Pl(ns—&-l)—l. O

For P € Qlty,...,ts] set maxdeg(P) to be the vector v = (v;) € N*, where each v; is the
maximum power of ¢; dividing at least one of the terms of P. Combining Lemma/[2.6|and Lemma
we prove the following lemma, which allows us to better understand the Hilbert polynomial
of a multigraded ideal.



Lemma 3.2. Let Pi(ty,...,ts) be the Hilbert polynomial of an ideal I C S, which is ho-
mogeneous with respect to the Z°-grading. Fix (ai,...,as) € N° such that a; > 2 for all i
and such that I™eT s generated in degrees < (ay,...,as). Suppose that Pr(ty,...,ts) has
maxdeg(Pr) = (p1,...,ps). Then we may write

t a—l—z ts —as+1
Pt t) =33 F. M(? 2 2)( )
S

1s=0 i2=0

where each Fy, ;. (t1) is the Hilbert polynomial for some standard graded monomial ideal J;,. ;.
generated in degrees < ay. Further, we have Hy,, . (b1) = Fyy 4, (b1) for by > a1, and conse-
quently Hy(by,...,b,) = Pr(b1,...,b;) when all bi 2 a;.

Proof. We pass to J = I™Hex which has the same Hilbert function as I but is strongly
multistable. Consider the set

T = {(ig,...,is) € N*"1| 0 <i; <p;}.
For ¢ = (i2,...,1s) € Z consider the set of monomials
L' = {a:“ S 5(07(127_._7&5) | ij =n; — mj(acu) forall 2 <j < 8}.
Fix some % € L We consider the set of monomials M} C S(a1,0,...,0) With ¥t M C
J(ay,....as)- The set Mf generates a strongly stable ideal Jli in the standard-graded polynomial
ring k[z10,...,21,,] with Hilbert function HJ% (b1). Since J} is strongly stable and generated
in degrees < a; we observe that H Jli(bl) =P Ji (b1) for by > ay. Consider the set of monomials

Nl = S(al,o,...,O) \ MiL

For each x% € Nli, x“1z% corresponds to a monomial in Sy, 4. \ J(ay,.. ) For such a
monomial % = %'z the corresponding term in the partial Stanley decomposition of J is

k[wl,ml(mvj)v e 7x1,n17$2,m2(a:"1)7 cee 7$2,n27 e 7xs,ms(m"1)7 cee 7x8,n5](_a17 ey —CLS).
This contributes
. to — ag + 12 ts — as + is
(3.1) dimg (k[zy ) (2750 - - 7x1,n1]t1—a1)( i e ;
s

to the Hilbert polynomial of I, where i; = n; — m/(x¥!). Since the monomials in N# form a
partial Stanley decomposition for J} we have that

Z dimk(k[mel(m”j)a e 7x1,n1]t1*a1) = PJi‘ (tl)
z"i eN?
for t; > aj. Consequently, the expression (3.1)) becomes
to —ag+1 ts —as+1
(3.2) PJ%(tl)( 2@ ”) < s s ZS).
19 is

We repeat the above procedure for all possible monomials & € L*. Note that all monomials
in L* for a fixed ¢ will have the same binomial coefficients appearing in the corresponding piece
of the Hilbert polynomial (3.2). It therefore makes sense for us to add the P Ji (t1) together. By

Lemma the sum of the Hilbert polynomials of the Jli agrees with the Hilbert polynomial for
a new monomial ideal J;, ;. generated in degrees < a;. We will denote the Hilbert polynomial
of Ji,. i, by Fi,. i.(t1). We have

(3.3) Fiy ii(t1) = Z Pyi(ty).
U cLi
Note that since HJli (b1) = PJli (by) for all by > a1, we have

Fip i) = > Pji(b1) = > Hyi(b1) = Hy,, ;. (b1)

z¥el? z¥el?



for all by > a1. By equation (3.3)) the monomials in L? contribute in total

to — ag + 1o ts —as+1
F‘Z’z.“is(tl)< iy ) . < s is 5>
S

to the Hilbert polynomial of 1. Varying 1 € 7 and repeating this procedure we obtain

¢ t— g+
Pi(ty, ...t Z ZFZQ it (2 a2+”> . < ?SHS)
S

15s=0 12=0
where each F;, ;_ (t1) is the Hilbert polynomial of a monomial ideal J;, ;. generated in degrees
<az. O
Example 3.3. Let
Sy = k[x1,0, 22,0, 22,1, 23,0, 3,1, 3,2, T4,0, T4,1]

be the Cox ring of PY x P! x P2 x P'. Let J = (22,0,230,231) C Sa, and observe that J
is a multilex ideal generated in degrees < (2,2,2,2). We have Pj(t1,ta,t3,t4) = t4 + 1, with
maxdeg(Py) = (0,0,0,1). By Lemma [3.2| we can write

tg—2+1
Pr(ty,ta,t3,t4) = Fooo(t1) + F001(t1)< * ),

1

for some standard-graded Hilbert polynomials Fyoo(t1) and Fpoi(t1). It follows that we must
have FOOl(tl) = 1, F()()Q(tl) = 2.

The following terminology will be used throughout the rest of this section.

Definition 3.4. Let PI(tl,...,ts) be a Hilbert polynomial of an ideal I C S with Jmultilex

generated in degrees < (aq,...,as). By Lemma 3.2 we can write
to — ag + 1o ts —as+1
Pitreeot) =323 . ] i P G
1s=0 i2=0

where the Fj, ; (t1) € Q[t1] are Hilbert polynomials of standard-graded ideals generated in
degrees < (ay,...,as). We will extend the definition of the F;, ;_ (t1), setting Fj, ;. (t1) = 0 for
any (ig,...,is) € Ns_l with some i; > p;. For 1 <r <sand b= (b1,...,b—1,bp41,...,bs) €
N*~1, define

Z Z B9 irbrp1.. b b1 H( CL]+Z]> (tr_(‘lr—Fir) GQ[tr].

2,=0 12=0 =2 tr
If r = 1 then we write b = (bg,...,bs) € N°~! and define

Py(t1) = Fyy.p,(t1).

For r = s write b = (b1, ...,bs—1) and define
Py (ts) = Pr(bi,...,bs—1,ts).
Notice that if b; > p; for some ¢ > r then P} (t,) = 0. For 1 <r <s, PJ(t,) is the coefficient of
(Frevmonrtoren) (BT 0 Pr(by, . bt byt
For r > 1, fix b = (by,...,b,_1,br41,...,bs) € N*7! and 4, € N. Further, set b =
(b1,...,by_2,ip,byrs1,...,bs) € N°1. Then the coefficient of (tT a:“’") in PJ(t,) is given by

L (br-1).

Remark 3.5. Suppose maxdeg(Pr) = (p1,...,ps). For fixed by,...,b,—1 with b; > a; for all ¢,
P} (t,) has degree < p, for all choices of b,41, ...,bs. Further, we claim that there is at least one
choice of by41,...,bs such that equality is achieved. For r = 1 this follows from the definition,
so we focus on the case r > 1. Observe that since maxdeg(Pr) = (p1, ..., ps) there is at least one
choice of ig,...,4p_1, ir11,...,195 with 0 < 4; < p; for all j such that Fi, ;. p.i,...0,(t1) # 0.
Recall from Lemma that Fi, i, _ipyipsr..is(b1) = Hj(b1) for some standard-graded ideal J
when b1 > a;. Thus, 1f Fiy. v _iprivsr...is (b1) = 0 then Macaulay’s bound for the Hilbert function
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of an ideal tells us that Fj, ; . p.i;..i.(w) < 0 for w > by. This forces Fi, i ipyiyir...is(t1)
to be the zero polynomial, which is a contradiction. Thus Fi, ;. _ p.i,4q..is(b1) 7 0. We may

therefore fix b,41 = 4y41,...,bs = i5 and observe that for this choice of io, ..., i,_1
by — as +io br—1—ar—1+ 11
Fi2---z‘7‘71p7‘b7‘+1---b5 (bl) < . ce " .T " > 07
19 Ir—1

since the binomial coefficients are never zero for b; > a;. The coefficient of (t’"_‘;:"’p”) in Py (t,)
is given by

= by — a2 + 12 br—1—ar_1+ir1
Z Z Fl? dp—1Prbrg1...bs t . .

Tr—
ir—1=0 i2=0 r—1

Since b1 > a1, we have F’izmirlprHlmbs(bl) > 0 for all choices of i3 ...4%,_1. As established there
is one choice of 49,...,4,_1 such that this polynomial is strictly positive. it follows that the
coefficient of (t’“_;’;er’“) in P} (t,) is strictly positive, and so P (t,) has degree p, for this choice
of bT’+17 ey bs.

Example 3.6. Returning to Exampleu 3}, let P} (t,) denote the polynomials as in Deﬁnition
for Pj(t1,t2,t3,t4) = t4 + 1. We compute P( )( 2) and P(2 0 1)( 2). Recall that Fpoi(t1) =1
and Fypo(t1) = 2, and that maxdeg(PJ) (0, 1

2,0,
0,0,1). We obtain
t —2—|—z
P(200) t2) Z Fiy00(2 < 2 2) = Fooo(2) = 2,

120

0)
0

to —24+1
P(201 (t2) ZFmOl (2 . 2> = Foo1(2) = 1.

12=0

3.2. Extension of results on bilex ideals. We now extend known results about bilex ideals
to multilex ideals, using the following lemmas.

Lemma 3.7. Let I1,...,I; C Sy = k[xo,...,Zn, Y0, -, Ym| be bilex ideals generated in degrees

< (all,a2). Fiz a; € N. Then there exists n' € N and a bilex ideal J in the Cox ring of P x P
such that for all bs > a9

Hfl (ala b2) + - + HI[ (alu b?) - HJ(1) b2)
Further we may assume J is generated in degrees < (1,a3). We have
Pr(ay,t2) + -+ Pr(ay, t2) = Py(1,t2)
as polynomials in Q[ts].
Proof. Fix d = (‘“;1“") and let n’ = 1d — 1. Let Sé = k[20, -+, 21d—1,Y0, - - - , Ym], With deg(z;) =

(1,0), deg(y;) = (0,1) Let {&“*,..., ¥4} be the set of monomials in S,
family of maps of vector spaces

L0 and consider the

¥i - 52(0170) - 52(1,0)
" — Tj—14(i—1)d
for 1 <4 <. Define the set of monomials
M}, = {pi(x")y" | z* € 52,0 Y" €S20y, 2 Y € I} C 5,

for 1 <14 <1, by € N. Notice that for ¢ # j, MZZ is disjoint from MjQ, and that each Mg2 is bilex

when viewed as an ideal in the ring k[z(;_1)g, - - - Zid—1,Y0, - - - , Ym]. Let My, = Uézl M§2. Then
(i) My, is bilex for the correct relabelling of the zo, ..., 2141,
(i) Hy, (a1,b2) + -+ Hy, (a1,b2) = |S2(1’b2>| - |Mb2‘7

(111) for J = ( a2) C 52, |52(1b | — |Mb2‘ = HJ(l,bQ) for all by > as.
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To see (i), note that the monomials N}, = {y" € S22y | 7YY € My, } form a lexsegment for
any z; € Sé. It follows that Mp, is y-lex as in Definition but may not be z-lex. However, we
can relabel the 2; so that the N; are (non strictly) descending in size and thus obtain a bilex
set. Part (ii) follows from the definition of M,,, and the disjointness of the My . Finally, part
(iii) holds since each I; is generated in degrees < (a},az). The result then follows, since J is a
bilex ideal after relabelling variables. (|

Lemma 3.8. Let I C S be an ideal, homogeneous with respect to the Z™-grading, with I™ilez

generated in degrees < (ai,...,as). As in Lemma we write
Ps P2 . .
_ to — ag + 13 te — Qs + i
P](tl,...,ts)_2}...2)[71-2“%@1)( iy )( 'is ),
fg= i9=

where each Fj,. ;, is the Hilbert polynomial of a standard graded ideal. Let Pj(t,) € Qlt,]
denote a polynomial as in definition for Pr(t1,...,ts). Then for fited 2 < r < s and
b= (b1,....,b_1,br11,...,bs) € N1 with b; > a; for i < r, there exists a bigraded ideal K
with Py (t,) = Pk (1,t.). Further, we can always find such an ideal K which is a bilex ideal in
the Coz ring of P™ x P for some m € N, and with K generated in degrees < (1,ay,).

Proof. Recall from Definition that if b; > p; for any i > r then Py (t,) = 0, so we focus on
the case that b; < p; for i > . We pass from I to J = I™Wtex which is generated in degrees
< (a1,...,as). We begin with the case r = s. For a given monomial % € S, 4. ,00) set
M; C S,....0,b5_1,a5) t0 be the set of monomials such that M;x" C Jp, b, 1 .4,) and denote
by Jj C E[s—1,0,---sTs—1ny 11 Ls0,---,Tsn,] the bigraded ideal generated by M;. Since J is
multilex, J; is bilex, and generated in degrees < (bs_1,as). Further, we have

Py(b1,. .. bs—2,ts1,ts) = > Py (ts—1,ts).

€ I ES (4, by _5.0,0)
Applying Lemma [3.7, we observe that there exists m € N such that
PJ(bla‘°'7bS—1atS): Z PJj(bs—lats):PK(lats)
T TES(h, .. by_5,0,0)

for an ideal K C k[zo, ..., Zm,Y0,---,Yn,|. For the case 2 < r < s the polynomial P} (t,) is the
coefficient of
<tr+1 — Qp41 + br+1> (ts —as + bs)
byt .. b,

in Pr(by,...,by—1,tr,...,ts). Consider the set of monomials

MZ{SU“GS(O )‘mj(ﬂi‘u):n]’—bj for all r < j < s}.

’~'~707a’r+1a"~7as

A monomial 2% € S(4, ;. a) \ J(a1,....a) Which satisfies m/ (%) = n; —b; for all r < j < s will
contribute a term to the partial Stanley decomposition whose associated Hilbert polynomial is

of the form ) ,
tT‘ — Up r ts - Us S
G(tl,...,tr)< 1T a1t “)...( as+ >
br+l bs

for some G(t1,...,t,). Therefore, to find the coefficient of

try1 — Gry1 + brg ts — as + b
by e b,

in Pr(ty,...,t;) we focus on monomials whose degree (0,...,0,a,41,...,as) part is in the set
M. For a given "t € M consider the set of monomials M; C S ), such that

Qal,e.,@p—1,ar,0...,0
. Since J is multilex the set M; generates a multilex ideal

T M; C Jay,....00)

Ji C S’r’ == k[xl,(), B/ I IR R 7 X | IR xr,nr]a
generated in degrees < (ai,...,a,). Varying &% we get a collection of these multilex ideals
Ji. For a given x*i let N; denote the degree (ay,...,a,,0,...,0) monomials not in M;. The

12



monomials in N; form a partial Stanley decomposition for the strongly multistable ideal J;.
Further, the monomials (Ju; ¢y, 4 N; are exactly the monomials in S(a, . a) \ J(ar,....a5) Sat-
isfying m’(x*) = n; — b; for all r < j < s. The pieces of the partial Stanley decomposition of
I associated to the monomials in &%¢N; contribute
PJi (tl, o ,tr) (tr—i-l — C;r,«_H + br+1> . <t3 - Zs + bs>
r+1 s
to the Hilbert polynomial of I. It follows that
Pi(ty) = > Prbi,....01,t,).
x%ieM
For a fixed J; and fixed monomial % € ST(bl,“.,bT,Q,O,O) define the bigraded ideal J;; C
Elzy—10,. s Tr—1m,_1,Tr0,-- -, Trn, ], which is generated by the set of monomials M; ; C ST<0,...,0,bT_1,ar)
such that M; ;x% C Ji(blwbrilw). The proof is now similar to the r = s case. The ideals J; ;
are bilex since each J; is multilex. Further, we have

Pfi(b17"'>br—27t’r—17t7") = Z Pji,j(tT’—17t7’)'

v
x IES,
r(bl,...,b,,‘,Q,0,0)

Now applying Lemma there exists m; € N such that
PJi(blw"abr—lat'r) = Z PJi’j(bT’—latT) :PKi(lytr)

for a bilex ideal K; C k[xo,...,Zm,,Y0,---,Yn,|, generated in degrees < (1,a,). Again applying
Lemma [3.7] there exists m € N such that

Py(ty)= > Pybr,....bp-1,ts) = > Pr,(1,t,) = Px(1,t,)

Y icM Y icM
for a bilex ideal K C k[zg,...,Zm,Y0,---,Yn,| generated in degrees < (1,a,). O
Remark 3.9. Lemma shows that for a multilex ideal I generated in degrees < (ay,...,as)
and a collection {by,...,bs—1} with b; > a; there is a bilex ideal K generated in degrees < (1, as)
such that

Pr(by,...,bs—1,ts) = P (1,ts).
We may further assume that K lies in the Cox ring of P™ x P™s for some m € N. The choice of
fixing t1,...ts—1 was arbitrary, and a similar result holds for any P(b1,...,bi—1,t;, bit1,...,0bs).

We will need the following result of Crona for bigraded ideals.
Theorem 3.10 ([Cro06, Theorem 4.10]). Let So = k[xo, ..., Tn, Y0, -, Ym]| be the Cox ring of
P x P with the usual Z*-grading. Let I be a bigraded homogeneous ideal of So. Let
n+b
(3.4) Hiy(b1,be) = ( n 1>Cl(bl) + t(b1),

be the Euclidean division of Hr(b1,b2) by ("J;bl). Fix ty = ba € Z~qo. Suppose there is a strongly
bistable ideal with the same Hilbert function as I generated in degrees < (ay,as). Then

(i)
H[(b1 +1, bg) = (bl +71 + n)q(ln) + t(b1)<b1>

for by > 0.
(ii) For all u > ay, if

1
it 1,0 = (71 a4 )
then

bi+1+n

Hy(by 4+ 1.by) = < !

)q(bn T e(b)®)

13



for all by > u.

Similar results hold for the Euclidean division by (
varies.

bo+m

s ), where by € Z>q 1s now fized and by

It is natural to use Remark to extend this result to the product of s projective spaces.

Theorem 3.11. Let I C S be a homogeneous ideal, whose Hilbert function agrees with that of

some multilex ideal generated in degrees < (ai,...,as). Fix i € N with 1 < i < s. For fized
b1 > ai,...,bi—1 > aj—1,bit1 > ait1,...bs > as consider the Euclidean division of Hy(by, ..., bs)
by ("lnt bi), which we write

n; + b;
n;

Hy(by,...,bs) = < )q(bi) + v(b;).

Then we have
0 b; +1
i +0; + .
Hy(by, ... bim1,bi + 1,bigr, .., bs) = (n n >q(bi) + ()P
for b; > 0.
(ii) For all u > a; if
H[(bl,.--,bi_l,U‘i‘1,bi+1,...,bs> = (
then

i+bi+1 .
H[(bl,...,bi,hbi—l—1,bi+1,...,bs) = (TL n >q(b1)+t(bl)<bz>
for all b; > u.
Proof. Recall that
Pf<b17 s Jbi—17u7 bi-‘rla s 7b8) = Hf(bh s 7bi—17u7bi+17 .. ‘7bs)
when v > a; and b; > a; for all possible j. By Remark there exists m € N such that
Hr(by,..., b, u,biy1,...,bs) = Pg(1,u) for some bilex ideal K in the Cox ring of P™ x P™
generated in degrees < (1,a;). The result then follows by Theorem O

Remark 3.12. A similar application of Remark 3.9 allows us to extend Aramova, Crona and De
Negri’s generalisation of Macaulay’s bound on the Hilbert function of a bigraded ideal [ACDNOO,
Theorem 4.18] to multigraded ideals.

3.3. Persistence for products of projective spaces. We now have all the tools required to
prove the main theorem of this section.

Proof of Theorem[1.1]. Suppose I multilex apq jmultilex are generated in degrees < (ay,...,as),
with a; > 2 for all i. Recall that Hy(by,...,bs) = Pr(b1,...,bs) and Hy(by,...,bs) = Py(b1,...,bs)
when all b; > a;. Suppose that maxdeg(P) = (p1,...,ps). By Lemma P(t1,...,ts) can be
written in the form

Ps P2 . .
to —as +1 ts —as+1
P(tla...,ts):Z"'ZFiQ,‘,is(t1)<2 122 2>< - )
S

is=0  ip=0
where the Fj, ; (t1) are Hilbert polynomials of standard-graded ideals generated in degrees
< a;. For a known P(t1,...,ts) we can explicitly find each of the Fj, ;.. Similarly, we can
write

& &z to —ag + 19 ts —as + s
PI(tl?""tS):Z"'ZGiz--.is(t1)< i >( i ),

1s=0 i9=0
for some ¢2,...,qs € N, where each G, . ; (t1) is the Hilbert polynomial of some standard-
graded ideal generated in degrees < a;. The polynomial Pr(¢i,...,ts) is therefore uniquely

determined by g2, ..., qs and the G4, ;..
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The first step of the proof is to fix the point (di,...,ds) € N°. We denote by P} (t,) the
polynomials as in definition for P and Qp(t,) those for P;. Recall from Lemma that
for each 2 < r < s and b € N°! with b; > q; for all i < r, there exists a bilex ideal
K C klxo,...,Tm,%0,---,Yn,) such that P} (t,) = Pg(1,t,). We may further assume K is
generated in degrees < (1,a,). The same holds for the Q}(¢,). In particular we can apply
Theorem to both sets of polynomials. Let

Py = ("7 Jatw + +(w

be the Euclidean division of Py (u) by (”::”), and define c(Py(t,)) to be the minimum value of
u € N such that

U+ Ny
Ny

u+1+n,
Ny

Pyt = ( Jatu) + s

This minimum must exist by Theorem part (i). We now choose d; € N with d; > a; and
such that d; is larger than the maximal Gotzmann number of the Hilbert polynomials Fj, ;..
Once d; is fixed, set

By = {(by,b3,...,bs) e N*"1 | by € {dy,dy +1},0 < b; < p; for 2 <i < s},

and set co = maxpep, {c(PZ(t2))}. We then set do = max(ag,c2). In this way we recursively
define

Br={(b1,...,br_1,br41,...,bs) € N b, € {d;, d; + 1} for i <,
Ogbigpifori>r},

¢ = maxpep, ,{c(FPy (tr))}, and d, = max(a,,¢,), up to r = s. With (dy, ..., ds) now fixed, we
proceed with the proof.
We have defined B, for 2 < r < s. We similarly define

By = {(ba,...,bs) € N1 |0 < b; < p; for all 4}.

We assume as in the statement of the theorem that Hy(b,...,bs) = P(b,...,bs) for all points
in Bs. Our aim is to show that ¢; = p; for all 2 < i < s, and G, ; (t1) = Fj, ;. (t1) for all
i2,...,1s by using induction. We will prove the following statements by induction on decreasing
rforalll1 <r <s.

(i) Qy(d,) = P)(d,) and Q}(d, + 1) = P} (dr + 1) for all b € B,.

(ii) ¢; = p; for all possible i > r.
We begin with the base case of » = s. For (7), this case is exactly the assumption of Theorem
that Hr(by,...,bs) = P(b1,...,bs) for all points in {(b1,...,bs) € N° | b; € {d;,d; + 1}}.
For (ii), the statement is vacuously true.

For the induction step, we will show that for 2 <r <'s, (i) and (¢i) holding for r implies (7)

and (77) hold for » — 1. To see this is true, suppose (i) and (ii) hold for some 2 < r < s. Let

R = (1 )atan) + )

be the Euclidean division of P} (d,) by (dT;:”T). We chose d, such that d, > ¢(P](t,)) for all
possible b,. € B,.. It follows that

dr +1+n,

(3.5) Qb, (dr +1) = Py (dr +1) = ( dy +1

)q(dr) +(d,)

for all b, € B, by (i). As observed earlier, Lemma implies that we can apply Crona’s
Theorem 3.10[to @}, (t). Since equation (3.5)) holds, the assumption of Theorem part (1)
is satisfied. We therefore see that Qp (u) = P (u) for all w > d, and all b, € B,, implying
that Qy(t,) = Py (t,) in Q[t,] for all b, € B,. Since ¢; = p; for all i > r by (ii), we can apply
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Remark to conclude that g, = p,. We then match the coefficients of (tr_i[:“ar) in Qp, (tr)
and P (t,) for all 0 <4, < p, and all b, € B, to see that

b (dr) =Py (der), @yt (dra+1) = B (dra + 1),

br—l

for all b,._1 € B,_1. This completes the proof of the induction step.
Since (i) and (éi) hold for r = 1, it follows that ¢; = p; for all 2 < ¢ < s, and that

Giy..i,(d1) = Fiy. i, (d1), Giy.i(di +1) = F, i, (d1 +1)

for all (ig,...,is) € By. Since we chose dj to be larger then the Gotzmann number of every
Hilbert polynomial Fj, ;. (t1), we have

Giyi(di +1) = Fiy i (dy + 1) = Fiy i (d)\ %) = Gy, (dp)( )

for every (i2,...,is) € Bi. We therefore apply Gotzmann'’s persistence theorem to each G, i, (t1)
and conclude that G, i, (t1) = Fi, i (t1) in Q[t1] for all (ig,...,is) € Bi. It follows that
Pr=P. O

Example 3.13. As in Example let

Sy = Ek[x1,0, 2,0, T2,1, 3,0, £3,1, £3,2, £4,0, L4,1)

and consider the ideal I = (x3,0, 22,0731, 22,0232, 2123,1) C S4. Let J and Pjy(t1,t2,t3,t4) be
as in Example We will apply Theorem to show that Py(ty,te,ts,ts) = Py(t1,te,ts,ts).
Recall that Fyo1(t1) = 1, Fooo(t1) = 2. The maximal Gotzmann number of these polynomials is
two, so we set d; = 2. Calculating the rest of the PZ(t) as in Example we obtain

P(22,0,0) (t2) = P(23,0,0) (t2) =2, P(22,0,1)(t2) = P(Qg,o,1)(t2) =1,

and we have c(P(Qbhb%bg)(tg)) < 2 for these polynomials, so we set dy = 2. Similarly,

P(32,2,0) (ts) = P(32,370) (ts) = P(?},Q,o) (t3) = P(33,3,0)(t3) =2,
P(32,2,1)(t3) = P(32,3,1)(t3) = P(%,2,1)(t3) = P(?Ez,s,l)(tii) =1,
so we set d3 = 2. Finally Pél by b3)(t4) =t4+ 1 for all b; € {2,3}, with ¢(t4 + 1) = 0, so we can

again take dy = 2. Thus, verifying that Hj(by,be, b3, by) = Pj(b1,be,bs,bs) for all (b1, by, b3, by)
with 2 < b; < 3 guarantees that Pr(t1,to,ts,t4) = t4 + 1.

The key difference between Theorem and Gotzmann’s original persistence result lies in
the choice of the point (di,...,ds). In Gotzmann’s original result we can choose d to be
the Gotzmann number of the prospective Hilbert polynomial P(t). Work of Iarrobino and
Kleiman [IK99, Appendix C] shows that the Gotzmann number of P is equal to

inf{m | m € reg(I) for all I C S with Pr(t) = P(t)}.

Work of Bayer shows that this infimum is achieved as min(reg(L)) where L is the unique
saturated lexicographic ideal with Hilbert polynomial P. Thus for saturated lex ideals I and J
and d € reg(I) Nreg(J), we have Hy(d + 1) = H;(d) and Hy(d + 1) = H;(d)!?. Tt follows
that if Hy(d+ 1) = Hy(d+ 1) and Hy(d) = Hj(d) then P = Py, and in fact I = J. In other
words, we cannot have different saturated lexicographic ideals whose Hilbert functions agree in
degree d and d+ 1. We might hope that a similar result is true for products of projective spaces.
However the following example shows that this does not generalise even to the P x P case.

Example 3.14. Let S = k[zg, 21,72, T3, Yo, Y1, Y2, ¥3] be the Cox ring of X = P? x P3, where
deg(z;) = (1,0) and deg(y;) = (0,1). Let

(3.6) I = (20, %1, Yo, Y, T2y1, T2Y3),

(3.7) J = (20, Yo, T1Y1, T1Y2, T2Y1, T2Y2, Y1, Y1 Y2)-

Note that I and J are generated in degrees < (1,3), and are both bilex and B-saturated,
where B is the irrelevant ideal of X. Computing the multigraded regularity of I and J with
the Macaulay?2 [GS] virtual resolutions package [ABLS20] we observe (1,3) € reg(l) Nreg(J),
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or equivalently (0,2) € reg(S/I) Nreg(S/J). Consider the set D = {(1,3),(2,3), (1,4), (2,4)}.
Then Hj(t1,t2) = Hy(t1,t2) for all (t1,t2) € D. However

H;(3,3) = 16 # H;(3,3) = 17.

Since the Hilbert functions of both I and J agree with their Hilbert polynomials in degree (3, 3)
by corollary 2.15 of [MSO05|, I and J necessarily have different Hilbert polynomials. Indeed,
we verify in Macaulay2 using the correspondence scrolls package [DEFOSAS| that Pr(t1,t2) =
3t1 + 2to + 1 and Py(ty,t2) = 5t3+ 3t + 265 + 2.

We therefore have to use a more complicated method to find appropriate d = (dy,...,ds)
such that checking the Hilbert function of our ideal in a finite number of points around d verifies
its Hilbert polynomial. The improvement made by Theorem is that the number of points
required to check no longer depends on the dimension of our ambient space, as in algorithm 6.3
of [MS05].

Remark 3.15. An increased understanding of the degrees of the generators of I™eX would
allow us to combine Theorem with Maclagan and Smith’s result on multigraded regularity
to obtain a supportive set as in [HS04, Proposition 3.2], of size 2° for P(t1,...,ts).

4. EXTENSION TO MORE GENERAL TORIC VARIETIES

4.1. The Picard rank 2 case. In this section we see how the results of Section [3] apply to
Picard-rank-2 toric varieties. Let d,s € Z with d > 2,1 < s <d—1. Let a = (a1,...,as) € Z°
with 0 < a1 < ag < --- < as. Work of Kleinschmidt [K1e88| defines the smooth projective toric

variety X4(a) associated to d and a. Its Cox ring is R = k[z1, ..., 24+2], with the grading given
by the 2 x (d + 2) matrix A:
—ay ... —ag 0 1 ... 1 1
A=\1 ... 1 10 ...00

With this choice of grading the semigroup NC of nef line bundles on X;(a) is identified with
N2, Kleinschmidt further showed that every Picard-rank-2 smooth projective toric variety is
isomorphic to Xy(a) for some choice of d and a. We therefore restrict our focus to varieties
with Cox rings in the above form. We can relate the ring R to the Cox ring of the product of
two projective spaces as follows.

Lemma 4.1. Let R = k[z1,...,24+2] be the Cox ring of a Picard-rank-2 toric variety and let
J C R be an ideal homogeneous with respect to the Z?-grading. Let n = dimk(R(LO)) —1 and
m = dimg (R 1)) — 1. Set S to be the Cox ring of P" x P™. Then there is a surjective map of

k-algebras v¥: S — R, where R = Doene Ro-
Proof. Let S = k[zo,...,Zn, Y0, .., Ym], with the grading given by deg(z;) = (1,0) and deg(y;) =

(0,1). Note that n = d — s, since R(; gy has a basis given by {2s12,...,2442}. We have chosen
S such that R ) and Rg ) are isomorphic to the vector spaces S(1 o) and S(g,1). We define a

map of k-algebras ¢: S — R. Explicitly, set 1(x;) = 2512+ and set ¥(y;) = e;, where eq, ..., e,
is the monomial basis of R ;). We now verify that the map 1 is surjective.
Consider a monomial 2% = 2{" ... 21"} € Ry, 5,) for some (b1, bs) € N2, We have that

(4.1) Tsg2 +++ +Tape2 = 1101 + -+ + 71505 + by,
(4.2) ry+ -+ rspr = bo.

We can rearrange the monomial 2* to exhibit it as the product of by elements of R o) and bo
elements of R 1) as follows. Consider the multiset

d+2 r;

z=J Ul=}

i=s+2 j=1
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In other words,
Z = {Zs+27 sy Rs42y e 2dH2y -k Zd+2}7

where each z; is repeated r; times. Equation implies that Z has size r1a1 + - - -+ rsas + b1.
We relabel ria; + - -+ + rgas of the elements of Z to variables of the form z; ;, for 1 < ¢ < s,
1<j<r;,1<k<aq,; Forafixed i between 1 and s we have r;a; elements lying in the multiset
Z labelled z; 1.1, ..., %ir;,q;- Let f denote the product of the remaining b; elements of Z, which
as previously observed all lie in Ry o). Then

s T
== T

i=1j=1 k=

aq

Zl’]’k)
1

Note that each
a;
24 H 2,5,k
k=1

is an element of R 1). This rearrangement of the monomial z* shows that it is the product of
elements in R ) and Rg 1), ensuring that ¢ is surjective. U

Proof of Theorem [I.2. Define J = @pene Jb- Composing the surjective map from Lemma

with the map R — R/J we obtain a surjective map ¢: S — R/J. For I = ker(¢) C S we have
Hi(by,ba) = Hy(by,by) for (by,bs) € N2, Consequently, we apply Theorem to I C S to find
appropriate (di,dy) € N? such that if

Hj(di,dp) = P(di,d2), Hy(di+1,d2) = P(di +1,d>),
Hj(di,dy+1) = P(dy,d2 +1), Hjy(di+1,dp+1) = P(di +1,dy + 1),

then Pr(t1,te) = P(t1,t2). Since Pr(ti,ta) = Pj(t1,t2) this then guarantees that Pj(t1,ts) =
P(tl,tg). O

Example 4.2. Consider the Hirzebruch surface H; with Cox ring R = k|zo, 21, 22, 23], with
deg(zp) = deg(z2) = (1,0), deg(z1) = (—1,1), deg(z3) = (0,1). Consider the ideal J = (2¢) in R.
We will find the Hilbert polynomial Pj(t1,t2) using Theorem Observe that R o) has basis
{20, 22} and R 1) has basis {2120, 2122, 2z3}. We therefore have a surjective homomorphism from
So = k[xo, 1, Y0, Y1, Yo, the Cox ring of P! x P2, to R with kernel (zoy1 — r1yo). Extending the
above map we have a surjection from S5 to E/j with kernel I = (zg, zoy1 — 1%0) = (x0, z1Y0),
which is multilex. The Hilbert function of So/I in degree t € N? is equal to that of R/J. Let
P(t1,t2) = ta + 1 and suppose we want to verify that Pj(t1,t2) = P(t1,t2). As in Lemma

we write
to —as +0 to —as +1
P(tl,tg) = Fo(t1)< 2 02 > +F1(t1)< 2 12 )

Since P(t) is the Hilbert polynomial of the multilex ideal (xo,yo) we can let (ai,a2) = (2,2) to

obtain
to —24+0 to —24+1
P(tl,tg) = Fg(tl)( 2 0 > +F1(t1)< 2 1 )

It follows that Fi(t1) = 1, Fo(t1) = 2, with maximal Gotzmann number 2. Fixing d; = 2, we
observe that c(Pi(t2)) = c¢(Pi(t2)) = c(t2 + 1) = 1, so we can also fix do = 2. Therefore by
Theorem it is enough to check H(t1,t2) = P(t1,t2) for

(tl, t2) € {(27 2)> (Za 3)7 (3> 2)7 (3> 3)}

to verify that PJ(tl, tg) = P(tl, tg).
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4.2. Higher Picard rank toric varieties. The surjective morphism of rings in Lemma
is actually a stronger condition than is needed to extend results about products of projective
spaces to more general smooth projective toric varieties.

For the rest of this section, let R be the Cox ring of a smooth projective toric variety X with
Picard rank n, with a grading given by fixing an isomorphism of Pic(X) with Z". Let NC be
the semigroup of nef line bundles on X, with unique minimal Hilbert basis C = {c1, ..., ¢;}.

Definition 4.3. For an ideal J C R, homogeneous with respect to the Z™-grading, the Hilbert
function of J is given by

Hj: 7" - N
b= (bl, .. .,bn) — dimk((R/J)b).

This function agrees with a polynomial Pj(t1,...,t,) for all (b1,...,b,) sufficiently far from the
boundary of NC. This polynomial is the Hilbert polynomial of the ideal J. The notion of being
sufficiently far from the boundary of NC can be made rigorous using Castelnuovo-Mumford
regularity, see [MS05, Corollary 2.15].

Remark 4.4. It is important to note that the explicit polynomial Pj(t1,...,t,) we obtain for
an ideal J C R is dependent on our choice of isomorphism Pic(X) 2= Z". For example, in the
P case it is standard to choose the isomorphism O(d) — d € Z, which gives the Cox ring the
standard grading. However we could just as easily choose the isomorphism O(d) — —d € Z, in
which case each variable in the Cox ring of P would have degree —1, and the Hilbert polynomial
of the Cox ring would be P(b) = (r:bb) instead of the usual P(b) = (Tng). In the case of P there
is a standard choice of isomorphism, but for more general smooth projective toric varieties this
can fail to be the case.

Maclagan and Smith [MS04] give a generalisation of Castelnuovo-Mumford regularity for an
R-module M or coherent sheaf 7 on X, denoted reg(M) and reg(F). Note that reg(M) and
reg(F) are sets contained inside Z" = Pic(X). This is different to the standard-graded case,
where we define reg(M) = min{m € Z | M is m-regular}. In the multigraded case there may
not be a clear minimum element so it makes sense to instead consider the set of all m € Z"
such that M is m-regular.

Definition 4.5. For ¢ € reg(R) denote by S¢, x the Cox ring of
P x ... x P,
where n; = dimg(R.;) — 1. Explicitly, we write
Seo,X = K005+ T0mgs-- > Tj05- -5 $j,nj],
with deg(z; ;) = e;. Here, e, ..., e; is the standard basis for Z/*!. Consider the following map
feo: T = Q"
(bo,...,b;j) = bocog + bici + - - - + bjc;.

If we explicitly let ¢; = (¢41, . - -, Cin), then we have
co1 Con
fCO(bo,...,bj):(bo bj)
le Cjn
We may view f,, as a map on affine spaces Agl — A@. From this perspective, let ffé CQltr,y .. tn] —
QIso, - - -, s;] be the induced map on the corresponding coordinate rings. Again, we give this
map explicitly as
co1 ... Con
fEP(,. ) =P((s0 - s) | ¢ )
le e Cjn

In particular since the nef cone of X has full dimension, f., is surjective, and so fjé is injective.
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Definition 4.6. We say that a polynomial P(¢i,...,t,) € Q[t1,...,t,] is admissible on R if
there is ¢g € reg(R) and a Hilbert polynomial Q(so, ..., s;) on Se,, x such that JEP(so,. .., sj) =
Q(So, ceey Sj).

The following lemma allows us to establish that any Hilbert polynomial on R is admissible
for any co € reg(R). We will make use of the following theorem of Maclagan and Smith.

Theorem 4.7 ([MS04, Theorem 1.4]). For a smooth projective toric variety X and coherent
sheaf F, and for p in reg(F) and q in NC, there is a surjective morphism

H°(X, F(p)) ® H'(X,0x(q)) - H*(X, F(p + q)).

Lemma 4.8. Let J C R be an ideal, homogeneous with respect to the Z"-grading. Let cg €
reg(R), and let Seq x, feo be as in Definition . Then there exists an ideal I C Scy x such
that there is an isomorphism ¥y : (Seq,x /1o — (R/J) s, b) for any b = (bo,...,b;) € [\
with by > 1.

Proof. For b = (b, ...,b;) € NNT1 with by > 1, we will define a map 7p: (Seo,x )b — Ry, (-
Consider the morphism of k-algebras 7 induced by

T: Sco,x = R

i
Tik = €k+1,

where ei: is the kth element of the monomial basis for R.;. The map 73 is defined by restricting
T t0 (Seco,x)b- Let m: R — R/J be the usual quotient map. To prove the lemma, we need to
show that 73 is surjective. We then postcompose with 7| feo ) Bpeg(0) = (R/J) feo (b) tO ObtaIN

a surjective map to (R/J)s, ). To see that 7, is surjective for b = (bo,...,b;) € N+ with
bo > 1, we first apply Theorem we observe that there is a surjective map

H°(X,0x(boco + -+ + (b — 1)¢5)) @ H(X, Ox(¢5)) — H(X, Ox(feo (b))

We then repeatedly apply Theorem [4.7] to obtain a surjective map

J
(4.3) Q) HO(X, Ox(e:))®" — H'(X, 0x(feo (b)):

i=0
Note that there is a canonical isomorphism HO(X,Ox(feo(b))) = Ry, ). Further, since
hY(X,0x(ci)) = n; + 1, we can identify each H(X,Ox(c;)) with k[zio,...,%in,]1. The
map (4.3) to Rfco(b) is induced by mapping x;; ez, and then identifying tensor prod-
ucts of such elements with their product in R. Since this multiplication in R commutes,
this map factors through the vector space obtained by replacing each H(X, (’)X(ci))@” with

Sym® (H°(X, Ox(c;))), which we can itself identify with k[x;, ..., i, ]p- It follows that the
map (4.3) factors through the vector space

k[x070, - ,xo’no]bo [ /ﬂ[xLo, e xlynl]bl R ® k[xjyo, - ,xj,nj]bj.
We now observe that

(SCOJ()b = k:[:Co,o, s 7x07n0]b0 ® k[ajlyﬂv s 7$1,n1]b1 Q- ® ki[.l“xo, s 7$j7nj]bj’
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and that the map induced from (S, x)p tO Rfco(b) is exactly the map 7p defined earlier. We
therefore obtain a Commutative diagram

o HO(X, 0x(€;))®" —————» H(X, 0x(feo (b))

g N

klzio,. .. M/§ Rfco(b

coX

_o Sym" (HO(X Ox(ci)))-
In particular since equatlon is a surjection it follows that 73 is also a surjection. Conse-
quently the induced map 73 : (SC(L x)o = (R/J)f,, @) 18 also a surjection. We define an ideal
I = Upeni+1 py>1(ker(7s)). Observe that for f € ker(7p), g € Seo,x With deg(g) = b, we have
fg € ker(Tp1p). It follows that Jp = ker(7,). We conclude that we have an isomorphism of
vector spaces (Seo,x /D)o = (R/J)y, (b for all b € N/*! with by > 1. We will denote these
isomorphisms by 1. O

Remark 4.9. It follows from Lemma that for any homogeneous J C R and ¢g € reg(R),
there exists a homogeneous ideal I C S¢, x such that Hy(bg,...,b;) = Hj(feo(bo,-..,b;)) for

(bo, . ..,bj) € NVT1 with by > 1. It follows that Ps(t1,...,t,) is admissible, with FE Py (s0,. . )
P](SO, ce ,Sj).

Although the situation is a little more complicated than the Picard rank 2 case, we are now
able to prove Theorem

Proof of Theorem [1.3, Fixing some ¢q € reg(R) we consider the ideal I from Lemma with
(Seo,x /1o = (R/J)f,, b)- As established in Remark P(t1,...,t,) is an admissible poly-

nomial for any ¢o € reg(R), with fZﬁP(so, ...,85) = Q(s0,...,s;) for a Hilbert polynomial
Q(S0,--.,8;5) on Seo.x. We observe that for b = (by,...,b;) € NT1 with by > 1 we have
Hi(b) = Hj(feo(b)). In particular we therefore have an equality of polynomials
P[(S(), e ,Sj) = fjéPJ(So, e ,Sj).
We apply Theorem to I to find appropriate {do, ..., d;} such that verifying
Hi(bo,...,bj) = Q(bo,...,b))
for b; € {d;,d; + 1} guarantees that Pr(so,...,s;) = Q(so,...,s;). Equivalently, verifying
HJ(fCo(b07 s 7bj)) = P(ch(bo, SRR b]))

for b; € {d;,d; + 1} guarantees that fCOPJ(so, S, 85) = fj;P(so, ...,585), so we need to check
exactly the points (ri,...,7,) € {feo(b) € N” | b; € {d;,d; + 1}}. As highlighted in Definition
. fZ is injective, and so we conclude that Py(t1, ..., tn) = P(t1, ..., tn). O

Remark 4.10. The points

D = {fp(bo, ce bj) | b; € {di,di + 1}}
form the vertices of a zonotope in R™. We have an upper bound on the size of D given by
|D| < 271, However, by combining [Buc43, A geometrical lemma] and |Zas75, Section 6B] for
n < j+ 1 we get an improved bound of

n .
Jj+1
P> ("),
=0

Further, when 0 € reg(X), we can take co = 0 in which case |D| = 27, which is the minimum
possible.
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Remark 4.11. The proof of Lemma relies on the known grading of the Cox ring of X (a).
However this result can be extended to other smooth projective toric varieties X where the map
(4.4) H(X,0x(a)) ® H(X, 0x(8)) = H(X, Ox(a + 5))

is surjective for all nef line bundles Ox(a), Oy (B). The idea is to take a Hilbert basis C =
{e1,...,¢;} of the nef cone K of X, and set n; = h°(X,0x(c;)) — 1. Let S be the Cox ring
of P™ x ... x P", and identify generators x, ..., xz,, of the P piece with the monomial basis
for R.,. Using the surjectivity of for all Ox(c;), we obtain a surjective morphism of rings
from S to @, cne R It follows that we can extend this to a surjective morphism of rings from
S to @yene(R/ )¢ for an ideal J C R. Oda [Oda08] conjectured that for all smooth projective
toric varieties the map is surjective for all ample line bundles Ox (a) and nef line bundles
Ox(B). If this conjecture holds then a similar result to Theorem would hold for all smooth
projective toric varieties, and the technique of introducing an extra copy of P" used in Theorem
would no longer be required.

Remark 4.12. The Hilbert polynomial of a subscheme of a d-dimensional smooth projective

toric variety X of Picard rank n can have up to (n+2l*1) coefficients. This means that naively

we have to check ("+j_1) points to find this polynomial. Theorems and n ensure that we
only have to check 2" points to find the Hilbert polynomial in the case of products of projective
spaces or a Picard-rank-2 toric variety. This is an improvement for d > 0. Theorem ensures
we need only check 271! points, where j is the size of the Hilbert basis of the nef cone. The key
contribution is that the complexity of finding the Hilbert polynomial no longer depends on the
dimension of X, leading to a computational advantage for varieties of larger dimensions.

Example 4.13. Consider the fan ¥ C R? with rays
po = (17070)7 P11 = (Oa 1a0)7 P2 = (_17 170),
p3 = (07 _170)7 P4 = (ana 1)7 P5 = (O>O> _1)>

and maximal cones generated by the subsets

{po, p1, pa},{po, p1, ps}, {p1, p2, pa}, {p1, P2, P51,
{p2, p3, pa},{p2, 3, P5}, {Po, P3, Pa}, {Po; P3, P5}-

The associated normal toric variety X is smooth and projective with Picard rank 3. After
fixing an isomorphism Pic(X) = Z? we write the Cox ring of X as R = k[yo,...,ys], where

deg(yo) = deg(yz2) = (—1,1,0), deg(y1) = (1,0,0), deg(ys) = (0,1,0) and deg(ys) = deg(ys) =
(0,0,1). The nef cone of X is generated by ¢; = (—1,1,0), c2 = (0,1,0) and e¢g = (0,0,1),
and reg(R) = NC. In particular (0,0,0) € reg(R). This makes the application of Theorem
especially nice. Set c¢o = (0,0,0). We have
Reo = (1), Rey =(yo,y2), Rey = (Y3, yoy1:.y1y2),  Reg = (Ya,y5)
so we set
Seo.x = k[r1,0,720, 2,1, 730,731,232, T4,0, T4,1],
which is the Cox ring of PO x P! x P? x P!, Consider the ideal J = (y3,¥3y1, yoy1y2) C R. The
ideal I in Lemma is given by I = (z3,0,%2,0%3,1, 22,0232, T2,123,1), which is multilex. We
have (Seo,x/1)o = (R/J) ., ) for b € N%. Consider the polynomial P(t1,ts,t3) = t3 + 1, with
Q(So, 81, 82, 83) = fﬁP(SO, 81,892, 83) = 83 + 1. To check that PJ(tl,tQ,t3) = P(tl,tg,tg) we
need only apply Theorem to I C Seo,x to find appropriate {dp,...,ds} such that checking
H[(bo,bg,bg,bg) = Q(bo,bl,bg,bg) for bi € {di,di + 1} confirms that P[ = Q We now ob-
serve that modulo a change of notation this is identical to the case of Example [3.13] and set
(do,d1,ds,d3) = (2,2,2,2). We calculate the values of fe,(b) for b = (bg, b1, ba, b3) € N* with
2 < b; < 3. We obtain eight vertices for our zonotope, as expected by Remark
D= {(_2> 47 2)7 (_27 47 3)> (_2> 57 2)7 (_27 57 3)>
(_37 55 2)7 (_37 51 3)7 (_37 67 2)7 (_37 61 3)}

Checking that Hy(r1,72,73) = P(r1,r2,73) for all (r1,r2,73) € D guarantees that P; = P.
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