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Abstract

This paper introduces a Bayesian inference framework for two-dimensional

steady-state heat conduction, focusing on the estimation of unknown dis-

tributed heat sources in a thermally-conducting medium with uniform con-

ductivity. The goal is to infer heater locations, strengths, and shapes using

temperature assimilation in the Euclidean space, employing a Fourier series

to represent each heater’s shape. The Markov Chain Monte Carlo (MCMC)

method, incorporating the random-walk Metropolis-Hasting algorithm and

parallel tempering, is utilized for posterior distribution exploration in both

unbounded and wall-bounded domains. Strong correlations between heat

strength and heater area prompt caution against simultaneously estimat-

ing these two quantities. It is found that multiple solutions arise in cases

where the number of temperature sensors is less than the number of un-

known states. Moreover, smaller heaters introduce greater uncertainty in

estimated strength. The diffusive nature of heat conduction smooths out
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any deformations in the temperature contours, especially in the presence

of multiple heaters positioned near each other, impacting convergence. In

wall-bounded domains with Neumann boundary conditions, the inference of

heater parameters tends to be more accurate than in unbounded domains.

1. Introduction

Inverse problems are a class of mathematical problems that estimate the

underlying state of a system based on measurements, leveraging a mathemat-

ical model termed observation operator. Based on the notion of well-posed

problems articulated by Hadamard (1923), inverse problems possess a ma-

jor difficulty, namely, they are typically ill-posed: uniqueness, stability, and

existence of their solution cannot be guaranteed. Even in the case of the

existence of a unique solution, the problem can be unstable under the pres-

ence of noise in the measurements. Over the years, a spectrum of techniques

has been developed to tackle these intricate inverse problems including the

least square methods (Ritchie and Prvan, 1996), Kalman filtering (Bezruchko

and Smirnov, 2010), linear quadratic estimation, shooting algorithm (Peifer

and Timmer, 2007), Newton method (Choi and Ooka, 2015), regularization

methods, and Artificial Neural Network (Khan et al., 2018). A comprehen-

sive overview of these methodologies can be found in the work of Calvetti

and Somersalo (2018).

In the realm of thermal applications, the inverse heat conduction prob-

lem encompasses diverse objectives including the determination of thermal
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boundary conditions that align with observed temperature history (Lei et al.,

2022), or reconstruction of the initial temperature profile given the temper-

ature history of the substance (Castro et al., 2010). Another central facet

of thermal inverse problems involves estimating heat sources responsible for

the observed temperature distribution. It has applications in manufacturing,

environmental studies, electronic cooling, and aerospace engineering where

the identification of unknown heat sources holds critical significance. Over

the past decades, researchers have endeavored to address heat source esti-

mation through different techniques in transient heat conduction scenarios.

These methodologies involve a range of techniques such as the conjugate gra-

dient method (Su and Silva Neto, 2001; Ma et al., 2012) and the extended

Kalman filter (EKF) together with the weighted recursive least-squares es-

timator (Chen et al., 2007). Additionally, methods like the modified New-

ton–Raphson (Lin and Yang, 2007), the Function Specification Algorithm

(Janicki and Napieralski, 2008), the Particle Swarm Optimization (PSO)

technique (Bangian-Tabrizi and Jaluria, 2018), and Neural Networks (Kitano

and Mikami, 2022) have been applied in the field of heat source estimation.

It is essential to recognize that not all the deterministic techniques pre-

viously discussed can address the inherent complexities of inverse problems.

An alternative and highly effective probabilistic approach, Bayesian infer-

ence, offers a flexible and intuitive way to incorporate prior knowledge into

the analysis, effectively complementing noisy data. This is achieved by treat-

ing the unknown quantities as random variables and providing a statistical
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representation of the solution that elucidates a range of possible parameter

values. Furthermore, Bayesian inference excels in handling complex models

and robustly estimates parameters even with limited data. These abilities

make Bayesian analysis a powerful tool in a wide range of applications in-

cluding but not limited to machine learning (Bishop and Nasrabadi, 2006),

decision making (Berger, 2013), bioinformatics (Durbin et al., 1998), envi-

ronmental modeling, medical diagnosis, and many other disciplines.

In the context of heat conduction problems, Bayesian inference has been

employed with notable success. For instance, Wang and Zabaras (2004a),

Wang and Zabaras (2004b), and Khatoon et al. (2023) implemented Bayesian

inference to address transient heat conduction problem to estimate the heat

flux at a boundary. The steady-state heat conduction equation has been tack-

led using Bayesian inference by Jin and Zou (2008) and Cao et al. (2022), with

the latter demonstrating its superiority in terms of accuracy, stability, and

robustness compared to traditional deterministic curve-fitting approaches.

This work employs Bayesian inference to tackle the problem of solving the

steady-state heat conduction equation in the presence of heat sources within

the domain. Unlike previous studies focused on estimating a single-point

heat source, our primary objective is to optimally estimate the location, in-

tensity (or strength), size, and shape of one or more regions in which heat

is uniformly distributed. Temperature measurements are acquired through

the same observation operator at prescribed sensor locations. To effectively

represent the heaters’ shape and size, a Fourier series is implemented as an
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approximation. The core optimization technique adopted in this study is

the Markov Chain Monte Carlo (MCMC) method, which facilitates sam-

pling from the posterior distribution. Specifically, we utilize a random-walk

Metropolis-Hasting (MH) algorithm to traverse the state space. To explore

the state space more efficiently, parallel tempering is employed to enable

potential exchange between chains. The approach presented here promises

to yield valuable insight into applications such as temperature control and

optimization in engineering and environmental systems.

In Section 2, the problem is presented and the methodology to the Bayesian

inference approach to tackle the heat conduction problem is elaborated. The

outcomes of the estimation are addressed in Section 3. Finally, the overal

approach and the notable results are summarized in Section 4.

2. Problem Statement and methodology

The problem configuration and the mathematical model are addressed

in this section. The core objective is to determine the causal heating fac-

tors behind steady-state temperature observations in a thermally conducting

medium with uniform conductivity, effectively resolving the inverse problem.

This problem is characterized by multiple heating regions, Ω, located within

a two-dimensional domain depicted in Figure 1(a). These heaters possess un-

known variables encompassing their locations, strengths, sizes, and shapes,

resulting in observable steady temperatures at a finite number of designated

measurement points. It is important to note that heat is uniformly dis-
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tributed within each heater. The true measurements are obtained from the

same observation operator as the numerical solution of the steady-state heat

conduction problem, thereby making it a twin experiment.

In addition to addressing the inverse problem in an unbounded domain,

this study investigates the impact of sensors aligned on an adiabatic wall,

where the homogeneous Neumann boundary condition applies, on the per-

formance of the inference process. We seek to find the heaters and their cor-

responding unknown characteristics assimilating temperature observations at

the measurement points.

Ω1q1

Ω2

q2

Ω3

q3

(a) (b)

Sensor no.
1 2 3 4 5 6

T
−

T r
ef

-3.9

-3.8

-3.7

-3.6

(c)

Figure 1: Illustration of the problem configuration, featuring three distinct heaters
situated within various regions of the 2D domain. Each heater exhibits unique strengths
and shapes. The evaluation points are indicated using brown squares, where they can

either be placed in an unbounded domain or aligned on an adiabatic wall. (a) represents
the heaters in tandem with temperature sensors, (b) temperature contours induced from

the corresponding heater configuration in (a), and (c) sensor measurements.

The mathematical model comprises the solution of the steady-state heat

conduction equation defined in the Euclidean space

∇2T = −q. (1)

Here, T denotes temperature and q represents heat source scaled by the
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thermal conductivity of the underlying material, referred to in this paper as

heater intensity (or strength). The unknowns intrinsic to the problem—–

including locations of the center of the heaters as well as their strengths,

sizes, and shapes—–are encompassed within the function q in the form of

q(rrr) =


qh rrr ∈ Ωh

0 otherwise

, (2)

where rrr = (x, y) denotes the position vector in the Euclidean space, and

the index refers to the hth heater. The heater shape, Ωh, is represented

by a Fourier series: by dividing the range 0 to 2π into N equally spaced

sectors, each with angle θj, the coordinates of the respective N points on the

boundary of a heater can be expressed in complex notation as:

z = x0 + iy0 +
∞∑
j=1

cje
ijθj . (3)

In this equation, i denotes the imaginary unit, while cj signify the coefficients

of the Fourier series which are assumed to be real numbers in this work.

Notably, x0 + iy0 corresponds to the center of the heater shape, with x0

and y0 denoting its position along the two axes within the two-dimensional

domain. In this paper, only the first two coefficients are considered and

as such, the state vector for the problem of estimating one heater becomes

x = (x0, y0, qh, c1, c2) with observation represented as y = (y1, y2, · · · , yd),

where d denotes the number of measurement points. Thus, the total number
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of states when there are Nq heaters in the space will be n = 5Nq.

2.1. Observation Operator

The core component of the estimation procedure is the observation oper-

ator, mapping the states to the measurements. In this work, this operator

arises from the solution of equation (1), the Poisson equation. This equation

is solved here on a Cartesian grid using the lattice Green’s function, as ex-

tensively discussed in works such as Liska and Colonius (2014) and Eldredge

(2022). For the purposes of demonstration in this work, both the synthetic

generation of true sensor measurements and the estimation procedure itself

rely on the same numerical solution procedure. In scenarios involving bound-

aries, the Poisson problem is solved using the immersed boundary projection

method of Taira and Colonius (2007), in conjunction with a masking func-

tion to distinguish between the two sides of the boundaries. The concept of

the masked function in the context of the immersed boundary method was

introduced by Eldredge (2022). The reader is referred to the latter paper for

a comprehensive understanding of the solution procedures and operators.

2.2. Statistical Notation

We can generalize the solution of Eq. (1) to represent a stochastic obser-

vation model, given as

y = h(x) + ε, (4)

where ε is the observation noise, and x is the state vector of unknowns. The

operator h(x) ∈ Rn→d embodies the observation operator establishing a con-
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nection between the causes x ∈ Rn and the observations y ∈ Rd, where n

denotes the number of unknowns and d represents the number of measure-

ments. As discussed earlier, we employ the Bayesian inference approach to

find the state variables, effectively incorporating their uncertainties into the

representation.

Drawing upon Bayes’ theorem and the definition of a joint probability

distribution, the conditional probability of state x, referred to as the posterior

distribution, can be expressed as follows:

π(x|y) = L(y|x)π0(x)

π(y)
. (5)

This equation establishes a connection for the posterior distribution by con-

sidering the probability of y conditioned on x known as likelihood, L(y|x),

along with the prior probability density of x, π0(x), and the marginal prob-

ability density of the measurements y. This marginal probability density,

denoted as π(y), is defined as the integral of the numerator in Eq. (5)

π(y) =

∫
R
L(y|x)π0(x)dx. (6)

The posterior density defined in Eq. (5) represents the complete solution

of the inverse problem in the Bayesian framework. The computation of the

integral given in Eq. (6) presents challenges; nevertheless, it can be regarded

as a normalizing constant. For the MCMC approach used in this paper, the

value of this constant is irrelevant, as only relative values of the posterior
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probability are necessary. Thus, in the context of this paper, a posterior

probability density function (PDF) lacking this normalizing factor is denoted

as an unnormalized PDF, represented as π̃(x|y∗) = L(y∗|x)π0(x) evaluated

at the true measurement y∗.

In this particular problem, the prior is characterized as weakly informa-

tive, with the unknowns initially assumed to be uniformly distributed within

a confined domain. This can be represented as:

π0(x) = Un(x|B), (7)

where B designates the bounded domain. Employing a uniform distribution

as the prior specification guarantees an unbiased choice when there is little

knowledge about the states. Furthermore, the likelihood PDF is defined as

a multivariate normal distribution centered around the ground observation,

y∗, with the covariance matrix characterized by independent and identically

distributed (i.i.d) components, i.e. Σε = σ2
εI, where σε signifies measurement

noise. The formulation can be expressed as follows

L(y∗|x) = N (y∗|h(x),Σε) =
1√

(2π)ddetΣε

exp

(
−1

2
||y∗ − h(x)||2Σε

)
, (8)

where the covariance-weighted norm is defined as

||y||2Σ = yTΣ−1y. (9)
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Plugging Eqs. (7) and (8) into the expression for the unnormalized posterior

distribution gives

π̃(x|y∗) = Un√
(2π)ddetΣε

exp

(
−1

2
||y∗ − h(x)||2Σε

)
. (10)

In the context of Bayesian inference, we often find it more practical to

work with the logarithmic representation of the equation provided earlier,

as it offers advantages in terms of numerical stability related to machine-

zero errors. The resulting logarithmic posterior disregarding the constants

becomes

π̃l(x|y∗) = −||y∗ − h(x)||2Σε
+ cB(x), (11)

where cB(x) equals zero if state x lies within the domainB and−∞ otherwise.

We will often define the domain B to eliminate undesired states.

2.2.1. Sampling and modeling of the posterior

Samples are drawn from the log-posterior distribution given in Eq. (11)

using the Markov Chain Monte Carlo (MCMC) method (Metropolis and

Ulam, 1949; Geman and Geman, 1984; Hastings, 1970). It generates a se-

quence of samples with each sample depending on the previous one, and the

dependence is governed by a transition kernel that satisfies certain proper-

ties. In this paper, we adopt the Metropolis-Hastings (MH) algorithm as

our choice of a transition kernel. Alternative algorithms like Gibbs sampling

and Hamiltonian Monte Carlo exist and can be more efficient in exploring
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the state space when the Jacobian of the observation operator is available.

However, MH remains a robust and simple choice, particularly where com-

puting the Jacobian operator is not feasible or straightforward. Since in the

early stages of the MCMC algorithm, the chain starts from an arbitrary ini-

tial state and may not yet be representative of the target distribution, it is

necessary to remove a portion of the initial chain entry known as burn-in to

eliminate their influence on the target distribution.

The MH algorithm is very efficient in exploring a unimodal distribution.

However, in complex multimodal distributions, the chain can get stuck in

the local mode, making it difficult to explore the entire space. This decel-

erates convergence and can lead to difficulty in exploring the entire target

distribution. To address this challenge, this study incorporates the concept

of parallel tempering (Sambridge (2014)) (also known as replica exchange) to

improve the performance and convergence of the MCMC method. We have

observed promising results by employing five Markov chains, each exploring

the target distribution raised to respective powers of 5p, where p ranges from

-4 to 0 as integer values.

For the sake of simplicity in representing samples drawn from the MCMC

algorithm, we approximate the generated samples by fitting them within

another distribution denoted as πy∗(x) ≈ π(x|y∗) which takes the form of a

Gaussian Mixture Model (GMM) consisting of several Gaussian components.

It is mathematically represented as a linear superposition of K Gaussian
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distributions:

πy∗(x) =
K∑
k=1

αkN (x|x̄k,Σk). (12)

In this equation, αk represents the weights that define the probability of

a random variable x belonging to the Gaussian component k. It is worth

noting that for the GMM to be a valid probability distribution, the sum of

the weights must satisfy the condition:

K∑
k=1

αk = 1. (13)

Throughout this paper, ε = 5×10−4 is selected for the measurement noise

unless otherwise stated. The algorithm begins with an initial 104 step, using

a diagonal variance of 10−4 for every state component in the proposal distri-

bution. Subsequently, a 5 × 105 steps are executed with proposal variances

uniformly set to 2.5 × 10−5. The final sample dataset is extracted from the

chain with p = 0, after discarding the first half of the chain as a burn-in pe-

riod and retaining only every 100th chain entry from the remaining samples

to reduce auto-correlations.

3. Results and Discussion

In this section, we discuss the estimation results for various problems

within an unbounded domain. We then explore the influence of boundary

conditions to determine if they provide additional information and improve

the estimation results. Temperature measurements are acquired from the
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observation model defined in Equation (4), incorporating additive white noise

with a zero-mean Gaussian distribution and variance σ2
ε , ε ∼ N (0, σ2

ε).

To generalize the problem, temperatures are represented relative to a ref-

erence temperature, denoted as Tref . Unless stated otherwise, the sensors

are aligned on x axis within the range [−1, 1] with the measurement noise

with variance equals to 5× 10−4. Due to symmetry, heat sources with state

vectors (xo, yo, qh, c1, c2) and (xo,−yo, qh, c1, c2) yield identical temperature

distributions at measurement locations. To avoid ambiguity, the estimator is

constrained to positive y regions via the bounding region in (11). Addition-

ally, in cases involving multiple heaters within the estimator, the entries in

the state vector are rearranged in ascending order of qh at each MCMC step

to eliminate relabeling symmetry.

Various parameters influence the estimation process in heat conduction

problems, such as the correlation between states, the number of measure-

ments, sensor noise levels, the configurations of sensors and heaters, and

the presence of boundaries. Each of these factors can significantly influence

the estimation performance, emphasizing the necessity to investigate their

impact on the estimation. We initially explore the steady-state heat con-

duction problem in an unbounded domain, deferring the consideration of

boundary conditions to the latter part of this section.

The temperature field induced by a heater Ωh in an unbounded medium
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is given by the Green’s function solution of Eq. (1),

T (rrr) = −qh

∫∫
Ωh

G(rrr − ηηη)dA(ηηη), (14)

where qh has been assumed uniform and dA = dη1dη2 is the area of an

infinitesimal element within the heater, and G(rrr) is the two-dimensional

Green’s function for the Laplacian,

G(rrr) =
1

2π
log |rrr|. (15)

This solution is easily generalized to a collection of heaters, of course.

3.1. Multipole expansion of the temperature field

For the purpose of gaining some insight into the sensitivity of measure-

ments to states, we initiate our exploration by considering only a single heater

and leveraging the multipole expansion of Green’s function G(rrr − ηηη) about

the center of the heater, taken for the purposes of this discussion as ηηη = 0.

(In other words, the observation location rrr should be regarded as the position

relative to this center.) The multipole expansion is valid at the evaluation

points far from the heater’s center (compared to the size of the heater). We

are making that assumption in this initial analysis only to illustrate the sen-

sitivity of the temperature observations to heater parameters.
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The multipole expansion is given by (Eldredge, 2019)

2πG(rrr − ηηη) = log r − ηi
∂

∂ri
log r +

1

2
ηiηj

∂2

∂ri∂rj
log r − · · ·

= log r − ηi
ri
r2

+
1

2
ηiηj

(
δij
r2

− 2rirj
r4

)
− · · · ,

(16)

where summation over indices i and j are implied, and r = |rrr| = (r2x+ r2y)
1/2.

Here rx and ry denote the distance between any point and the center of the

heater in the x and y directions, respectively. Substituting this expansion

into the convolution integral (14) leads to the expression:

T (rrr) = − qh
2π

(
log r

∫∫
Ωh

dA− ri
r2

∫∫
Ωh

ηidA+

1

2

(
δij
r2

− 2rirj
r4

)∫∫
Ωh

ηiηjdA− · · ·
)
. (17)

The integral in the first term corresponds to the area of the heater, denoted as

A. The integral in the second term represents the first moment of the heater

and signifies the location of the heater’s center, identically zero by definition.

The integral in the third term represents the second moment tensor of the

heater about its center, denoted by Mij, and represents the size and basic

shape of the heater. Applying these concepts, the temperature distribution

can be simplified to

T (rrr) = − Q

2π
log r − qh

4π
Mij

(
δij
r2

− 2rirj
r4

)
+O(1/r3). (18)
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As evident from this equation, the temperature field exhibits non-linearity

concerning the relative position and linearity for the total heat generation

Q = qhA and the size and shape of the heater, described by Mij. However,

the temperature influence from the size and shape decay rapidly with distance

(∼ r−2).

To facilitate further analysis, we can linearize the temperature field at

every evaluation point, rrrα; α = 1, 2, · · · , d, imposed by state x about that

determined by the true state x∗, yielding

T (rrrα, x) ≈ T (rrrα, x
∗) +HHHα · (x− x∗). (19)

Here, HHHα ≡ ∂T (rrrα, x)/∂x|x∗ ∈ R1×n represents the αth row of the Jacobian

of the observation operator at the true state. Each row of the Jacobian

matrix signifies the sensitivity of a specific temperature sensor, α, to the state

vector. For a heater with a known shape, the partial derivatives in each row

can be analytically computed as follows: [∂T/∂η1(= −∂T/∂rx), ∂T/∂η2(=

−∂T/∂ry), ∂T/∂qh]. The Jacobian operator considering only the first two

terms in the multipole expansion then becomes

HHHα =

[ (
Q

2π

∂

∂rx
log rα +

qh
4π

Mij
∂

∂rx

(
δij
r2α

− 2rα,irα,j
r4α

))
,(

Q

2π

∂

∂ry
log rα +

qh
4π

Mij
∂

∂ry

(
δij
r2α

− 2rα,irα,j
r4α

))
,(

− A

2π
log rα − 1

4π
Mij

(
δij
r2α

− 2rα,irα,j
r4α

))]
,

(20)
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where α denotes the αth sensor corresponding to the αth row of HHH, and each

column ofHHH signifies the sensitivity of all sensors to a component of the state

vector.

By analyzing columns of HHH, one can predict several aspects of the es-

timation before performing the inference process. Intuitively, if a specific

column l in HHH is significantly smaller than others, it implies that the sensors

have minimal sensitivity to changes in the corresponding state component xl.

Consequently, xl will exhibit maximum uncertainty in the estimation. This

insight aligns with an alternate approach involving the singular value decom-

position of the Jacobian, HHH = USV T . The greatest uncertainty was shown

by Eldredge and Provost (2023) to be associated with the smallest singular

value of HHH, sn. The corresponding eigenvector vn indicates the mixture of

states for which the estimation faces the most ambiguity.

The foregoing analysis will serve an important role in the following sec-

tions to justify some observed behavior of heaters. Note that while multipole

expansion serves as a valuable tool for sensitivity analysis, its application for

temperature estimation in the domain, especially with larger heaters, may

yield less accurate results due to the growing importance of higher-order

terms in the expansion. Now that we have some intuition about how a heat

source behaves, we can begin our discussion on the results.
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3.2. Unbounded domain

From hereon, we no longer make assumptions about the proximity of

sensors to the heaters. The temperature field is influenced by the total heat

generated within the domain as well as the location of the heater. This

means that adjusting the heater’s strength and shape simultaneously, while

keeping the overall heat generation normalized by thermal conductivity given

by Q = qhA constant, does not alter the temperatures at sensor locations.

This conclusion is supported by the results obtained from assuming a circular

heater with radius c1 (setting c2 = 0 in the Fourier series) and estimating

state variables, x = (xo, yo, qh, c1), as follows. In this example, the true state

is given as x = (0.5, 0.8, 1, 0.5, 0) and the goal is to estimate the states of the

heater. Note that here c2 is given as a priori known, via a sharp Gaussian

distribution around zero mean and variance of 10−6.

Figure 2(a) illustrates the estimated position of the center of the heater

with close proximity to the true state represented with a black dot. The true

shape of the heater is also depicted in this figure with a red line. In con-

trast to the success in estimating the heater’s position, Figure 2(b) reveals

a strong correlation between the heater’s strength and its radius, evidenced

by the curve fit qhc
2
1 = C where C is a constant. This correlation is a fun-

damental characteristic; in the context of a circular heater with radius c1

and uniform strength qh, the total heat generated in the domain is denoted

as Q = qhA = πqhc
2
1. Consequently, maintaining the total heat generation

constant, i.e. a constant value for qhc
2
1, while adjusting qh and c1 results in
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consistent temperature patterns around the heater and an equally probable

combination of states for strength and shape. This behavior is further illus-

trated in Figure 3. The estimation in this figure corresponds to the mean

of the Gaussian mixture component with the highest likelihood, which is

x = (0.49, 0.8, 1.91, 0.36, 0).

x
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

y

-0.5

0.0

0.5

1.0

1.5

(a)

c1

0.0 0.5 1.0 1.5

q h
-1

0

1

2

3

qh ∝ c1
− 2

(b)

Figure 2: One true heater and one heater estimator with eight temperature sensors. The
heater is given to be circular with radius c1 and true state (0.5, 0.8, 1, 0.5, 0); (a) samples
generated with MCMC with the red curve representing the boundary of the heater, and

(b) generated samples on qh − c1 plot.

x
-2 -1 0 1 2

y

-1

0

1

2
truth

(a)

Sensor no.
1 2 3 4 5 6 7 8

T
−

T r
ef

-0.64

-0.62

-0.60

-0.58

-0.56

truth
estimate

(b)

x
-2 -1 0 1 2

y

-1

0

1

2
estimate

(c)

Figure 3: One true heater and one heater estimator with eight temperature
measurements characterized by five Gaussian components. The heater is given to be a

circle with radius c1 and true states (0.5, 0.8, 1, 0.5, 0). (a) true temperature contours, (b)
temperature distribution at the sensor locations, and (c) estimated temperature contours.

Hence, to ensure accurate inference in proximity to the true states, it is
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advisable to refrain from simultaneously estimating both qh and the heater’s

size due to their indistinguishability. For the current analysis, we first assume

the heater’s shape and size to be known with a high degree of confidence,

focusing solely on estimating the position of its center as well as its strength

(three states to be estimated). This prior knowledge about any known state

is incorporated into the estimation framework by imposing sharp Gaussian

priors centered around their true values with variance given as 10−6. We

then assess the position and shape inference, giving the heater’s strength as

known. For the single heater estimation, the heater is centered at (xo, yo) =

(0.5, 0.8) with unit strength and shape coefficients (c1, c2) = (0.5, 0.25), unless

otherwise stated.

3.2.1. Effect of the number and arrangement of sensors

The number of sensors is expected to have a significant effect on the

accuracy of the inference problem. Well-distributed sensors covering different

regions of the domain can provide a more comprehensive understanding of

the temperature field. If the number of sensors is less than the states to be

estimated, the problem becomes rank deficient, indicating that the available

information is insufficient to uniquely identify all the states. This conclusion

becomes evident in Figure 4, where it is shown that two measurements are

inadequate for accurate state estimation, whereas three measurements prove

sufficient. In the case of two temperature sensors, the MCMC samples are

distributed along an arc, holding equally probable states in the Euclidean
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space.

The analysis of the covariance matrix for systems with different numbers

of measurements provides valuable insights into estimation accuracy. Prin-

cipal Component Analysis (PCA), a prominent statistical technique, is em-

ployed for dimensionality reduction while preserving essential patterns. PCA

utilizes eigenvalue decomposition on the covariance matrix, where eigenvec-

tors signify directions of maximum uncertainty in the data, and the square

root of eigenvalues denotes the magnitudes of deviation along these direc-

tions. Specifically, the largest eigenvalue of the covariance matrix corresponds

to the greatest variance in the direction with the highest uncertainty.

The covariance matrix of the Gaussian mixture component with the high-

est likelihood is selected for analysis. Comparing the square root of the max-

imum eigenvalues of the covariance matrices with two and three sensors in

Figure 4(c) reveals a substantial drop, indicating a significant improvement

in estimation precision with the addition of the third sensor. Interestingly,

beyond three sensors, the maximum eigenvalue shows minimal variation, sig-

nifying that adding more sensors does not lead to a substantial enhancement

in the system’s overall estimation.

Figure 5(a),(c) display the true as well as estimated temperature contours

for the case of three sensors positioned along the x axis. The calculated es-

timated states, (0.5, 0.8, 1.01, 0.5, 0.25), closely align with the actual states,

indicating a high level of accuracy in the estimation process. Additionally,

Figure 5(b) provides a comparison of temperature distributions at the mea-
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Figure 4: One true heater and one heater estimator characterized by five Gaussian
components with (a) two and (b) three temperature measurements. The blue dots on the
graph represent samples drawn from MCMC. The black circle indicates the true position

of the heater’s center, while the black line illustrates the direction of maximum
uncertainty at the true heater location. The boundary of the heater is shown with a red

curve. (c) the maximum uncertainty for varying number of sensors.

surement locations, clearly illustrating the remarkable agreement between

the temperatures derived from both the truth and the estimation results.

This consistency underscores the effectiveness of the estimation approach in

capturing the intricate temperature patterns within the system.

Figure 6 shows the ellipsoid for the covariance matrix belonging to the

Gaussian component with the highest likelihood centered at the true state.

23



x
-2 -1 0 1 2

y

-1

0

1

2
truth

(a)

Sensor no.
1 2 3

T
−

T r
ef

-0.80

-0.75

-0.70

(b)

x
-2 -1 0 1 2

y

-1

0

1

2
estimate

(c)

Figure 5: One true heater and one heater estimator with three temperature
measurements characterized by five Gaussian components. The true state is given as
(0.5, 0.8, 1, 0.5, 0.25) with a priori known shape. (a) true temperature contours, (b)

temperature distribution at the sensor locations, and (c) estimated temperature contours.

This figure indicates that most of the uncertainty is in the direction of

qh, proving the fact that a wider range of heat strength will give temper-

ature results in the specified sensor uncertainty at the measurement loca-

tions. The direction of greatest uncertainty is calculated to be (xo, yo, qh) =

(−0.13,−0.003,−0.95).

Consider that due to the fundamental principles of the temperature Pois-

son equation, heat diffuses away from the source in a semi-circular pattern.

Near the heat source, the temperature contours might be more concentrated

and distorted, reflecting the intricate geometry of the heat source. As the

distance from the source increases, the contours tend to smooth out and be-

come more uniform. This phenomenon is pictured in Figure 1(b) showcasing

three non-circular heaters. Away from these heat sources, the temperature

contours form a smooth pattern, obscuring the shapes of the heaters. As

such, if sensors are arranged in a circular formation centered at the heater,

the temperature difference between sensors becomes minimal, providing lim-
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ited information about the system. Instead, selecting sensor arrangements

that capture a wider range of temperature variations is crucial for enhancing

the quality of the estimation. In pursuit of this, sensors are aligned along

the x axis in the rest of this paper.

x
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q h
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0.780.790.800.81
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Figure 6: Direction of maximum uncertainty for one true heater and one heater
estimator with three temperature measurements.

3.2.2. Effect of heater size

Understanding how the physical dimensions of the heater influence the

reliability and accuracy of the inferred states is essential for robust and

trustworthy results. In this context, we focus specifically on the variation

in heater size while maintaining the center and heat strength constant at

(xo, yo, qh) = (0.5, 0.8, 1). Figure 7(a)-(c) depicts the samples generated using

MCMC for heaters with varying sizes but consistent shapes, by maintaining

a constant ratio of c1/c2 = 2. The outcomes together with the maximum
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Figure 7: One true heater and one heater estimator with three temperature
measurements, characterized by five Gaussian components for different heater sizes (a)

(c1, c2) = (0.5, 0.25), (b) (c1, c2) = (0.28, 0.14), (c) (c1, c2) = (0.14, 0.07). The true
strength for cases (a)-(c) is equal to qh = 1 corresponding to the total heat generation of
Q = 0.98, 0.31, and 0.077 respectively. (d) estimation results for (c1, c2) = (0.14, 0.07)
with Q = 0.31. The red curve in all cases illustrates the boundary of the heater. (e)
maximum uncertainty for heaters corresponding to cases (a)-(d). The blue circles

correspond to cases (a)-(c) where the true strength is the same, while the red circle is
associated with the case (d) where the total heat is kept consistent. (f) samples on
x− qh plot for cases (b) and (d). Black circles in all cases represent the true state.
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length of uncertainty depicted in Figure 7(e) (blue circles) indicate greater

uncertainty in estimation for the smaller heater. As anticipated, inference

accuracy improves when the boundary of the heater is closer to the sensors,

underscoring the critical role of sensor proximity in enhancing the quality

of estimation results. Furthermore, maintaining a consistent strength while

decreasing the heater’s size translates to a reduced total heat generated in

the domain (refer to the total heat generation indicated near each circle in

Figure 7(e)). Consequently, temperatures at the measurement locations de-

crease correspondingly. This reduction in temperature amplifies the ratio of

sensor noise to the temperature at its location, leading to a degradation in

estimation performance as heater shrinks.

In another scenario, the size of the heater was reduced from (c1, c2) =

(0.28, 0.14) to (c1, c2) = (0.14, 0.07) while maintaining its total heat gener-

ation constant at Q = 0.31. The results depicted in Figure 7(b),(d) clearly

demonstrate that reducing the heater’s dimensions while keeping its total

heat constant has minimal effect on estimating the center of the heaters.

However, the heater’s size significantly influences the uncertainty in qh. Fig-

ure 7(e) provides visual evidence supporting this observation. The amplified

uncertainty associated with the smaller heater manifests in the augmented

sample variances portrayed in Figure 7(f) for qh. Eq. (20) provides an expla-

nation for this observation. In this equation, the last column of the Jacobian

matrix corresponds to the sensitivity of measurements to strength qh. When

considering two heaters with consistent Q but differing sizes, it becomes evi-
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dent that the last column of the Jacobian matrixHHH is smaller for the smaller

heater. This is attributed to the reduced area A and moment Mij associated

with the smaller heater in comparison to its larger counterpart. This obser-

vation highlights that the smaller heater exhibits lower sensitivity to qh than

the larger one. Consequently, this disparity results in increased uncertainty

in estimating qh for the smaller heater, as visually depicted in Figure 7(f).

3.2.3. Effect of sensor noise

In this section, we investigate the impact of sensor noise levels on the

accuracy of estimation. One true heater and one heater estimator are used

for this part while the true states of the heater are set at (xo, yo, qh, c1, c2) =

(0.5, 0.8, 1, 0.5.0.25). The noise level denoted as σε varies from 5 × 10−4 to

5× 10−3 and further to 1× 10−2. The findings in Figure 8 reveal that as the

noise level increases, samples become more dispersed, particularly away from

sensors. These results indicate a systematic deviation from the true values,

suggesting a biased error in estimation as the noise level escalates. The

analysis of these biased errors provides valuable insights into the limitations

of the estimation method under higher noise conditions.

3.2.4. Estimating the shape

In the context of shape estimation, the positions and strengths of the

heaters are given as a priori known, and the focus is on estimating their

shapes. Figures 9 and 10 showcase remarkably accurate results, aligning

closely with the true shapes. Notably, the boundaries of the true and esti-
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Figure 8: One true heater and one heater estimator with three temperature
measurements, characterized by five Gaussian components for sensor noise equals to (a)
5× 10−4, (b) 5× 10−3, and (c) 1× 10−2. The red curve illustrates the boundary of the

heater.

mated heaters precisely overlap, as depicted in Figure 10(b).
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Figure 9: One true heater and one heater estimator with three temperature
measurements. The position and strength of the heater are known and its shape is

inferred. The true state is (0.5, 0.8, 1, 0.5, 0.25).
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Figure 10: One true heater and one heater estimator with three temperature
measurements. The position and strength of the heater are known and its shape is

inferred. (a) samples on c1 − c2 plot and (b) the red curve illustrates the boundary of the
heater, with the solid line representing the true shape and the dashed line indicating the

estimated shape. The black circles illustrate the true state.

3.2.5. Estimating position and shape

In certain applications, the generated heat strength within a domain is

known, and the objective is to determine both the position and shape of

the heating region. In this scenario, the unknown state vector consists of

the parameters (xo, yo, c1, c2). The true state is given as (xo, yo, qh, c1, c2) =

(0.5, 0.8, 1.0, 0.5, 0.25) in this section. The outcomes of this estimation pro-

cess are illustrated in Figure 11. Figure 11(a) displays the MCMC-generated

samples alongside the true heater shape as a solid red curve, with the black

circle denoting the true state. This figure reveals a precise estimation of the

heater’s position along the y-axis. Notably, excellent accuracy is also ob-

served for the variable c1. However, the samples exhibit dispersion from the

true position, primarily in the positive x direction. By employing PCA, the

direction of maximum uncertainty is determined to be a combination of x
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and c2. Figure 11(b) demonstrates the MCMC samples plotted on the x− c2

plane, highlighting the direction of maximum uncertainty in the estimation

process.

This observed behavior can be elucidated by examining the estimated

shape corresponding to the Gaussian component displaying the most devi-

ation from the true state. As illustrated by the red dashed curve in Figure

11(a), this shape appears semi-circular, with a radius very close to the true

c1. However, its center is positioned away from the true location in the x

direction. The uncertainty envelope of the shape corresponding to all gen-

erated MCMC samples is pictured in Figure 11(a) as a shaded green region.

Notably, in the Fourier representation of the shape defined in Eq. (3), the

term c2e
i2θ introduces a second harmonic component to the shape’s boundary.

When c2 is non-zero, this term creates a deformation in the shape, deviating

from a circle with radius c1. As elucidated in previous sections, tempera-

ture contours do not preserve the deformed shape of the source away from

the source itself. Consequently, the contours become circular away from the

source, explaining the consistent temperature distribution observed at the

sensor locations for the two heater shapes depicted in Figure 11(a). There-

fore, when inferring the heater’s position and shape, the achieved accuracy

is limited.
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Figure 11: One true heater and one heater estimator with four temperature
measurements. The heater’s strength is known, while its position and shape are inferred.

(a) Samples generated with MCMC, represented by five Gaussian components. The
boundaries of the heater shape for the true state and for the Gaussian component

corresponding to the state with the most deviation from the true state are depicted by
solid and dashed red curves, respectively. The shaded region shows the uncertainty

envelop for shape estimation. (b) samples on x− c2. The black dots represent the true
state and the black line illustrates the direction and length of maximum uncertainty

which mixes x and c2.

3.2.6. Inference of multiple heating regions

The preceding sections have primarily addressed the estimation of a sin-

gle heater, assuming certain combinations of variables among the center’s

location, strength, and shape as a priori known. In this section, we shift our

focus to the inference of multiple heaters, where the shapes are assumed to

be a priori known and thus assigned sharp Gaussian priors. As a specific

example, we consider the scenario where two heaters are placed within the

domain. The inference problem involves determining the positions of the

heaters’ centers and their respective strengths. It is important to note that

in the case of multiple heaters, the inverse problem may yield more than

one plausible solution and it is worth statistically looking into them. The
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true heaters consist of (x0,1, yo,1, qh,1, c1,1, c2,1) = (0.5, 0.8, 1.0, 0.28, 0.14) and

(x0,2, yo,2, qh,2, c1,2, c2,2) = (−0.6, 0.6, 2.0, 0.2, 0.0) with measurement noise equals

to σε = 5× 10−4 as for the previous section. Various number of sensor mea-

surements are used to investigate their effect on the inference performance.

The MCMC results are presented in Figure 12 for scenarios involving 8,

10, and 12 temperature measurements. The findings reveal that an increase

in the number of temperature measurements, from 8 to 12, leads to a higher

convergence rate toward the true state. In contrast to the cases with 8 and

10 sensors, the configuration with 12 sensors identifies the true states as

the most probable states, exhibiting a greater likelihood. Upon comparing

the true and estimated heaters in Figure 12(a), it becomes evident that the

inference with 8 sensors results in an inversion of the two heaters. This

inversion is attributed to assigning a very high value of qh to the estimated

circular heater and a very low qh to the larger heart-shaped heater, leading

to a similar temperature distribution at the sensor locations. As the number

of measurements increases from 8 to 10 in 12(b), the correct order of heaters

is established, and the exploration of the state space improves, generating

several samples close to the true states. However, only the scenario with 12

sensors manages to produce a sufficient number of samples precisely at the

true states associated with the greatest likelihood.

It is important to note that, in all scenarios, the inference reveals mul-

tiple possible solutions, each associated with a distinct peak likelihood, as

illustrated in Figure 12(a). The mode with the maximum likelihood is consid-
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Figure 12: Two true heater and two heater estimators with varying numbers of
measurements: (a) 8 sensors, (b) 10 sensors, and (c) 12 sensors. The heaters’ shapes are
known, while their positions and strengths are inferred. The solid red curves represent

the ground truth heaters, while the dashed shapes depict the estimated heaters.

ered superior among all possible solutions. Notably, the log-posterior values

vary significantly, ranging from −1.23 to −39.8, indicating that the MCMC

sampling may not have reached equilibrium. Employing the concept of max-

imum likelihood, we identify the mean of the Gaussian component with the

highest likelihood, which is found to be (xo,1, yo,1, qh,1) = (0.5, 0.79, 1.0) and

(xo,2, yo,2, qh,2) = (−0.61, 0.59, 1.97). The temperature field corresponding to

the component with the highest likelihood is compared with the true tem-
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perature field in Figure 13(a),(c), while Figure 13(b) illustrates the true and

estimated temperature distribution at the sensor locations. Notably, there

is a robust correlation between the heat densities of the two heaters. The

decrease in strength for one heater corresponds to an increase in strength

for the other heater, ensuring a consistent temperature measurement at the

sensor locations. The robust agreement between the true and estimated tem-

perature results further attests to the reliability of the inference process.
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Figure 13: Two true heaters and two heater estimators with twelve temperature
measurements. The heaters’ shapes are known, while their positions and strengths are
inferred. (a) true temperature field, (b) the comparisons of sensor values between truth

(filled circles) and estimate (open circles), (c) the estimated temperature field.

The distance between the two heaters may influence the inference prob-

lem. To explore this, we bring the two heaters closer together in the x

direction while maintaining the average distance between them constant,

(xo,1 + xo,2)/2 = −0.05. Figure 14 displays the outcomes, where each line

corresponds to a specific distance between the two heaters. The results indi-

cate that, generally, as the heaters approach each other, there is an increase

in uncertainty in estimating the strength of the heaters, as evident in the

right panel of Figure 14. Additionally, with closer heaters, multiple solutions
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emerge. For instance, Figure 14(e) presents the true heaters alongside the

best estimate with the highest likelihood, represented by solid and dashed

red curves, respectively. In this case, the order of heaters has switched with

displacement from the true centers’ locations. The estimated heat densities

qh also deviate from the truth, as depicted in Figure 14(f).

3.3. Inference of a single heater with sensors placed on an adiabatic wall

Earlier sections addressed the inference problem of identifying one or mul-

tiple heat sources in an unbounded domain through temperature measure-

ments. However, in practical scenarios, sensors are typically situated on a

wall or a boundary. Consequently, a pertinent question remains unexplored:

How do boundary conditions impact the performance of inference? If they

do, is the influence positive or negative? To address these queries, we delve

into the inverse problem of estimating the position and strength of a single

heater centered at (xo, yo) = (0.5, 0.8) with unit strength and a known shape

a priori characterized by (c1, c2) = (0.5, 0.25) as the true states. Sensors are

strategically positioned horizontally on an adiabatic wall, as illustrated in

Figure 15 by a prominent black line beneath the square sensors. The mea-

surement noise is set at σε = 5 × 10−3, akin to Figure 8(b). All conditions

are similar to those of Figure 8(b) except that here, the sensors are placed

on an adiabatic wall.

The results of the MCMC samples are visualized in Figure 15. Two

distinct solutions emerge: one closely aligns with the true state, while the
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Figure 14: Two true heaters and two heater estimators with twelve temperature
measurements. The heaters’ shapes are known, while their positions and strengths are
inferred. The figures on the left panel represent the samples generated with MCMC,
represented by five Gaussian components, for three different spacing between the two
heaters. The true boundaries of the heaters are depicted by solid red curves, while the
estimated heater modes with the greatest likelihood are illustrated by dashed curves.

The right panel shows samples on qh,1 − qh,2 corresponding to their left case. The black
dots represent the true state and the black line illustrates the direction of maximum

uncertainty.
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other positions the heater close to the wall. In Figure 16, panels (a)-(c)

showcase temperature contours and distributions at the sensor locations for

the first solution corresponding to the estimated heater shown in Figure 15

with a dashed red curve, demonstrating excellent agreement with the ground

truth. Conversely, the nature of the diffusion problem manifests in the second

solution, where semi-circular temperature contours, nearly perpendicular to

the wall, are observed (Figure 16(d)). Despite the smaller heat strength

in the second solution, it yields identical temperature distributions at the

sensor locations as the first solution. However, this second solution can be

disregarded as it results in the heater intersecting the wall, which is physically

implausible. Such spurious solutions can be easily eliminated by tailoring the

bounding region in the prior.

Notably, the estimation for the unbounded domain exhibits greater un-

certainty compared to the scenario where sensors are positioned along an

adiabatic wall (compare the spread of MCMC samples in Figure 8(b) and

Figure 15). That can be attributed to higher temperatures at the location of

sensors if they are placed on an adiabatic wall which results in lower noise-

to-temperature ratios. In other words, the presence of the adiabatic wall can

potentially enhance the estimation of the heater’s characteristics.

4. Conclusion

This paper addresses the Bayesian inference of two-dimensional steady-

state heat conduction in the presence of unknown heat sources. The goal is to
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Figure 15: One true heater and one heater estimator with three temperature
measurements, characterized by five Gaussian components for sensor noise equals to

5× 10−3. Sensors are placed on a wall with an adiabatic boundary condition. The red
curve illustrates the boundary of the heater.
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Figure 16: One true heater and one heater estimator with 3 temperature measurements.
The heater’s shape is known, while its position and strength are inferred. (a) true

temperature field, (b) the comparisons of sensor values between truth (filled circles) and
estimate (open circles), and (c) the estimated temperature field. Panels (a)-(c)
correspond to the estimated heater depicted in Figure 15, while panel (d) is the

temperature contour generated by the second solution.

infer the locations of the center of the heaters, along with their strengths, sizes

and shapes, assimilating temperature observations in Euclidean space. The

39



first three coefficients of the Fourier series in complex notation are considered

in this paper to represent the heater’s position and shape. The Markov

Chain Monte Carlo (MCMC) method is employed to draw samples from

the posterior distribution, and the random-walk Metropolis-Hasting (MH)

algorithm is utilized to traverse the state space. To enhance exploration, the

concept of parallel tempering is incorporated, allowing for potential exchange

between chains. The inference problem is investigated in both an unbounded

domain and a domain bounded at a wall with adiabatic boundary conditions

where evaluation points are mounted.

A strong correlation exists between the heat source strength, qh, and the

area of the heater, A, mathematically expressed as Q = qhA. This correlation

underscores the behavior of the estimator in predicting infinite combinations

of qh and A that yield identical temperature observations at the evalua-

tion points. This phenomenon highlights the potential for multiple solutions

when estimating the total heat generation. Consequently, it is advisable

to refrain from simultaneously estimating both the strength and the size of

the heater. In our analysis, one of these variables is considered as a priori

known, with a sharply defined Gaussian distribution. Furthermore, it is ob-

served that when the number of temperature sensors is less than the number

of unknown states, the problem becomes rank deficient, leading to multiple

solutions with high probability. By predefining the shape and dimensions of

the heater as prior knowledge and deducing the location and strength of its

center, adjusting the area while upholding a consistent total heat generation
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minimally affects the estimation of the heater’s center. Nevertheless, when

dealing with smaller-sized heaters, there is increased uncertainty surround-

ing qh. This trend arises from the reduced heating moments associated with

smaller heaters, contributing to the heightened uncertainty in estimating

their strength.

The diffusive properties inherent in the steady-state heat conduction

equation tend to smooth out temperature contours away from the heater’s

boundary. Consequently, when estimating the position and shape of the

heater, this smoothing effect can lead to multiple solutions, causing ambigu-

ity between a circular heater and the actual heater with a deformed shape.

Furthermore, in the presence of multiple heaters, the convergence towards

equilibrium slows down, and the emergence of multiple candidate solutions

becomes more common, especially when the true heaters are positioned close

to each other.

When a heater is positioned within a domain bounded by a wall beneath

the sensors, featuring Neumann boundary conditions for temperature, the

estimation tends to achieve higher accuracy compared to scenarios where

the heater is placed in an unbounded domain. This observation underscores

the superior performance of estimation for heaters in confined domains, as

they provide more information to the estimator. Investigating the impact

of boundary locations on estimation performance presents an intriguing av-

enue for research. Boundaries situated far from the state-observation pair

may exert lesser influence on the temperature distribution near the pair. A
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notable challenge in scenarios involving multiple heaters within the domain

lies in the computational demands of Markov Chain Monte Carlo (MCMC)

methods when exploring high-dimensional state spaces. This challenge can

be mitigated by employing low-dimensional spaces through the estimation of

fewer heaters. Eldredge and Provost (2023) successfully addressed this chal-

lenge in inferring point vortices from pressure measurements. When fewer

heaters are involved in the estimation process, one might observe a tendency

for like-sign heaters to aggregate in proximity to each other.
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