
GOTZMANN’S PERSISTENCE THEOREM FOR SMOOTH PROJECTIVE

TORIC VARIETIES

PATIENCE ABLETT

Abstract. Gotzmann’s persistence theorem enables us to confirm the Hilbert polynomial of a
subscheme of projective space by checking the Hilbert function in just two points, regardless of
the dimension of the ambient space. We generalise this result to products of projective spaces,
and then extend our result to any smooth projective toric variety. In the case of products of
projective spaces, the number of points depends solely on the Picard rank of the ambient space,
rather than on the dimension. For a more general smooth projective toric variety this number
depends on the number of Hilbert basis elements of the nef cone.

1. Introduction

The Hilbert scheme HilbP (Pn) is a widely studied object in algebraic geometry. From an alge-
braic perspective this scheme parameterises homogeneous saturated ideals with a given Hilbert
polynomial. In [HS04] Haiman and Sturmfels extended these ideas to the multigraded setting,
where the Hilbert scheme parameterises homogeneous ideals with a given Hilbert function in
a ring R graded by some abelian group. A case of particular interest is when the multigraded
ring in question is the Cox ring R of a smooth projective toric variety X. In this case the
Hilbert function of a homogeneous ideal in R eventually agrees with a polynomial for degrees
sufficiently far into the nef cone of X. We can therefore define HilbP (X) in an analogous manner
to HilbP (Pn). We consider the parameter space of homogeneous ideals in R which are saturated
with respect to the irrelevant ideal of X and have Hilbert polynomial P .

It is natural to ask what properties of standard-graded Hilbert schemes have an extension to
the smooth projective toric variety case. Of particular interest are two theorems of Gotzmann,
regularity and persistence, which are used in the explicit construction of the Hilbert scheme.
Gotzmann’s regularity theorem gives a bound on the Castelnuovo-Mumford regularity of a
standard-graded ideal as introduced in [Mum66]. Let I ⊂ S be a homogeneous ideal in a
standard-graded polynomial ring. The Hilbert function of I is HI(b) = dimk((S/I)b). Similarly,
PI(t) will denote the Hilbert polynomial of I. Using this language, Gotzmann’s persistence
theorem can be informally restated in the following way. For a homogeneous ideal I in a
standard-graded polynomial ring, a Hilbert polynomial P (t), and sufficiently large d ∈ N,
checking that HI(d) = P (d) and HI(d + 1) = P (d + 1) guarantees that PI(t) = P (t). For a
formal statement, see Theorem 2.3. The surprising aspect here is that by checking the value of
HI(t) in just two points we have identified the polynomial PI(t), as opposed to the expected
deg(PI) + 1 points. Combining this result with Gotzmann’s regularity theorem allows us to
obtain explicit equations for the Hilbert scheme HilbP (Pn).

Maclagan and Smith define Castelnuovo-Mumford regularity for the multigraded case [MS04]
and generalise Gotzmann’s regularity theorem [MS05] to any smooth projective toric variety.
Their generalisation recovers Gotzmann’s original result when X = Pn. Work of Crona [Cro06]
gives a persistence theorem for ideals in the Cox ring of Pn × Pm. Further work in this area
includes that of Favacchio [Fav20] which characterises the Hilbert functions of ideals in the
Cox ring of Pn × Pm, and work of Gasharov [Gas97] which generalises Gotzmann’s persistence
theorem to finitely generated modules over a standard-graded polynomial ring.

We are able to extend Crona’s theorem to the product of s projective spaces; see Theorem
3.11, we then use this to give a result akin to the earlier restatement of Gotzmann’s persistence
theorem for products of projective spaces. We introduce some terminology that will allow us to
state this theorem. For a homogeneous ideal J lying in the Zn-graded Cox ring R of a smooth
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projective toric variety X, Definition 4.3 gives a formal description of the associated polynomial
PJ(t1, . . . , tn). We say that P ∈ Q[t1, . . . , ts] is a Hilbert polynomial on R if there exists some
ideal J ⊂ R, homogeneous with respect to the Zn-grading, such that PJ = P .

Theorem 1.1. Let S = k[x1,0, . . . , x1,n1 , . . . , xs,0, . . . , xs,ns ] be the Cox ring of Pn1 × · · · × Pns,
with deg(xi,j) = ei. Let I ⊂ S be an ideal, homogeneous with respect to the Zs-grading, and let
P ∈ Q[t1, . . . , ts] be a Hilbert polynomial on S. Then there exists a point (d1, . . . , ds) ∈ Ns such
that if HI(b1, . . . , bs) = P (b1, . . . , bs) for all points in {(b1, . . . , bs) ∈ Ns | bi ∈ {di, di +1}}, then
PI = P .

Theorem 1.1 says that for an ideal I in the Cox ring of the product of s projective spaces
we can confirm PI(t1, . . . , ts) = P (t1, . . . , ts) simply by checking HI(b1, . . . , bs) at the vertices
of an s-dimensional hypercube in Ns. This is therefore a generalisation of our earlier informal
restatement of Gotzmann’s original persistence result.

We then extend Theorem 1.1 to more general smooth projective toric varieties. The situation
is particularly nice for Picard-rank-2 varieties, whose Cox rings are described explicitly at the
beginning of Section 4.

Theorem 1.2. Let J ⊂ R, where R is the Cox ring of a smooth Picard-rank-2 toric variety and
J is an ideal homogeneous with respect to the Z2-grading. Let S be the Cox ring of Pn × Pm,
with n = dimk(R(1,0)) − 1, m = dimk(R(0,1)) − 1. Let P (t1, t2) be a Hilbert polynomial on R.

Then there exists (d1, d2) ∈ N2 such that if

HJ(d1, d2) = P (d1, d2), HJ(d1 + 1, d2) = P (d1 + 1, d2),

HJ(d1, d2 + 1) = P (d1, d2 + 1), HJ(d1 + 1, d2 + 1) = P (d1 + 1, d2 + 1),

then PJ = P .

For a smooth projective toric variety X the semigroup of nef line bundles on X is finitely
generated, and the nef cone of X is a convex pointed polyhedral cone with unique minimal
Hilbert basis. This fact is useful for varieties with higher Picard rank, where we obtain the
following theorem.

Theorem 1.3. Let X be a smooth projective toric variety of Picard rank n. Let R be the Cox
ring of X, with a Zn-grading resulting from the identification Pic(X) ∼= Zn. Let J ⊂ R be an
ideal, homogeneous with respect to the Zn-grading. Suppose the nef cone of X has a Hilbert
basis with j generators. Let P (t1, . . . , tn) be a Hilbert polynomial on R. Then there exists at
most 2j+1 points (r1, . . . , rn) ∈ Nn such that checking HJ(r1, . . . , rn) = P (r1, . . . , rn) for all of
these points guarantees that PJ = P .

The 2j+1 points of Theorem 1.3 form a zonotope, see Remark 4.10, generalising the hypercube
seen in Theorem 1.1.

The rest of this paper is laid out as follows. In Section 2 we outline necessary background on
strongly multistable ideals, allowing us to prove results relating to the product of s projective
spaces in Section 3. We conclude Section 3 with a proof of Theorem 1.1 and related remarks. In
Section 4 we see how Theorem 1.1 can be applied to smooth projective toric varieties of Picard
rank n ≥ 2, where we prove Theorems 1.2 and 1.3.
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2. Strongly multistable ideals

2.1. Gotzmann’s persistence theorem. In this section we outline some necessary back-
ground to prove Theorem 1.1. We begin by stating Gotzmann’s original persistence theorem.
To do so we require the following lemma and definition.
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Lemma 2.1 ([BH93, Lemma 4.2.6]). Fix d ∈ Z>0 and a ∈ N. Then a can be written uniquely
in the form

a =

(
κ(d)

d

)
+

(
κ(d− 1)

d− 1

)
+ · · ·+

(
κ(1)

1

)
,

where κ(d) > κ(d− 1) > · · · > κ(1) ≥ 0.

Definition 2.2. Let a ∈ N, d ∈ Z>0. Define

a⟨d⟩ =

(
κ(d) + 1

d+ 1

)
+

(
κ(d− 1) + 1

d− 1 + 1

)
+ · · ·+

(
κ(1) + 1

1 + 1

)
,

with κ(d), . . . , κ(1) as above. We set 0⟨d⟩ = 0.

A key result of Macaulay [Mac27] shows that for b ∈ Z>0 we have

HI(b+ 1) ≤ HI(b)
⟨b⟩.

We now state Gotzmann’s persistence theorem.

Theorem 2.3 ([Got78], see also [BH93] Theorem 4.3.3). Let S = k[x0, . . . , xn] be a standard-
graded polynomial ring, and let I ⊂ S be a homogeneous ideal generated in degrees ≤ d. Suppose
HI(d+ 1) = HI(d)

⟨d⟩. Then HI(b+ 1) = HI(b)
⟨b⟩ for all b ≥ d.

As highlighted in the introduction, we can relate this theorem to the Hilbert polynomial of
I. In general, any Hilbert polynomial P (t) ∈ Q[t] of a standard-graded ideal can be written in
the form

P (t) =
D∑
i=1

(
t+ ai − i+ 1

t− i+ 1

)
for some D ∈ Z>0 and a1 ≥ a2 ≥ · · · ≥ aD ≥ 0. This number D is called the Gotzmann number
of P (t). For t ≥ D− 1, we observe that P (t+1) = P (t)⟨t⟩, which we expect from Theorem 2.3.

2.2. Strongly multistable ideals. We now outline some necessary background on strongly
multistable ideals. Throughout the rest of Sections 2 and 3 let

S = k[x1,0, . . . , x1,n1 , . . . , xs,0, . . . , xs,ns ]

be the Cox ring of the product of s projective spaces Pn1 × · · · × Pns , with deg(xi,j) = ei ∈ Zs.
We give S the degree lexicographic monomial ordering induced by x1,0 ≻ · · · ≻ x1,n1 ≻ · · · ≻
xs,0 ≻ · · · ≻ xs,ns . More succinctly, we have xi,j ≻ xk,l if i > k, or i = k and j > l. We use xu

as shorthand for a monomial in S, with xu =
∏
x
ui,j

i,j for some ui,j ∈ N.
We also set the following piece of notation. An ideal I is generated in degrees ≤ (a1, . . . , as) ∈

Ns if there exist homogeneous generators {f1, . . . , fr} for I such that for each (di1, . . . , dis) =
deg(fi), we have dij ≤ aj .

Definition 2.4. A monomial ideal I ⊂ S is strongly multistable if for all monomials xu ∈ I,
1 ≤ i ≤ s and 0 ≤ j ≤ ni, we have that if xi,j | xu then xi,k

xu

xi,j
∈ I for all 0 ≤ k < j.

Definition 2.5. For a monomial xu ∈ S define

mi(xu) = max{j : xi,j | xu},
mi(x

u) = min{j : xi,j | xu}.
For every homogeneous ideal of S there exists a strongly multistable ideal with the same

Hilbert function. One key example is the multigeneric initial ideal, multigin(I) as outlined
in [CDNG22]. Work of Crona [Cro06] focuses on the specific case of strongly bistable ideals,
which lie in the Cox ring of Pn×Pm, which we denote S2. In this case the bigeneric initial ideal
was first defined in [ACDN00].

Lemma 2.4 of [Cro06] leads to a partial decomposition of the quotient ring S2/I for a strongly
bistable ideal I ⊂ S2, with similarities to Stanley decompositions. This partial decomposition
allows us to understand the Hilbert function of a strongly bistable ideal. We can generalise this
lemma to the strongly multistable case, with the proof being a direct generalisation of Crona’s
proof.
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Lemma 2.6. Let I ⊂ S be a strongly multistable ideal generated in degrees ≤ (a1, . . . , as). For
a monomial xu ∈ S(a1,...,as) and integers {vi ≥ ai} define

H(xu) = {xuxv | xv ∈ S(v1−a1,...,vs−as),mi(x
v) ≥ mi(xu)}.

Then H =
⋃

xu∈I(a1,...,as)
H(xu) generates the vector space I(v1,...,vs). Moreover H(xu)∩H(xu′

) =

∅ for xu ̸= xu′
, so H is a monomial basis for I(v1,...,vs).

Proof. To show that H generates I(v1,...,vs) as a k-vector space, we show that for any monomial

xu ∈ I(a1,...,as)

and monomial xv ∈ S(a1−v1,...,as−vs), then xuxv lies in H. Suppose mi(x
v) < mi(xu) for some

i. It follows from the strongly bistable property that

xu2 = xi,mi(x
v)

xu

xi,mi(xu)
∈ I(a1,...,as).

Further if we let

xv2 = xi,mi(xu)
xv

xi,mi(x
v)

then xuxv = xu2xv2 , mi(x
v2) ≥ mi(x

v) and mi(xu2) ≤ mi(xu). We now repeat the above
process for xu2 and xv2 . If k is the maximum power of xi,mi(x

v) dividing xv then k repeats
is enough to ensure that mi(x

vk) > mi(x
v). It follows that after a finite number n of repeats

mi(x
vn) ≥ mi(xun). Thus we can assume mi(x

v) ≥ mi(xu) for all i, completing the first part

of the proof. To see that H(xu) ∩H(xu′
) = ∅ for xu ̸= xu′

, let

xu = c1 . . . cs, xu′
= c′1 . . . c

′
s

with ci, c
′
i monomials in Saiei . Suppose xu ̸= xu′

. Then without loss of generality there exists
a pair {ci, c′i} with ci ≻ c′i. Let j be the smallest index such that the power of xi,j is larger for ci
than c′i. Note that mi(xu′

) = mi(c′i) > j since ci and c
′
i have equal degree. It therefore follows

that for a monomial xv ∈ H(xu) the power of xi,j dividing xv is strictly larger than for any

monomial lying in H(xu′
). Thus H(xu) ∩H(xu′

) = ∅. □

Note that ⋃
xu∈S(a1,...,as)

H(xu)

partitions the monomials of degree (v1, . . . , vs). Further,⋃
xu∈I(a1,...,as)

H(xu)

and

(2.1)
⋃

xu∈S(a1,...,as)
\I(a1,...,as)

H(xu)

partition the monomials forming a basis for I(v1,...,vs) and (S/I)(v1,...,vs) respectively. For σ =
{c1, . . . , n1, c2, . . . , n2, . . . , cs, . . . , ns} let

Sσ = k[xi,j | ci ≤ j ≤ ni].

Then the partition (2.1) shows that for

σu = {m1(x
u), . . . , n1,m2(x

u), . . . , n2, . . . ,ms(x
u), . . . , ns},⊕

xu∈S(a1,...,as)
\I(a1,...,as)

xuSσu

is a decomposition of (S/I)(≥a1,...,≥as). This leads to the following definition.
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Definition 2.7. Let I ⊂ S be a strongly multistable ideal generated in degrees ≤ (a1, . . . , as).
A partial Stanley decomposition of S/I is a set

S(a1,...,as) = {(xu, σu) | xu is a monomial in S(a1,...,as) \ I(a1,...,as)}.

We have

dimk((S/I)(t1,...,ts)) =
∑

S(a1,...,as)

dimk((Sσu)(t1−a1,...,ts−as))

for (t1, . . . , ts) with ti ≥ ai for all i.

This partial Stanley decomposition therefore allows us to calculate the Hilbert function of
S/I in sufficiently high degrees. By passing from an ideal I to multigin(I) we can apply this
idea to more general ideals.

Example 2.8. Let S2 = k[x0, x1, y0, y1] be the Cox ring of P1×P1, and let I = (x0, x1y0) ⊂ S2
be an ideal. Since I is strongly bistable and generated in degrees ≤ (2, 2) we can construct a
partition using the monomials of degree (2, 2). The only monomial in S2(2,2) \I(2,2) is xu = x21y

2
1.

Here mx(x
u) = 1 = my(x

u) and σu = {1, 1}. Therefore S(2,2) = (x21y
2
1, {1, 1}), and

dimk((S2/I)(t1,t2)) = dimk(k[x1, y1](t1−2,t2−2))

for t1 ≥ 2, t2 ≥ 2.

2.3. Multilex ideals. Aramova, Crona and De Negri [ACDN00, Section 4] give a generalisation
of lexicographic ideals for the bigraded case, called bilex ideals. We will end this section by
extending this definition to the multigraded case, and proving some useful results.

Definition 2.9. Let M ⊂ S(a1,...,as) be a set of monomials. Then:

(i) M is xi-lex if for all xu ∈ Saiei , x
v ∈ S(a1,...,ai−1,0,ai+1,...,as) we have that xuxv ∈ M

implies that xu′
xv ∈M for all xu′ ∈ Saiei with xu′ ≻ xu.

(ii) M is multilex if it is xi-lex for all 1 ≤ i ≤ s. It is x1, . . . , xi-lex if it is xj-lex for 1 ≤ j ≤ i.
(iii) A monomial ideal I ⊂ S is multilex if I(a1,...,as) is generated by a multilex set for all

(a1, . . . , as) ∈ Ns.

Observe that a multilex ideal is always strongly multistable. In the bigraded case, where
s = 2, Aramova Crona and De Negri [ACDN00, Lemma 4.13] show that for every strongly
bistable ideal I, there is a multilex ideal Ibilex with the same Hilbert function. We show that
this result can be extended to the strongly multistable case. To do so, we will need the following
definitions.

Definition 2.10. For a set of monomials M ⊂ S(a1,...,as) we can decompose

M =
k⋃

j=1

Mjx
uj

for some xuj ∈ S(a1,...,ai−1,0,ai+1,...,as) and Mj ⊂ Saiei . Define

Mxilex =

k⋃
j=1

M lex
j xuj .

Let Mx1...xilex = (((Mx1lex)x2lex)...)xilex.

Remark 2.11. For any sets of monomials A ⊂ B ⊂ S(a1,...,as), and any 1 ≤ i ≤ s, Axilex ⊂
Bxilex.

Definition 2.12. Given a monomial xu ∈ S(a1,...,as), write xu = xu1
1 . . .xus

s , with each xui
i ∈

Saiei . Define the multi-lexsegment of xu by

L(xu) = {xu′
1

1 . . .xu′
s

s | x
u′
j

j ∈ Sajej , x
u′
j

j ⪰ x
uj

j for all j}.
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Remark 2.13. For a set of monomials M ⊂ S(a1,...,as), M is x1, . . . , xi-lex if and only if for all
xuxv ∈M , with xu ∈ S(a1,...,ai,0,...,0), x

v ∈ S(0,...,0,ai+1,...,as), we have L(xu)xv ⊂M .

To generalise the results in Section 4 of [ACDN00], we will focus on the case that M is a
strongly multistable set of monomials. We begin by generalising [ACDN00, Theorem 4.8].

Lemma 2.14. Suppose the strongly multistable set M is x1, . . . , xi−1-lex for some 2 ≤ i ≤ s.
Then Mxilex is x1, . . . , xi-lex.

Proof. The proof is essentially the same as [ACDN00, Theorem 4.8]. We decompose M as
follows:

M =

l1⋃
j=1

l2⋃
k=1

xujMj,kx
vk

where xuj ∈ S(a1,...,ai−1,0,...,0), Mj,k ⊂ Saiei and xvk ∈ S(0,...,0,ai+1,...,as). We will order the xuj

and xvk such that xuj′ ≻ xuj if and only if j′ < j, and similar for the xvk . Observe that

Mxilex =

l1⋃
j=1

l2⋃
k=1

xujM lex
j,kx

vk .

An element in Mxilex can therefore be written as xujxwxvk , with xuj ∈ S(a1,...,ai−1,0,...,0),

xw ∈M lex
j,k and xvk ∈ S(0,...,0,ai+1,...,as). We need to check that

L(xujxw)xvk ⊂Mxilex.

To see that this is true, let xu′ ∈ S(a1,...,ai−1,0,...,0) and xw′ ∈ Saiei with xu′ ∈ L(xuj ) and

xw′ ∈ L(xw). We wish to show that xu′
xw′

xv ∈Mxilex. Since M is x1, . . . , xi−1-lex it follows

that for any xu′ ∈ L(xuj ) and any xw′′ ∈ Mj,k, x
u′
xw′′

xvk ∈ M . In particular xu′
= xuj′

for some j′ < j and xw′′ ∈ Mj′,k. Since this holds for any xw′′ ∈ Mj,k, Mj,k ⊂ Mj′,k and

consequently M lex
j,k ⊂M lex

j′,k. In particular, xw ∈M lex
j′,k and so xu′

xwxv ∈Mxilex. By definition

Mxilex is xi-lex so it then follows that xu′
xw′

xv ∈Mxilex. □

To define Mmultilex = Mx1...xslex we now need only check that if M is strongly multistable
and x1, . . . , xi−1-lex, then M

xilex is also strongly multistable. It then follows that Mmultilex is
indeed multilex by Lemma 2.14.

Lemma 2.15. Let M be a strongly multistable set, and let 1 ≤ i ≤ s. If i ≥ 2, suppose further
that M is also x1, . . . , xi−1-lex. Then Mxilex is strongly multistable.

Proof. We again follow the proof of [ACDN00, Theorem 4.8]. As in Lemma 2.14, for i ≥ 2 we
decompose

M =

l1⋃
j=1

l2⋃
k=1

xujMj,kx
vk

where xuj ∈ S(a1,...,ai−1,0,...,0), Mj,k ⊂ Saiei and xvk ∈ S(0,...,0,ai+1,...,as). If i = 1, we simply have

M = ∪l2
k=1M1,kx

vk

for M1,k ⊂ Sa1e1 and xvk ∈ S(0,a2,...,as). We need to show that for m ∈ Mxilex, if xl,p divides

m, then xl,q
m
xl,p

∈Mxilex for all 0 ≤ q < p. If l ≤ i then this holds by Lemma 2.14, since Mxilex

is x1, . . . , xi-lex. Otherwise, note that the X = {xv1 , . . . ,xvl2} form a strongly multistable set
since M is strongly multistable. For l > i, if xl,p divides xvk for some k then xl,q

xvk

xl,p
∈ X for

all 0 ≤ q < p. We write xl,q
xvk

xl,p
= xvk′ for some k′ < k. Since M is strongly multistable, for

fixed j, we have Mj,k ⊂ Mj,k′ and consequently M lex
j,k ⊂ M lex

j,k′ . It follows that if xl,p divides

m ∈Mxilex for l > i then xl,q
m
xl,p

∈Mxilex for all 0 ≤ q < p. □

To generalise the result of [ACDN00], we prove the following lemma.
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Lemma 2.16. Let I ⊂ S be a strongly multistable ideal. Then

Imultilex =
⊕

(a1,...,as)∈Ns

(I(a1,...,as))
multilex

is an ideal.

Proof. We now follow the proof of [ACDN00, Lemma 4.12]. For a set of monomials M ⊂ S,
define XpM = {xp,qm | 0 ≤ q ≤ np,m ∈ M}. To verify that Imultilex is an ideal, we need

only check that for any (a1, . . . , as) ∈ N and 1 ≤ p ≤ s, we have Xp(I(a1,...,as))
multilex ⊂

(I(a1,...,ap+1,...,as))
multilex. Note that XpI(a1,...,as) ⊂ I(a1,...,ap+1,...,as), hence (XpI(a1,...,as))

multilex ⊂
(I(a1,...,ap+1,...,as))

multilex. It follows that if we can show thatXp(I(a1,...,as))
multilex ⊂ (XpI(a1,...,as))

multilex

then we are done. Decompose I(a1,...,as) as

I(a1,...,as) =

l1⋃
j=1

Mjx
vj

for Mj ⊂ S(a1,...,ap−1,0,...,0) and xvj ∈ S(0,...,0,ap,...,as). Observe that

(I(a1,...,as))
x1...xp−1lex =

l1⋃
j=1

M
x1...xp−1lex
j xvj .

Let Xp{xv1 , . . . ,xvl1} = {xw1 , . . . ,xwl2}. We similarly decompose

XpI(a1,...,as) =

l2⋃
k=1

Nkx
wk

for Nk ⊂ S(a1,...,ap−1,0,...,0) and xwk ∈ S(0,...,0,ap,...,as). For all 1 ≤ j ≤ l1 and 0 ≤ q ≤ np
we have xp,qx

vj = xwk for some 1 ≤ k ≤ l2, with Mj ⊂ Nk. If Mj ⊂ Nk it follows that

M
x1...xp−1lex
j ⊂ N

x1...xp−1lex
k by Remark 2.11. Consequently,

Xp

l1⋃
j=1

M
x1...xp−1lex
j xvj ⊂

l2⋃
k=1

N
x1...xp−1lex
k xwk .

In other words, Xp(I(a1,...,as))
x1...xp−1lex ⊂ (XpI(a1,...,as))

x1...xp−1lex. A similar argument shows

that Xp(I(a1,...,as))
multilex ⊂ (Xp(I(a1,...,as))

x1...xplex)xp+1...xslex. The strategy here is to decompose

(I(a1,...,as))
x1...xplex =

l1⋃
j=1

Mjx
vj

with Mj ⊂ S(0,...,0,ap+1,...,as) and xvk ∈ S(a1,...,ap,0,...,0), and observe that (I(a1,...,as))
multilex =⋃l1

j=1M
xp+1...xslex
j xvj . We then consider the decomposition

Xp(I(a1,...,as))
x1...xplex =

l2⋃
k=1

Nkx
wk ,

with Xp{xv1 , . . . ,xvl1} = {xw1 , . . . ,xwl2} and Nk ⊂ S(0,...,0,ap+1,...,as). As before, we see that
for all 1 ≤ j ≤ l1 and 0 ≤ q ≤ np, we have xp,qx

vj = xwk for some 1 ≤ k ≤ l2, and consequently

Mj ⊂ Nk for this value of k. By Remark 2.11 we then have M
xp+1...xslex
j ⊂ N

xp+1...xslex
k . It

follows that

Xp

l1⋃
j=1

M
xp+1...xslex
j xvj ⊂

l2⋃
k=1

N
xp+1...xslex
k xwk ,

or in other words, Xp(I(a1,...,as))
multilex ⊂ (Xp(I(a1,...,as))

x1...xplex)xp+1...xslex.
We have a chain of inclusions

Xp(I(a1,...,as))
x1...xplex ⊂ (Xp(I(a1,...,as))

x1...xp−1lex)xplex ⊂ (XpI(a1,...,as))
x1...xplex.
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The second inclusion follows immediately from the previous part and Remark 2.11. The first
inclusion is a direct generalisation of the first part of the proof of [ACDN00, Lemma 4.12].
Combining everything, we obtain

Xp(I(a1,...,as))
multilex ⊂ (Xp(I(a1,...,as))

x1...xplex)xp+1...xslex ⊂ (XpI(a1,...,as))
multilex.

This completes the proof. □

Theorem 2.17. For every ideal I ⊂ S which is homogeneous with respect to the Zs-grading,
there exists a multilex ideal with the same Hilbert function.

Proof. As highlighted in Section 2.2, for every I there exists a strongly multistable ideal with
the same Hilbert function. The ideal multigin(I) is one such example. Lemmas 2.14, 2.15 and
2.16 then show that for any strongly multistable ideal there exists a multilex ideal with the
same Hilbert function. □

We will exploit Theorem 2.17 in Section 3 to find the degrees in which persistence occurs.

3. Persistence type results for products of projective spaces

We now establish some preliminary results required to prove Theorem 1.1. We begin by
understanding the structure of Hilbert polynomials on S. We then relate multilex ideals and
bilex ideals, and use this to generalise a theorem of Crona [Cro06, Theorem 4.10]. We conclude
with the proof of Theorem 1.1 and a comparison to the original result of Gotzmann.

3.1. The structure of Hilbert polynomials on S. In this subsection we will apply the
results of Section 2 on strongly multistable and multilex ideals to better understand the structure
of PI(t1, . . . , ts).

Lemma 3.1. Let I1, . . . , Il ⊂ S be homogeneous monomial ideals, generated in degrees ≤
(a1, . . . , as), with each ai ≥ 2. Then for bi ≥ 1,

HI1(b1, . . . , bs) + · · ·+HIl(b1, . . . , bs) = HJ(b1, . . . , bs)

for a monomial ideal J generated in degrees ≤ (a1, . . . , as) in the Cox ring of Pl(n1+1)−1 × · · · ×
Pl(ns+1)−1. It follows that

PJ(t1, . . . , ts) = PI1(t1, . . . , ts) + · · ·+ PIl(t1, . . . , ts).

Proof. We begin by relabelling the variables of I2, replacing xi,j with yi,j , to obtain an ideal
I ′2 ⊂ k[y1,0, . . . , y1,n1 , . . . , ys,0, . . . , ys,ns ]. Let

S′ = k[x1,0, . . . , x1,n1 , y1,0, . . . , y1,n1 , . . . , xs,0, . . . , xs,ns , ys,0, . . . , ys,ns ],

with deg(xi,j) = deg(yi,j) = ei. Note that S′ is the Cox ring of

P2n1+1 × · · · × P2ns+1.

Consider the ideal J1 = I1 + I ′2 +K ⊂ S′, where K is generated by all monomials of the form
xi,jyp,q. The Hilbert function of this ideal agrees with HI1(b1, . . . , bs)+HI2(b1, . . . , bs) for bi ≥ 1.
Note that each xi,jyp,q has degree ≤ (2, . . . , 2), so J1 is generated in degrees ≤ (a1, . . . , as). We
also observe that J1 is a monomial ideal. Now applying the same argument to J1 and I3 allows
us to obtain a monomial ideal J2 in the Cox ring of P3(n1+1)−1 × · · · × P3(ns+1)−1, generated in
degrees ≤ (a1, . . . , as), and with HJ1(b1, . . . , bs)+HI3(b1, . . . , bs) = HJ2(b1, . . . , bs). We continue
to repeat this argument to obtain the ideal J , which is a monomial ideal in the Cox ring of
Pl(n1+1)−1 × · · · × Pl(ns+1)−1. □

For P ∈ Q[t1, . . . , ts] set maxdeg(P ) to be the vector v = (vi) ∈ Ns, where each vi is the
maximum power of ti dividing at least one of the terms of P . Combining Lemma 2.6 and Lemma
3.1 we prove the following lemma, which allows us to better understand the Hilbert polynomial
of a multigraded ideal.
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Lemma 3.2. Let PI(t1, . . . , ts) be the Hilbert polynomial of an ideal I ⊂ S, which is ho-
mogeneous with respect to the Zs-grading. Fix (a1, . . . , as) ∈ Ns such that ai ≥ 2 for all i
and such that Imultilex is generated in degrees ≤ (a1, . . . , as). Suppose that PI(t1, . . . , ts) has
maxdeg(PI) = (p1, . . . , ps). Then we may write

PI(t1, . . . , ts) =

ps∑
is=0

· · ·
p2∑

i2=0

Fi2...is(t1)

(
t2 − a2 + i2

i2

)
. . .

(
ts − as + is

is

)
,

where each Fi2...is(t1) is the Hilbert polynomial for some standard-graded monomial ideal Ji2...is
generated in degrees ≤ a1. Further, we have HJi2...is

(b1) = Fi2...is(b1) for b1 ≥ a1, and conse-

quently HI(b1, . . . , br) = PI(b1, . . . , br) when all bi ≥ ai.

Proof. We pass to J = Imultilex, which has the same Hilbert function as I but is strongly
multistable. Consider the set

I = {(i2, . . . , is) ∈ Ns−1 | 0 ≤ ij ≤ pj}.
For i = (i2, . . . , is) ∈ I consider the set of monomials

Li = {xu ∈ S(0,a2,...,as) | ij = nj −mj(xu) for all 2 ≤ j ≤ s}.

Fix some xu1 ∈ Li. We consider the set of monomials M i
1 ⊂ S(a1,0,...,0) with xu1M i

1 ⊂
J(a1,...,as). The set M i

1 generates a strongly stable ideal J i
1 in the standard-graded polynomial

ring k[x1,0, . . . , x1,n1 ] with Hilbert function HJi
1
(b1). Since J i

1 is strongly stable and generated

in degrees ≤ a1 we observe that HJi
1
(b1) = PJi

1
(b1) for b1 ≥ a1. Consider the set of monomials

N i
1 = S(a1,0,...,0) \M

i
1.

For each xvj ∈ N i
1, x

u1xvj corresponds to a monomial in S(a1,...,as) \ J(a1,...,as). For such a
monomial xu = xu1xvj the corresponding term in the partial Stanley decomposition of J is

k[x1,m1(x
vj ), . . . , x1,n1 , x2,m2(xu1 ), . . . , x2,n2 , . . . , xs,ms(xu1 ), . . . , xs,ns ](−a1, . . . ,−as).

This contributes

(3.1) dimk(k[x1,m1(x
vj ), . . . , x1,n1 ]t1−a1)

(
t2 − a2 + i2

i2

)
. . .

(
ts − as + is

is

)
to the Hilbert polynomial of I, where ij = nj −mj(xu1). Since the monomials in N i

1 form a

partial Stanley decomposition for J i
1 we have that∑

x
vj∈Ni

1

dimk(k[x1,m1(x
vj ), . . . , x1,n1 ]t1−a1) = PJi

1
(t1)

for t1 ≥ a1. Consequently, the expression (3.1) becomes

(3.2) PJi
1
(t1)

(
t2 − a2 + i2

i2

)
. . .

(
ts − as + is

is

)
.

We repeat the above procedure for all possible monomials xul ∈ Li. Note that all monomials
in Li for a fixed i will have the same binomial coefficients appearing in the corresponding piece
of the Hilbert polynomial (3.2). It therefore makes sense for us to add the PJi

l
(t1) together. By

Lemma 3.1, the sum of the Hilbert polynomials of the J i
l agrees with the Hilbert polynomial for

a new monomial ideal Ji2...is generated in degrees ≤ a1. We will denote the Hilbert polynomial
of Ji2...is by Fi2...is(t1). We have

(3.3) Fi2...is(t1) =
∑

xul∈Li

PJi
l
(t1).

Note that since HJi
l
(b1) = PJi

l
(b1) for all b1 ≥ a1, we have

Fi2...is(b1) =
∑

xul∈Li

PJi
l
(b1) =

∑
xul∈Li

HJi
l
(b1) = HJi2...is

(b1)
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for all b1 ≥ a1. By equation (3.3) the monomials in Li contribute in total

Fi2...is(t1)

(
t2 − a2 + i2

i2

)
. . .

(
ts − as + is

is

)
to the Hilbert polynomial of I. Varying i ∈ I and repeating this procedure we obtain

PI(t1, . . . , ts) =

ps∑
is=0

· · ·
p2∑

i2=0

Fi2...is(t1)

(
t2 − a2 + i2

i2

)
. . .

(
ts − as + is

is

)
,

where each Fi2...is(t1) is the Hilbert polynomial of a monomial ideal Ji2...is generated in degrees
≤ a1. □

Example 3.3. Let
S4 = k[x1,0, x2,0, x2,1, x3,0, x3,1, x3,2, x4,0, x4,1]

be the Cox ring of P0 × P1 × P2 × P1. Let J = (x2,0, x3,0, x3,1) ⊂ S4, and observe that J
is a multilex ideal generated in degrees ≤ (2, 2, 2, 2). We have PJ(t1, t2, t3, t4) = t4 + 1, with
maxdeg(PJ) = (0, 0, 0, 1). By Lemma 3.2 we can write

PI(t1, t2, t3, t4) = F000(t1) + F001(t1)

(
t4 − 2 + 1

1

)
,

for some standard-graded Hilbert polynomials F000(t1) and F001(t1). It follows that we must
have F001(t1) = 1, F000(t1) = 2.

The following terminology will be used throughout the rest of this section.

Definition 3.4. Let PI(t1, . . . , ts) be a Hilbert polynomial of an ideal I ⊂ S with Imultilex

generated in degrees ≤ (a1, . . . , as). By Lemma 3.2 we can write

PI(t1, . . . , ts) =

ps∑
is=0

· · ·
p2∑

i2=0

Fi2...is(t1)

(
t2 − a2 + i2

i2

)
. . .

(
ts − as + is

is

)
,

where the Fi2...is(t1) ∈ Q[t1] are Hilbert polynomials of standard-graded ideals generated in
degrees ≤ (a1, . . . , as). We will extend the definition of the Fi2...is(t1), setting Fi2...is(t1) = 0 for
any (i2, . . . , is) ∈ Ns−1 with some ij > pj . For 1 < r < s and b = (b1, . . . , br−1, br+1, . . . , bs) ∈
Ns−1, define

P r
b (tr) =

pr∑
ir=0

· · ·
p2∑

i2=0

Fi2...irbr+1...bs(b1)
r−1∏
j=2

(
bj − aj + ij

ij

)(
tr − ar + ir

ir

)
∈ Q[tr].

If r = 1 then we write b = (b2, . . . , bs) ∈ Ns−1 and define

P 1
b (t1) = Fb2...bs(t1).

For r = s write b = (b1, . . . , bs−1) and define

P s
b (ts) = PI(b1, . . . , bs−1, ts).

Notice that if bi > pi for some i > r then P r
b (tr) = 0. For 1 ≤ r < s, P r

b (tr) is the coefficient of(tr+1−ar+1+br+1

br

)
. . .

(
ts−as+bs

bs

)
in PI(b1, . . . , br−1, tr, . . . , ts).

For r > 1, fix b = (b1, . . . , br−1, br+1, . . . , bs) ∈ Ns−1 and ir ∈ N. Further, set b̂ =

(b1, . . . , br−2, ir, br+1, . . . , bs) ∈ Ns−1. Then the coefficient of
(
tr−ar+ir

ir

)
in P r

b (tr) is given by

P r−1

b̂
(br−1).

Remark 3.5. Suppose maxdeg(PI) = (p1, . . . , ps). For fixed b1, . . . , br−1 with bi ≥ ai for all i,
P r
b (tr) has degree ≤ pr for all choices of br+1, . . . , bs. Further, we claim that there is at least one

choice of br+1, . . . , bs such that equality is achieved. For r = 1 this follows from the definition,
so we focus on the case r > 1. Observe that since maxdeg(PI) = (p1, . . . , ps) there is at least one
choice of i2, . . . , ir−1, ir+1, . . . , is with 0 ≤ ij ≤ pj for all j such that Fi2...ir−1prir+1...is(t1) ̸= 0.
Recall from Lemma 3.2 that Fi2...ir−1prir+1...is(b1) = HJ(b1) for some standard-graded ideal J
when b1 ≥ a1. Thus, if Fi2...ir−1prir+1...is(b1) = 0 then Macaulay’s bound for the Hilbert function
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of an ideal tells us that Fi2...ir−1prir+1...is(u) ≤ 0 for u ≥ b1. This forces Fi2...ir−1prir+1...is(t1)
to be the zero polynomial, which is a contradiction. Thus Fi2...ir−1prir+1...is(b1) ̸= 0. We may
therefore fix br+1 = ir+1, . . . , bs = is and observe that for this choice of i2, . . . , ir−1

Fi2...ir−1prbr+1...bs(b1)

(
b2 − a2 + i2

i2

)
. . .

(
br−1 − ar−1 + ir−1

ir−1

)
> 0,

since the binomial coefficients are never zero for bi ≥ ai. The coefficient of
(
tr−ar+pr

pr

)
in P r

b (tr)

is given by
pr−1∑

ir−1=0

· · ·
p2∑

i2=0

Fi2...ir−1prbr+1...bs

(
b2 − a2 + i2

i2

)
. . .

(
br−1 − ar−1 + ir−1

ir−1

)
.

Since b1 ≥ a1, we have Fi2...ir1prbr+1...bs(b1) ≥ 0 for all choices of i2 . . . ir−1. As established there
is one choice of i2, . . . , ir−1 such that this polynomial is strictly positive. it follows that the
coefficient of

(
tr−ar+pr

pr

)
in P r

b (tr) is strictly positive, and so P r
b (tr) has degree pr for this choice

of br+1, . . . , bs.

Example 3.6. Returning to Example 3.3, let P r
b (tr) denote the polynomials as in Definition 3.4

for PJ(t1, t2, t3, t4) = t4 + 1. We compute P 2
(2,0,0))(t2) and P

2
(2,0,1)(t2). Recall that F001(t1) = 1

and F000(t1) = 2, and that maxdeg(PJ) = (0, 0, 0, 1). We obtain

P 2
(2,0,0)(t2) =

0∑
i2=0

Fi200(2)

(
t2 − 2 + i2

i2

)
= F000(2) = 2,

P 2
(2,0,1)(t2) =

0∑
i2=0

Fi201(2)

(
t2 − 2 + i2

i2

)
= F001(2) = 1.

3.2. Extension of results on bilex ideals. We now extend known results about bilex ideals
to multilex ideals, using the following lemmas.

Lemma 3.7. Let I1, . . . , Il ⊂ S2 = k[x0, . . . , xn, y0, . . . , ym] be bilex ideals generated in degrees

≤ (a
′
1, a2). Fix a1 ∈ N. Then there exists n′ ∈ N and a bilex ideal J in the Cox ring of Pn

′
×Pm

such that for all b2 ≥ a2

HI1(a1, b2) + · · ·+HIl(a1, b2) = HJ(1, b2).

Further we may assume J is generated in degrees ≤ (1, a2). We have

PI1(a1, t2) + · · ·+ PIl(a1, t2) = PJ(1, t2)

as polynomials in Q[t2].

Proof. Fix d =
(
a1+n
a1

)
and let n

′
= ld− 1. Let S

′
2 = k[z0, . . . , zld−1, y0, . . . , ym], with deg(zi) =

(1, 0), deg(yj) = (0, 1) Let {xu1 , . . . ,xud} be the set of monomials in S2(a1,0) , and consider the

family of maps of vector spaces

φi : S2(a1,0) → S
′
2(1,0)

xuj 7→ xj−1+(i−1)d

for 1 ≤ i ≤ l. Define the set of monomials

M i
b2 = {φi(x

u)yv | xu ∈ S2(a1,0) ,y
v ∈ S2(0,b2) ,x

uyv ∈ Ii} ⊂ S
′
2

for 1 ≤ i ≤ l, b2 ∈ N. Notice that for i ̸= j, M i
b2

is disjoint from M j
b2
, and that each M i

b2
is bilex

when viewed as an ideal in the ring k[z(i−1)d, . . . zid−1, y0, . . . , ym]. Let Mb2 =
⋃l

i=1M
i
b2
. Then

(i) Mb2 is bilex for the correct relabelling of the z0, . . . , zld−1,

(ii) HI1(a1, b2) + · · ·+HIl(a1, b2) = |S′
2(1,b2)

| − |Mb2 |,
(iii) for J = (Ma2) ⊂ S

′
2, |S

′
2(1,b2)

| − |Mb2 | = HJ(1, b2) for all b2 ≥ a2.
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To see (i), note that the monomials N i
b2

= {yv ∈ S2(0,b2) | ziy
v ∈ Mb2} form a lexsegment for

any zi ∈ S
′
2. It follows that Mb2 is y-lex as in Definition 2.9, but may not be x-lex. However, we

can relabel the zi so that the N i
b2

are (non strictly) descending in size and thus obtain a bilex

set. Part (ii) follows from the definition of Mb2 , and the disjointness of the M i
b2
. Finally, part

(iii) holds since each Ii is generated in degrees ≤ (a′1, a2). The result then follows, since J is a
bilex ideal after relabelling variables. □

Lemma 3.8. Let I ⊂ S be an ideal, homogeneous with respect to the Zn-grading, with Imultilex

generated in degrees ≤ (a1, . . . , as). As in Lemma 3.2 we write

PI(t1, . . . , ts) =

ps∑
is=0

· · ·
p2∑

i2=0

Fi2...is(t1)

(
t2 − a2 + i2

i2

)
. . .

(
ts − as + is

is

)
,

where each Fi2...is is the Hilbert polynomial of a standard graded ideal. Let P r
b (tr) ∈ Q[tr]

denote a polynomial as in definition 3.4 for PI(t1, . . . , ts). Then for fixed 2 ≤ r ≤ s and
b = (b1, . . . , br−1, br+1, . . . , bs) ∈ Ns−1 with bi ≥ ai for i < r, there exists a bigraded ideal K
with P r

b (tr) = PK(1, tr). Further, we can always find such an ideal K which is a bilex ideal in
the Cox ring of Pm × Pnr for some m ∈ N, and with K generated in degrees ≤ (1, ar).

Proof. Recall from Definition 3.4 that if bi > pi for any i > r then P r
b (tr) = 0, so we focus on

the case that bi ≤ pi for i > r. We pass from I to J = Imultilex, which is generated in degrees
≤ (a1, . . . , as). We begin with the case r = s. For a given monomial xvj ∈ S(b1,...,bs−2,0,0) set
Mj ⊂ S(0,...,0,bs−1,as) to be the set of monomials such that Mjx

vj ⊂ J(b1,...,bs−1,as), and denote
by Jj ⊂ k[xs−1,0, . . . , xs−1,ns−1 , xs,0, . . . , xs,ns ] the bigraded ideal generated by Mj . Since J is
multilex, Jj is bilex, and generated in degrees ≤ (bs−1, as). Further, we have

PJ(b1, . . . , bs−2, ts−1, ts) =
∑

x
vj∈S(b1,...,bs−2,0,0)

PJj (ts−1, ts).

Applying Lemma 3.7, we observe that there exists m ∈ N such that

PJ(b1, . . . , bs−1, ts) =
∑

x
vj∈S(b1,...,bs−2,0,0)

PJj (bs−1, ts) = PK(1, ts)

for an ideal K ⊂ k[x0, . . . , xm, y0, . . . , yns ]. For the case 2 ≤ r < s the polynomial P r
b (tr) is the

coefficient of (
tr+1 − ar+1 + br+1

br+1

)
. . .

(
ts − as + bs

bs

)
in PI(b1, . . . , br−1, tr, . . . , ts). Consider the set of monomials

M = {xu ∈ S(0,...,0,ar+1,...,as) | m
j(xu) = nj − bj for all r < j ≤ s}.

A monomial xu ∈ S(a1,...,as) \ J(a1,...,as) which satisfies mj(xu) = nj − bj for all r < j ≤ s will
contribute a term to the partial Stanley decomposition whose associated Hilbert polynomial is
of the form

G(t1, . . . , tr)

(
tr+1 − ar+1 + br+1

br+1

)
. . .

(
ts − as + bs

bs

)
for some G(t1, . . . , tr). Therefore, to find the coefficient of(

tr+1 − ar+1 + br+1

br+1

)
. . .

(
ts − as + bs

bs

)
in PI(t1, . . . , tr) we focus on monomials whose degree (0, . . . , 0, ar+1, . . . , as) part is in the set
M . For a given xui ∈ M consider the set of monomials Mi ⊂ S(a1,...,ar−1,ar,0...,0), such that
xuiMi ⊂ J(a1,...,as). Since J is multilex the set Mi generates a multilex ideal

Ji ⊂ Sr = k[x1,0, . . . , x1,n1 , . . . , xr,0 . . . , xr,nr ],

generated in degrees ≤ (a1, . . . , ar). Varying xui we get a collection of these multilex ideals
Ji. For a given xui let Ni denote the degree (a1, . . . , ar, 0, . . . , 0) monomials not in Mi. The
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monomials in Ni form a partial Stanley decomposition for the strongly multistable ideal Ji.
Further, the monomials

⋃
xui∈M xuiNi are exactly the monomials in S(a1,...,as) \ J(a1,...,as) sat-

isfying mj(xu) = nj − bj for all r < j ≤ s. The pieces of the partial Stanley decomposition of
I associated to the monomials in xuiNi contribute

PJi(t1, . . . , tr)

(
tr+1 − ar+1 + br+1

br+1

)
. . .

(
ts − as + bs

bs

)
to the Hilbert polynomial of I. It follows that

P r
b (tr) =

∑
xui∈M

PJi(b1, . . . , br−1, tr).

For a fixed Ji and fixed monomial xvj ∈ Sr(b1,...,br−2,0,0)
define the bigraded ideal Ji,j ⊂

k[xr−1,0, . . . , xr−1,nr−1 , xr,0, . . . , xr,nr ], which is generated by the set of monomialsMi,j ⊂ Sr(0,...,0,br−1,ar)

such that Mi,jx
vj ⊂ Ji(b1,...,br−1,ar)

. The proof is now similar to the r = s case. The ideals Ji,j
are bilex since each Ji is multilex. Further, we have

PJi(b1, . . . , br−2, tr−1, tr) =
∑

x
vj∈Sr(b1,...,br−2,0,0)

PJi,j (tr−1, tr).

Now applying Lemma 3.7, there exists mi ∈ N such that

PJi(b1, . . . , br−1, tr) =
∑

x
vj∈Sr(b1,...,br−2,0,0)

PJi,j (br−1, tr) = PKi(1, tr)

for a bilex ideal Ki ⊂ k[x0, . . . , xmi , y0, . . . , ynr ], generated in degrees ≤ (1, ar). Again applying
Lemma 3.7, there exists m ∈ N such that

P r
b (tr) =

∑
xui∈M

PJi(b1, . . . , br−1, tr) =
∑

xui∈M
PKi(1, tr) = PK(1, tr)

for a bilex ideal K ⊂ k[x0, . . . , xm, y0, . . . , ynr ] generated in degrees ≤ (1, ar). □

Remark 3.9. Lemma 3.8 shows that for a multilex ideal I generated in degrees ≤ (a1, . . . , as)
and a collection {b1, . . . , bs−1} with bi ≥ ai there is a bilex ideal K generated in degrees ≤ (1, as)
such that

PI(b1, . . . , bs−1, ts) = PK(1, ts).

We may further assume that K lies in the Cox ring of Pm ×Pns for some m ∈ N. The choice of
fixing t1, . . . ts−1 was arbitrary, and a similar result holds for any P (b1, . . . , bi−1, ti, bi+1, . . . , bs).

We will need the following result of Crona for bigraded ideals.

Theorem 3.10 ([Cro06, Theorem 4.10]). Let S2 = k[x0, . . . , xn, y0, . . . , ym] be the Cox ring of
Pn × Pm with the usual Z2-grading. Let I be a bigraded homogeneous ideal of S2. Let

(3.4) HI(b1, b2) =

(
n+ b1
n

)
q(b1) + r(b1),

be the Euclidean division of HI(b1, b2) by
(
n+b1
n

)
. Fix t2 = b2 ∈ Z>0. Suppose there is a strongly

bistable ideal with the same Hilbert function as I generated in degrees ≤ (a1, a2). Then

(i)

HI(b1 + 1, b2) =

(
b1 + 1 + n

n

)
q(b1) + r(b1)

⟨b1⟩

for b1 ≫ 0.
(ii) For all u ≥ a1, if

HI(u+ 1, b2) =

(
u+ 1 + n

n

)
q(u) + r(u)⟨u⟩

then

HI(b1 + 1, b2) =

(
b1 + 1 + n

n

)
q(b1) + r(b1)

⟨b1⟩
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for all b1 ≥ u.

Similar results hold for the Euclidean division by
(
b2+m
m

)
, where b1 ∈ Z≥0 is now fixed and b2

varies.

It is natural to use Remark 3.9 to extend this result to the product of s projective spaces.

Theorem 3.11. Let I ⊂ S be a homogeneous ideal, whose Hilbert function agrees with that of
some multilex ideal generated in degrees ≤ (a1, . . . , as). Fix i ∈ N with 1 ≤ i ≤ s. For fixed
b1 ≥ a1, . . . , bi−1 ≥ ai−1, bi+1 ≥ ai+1, . . . bs ≥ as consider the Euclidean division of HI(b1, . . . , bs)

by
(
ni+bi
ni

)
, which we write

HI(b1, . . . , bs) =

(
ni + bi
ni

)
q(bi) + r(bi).

Then we have

(i)

HI(b1, . . . , bi−1, bi + 1, bi+1, . . . , bs) =

(
ni + bi + 1

ni

)
q(bi) + r(bi)

⟨bi⟩

for bi ≫ 0.
(ii) For all u ≥ ai if

HI(b1, . . . , bi−1, u+ 1, bi+1, . . . , bs) =

(
ni + u+ 1

ni

)
q(u) + r(u)⟨u⟩

then

HI(b1, . . . , bi−1, bi + 1, bi+1, . . . , bs) =

(
ni + bi + 1

ni

)
q(bi) + r(bi)

⟨bi⟩

for all bi ≥ u.

Proof. Recall that

PI(b1, . . . , bi−1, u, bi+1, . . . , bs) = HI(b1, . . . , bi−1, u, bi+1, . . . , bs)

when u ≥ ai and bj ≥ aj for all possible j. By Remark 3.9 there exists m ∈ N such that
HI(b1, . . . , bi1 , u, bi+1, . . . , bs) = PK(1, u) for some bilex ideal K in the Cox ring of Pm × Pni ,
generated in degrees ≤ (1, ai). The result then follows by Theorem 3.10. □

Remark 3.12. A similar application of Remark 3.9 allows us to extend Aramova, Crona and De
Negri’s generalisation of Macaulay’s bound on the Hilbert function of a bigraded ideal [ACDN00,
Theorem 4.18] to multigraded ideals.

3.3. Persistence for products of projective spaces. We now have all the tools required to
prove the main theorem of this section.

Proof of Theorem 1.1. Suppose Imultilex and Jmultilex are generated in degrees ≤ (a1, . . . , as),
with ai ≥ 2 for all i. Recall thatHI(b1, . . . , bs) = PI(b1, . . . , bs) andHJ(b1, . . . , bs) = PJ(b1, . . . , bs)
when all bi ≥ ai. Suppose that maxdeg(P ) = (p1, . . . , ps). By Lemma 3.2, P (t1, . . . , ts) can be
written in the form

P (t1, . . . , ts) =

ps∑
is=0

· · ·
p2∑

i2=0

Fi2...is(t1)

(
t2 − a2 + i2

i2

)
. . .

(
ts − as + is

is

)
,

where the Fi2...is(t1) are Hilbert polynomials of standard-graded ideals generated in degrees
≤ a1. For a known P (t1, . . . , ts) we can explicitly find each of the Fi2...is . Similarly, we can
write

PI(t1, . . . , ts) =

qs∑
is=0

· · ·
q2∑

i2=0

Gi2...is(t1)

(
t2 − a2 + i2

i2

)
. . .

(
ts − as + is

is

)
,

for some q2, . . . , qs ∈ N, where each Gi2,...,is(t1) is the Hilbert polynomial of some standard-
graded ideal generated in degrees ≤ a1. The polynomial PI(t1, . . . , ts) is therefore uniquely
determined by q2, . . . , qs and the Gi2...is .
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The first step of the proof is to fix the point (d1, . . . , ds) ∈ Ns. We denote by P r
b (tr) the

polynomials as in definition 3.4 for P and Qr
b(tr) those for PI . Recall from Lemma 3.8 that

for each 2 ≤ r ≤ s and b ∈ Ns−1 with bi ≥ ai for all i < r, there exists a bilex ideal
K ⊂ k[x0, . . . , xm, y0, . . . , ynr ] such that P r

b (tr) = PK(1, tr). We may further assume K is
generated in degrees ≤ (1, ar). The same holds for the Qr

b(tr). In particular we can apply
Theorem 3.10 to both sets of polynomials. Let

P r
b (u) =

(
u+ nr
nr

)
q(u) + r(u)

be the Euclidean division of P r
b (u) by

(
u+nr

nr

)
, and define c(P r

b (tr)) to be the minimum value of
u ∈ N such that

P r
b (u) =

(
u+ 1 + nr

nr

)
q(u) + r(u)⟨u⟩.

This minimum must exist by Theorem 3.10 part (i). We now choose d1 ∈ N with d1 ≥ a1 and
such that d1 is larger than the maximal Gotzmann number of the Hilbert polynomials Fi2...is .
Once d1 is fixed, set

B2 = {(b1, b3, . . . , bs) ∈ Ns−1 | b1 ∈ {d1, d1 + 1}, 0 ≤ bi ≤ pi for 2 < i ≤ s},

and set c2 = maxb∈B2{c(P 2
b (t2))}. We then set d2 = max(a2, c2). In this way we recursively

define

Br = {(b1, . . . , br−1, br+1, . . . , bs) ∈ Ns−1 | bi ∈ {di, di + 1} for i < r,

0 ≤ bi ≤ pi for i > r},

cr = maxb∈Br−1{c(P r
b (tr))}, and dr = max(ar, cr), up to r = s. With (d1, . . . , ds) now fixed, we

proceed with the proof.
We have defined Br for 2 ≤ r ≤ s. We similarly define

B1 = {(b2, . . . , bs) ∈ Ns−1 | 0 ≤ bi ≤ pi for all i}.

We assume as in the statement of the theorem that HI(b1, . . . , bs) = P (b1, . . . , bs) for all points
in Bs. Our aim is to show that qi = pi for all 2 ≤ i ≤ s, and Gi2...is(t1) = Fi2...is(t1) for all
i2, . . . , is by using induction. We will prove the following statements by induction on decreasing
r for all 1 ≤ r ≤ s.

(i) Qr
b(dr) = P r

b (dr) and Q
r
b(dr + 1) = P r

b (dr + 1) for all b ∈ Br.
(ii) qi = pi for all possible i > r.

We begin with the base case of r = s. For (i), this case is exactly the assumption of Theorem
1.1, that HI(b1, . . . , bs) = P (b1, . . . , bs) for all points in {(b1, . . . , bs) ∈ Ns | bi ∈ {di, di + 1}}.
For (ii), the statement is vacuously true.

For the induction step, we will show that for 2 ≤ r ≤ s, (i) and (ii) holding for r implies (i)
and (ii) hold for r − 1. To see this is true, suppose (i) and (ii) hold for some 2 ≤ r ≤ s. Let

P r
br(dr) =

(
dr + nr
dr

)
q(dr) + r(dr)

be the Euclidean division of P r
br
(dr) by

(
dr+nr

dr

)
. We chose dr such that dr ≥ c(P r

b (tr)) for all
possible br ∈ Br. It follows that

(3.5) Qr
br(dr + 1) = P r

br(dr + 1) =

(
dr + 1 + nr
dr + 1

)
q(dr) + r(dr)

⟨dr⟩

for all br ∈ Br by (i). As observed earlier, Lemma 3.8 implies that we can apply Crona’s
Theorem 3.10 to Qr

br
(tr). Since equation (3.5) holds, the assumption of Theorem 3.10 part (ii)

is satisfied. We therefore see that Qr
br
(u) = P r

br
(u) for all u ≥ dr and all br ∈ Br, implying

that Qr
b(tr) = P r

b (tr) in Q[tr] for all br ∈ Br. Since qi = pi for all i > r by (ii), we can apply
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Remark 3.5 to conclude that qr = pr. We then match the coefficients of
(
tr−ir+ar

ir

)
in Qr

br
(tr)

and P r
br
(tr) for all 0 ≤ ir ≤ pr and all br ∈ Br to see that

Qr−1
br−1

(dr−1) = P r−1
br−1

(dr−1), Qr−1
br−1

(dr−1 + 1) = P r−1
br−1

(dr−1 + 1),

for all br−1 ∈ Br−1. This completes the proof of the induction step.
Since (i) and (ii) hold for r = 1, it follows that qi = pi for all 2 ≤ i ≤ s, and that

Gi2...is(d1) = Fi2...is(d1), Gi2...is(d1 + 1) = Fi2...is(d1 + 1)

for all (i2, . . . , is) ∈ B1. Since we chose d1 to be larger then the Gotzmann number of every
Hilbert polynomial Fi2...is(t1), we have

Gi2...is(d1 + 1) = Fi2...is(d1 + 1) = Fi2...is(d1)
⟨d1⟩ = Gi2...is(d1)

⟨d1⟩

for every (i2, . . . , is) ∈ B1. We therefore apply Gotzmann’s persistence theorem to eachGi2...is(t1)
and conclude that Gi2...is(t1) = Fi2...is(t1) in Q[t1] for all (i2, . . . , is) ∈ B1. It follows that
PI = P . □

Example 3.13. As in Example 3.3 let

S4 = k[x1,0, x2,0, x2,1, x3,0, x3,1, x3,2, x4,0, x4,1],

and consider the ideal I = (x3,0, x2,0x3,1, x2,0x3,2, x2,1x3,1) ⊂ S4. Let J and PJ(t1, t2, t3, t4) be
as in Example 3.3. We will apply Theorem 1.1 to show that PI(t1, t2, t3, t4) = PJ(t1, t2, t3, t4).
Recall that F001(t1) = 1, F000(t1) = 2. The maximal Gotzmann number of these polynomials is
two, so we set d1 = 2. Calculating the rest of the P 2

b (t2) as in Example 3.6, we obtain

P 2
(2,0,0)(t2) = P 2

(3,0,0)(t2) = 2, P 2
(2,0,1)(t2) = P 2

(3,0,1)(t2) = 1,

and we have c(P 2
(b1,b2,b3)

(t2)) ≤ 2 for these polynomials, so we set d2 = 2. Similarly,

P 3
(2,2,0)(t3) = P 3

(2,3,0)(t3) = P 3
(3,2,0)(t3) = P 3

(3,3,0)(t3) = 2,

P 3
(2,2,1)(t3) = P 3

(2,3,1)(t3) = P 3
(3,2,1)(t3) = P 3

(3,3,1)(t3) = 1,

so we set d3 = 2. Finally P 4
(b1,b2,b3)

(t4) = t4 + 1 for all bi ∈ {2, 3}, with c(t4 + 1) = 0, so we can

again take d4 = 2. Thus, verifying that HI(b1, b2, b3, b4) = PJ(b1, b2, b3, b4) for all (b1, b2, b3, b4)
with 2 ≤ bi ≤ 3 guarantees that PI(t1, t2, t3, t4) = t4 + 1.

The key difference between Theorem 1.1 and Gotzmann’s original persistence result lies in
the choice of the point (d1, . . . , ds). In Gotzmann’s original result we can choose d to be
the Gotzmann number of the prospective Hilbert polynomial P (t). Work of Iarrobino and
Kleiman [IK99, Appendix C] shows that the Gotzmann number of P is equal to

inf{m | m ∈ reg(I) for all I ⊂ S with PI(t) = P (t)}.
Work of Bayer shows that this infimum is achieved as min(reg(L)) where L is the unique
saturated lexicographic ideal with Hilbert polynomial P . Thus for saturated lex ideals I and J
and d ∈ reg(I) ∩ reg(J), we have HI(d + 1) = HI(d)

⟨d⟩ and HJ(d + 1) = HJ(d)
⟨d⟩. It follows

that if HI(d + 1) = HJ(d + 1) and HI(d) = HJ(d) then PI = PJ , and in fact I = J . In other
words, we cannot have different saturated lexicographic ideals whose Hilbert functions agree in
degree d and d+1. We might hope that a similar result is true for products of projective spaces.
However the following example shows that this does not generalise even to the Pn × Pm case.

Example 3.14. Let S = k[x0, x1, x2, x3, y0, y1, y2, y3] be the Cox ring of X = P3 × P3, where
deg(xi) = (1, 0) and deg(yj) = (0, 1). Let

I = (x0, x1, y0, y
2
1, x2y1, x2y

3
2),(3.6)

J = (x0, y0, x1y1, x1y2, x2y1, x2y2, y
3
1, y

2
1y2).(3.7)

Note that I and J are generated in degrees ≤ (1, 3), and are both bilex and B-saturated,
where B is the irrelevant ideal of X. Computing the multigraded regularity of I and J with
the Macaulay2 [GS] virtual resolutions package [ABLS20] we observe (1, 3) ∈ reg(I) ∩ reg(J),
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or equivalently (0, 2) ∈ reg(S/I) ∩ reg(S/J). Consider the set D = {(1, 3), (2, 3), (1, 4), (2, 4)}.
Then HI(t1, t2) = HJ(t1, t2) for all (t1, t2) ∈ D. However

HI(3, 3) = 16 ̸= HJ(3, 3) = 17.

Since the Hilbert functions of both I and J agree with their Hilbert polynomials in degree (3, 3)
by corollary 2.15 of [MS05], I and J necessarily have different Hilbert polynomials. Indeed,
we verify in Macaulay2 using the correspondence scrolls package [DEFOSAS] that PI(t1, t2) =
3t1 + 2t2 + 1 and PJ(t1, t2) =

1
2 t

2
1 +

3
2 t1 + 2t2 + 2.

We therefore have to use a more complicated method to find appropriate d = (d1, . . . , ds)
such that checking the Hilbert function of our ideal in a finite number of points around d verifies
its Hilbert polynomial. The improvement made by Theorem 1.1 is that the number of points
required to check no longer depends on the dimension of our ambient space, as in algorithm 6.3
of [MS05].

Remark 3.15. An increased understanding of the degrees of the generators of Imultilex would
allow us to combine Theorem 1.1 with Maclagan and Smith’s result on multigraded regularity
to obtain a supportive set as in [HS04, Proposition 3.2], of size 2s for P (t1, . . . , ts).

4. Extension to more general toric varieties

4.1. The Picard rank 2 case. In this section we see how the results of Section 3 apply to
Picard-rank-2 toric varieties. Let d, s ∈ Z with d ≥ 2, 1 ≤ s ≤ d− 1. Let a = (a1, . . . , as) ∈ Zs

with 0 ≤ a1 ≤ a2 ≤ · · · ≤ as. Work of Kleinschmidt [Kle88] defines the smooth projective toric
variety Xd(a) associated to d and a. Its Cox ring is R = k[z1, . . . , zd+2], with the grading given
by the 2× (d+ 2) matrix A:

A =

( )
−a1 . . . −as 0 1 . . . 1 1
1 . . . 1 1 0 . . . 0 0 .

With this choice of grading the semigroup NC of nef line bundles on Xd(a) is identified with
N2. Kleinschmidt further showed that every Picard-rank-2 smooth projective toric variety is
isomorphic to Xd(a) for some choice of d and a. We therefore restrict our focus to varieties
with Cox rings in the above form. We can relate the ring R to the Cox ring of the product of
two projective spaces as follows.

Lemma 4.1. Let R = k[z1, . . . , zd+2] be the Cox ring of a Picard-rank-2 toric variety and let
J ⊂ R be an ideal homogeneous with respect to the Z2-grading. Let n = dimk(R(1,0)) − 1 and
m = dimk(R(0,1))− 1. Set S to be the Cox ring of Pn × Pm. Then there is a surjective map of

k-algebras ψ : S → R̃, where R̃ =
⊕

b∈N2 Rb.

Proof. Let S = k[x0, . . . , xn, y0, . . . , ym], with the grading given by deg(xi) = (1, 0) and deg(yj) =
(0, 1). Note that n = d− s, since R(1,0) has a basis given by {zs+2, . . . , zd+2}. We have chosen
S such that R(1,0) and R(0,1) are isomorphic to the vector spaces S(1,0) and S(0,1). We define a

map of k-algebras ψ : S → R̃. Explicitly, set ψ(xi) = zs+2+i and set ψ(yi) = ei, where e0, . . . , em
is the monomial basis of R(0,1). We now verify that the map ψ is surjective.

Consider a monomial zu = zr11 . . . z
rd+2

d+2 ∈ R(b1,b2) for some (b1, b2) ∈ N2. We have that

rs+2 + · · ·+ rd+2 = r1a1 + · · ·+ rsas + b1,(4.1)

r1 + · · ·+ rs+1 = b2.(4.2)

We can rearrange the monomial zu to exhibit it as the product of b1 elements of R(1,0) and b2
elements of R(0,1) as follows. Consider the multiset

Z =

d+2⋃
i=s+2

ri⋃
j=1

{zi}.
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In other words,

Z = {zs+2, . . . , zs+2, . . . , zd+2, . . . , zd+2},

where each zi is repeated ri times. Equation (4.1) implies that Z has size r1a1+ · · ·+ rsas+ b1.
We relabel r1a1 + · · · + rsas of the elements of Z to variables of the form zi,j,k for 1 ≤ i ≤ s,
1 ≤ j ≤ ri, 1 ≤ k ≤ ai. For a fixed i between 1 and s we have riai elements lying in the multiset
Z labelled zi,1,1, . . . , zi,ri,ai . Let f denote the product of the remaining b1 elements of Z, which
as previously observed all lie in R(1,0). Then

zu = fz
rs+1

s+1

s∏
i=1

ri∏
j=1

(zi

ai∏
k=1

zi,j,k).

Note that each

zi

ai∏
k=1

zi,j,k

is an element of R(0,1). This rearrangement of the monomial zu shows that it is the product of
elements in R(1,0) and R(0,1), ensuring that ψ is surjective. □

Proof of Theorem 1.2. Define J̃ =
⊕

b∈N2 Jb. Composing the surjective map from Lemma 4.1

with the map R̃→ R̃/J̃ we obtain a surjective map φ : S → R̃/J̃ . For I = ker(φ) ⊂ S we have
HI(b1, b2) = HJ(b1, b2) for (b1, b2) ∈ N2. Consequently, we apply Theorem 1.1 to I ⊂ S to find
appropriate (d1, d2) ∈ N2 such that if

HJ(d1, d2) = P (d1, d2), HJ(d1 + 1, d2) = P (d1 + 1, d2),

HJ(d1, d2 + 1) = P (d1, d2 + 1), HJ(d1 + 1, d2 + 1) = P (d1 + 1, d2 + 1),

then PI(t1, t2) = P (t1, t2). Since PI(t1, t2) = PJ(t1, t2) this then guarantees that PJ(t1, t2) =
P (t1, t2). □

Example 4.2. Consider the Hirzebruch surface H1 with Cox ring R = k[z0, z1, z2, z3], with
deg(z0) = deg(z2) = (1, 0), deg(z1) = (−1, 1), deg(z3) = (0, 1). Consider the ideal J = (z0) in R.
We will find the Hilbert polynomial PJ(t1, t2) using Theorem 1.2. Observe that R(1,0) has basis
{z0, z2} and R(0,1) has basis {z1z0, z1z2, z3}. We therefore have a surjective homomorphism from

S2 = k[x0, x1, y0, y1, y2], the Cox ring of P1×P2, to R̃ with kernel (x0y1−x1y0). Extending the

above map we have a surjection from S2 to R̃/J̃ with kernel I = (x0, x0y1 − x1y0) = (x0, x1y0),
which is multilex. The Hilbert function of S2/I in degree t ∈ N2 is equal to that of R/J . Let
P (t1, t2) = t2 + 1 and suppose we want to verify that PJ(t1, t2) = P (t1, t2). As in Lemma 3.2,
we write

P (t1, t2) = F0(t1)

(
t2 − a2 + 0

0

)
+ F1(t1)

(
t2 − a2 + 1

1

)
.

Since P (t) is the Hilbert polynomial of the multilex ideal (x0, y0) we can let (a1, a2) = (2, 2) to
obtain

P (t1, t2) = F0(t1)

(
t2 − 2 + 0

0

)
+ F1(t1)

(
t2 − 2 + 1

1

)
.

It follows that F1(t1) = 1, F0(t1) = 2, with maximal Gotzmann number 2. Fixing d1 = 2, we
observe that c(P 2

2 (t2)) = c(P 2
3 (t2)) = c(t2 + 1) = 1, so we can also fix d2 = 2. Therefore by

Theorem 1.1 it is enough to check HJ(t1, t2) = P (t1, t2) for

(t1, t2) ∈ {(2, 2), (2, 3), (3, 2), (3, 3)}

to verify that PJ(t1, t2) = P (t1, t2).
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4.2. Higher Picard rank toric varieties. The surjective morphism of rings in Lemma 4.1
is actually a stronger condition than is needed to extend results about products of projective
spaces to more general smooth projective toric varieties.

For the rest of this section, let R be the Cox ring of a smooth projective toric variety X with
Picard rank n, with a grading given by fixing an isomorphism of Pic(X) with Zn. Let NC be
the semigroup of nef line bundles on X, with unique minimal Hilbert basis C = {c1, . . . , cj}.
Definition 4.3. For an ideal J ⊂ R, homogeneous with respect to the Zn-grading, the Hilbert
function of J is given by

HJ : Zn → N
b = (b1, . . . , bn) 7→ dimk((R/J)b).

This function agrees with a polynomial PJ(t1, . . . , tn) for all (b1, . . . , bn) sufficiently far from the
boundary of NC. This polynomial is the Hilbert polynomial of the ideal J . The notion of being
sufficiently far from the boundary of NC can be made rigorous using Castelnuovo-Mumford
regularity, see [MS05, Corollary 2.15].

Remark 4.4. It is important to note that the explicit polynomial PJ(t1, . . . , tn) we obtain for
an ideal J ⊂ R is dependent on our choice of isomorphism Pic(X) ∼= Zn. For example, in the
Pr case it is standard to choose the isomorphism O(d) 7→ d ∈ Z, which gives the Cox ring the
standard grading. However we could just as easily choose the isomorphism O(d) 7→ −d ∈ Z, in
which case each variable in the Cox ring of Pr would have degree −1, and the Hilbert polynomial
of the Cox ring would be P (b) =

(
r−b
−b

)
instead of the usual P (b) =

(
r+b
b

)
. In the case of Pr there

is a standard choice of isomorphism, but for more general smooth projective toric varieties this
can fail to be the case.

Maclagan and Smith [MS04] give a generalisation of Castelnuovo-Mumford regularity for an
R-module M or coherent sheaf F on X, denoted reg(M) and reg(F). Note that reg(M) and
reg(F) are sets contained inside Zn ∼= Pic(X). This is different to the standard-graded case,
where we define reg(M) = min{m ∈ Z | M is m-regular}. In the multigraded case there may
not be a clear minimum element so it makes sense to instead consider the set of all m ∈ Zn

such that M is m-regular.

Definition 4.5. For c0 ∈ reg(R) denote by Sc0,X the Cox ring of

Pn0 × · · · × Pnj ,

where ni = dimk(Rci)− 1. Explicitly, we write

Sc0,X = k[x0,0, . . . , x0,n0 , . . . , xj,0, . . . , xj,nj ],

with deg(xi,j) = ei. Here, e0, . . . , ej is the standard basis for Zj+1. Consider the following map

fc0 : Qj+1 → Qn

(b0, . . . , bj) 7→ b0c0 + b1c1 + · · ·+ bjcj .

If we explicitly let ci = (ci1, . . . , cin), then we have

fc0(b0, . . . , bj) =
(
b0 . . . bj

)c01 . . . c0n
...

...
...

cj1 . . . cjn

 .

Wemay view fc0 as a map on affine spaces Aj+1
Q → An

Q. From this perspective, let f#c0 : Q[t1, . . . , tn] →
Q[s0, . . . , sj ] be the induced map on the corresponding coordinate rings. Again, we give this
map explicitly as

f#c0P (t1, . . . , tn) = P (
(
s0 . . . sj

)c01 . . . c0n
...

...
...

cj1 . . . cjn

).

In particular since the nef cone of X has full dimension, fc0 is surjective, and so f#c0 is injective.
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Definition 4.6. We say that a polynomial P (t1, . . . , tn) ∈ Q[t1, . . . , tn] is admissible on R if

there is c0 ∈ reg(R) and a Hilbert polynomialQ(s0, . . . , sj) on Sc0,X such that f#c0P (s0, . . . , sj) =
Q(s0, . . . , sj).

The following lemma allows us to establish that any Hilbert polynomial on R is admissible
for any c0 ∈ reg(R). We will make use of the following theorem of Maclagan and Smith.

Theorem 4.7 ([MS04, Theorem 1.4]). For a smooth projective toric variety X and coherent
sheaf F , and for p in reg(F) and q in NC, there is a surjective morphism

H0(X,F(p))⊗H0(X,OX(q)) ↠ H0(X,F(p+ q)).

Lemma 4.8. Let J ⊂ R be an ideal, homogeneous with respect to the Zn-grading. Let c0 ∈
reg(R), and let Sc0,X , fc0 be as in Definition 4.5. Then there exists an ideal I ⊂ Sc0,X such
that there is an isomorphism ψb : (Sc0,X/I)b → (R/J)fc0 (b) for any b = (b0, . . . , bj) ∈ Nj+1

with b0 ≥ 1.

Proof. For b = (b0, . . . , bj) ∈ Nj+1 with b0 ≥ 1, we will define a map τb : (Sc0,X)b → Rfc0 (b)
.

Consider the morphism of k-algebras τ induced by

τ : Sc0,X → R

xi,k 7→ eik+1,

where eik is the kth element of the monomial basis for Rci . The map τb is defined by restricting
τ to (Sc0,X)b. Let π : R → R/J be the usual quotient map. To prove the lemma, we need to
show that τb is surjective. We then postcompose with π|fc0 (b) : Rfc0 (b)

→ (R/J)fc0 (b) to obtain

a surjective map to (R/J)fc0 (b). To see that τb is surjective for b = (b0, . . . , bj) ∈ Nj+1 with
b0 ≥ 1, we first apply Theorem 4.7 we observe that there is a surjective map

H0(X,OX(b0c0 + · · ·+ (bj − 1)cj))⊗H0(X,OX(cj)) ↠ H0(X,OX(fc0(b))).

We then repeatedly apply Theorem 4.7 to obtain a surjective map

(4.3)

j⊗
i=0

H0(X,OX(ci))
⊗bi ↠ H0(X,OX(fc0(b))).

Note that there is a canonical isomorphism H0(X,OX(fc0(b)))
∼= Rfc0 (b)

. Further, since

h0(X,OX(ci)) = ni + 1, we can identify each H0(X,OX(ci)) with k[xi,0, . . . , xi,ni ]1. The

map (4.3) to Rfc0 (b)
is induced by mapping xi,k 7→ eik, and then identifying tensor prod-

ucts of such elements with their product in R. Since this multiplication in R commutes,
this map factors through the vector space obtained by replacing each H0(X,OX(ci))

⊗bi with
Symbi(H0(X,OX(ci))), which we can itself identify with k[xi,0, . . . , xi,ni ]bi . It follows that the
map (4.3) factors through the vector space

k[x0,0, . . . , x0,n0 ]b0 ⊗ k[x1,0, . . . , x1,n1 ]b1 ⊗ · · · ⊗ k[xj,0, . . . , xj,nj ]bj .

We now observe that

(Sc0,X)b ∼= k[x0,0, . . . , x0,n0 ]b0 ⊗ k[x1,0, . . . , x1,n1 ]b1 ⊗ · · · ⊗ k[xj,0, . . . , xj,nj ]bj ,
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and that the map induced from (Sc0,X)b to Rfc0 (b)
is exactly the map τb defined earlier. We

therefore obtain a commutative diagram⊗j
i=0H

0(X,OX(ci))
⊗bi H0(X,OX(fc0(b)))

⊗j
i=0 k[xi,0, . . . , xi,ni ]1 Rfc0 (b)

(Sc0,X)b

⊗j
i=0 Sym

bi(H0(X,OX(ci))).

∼=

τb

∼=

∼=

In particular since equation (4.3) is a surjection it follows that τb is also a surjection. Conse-
quently the induced map τ̃b : (Sc0,X)b → (R/J)fc0 (b) is also a surjection. We define an ideal

I =
⋃

b∈Nj+1,b0≥1(ker(τ̃b)). Observe that for f ∈ ker(τ̃b), g ∈ Sc0,X with deg(g) = b′, we have

fg ∈ ker(τ̃b+b′). It follows that Ib = ker(τ̃b). We conclude that we have an isomorphism of

vector spaces (Sc0,X/I)b
∼= (R/J)fc0 (b) for all b ∈ Nj+1 with b0 ≥ 1. We will denote these

isomorphisms by ψb. □

Remark 4.9. It follows from Lemma 4.8 that for any homogeneous J ⊂ R and c0 ∈ reg(R),
there exists a homogeneous ideal I ⊂ Sc0,X such that HI(b0, . . . , bj) = HJ(fc0(b0, . . . , bj)) for

(b0, . . . , bj) ∈ Nj+1 with b0 ≥ 1. It follows that PJ(t1, . . . , tn) is admissible, with f#c0PJ(s0, . . . , sj) =
PI(s0, . . . , sj).

Although the situation is a little more complicated than the Picard rank 2 case, we are now
able to prove Theorem 1.3.

Proof of Theorem 1.3. Fixing some c0 ∈ reg(R) we consider the ideal I from Lemma 4.8 with
(Sc0,X/I)b

∼= (R/J)fc0 (b). As established in Remark 4.9, P (t1, . . . , tn) is an admissible poly-

nomial for any c0 ∈ reg(R), with f#c0P (s0, . . . , sj) = Q(s0, . . . , sj) for a Hilbert polynomial
Q(s0, . . . , sj) on Sc0,X . We observe that for b = (b0, . . . , bj) ∈ Nj+1, with b0 ≥ 1 we have
HI(b) = HJ(fc0(b)). In particular we therefore have an equality of polynomials

PI(s0, . . . , sj) = f#c0PJ(s0, . . . , sj).

We apply Theorem 1.1 to I to find appropriate {d0, . . . , dj} such that verifying

HI(b0, . . . , bj) = Q(b0, . . . , bj)

for bi ∈ {di, di + 1} guarantees that PI(s0, . . . , sj) = Q(s0, . . . , sj). Equivalently, verifying

HJ(fc0(b0, . . . , bj)) = P (fc0(b0, . . . , bj))

for bi ∈ {di, di + 1} guarantees that f#c0PJ(s0, . . . , sj) = f#c0P (s0, . . . , sj), so we need to check
exactly the points (r1, . . . , rn) ∈ {fc0(b) ∈ Nn | bi ∈ {di, di + 1}}. As highlighted in Definition

4.5, f#c0 is injective, and so we conclude that PJ(t1, . . . , tn) = P (t1, . . . , tn). □

Remark 4.10. The points

D = {fp(b0, . . . , bj) | bi ∈ {di, di + 1}}
form the vertices of a zonotope in Rn. We have an upper bound on the size of D given by
|D| ≤ 2j+1. However, by combining [Buc43, A geometrical lemma] and [Zas75, Section 6B] for
n < j + 1 we get an improved bound of

|D| ≤
n∑

i=0

(
j + 1

i

)
.

Further, when 0 ∈ reg(X), we can take c0 = 0 in which case |D| = 2j , which is the minimum
possible.
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Remark 4.11. The proof of Lemma 4.1 relies on the known grading of the Cox ring of Xd(a).
However this result can be extended to other smooth projective toric varieties X where the map

(4.4) H0(X,OX(α))⊗H0(X,OX(β)) → H0(X,OX(α+ β))

is surjective for all nef line bundles OX(α), OY (β). The idea is to take a Hilbert basis C =
{c1, . . . , cj} of the nef cone K of X, and set ni = h0(X,OX(ci)) − 1. Let S be the Cox ring
of Pn1 × · · · × Pnj , and identify generators x0, . . . , xni of the Pni piece with the monomial basis
for Rci . Using the surjectivity of (4.4) for all OX(ci), we obtain a surjective morphism of rings
from S to

⊕
t∈NC Rt. It follows that we can extend this to a surjective morphism of rings from

S to
⊕

t∈NC(R/J)t for an ideal J ⊂ R. Oda [Oda08] conjectured that for all smooth projective
toric varieties the map (4.4) is surjective for all ample line bundles OX(α) and nef line bundles
OX(β). If this conjecture holds then a similar result to Theorem 1.2 would hold for all smooth
projective toric varieties, and the technique of introducing an extra copy of Pn used in Theorem
1.3 would no longer be required.

Remark 4.12. The Hilbert polynomial of a subscheme of a d-dimensional smooth projective
toric variety X of Picard rank n can have up to

(
n+d−1

d

)
coefficients. This means that naively

we have to check
(
n+d−1

d

)
points to find this polynomial. Theorems 1.1 and 1.2 ensure that we

only have to check 2n points to find the Hilbert polynomial in the case of products of projective
spaces or a Picard-rank-2 toric variety. This is an improvement for d≫ 0. Theorem 1.3 ensures
we need only check 2j+1 points, where j is the size of the Hilbert basis of the nef cone. The key
contribution is that the complexity of finding the Hilbert polynomial no longer depends on the
dimension of X, leading to a computational advantage for varieties of larger dimensions.

Example 4.13. Consider the fan Σ ⊂ R3 with rays

ρ0 = (1, 0, 0), ρ1 = (0, 1, 0), ρ2 = (−1, 1, 0),

ρ3 = (0,−1, 0), ρ4 = (0, 0, 1), ρ5 = (0, 0,−1),

and maximal cones generated by the subsets

{ρ0, ρ1, ρ4}, {ρ0, ρ1, ρ5}, {ρ1, ρ2, ρ4}, {ρ1, ρ2, ρ5},
{ρ2, ρ3, ρ4}, {ρ2, ρ3, ρ5}, {ρ0, ρ3, ρ4}, {ρ0, ρ3, ρ5}.

The associated normal toric variety X is smooth and projective with Picard rank 3. After
fixing an isomorphism Pic(X) ∼= Z3 we write the Cox ring of X as R = k[y0, . . . , y5], where
deg(y0) = deg(y2) = (−1, 1, 0), deg(y1) = (1, 0, 0), deg(y3) = (0, 1, 0) and deg(y4) = deg(y5) =
(0, 0, 1). The nef cone of X is generated by c1 = (−1, 1, 0), c2 = (0, 1, 0) and c3 = (0, 0, 1),
and reg(R) = NC. In particular (0, 0, 0) ∈ reg(R). This makes the application of Theorem 1.3
especially nice. Set c0 = (0, 0, 0). We have

Rc0 = ⟨1⟩ , Rc1 = ⟨y0, y2⟩ , Rc2 = ⟨y3, y0y1, y1y2⟩ , Rc3 = ⟨y4, y5⟩ ,
so we set

Sc0,X = k[x1,0, x2,0, x2,1, x3,0, x3,1, x3,2, x4,0, x4,1],

which is the Cox ring of P0 × P1 × P2 × P1. Consider the ideal J = (y3, y
2
0y1, y0y1y2) ⊂ R. The

ideal I in Lemma 4.8 is given by I = (x3,0, x2,0x3,1, x2,0x3,2, x2,1x3,1), which is multilex. We
have (Sc0,X/I)b

∼= (R/J)fc0 (b) for b ∈ N4. Consider the polynomial P (t1, t2, t3) = t3 + 1, with

Q(s0, s1, s2, s3) = f#c0P (s0, s1, s2, s3) = s3 + 1. To check that PJ(t1, t2, t3) = P (t1, t2, t3) we
need only apply Theorem 1.1 to I ⊂ Sc0,X to find appropriate {d0, . . . , d3} such that checking
HI(b0, b2, b3, b3) = Q(b0, b1, b2, b3) for bi ∈ {di, di + 1} confirms that PI = Q. We now ob-
serve that modulo a change of notation this is identical to the case of Example 3.13, and set
(d0, d1, d2, d3) = (2, 2, 2, 2). We calculate the values of fc0(b) for b = (b0, b1, b2, b3) ∈ N4 with
2 ≤ bi ≤ 3. We obtain eight vertices for our zonotope, as expected by Remark 4.10:

D = {(−2, 4, 2), (−2, 4, 3), (−2, 5, 2), (−2, 5, 3),

(−3, 5, 2), (−3, 5, 3), (−3, 6, 2), (−3, 6, 3)}.
Checking that HI(r1, r2, r3) = P (r1, r2, r3) for all (r1, r2, r3) ∈ D guarantees that PJ = P .
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