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Abstract We are grateful to all discussants for their invaluable comments, suggestions, questions, and

contributions to our article. We have attentively reviewed all discussions with keen interest. In this rejoin-

der, our objective is to address and engage with all points raised by the discussants in a comprehensive

and considerate manner. Consistently, we identify the discussants, in alphabetical order, as follows: CJK

for Cronie, Jansson, and Konstantinou, DS for Stoyan, GP for Grabarnik and Pommerening, MRS for

Myllymäki, Rajala, and Särkkä, and MCvL for van Lieshout throughout this rejoinder.

1 Introduction

In our article, we considered marked spatial point processes on two frequently examined state spaces,

namely, R2 and linear networks; the latter increasingly got attention during the past two decades (Moradi,

2018; Baddeley et al., 2021). Concerning marks, we focused on situations where the marks are qualitative,

quantitative, or non-scalar, which we referred to as discrete and integer-valued marks, real-valued, and object-

valued marks. For practical applications, examples of object-valued quantities include the demographic

evolution for different provinces of a country as in Ghorbani et al. (2021, Figure 1) or the total crown

defoliation per year for a set of trees as in Eckardt et al. (2023, Figure 4). In the province data example, the

potential object of interest might be determining the heterogeneity/correlation of the curves across space,

specifically whether nearby provinces exhibit greater similarity in their demographic evolution. For the tree

example, a potential research question could involve determining the spatial correlation or the variation of

total crown defoliation across a forest. Leaving point process models aside, given the constraints of space,

we explicitly focused on mark summary characteristics, which play undeniable roles in marked point process
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analysis, for investigating and describing the (space-dependent) distributional properties of marks. Note

that the empirical behavior of mark summary characteristics can be compared to an expected one under a

null model, e.g. independent marking.

For marked spatial point processes in R2, we presented cross/dot-type summary characteristics, mark-

weighted summary characteristics, various mark correlation functions, and frequency domain approaches. In

the case of marked spatial point processes on linear networks, we proposed novel higher-order cross/dot-type

summary characteristics, mark-weighted summary characteristics, and various mark correlation functions.

The discussants have greatly enriched our work by bringing clarity to it and highlighting crucial points that

have not been covered in our article, given the constraints of space. More specifically, CJK discussed mark

spaces, product density functions, marked intensity reweighted stationarity, and general mark-weighted

summary characteristics. DS paid the most attention to our article’s applications and statistical interpreta-

tions. GP discussed cases where points are restricted to sub-spaces beyond the case of linear networks and

pointed to practical applications as well as the consideration of compound mark functions instead of several

single marks attached to a point. MRS thoroughly discussed mark point process models where the marks

are either qualitative or quantitative. Finally, MCvL discussed cross/dot-type summary characteristics for

multivariate random measures, asked about the limitations of mark correlation functions to stationary cases

and IRMPS models for marked point processes on linear networks, and discussed non-parametric estimation

of cross/dot-type higher-order summary characteristics and intensity functions when state space is R2. In

this rejoinder, we provide further clarification on the points raised by the discussants.

2 State spaces, stationarity, and restriction of the space

Let X “ tpxi,miqu
N
i“1, N ă 8, be a marked spatial point process with a spatial domain S and a mark space

M, where, in our article, S is either R2 or a linear network; both spatial and mark spaces are complete

separable metric (csm) spaces. CJK discusses representative instances of the mark space M, aligning closely

with the content we presented in our article. We emphasize that, in all our considered cases, the mark space

M is csm, and object-valued marks refer to non-scalar marks such as functions.

Turning to stationarity-related concerns for marked point processes, GP adds that, based on their

experience, inhomogeneity is not that common in nature, and incorporating it in the undertaken analysis

may mask important interactions between events in question. In this regard, we agree with GP, especially

in applications of forestry with small-sized observed windows. However, assessing this in broader contexts

and other applications may pose challenges, particularly when dealing with a linear network as the state

space; linear networks often inherently exhibit non-uniform structures, imposing additional complexity to

the evaluation process. Some of the cross/dot-type inhomogeneous summary characteristics, such as K-

and J-functions, regardless of state space, rely on the assumption that the underlying marked spatial

point process X is second-order intensity-reweighted stationary or intensity-reweighted moment stationary

processes. For ease of notation and especially as, in our article, we did not discuss estimators of mark
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summary characteristics, we presented such properties for the unmarked version of X, denoted as X̆.

Nevertheless, CJK adequately presented the appropriate notation for such classes of spatial point processes

in R2 and on linear networks in the framework of the marked spatial point process X, which shed more

light on these concepts for interested readers.

MCvL asked if mark correlation functions such as those presented in Tables 1 and 3 of our article,

which in practice are applicable in the case of real-valued marks, are inherently tied to stationarity. These

summary characteristics, such as Stoyan’s mark correlation function κmm, are, given a fixed interpoint

distance r, simply functions of the marks and do not account for the spatial distribution of points. In an

inhomogeneous situation, for different interpoint distances r, the proportions of points satisfying dpx, yq “ r

are influenced by the spatial distribution of points. Thus, one might need to take into account not only the

mark distribution of nearby points but also the spatial distribution of the points in question. In an effort

to do so, mark-weighted K-functions are proposed by Penttinen et al. (1992) and Ghorbani et al. (2021) as

mentioned by CJK in their discussion. In our article, we have also proposed mark-weighted K-functions for

point processes on linear networks. However, the interpretation of mark-weighted summary characteristics

might not be easy as different sources of variation exist, including pairwise interactions between points and

between marks.

Concerning IRMPS models for point processes on linear networks, Cronie et al. (2020) showed that

Poisson processes are one example of such models. Additionally, they identified the essential conditions

under which log-Gaussian Cox point processes on linear networks can be classified as IRMPS. In fact,

they showed that for the log-Gaussian Cox point process X on linear network L with a random intensity

measure ΛpAq “
ş

A λpuqd1u “
ş

A exptZpuqud1u, A Ď L, where Z is a Gaussian random field on L with a

mean function µpuq and a covariance function Cpu, vq, u, v P L, X becomes IRMPS if

Cpu1, u2q “ CpdLpu1, uq, dLpu2, uqq P R, u1, u2 P L, (1)

for any u P L and some function C. In other words, the covariance function Cpu1, u2q should only depend on

the distances between u1, u2 and an arbitrary point u P L; these are recently extended to spatio-temporal

settings by Moradi and Sharifi (2024). The development of IRMPS models is still in its early stages. Besides

the information provided on log-Gaussian Cox point processes, to the best of our knowledge, there have been

no additional findings in the literature regarding models that meet the IRMPS criteria or the fundamental

conditions required for certain models to qualify as IRMPS. Thus, at present and in theoretical forms, our

proposed higher-order summary characteristics can be calculated for Poisson processes and log-Gaussian

Cox point processes under condition (1). However, Cronie et al. (2020) and Moradi and Sharifi (2024) showed

that, in practice, their proposed J-functions are generally able to detect clustering/regularity/randomness

in practice.

Lastly, GP addressed the spatial limitation beyond linear network settings by emphasizing practical

scenarios where a collection of (disjoint) sub-spaces within a larger observation window is considered the
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state space. Practical examples they provided included nesting sites of birds on trees or rocks within a

larger landscape, as well as the utilization of geostatistical covariates to impose spatial restrictions. These

examples seem to us quite interesting; however, to the best of our knowledge, they have not received much

attention within the literature, and determining how to proceed in such scenarios may not be immediately

clear. As GP also noted, in these cases, interpreting the results may pose challenges, and in our opinion,

additional insights from practical experts might be necessary.

3 Mark filtering and non-parametric estimators

Throughout our article, we did not discuss estimators for the summary characteristics we presented despite

having estimated them in our applications. This was highlighted by CJK, GP, and MCvL. In particu-

lar, MCvL, in her discussion, presented non-parametric estimators for cross-type inhomogeneous nearest-

neighbor distance distribution function H inhom
ij prq and intensity function λipxq, x P Xi. Below, for marked

point processes inR2, we briefly go through non-parametric estimators for some of the summary characteris-

tics presented in our article. We also comment on estimators for the presented mark summary characteristics

in settings where linear networks are the state space.

The cross-type K-function, presented in equation (4) of our article, is usually estimated via

pKinhom
ij prq “

1

|W |

ÿ

xPXi

ÿ

yPXj

epx, yq1tdpx, yq ď ru

λipxqλjpyq
, (2)

where epx, yq is en edge-correction and |W | is the size of the window where the marked point process X

is observed (Møller and Waagepetersen, 2004). An estimator for the dot-type K-function can similarly

be achieved. We add that these estimators can, in practice, be evaluated via functions Kcross.inhom and

Kdot.inhom in the R package spatstat (Baddeley et al., 2015); few edge corrections are accessible (Baddeley

et al., 2015, Chapter 7). For cross-type inhomogeneous nearest-neighbor distance distribution function

H inhom
ij prq, given in equation (6) in our article, MCvL presented an estimator for H inhom

ij prq as

pH inhom
ij prq “ 1 ´

¨

˝

ÿ

xPXiXWar

1

λipxq

˛

‚

´1
ÿ

xPXiXWar

1

λipxq

ź

yPXjXbpx,rq

„

1 ´
inf λj
λjpyq

ȷ

, (3)

which was originally presented by Cronie and van Lieshout (2016); bpx, rq stands for a disc of radius r

centered at x, and War is an r-reduced window defined as

War “ tu P W : dpu, BW q ě ru ,

where BW is the border of window W . An estimator for F inhom
j prq is given as

pF inhom
j prq “ 1 ´

1

|G X War|

ÿ

uPGXWar

»

–

ź

xPXjXbpu,rq

„

1 ´
inf λj
λjpyq

ȷ

fi

fl , (4)



Title Suppressed Due to Excessive Length 5

where G is a fine grid defined over W (van Lieshout, 2011). Having these two estimators, one can estimate

the cross-type J-function. We add that, in practical situations, one can make use of function Jinhom.cross

from the R package spatstat (Baddeley et al., 2015). It’s worth noting that the inhomogeneous J-function

extends beyond pairwise interactions, and it might be more precise than the K-function in certain scenarios.

In fact, as pointed out by DS, in the example of influenza virus proteins, the cross-type J-function seems

to deviate from the theoretical value for a marked Poisson process quicker than the cross-type K-function.

This might have happened due to the construction of J-functions going beyond pairwise interactions, cf.

van Lieshout (2011, Figure 1). The performance of non-parametric estimators for K- and J-functions may

also play a role.

Looking at the discussed estimators, it is evident that we must first estimate the intensity functions.

Note that in real scenarios, we do not have access to the true intensity functions, and thus, one needs

to estimate them in advance. We add that based on our experience with at least K-functions for point

processes on planar spaces, simulation studies have revealed that utilizing the true intensity functions in

the estimators of K-functions results in a reduction in performance. Kernel estimation undeniably stands

out as the primary method for non-parametric intensity estimation; this was also highlighted by MCvL.

Within the literature, for a given unmarked point pattern x “ tx1, x2, . . . , xnu the most frequently used

kernel-based intensity estimators are

pλU
σ puq “

1

cσ,W puq

n
ÿ

i“1

Kσpu ´ xiq, u P W, (5)

and

pλJD
σ puq “

n
ÿ

i“1

Kσpu ´ xiq

cσ,W pxiq
, u P W, (6)

where Kσ is a symmetric density function on R2 with bandwidth σ, and

cσ,W puq “

ż

W
Kσpu ´ vqdv, u P W, (7)

is the mass of the kernel centred at u P W , playing the role of an edge corrector to compensate for the

lack of information outside W . The estimator (5), which is unbiased if the true intensity is constant, is

often called uniformly-corrected, and (6), which conserves mass, is called Jones-Diggle (Baddeley et al., 2015,

Chapter 6). In situations where the observed window is not regular, according to Baddeley et al. (2022),

these two estimators may suffer from tunnelling mass as well as simultaneous under and over-smoothing.

Thus, Baddeley et al. (2022) proposed a kernel-based intensity estimator where intensity is estimated via

a transition probability density of a Brownian motion on W that respects a boundary. Their estimator is

given as

pλtpuq “

n
ÿ

i“1

Ktpu|xiq, (8)
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where t “ σ2, σ is the smoothing bandwidth, and Ktp¨|xiq is the heat kernel. The performance of the above

intensity estimators heavily depends on the smoothing bandwidth, according to which a small bandwidth

leads to low bias and high variance, whereas a large bandwidth yields high bias and low variance. Different

bandwidth estimators, based on different perspectives, are proposed within the literature: Diggle’s approach

Diggle (1985), likelihood cross-validation (Loader, 2006), Scott’s rule-of-thumb (Scott, 2015), and Cronie

and van Lieshout’s criterion (Cronie and Van Lieshout, 2018). Since a single smoothing bandwidth may

not lead to an estimate which performs equally well all over the observed window, adaptive kernel-based

intensity estimators are proposed, which use a set of locally estimated bandwidth (Abramson, 1982; Davies

and Baddeley, 2018; Rakshit et al., 2019; van Lieshout, 2021). Alternative to kernel-based intensity esti-

mators are Voronoi-based estimators, which are adapted to the local variability of the underlying point

process and generally outperform kernel-based estimators; see Barr and Schoenberg (2010); Moradi et al.

(2019); Mateu et al. (2020) for details. Nevertheless, according to our experience, kernel-based estimators

with less variability give rise to more reliable estimates of the summary statistics; Cronie et al. (2020)

and Moradi and Sharifi (2024) used kernel-based intensity estimators with Scott’s rule-of-thumb when es-

timating J-functions. A comprehensive practical review of non-parametric intensity estimators based on

real-data scenarios, with all examples being reproducible, is presented by Mateu and Moradi (2024).

Turning to mark correlation functions, the numerator of the tf -correlation function

κtf prq “
E

“

tf pmpxq,mpyqq
ˇ

ˇx, y P X
‰

ctf
, dpx, yq “ r, (9)

is estimated via

ř‰
x,yPX tf pmpxq,mpyqqKpdpx, yq ´ rqwpx, yq

ř‰
x,yPX Kpdpx, yq ´ rqwpx, yq

, (10)

where K is a kernel function on the real line and wpx, yq is an edge correction factor (Baddeley et al.,

2015, Chapter 15); the normalization factor ctf is the sample average of tf pmpxq,mpyqq taken over all

x, y P X. It’s often noted in the literature that these estimators can be computed without edge corrections,

particularly when both the numerator and denominator are estimated using the same principle (Illian et al.,

2008, Chapter 5). In fact, in our article, such as in Figure 6, no edge-correction was applied in computing

Stoyan’s mark correlation function.

As for marked point processes on linear networks, we point to Baddeley et al. (2014) for non-parametric

estimators of second-order cross/dot-type summary characteristics. Non-parametric estimators for mark-

weightedK-functions could be defined by closely following Ang et al. (2012); Rakshit et al. (2017). Regarding

cross/dot-type higher-order summary characteristics such as J-functions, their non-parametric estimators

could be achieved by following Cronie and van Lieshout (2016); Cronie et al. (2020). Finally, non-parametric

estimators of mark correlation functions would be of a similar nature as in (10) but with a distance metric

adapted to linear networks. We emphasise that the choice of distance metric might very well depend on

the application under study.
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4 Marked spatial point process models

In our article, we restricted our focus to the current state-of-the-art for mark summary characteristics. CJK

and MRS commented on lacking a thorough discussion on point process models when points are marked.

In particular, MRS provided a profound overview of the matter, which we greatly appreciate. Indeed, the

literature covers various doubly-stochastic models such as Cox point processes, where the intensity itself

is driven by a random field, and Markov point process models, which formalize the intensity as a product

over clique potentials, i.e. energy functions. It would be welcomed to provide an in-depth treatment of

the current state-of-the-art of models for marked spatial point processes, including all proposed estimation

methods. Given the thorough and compact discussion of the subject given by MRS, we here only point to

some further models and recent extensions.

Notable early contributions for marked point process models include the balanced and linked Cox

models of Diggle and Milne (1983) in which a bivariate point process X “ tX1, X2u is driven by a non-

negative valued bivariate random field Z “ tZ1, Z2u such that given the realizations λ1puq “ Z1puq and

λ2puq “ Z1puq for all u P R2 the components of X are independent inhomogeneous Poisson processes with

intensity functions λip¨q, i “ 1, 2. For any ν ą 0, the points of the two components X1, X2 may then show

clustering/repulsion tendencies with Z1 “ νZ2 in the case of the linked Cox process and with Z1 ` Z2 “ ν

for the balanced Cox process model, respectively. Less restrictive extensions of the Cox model include the

marked versions of the log-Gaussian Cox process (Møller et al., 1998) and the shot-noise Cox process (Brix,

1999). Although log-Gaussian Cox processes appear most commonly in the literature, we point to the work

of Jalilian et al. (2015) who proposed a multivariate product-shot-noise Cox process to model a multispecies

point pattern. Allowing also for temporal variation of spatial marked processes, various spatio-temporal

models can be considered, including growth-interaction, spatial birth-and-death and Hawkes processes;

these were also highlighted by CJK. Note also a combination of log-Gaussian Cox processes with Hawkes

processes, i.e. the so-called Cox-Hawkes process, proposed by Miscouridou et al. (2022), which could also

be extended to marked cases. Moreover, we also point to the Candy (Stoica et al., 2004, 2005) and Bisous

(Tempel et al., 2016) models, which, instead of points model line segment and, thus, might be useful tools

to derive models for (marked) spatial movement data.

Lastly, we appreciated the idea of MRS treating the mark sum as a local mark characteristic. Indeed, for

a fixed observed point x, the normalized mark-sum measure adjusts the number of points in a disc bpx, rq

by the sum of the marks in bpx, rq and can, thus, be interpreted as the contribution of marks in a distance

r centred at x (Penttinen, 2007).

5 Applications of mark summary characteristics

We are grateful to DS for proposing the computation of different mark correlation functions for some given

data and discussing their abilities to describe mark correlations. It is important to highlight that any such
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mark summary characteristic addresses a particular property of the mark distribution. To illustrate the

application of different mark correlation functions, we revisit the three considered models I to III of Section

4.2.2 in our article. In a similar manner, for each model, we simulate 199 patterns for which we calculate

Stoyan’s mark correlation function κLmmprLq, Beisbart and Kerscher’s mark correlation function κBei,L
mm prLq,

mark variogram γLmmprLq, and Shimantani’s I function IShi,Lmm prLq. We used the notation κ for, e.g. Stoyan’s

mark correlation function, to be better distinguished from the cross/dot-type K-functions. Based on the

199 estimated mark correlation functions per each test function, we obtain 95% pointwise critical envelopes

to compare the general behaviours of the four chosen test functions; one could instead use global envelopes

(Myllymäki et al., 2017; Mrkvička et al., 2020) as pointed out by MRS. Concerning DS’s comment on

the differences between the mark variogram and (semi-)variogram, although both are constructed through

half-squared distances, they are in general different except under the geostatistical marking model where

marks are generated from an underlying random field (Schlather et al., 2004; Guan et al., 2007). In this

model, also referred to as a random field model due to its construction, the marks and the locations are

generally assumed to be independent. We note that the geostatistical marking model can be tested against

deviations from the independence assumption between marks and points, i.e. non-geostatistical marking

model, by e.g. Schlather’s Eprq and V prq functions and the tests proposed in (Guan, 2005)

Turning to some further numerical evaluations, for model I (left column of Figure 1), in which the

point configuration inherits a trend from bottom-left to top-right of the network, for nearby points (small

values of rL), we can see low variation (based on mark variogram γLmmprLq) with some positive association

(based on Stoyan’s mark correlation function κLmmprLq and Beisbart and Kerscher’s mark correlation func-

tion κBei,L
mm prLq) and high positive spatial autocorrelation (based on Shimanti’s IShi,Lmm prLq). With increasing

distance rL, the marks become more heterogeneous, yielding a clear increase in spatial variation as it can

be seen from the mark variogram γLmmprLq, less association indicated by Stoyan’s mark correlation function

κLmmprLq and Beisbart and Kerscher’s mark correlation function κBei,L
mm prLq and, correspondingly, negative

spatial autocorrelation revealed by Shimantani’s I function IShi,Lmm prLq. For a more thorough exploration of

how these mark correlation functions differ in their effectiveness at describing mark correlations, we add

that if pairs of points have similar mark values, the variation between the marks is small, leading to small

values of the mark variogram γLmmprLq close to zero, while the association is high, yielding values above

one for Stoyan’s mark correlation function κLmmprLq and Beisbart and Kerscher’s mark correlation function

κBei,L
mm prLq. In cases where the marks for any pair of points, deviating from the mark mean, demonstrate

substantial similarity (or dissimilarity) in value, positive (negative) autocorrelation is expected to be re-

vealed by Shimanti’s IShi,Lmm prLq. While the focus here is limited to point patterns on linear networks, we

emphasise that these interpretations hold for point patterns on R2 as well.

Turning to the central column of Figure 1, which shows the results for model II, we again notice a distinct

opposite behavior between the mark variogram γLmmprLq and the mark correlation functions κLmmprLq and

κBei,L
mm prLq, especially at short distances. Recalling the construction of the marks in model II based on the

shortest-path distance of each point to the dendrite’s border, nearby points are expected to have similar
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Fig. 1 95% critical envelops for the Stoyan’s mark correlation function κLmmprLq, Mark variogram γLmmprLq, Shimanti’s

IShi,Lmm prLq, and Beisbart and Kerscher’s mark correlation function κBei,L
mm prLq, and their averages, based on 199 simulated

patterns from Models I, II, and III, from left to right, respectively.

marks. As the distance rL increases, the marks become more dissimilar, which yields a strong variation

in value and, at the same time, low association. However, the marks at very long distances, say at two

distinct points at different borders, are again more similar due to the simulation design. Here, we would
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point out the fact that such long shortest-path distances are not captured in any of the four plots due to

the restriction to rL,max “ 250.

Similar results are also obtained for model III (right column of Figure 1), in which the marks correspond

to the number of nearest-neighbors which are at a network distance less than rL ă 80 units from a target

point. As nearby neighbors are expected to have similar mark values, the mark variogram γLmmprLq at short

distances possesses values close to zero. A high similarity is also indicated by the mark correlation functions

κLmmprLq and κBei,L
mm prLq having values larger than one and Shimantani’s I function having positive values.

If the interpoint distance becomes large, heterogeneity in the mark values increases, yielding an increase

in the mark variation and a decrease in mark association and autocorrelation. Note that, due to the

construction of marks in model III, the mark association is expected to be maximized around rL “ 80,

which is properly detected by κLmmprLq and κBei,L
mm prLq. Reinspecting Figure 3 in our article, the highest

mark values appear in the very central parts of the dendrite, while the lowest mark values occur near the

borders of the dendrite; note the lack of information near borders. Having this in mind, the similarity and,

thus, the spatial autocorrelation between marks is high, and consequently, the mark variation is low when

the interpoint distance rL is small; this is particularly emphasized in the central region of the dendrite.

Furthermore, we thank DS for pointing to the interpretation of the results concerning the public street

trees in Vancouver, Canada. In the network setting, it is important to note that the interpretation of

the results becomes more challenging and requires a solid investigation of both the network structure

and the phenomena under study. It might be the case that the shortest-path distance is not the most

suitable metric for this application. However, note that, in this application, although trees are located

along the Vancouver street network, and the characteristics are computed using the shortest-path distance,

the trees might be influenced by similar soil conditions, which, in turn, might affect their growth, shapes

or canopies. Note that there might be trees that are spatially close to each other while they possess a large

shortest-path distance, e.g., trees on two nearby disconnected streets. Thus, careful consideration of these

potential external influences is crucial when interpreting the results. Specifically, for biological, ecological,

and environmental data happening on network structures, it’s vital not to underestimate these effects and to

evaluate them while considering both the network’s specificity and expertise knowledge on the phenomena

under study. Unfortunately, we did not have access to any further information, which would have allowed

for a more critical evaluation of the findings. Taking a more detailed look at the age of the public street

trees, which was only reported for a very small proportion of trees, we did not identify any significant

structure in the age distribution for this subset of trees except for a slight indication of heterogeneity in

the trees’ ages.

Acknowledgement

The authors also gratefully acknowledge financial support through the German Research Association and

the Stochastic Group of the German Mathematical Society. Matthias Eckardt was funded by the Walter



Title Suppressed Due to Excessive Length 11

Benjamin grant 467634837 from the German Research Foundation. Mehdi Moradi received travel support

from the Stochastic Group of the German Mathematical Society.

Declarations

The authors have no conflicts of interest to declare.

References

Abramson, I. S. (1982). On bandwidth variation in kernel estimates-a square root law. The annals of

Statistics, 1217–1223.

Ang, W., A. Baddeley, and G. Nair (2012). Geometrically corrected second order analysis of events on

a linear network, with applications to ecology and criminology. Scandinavian Journal of Statistics 39,

591–617.

Baddeley, A., T. M. Davies, S. Rakshit, G. Nair, and G. McSwiggan (2022). Diffusion smoothing for spatial

point patterns. Statistical Science 37 (1), 123–142.

Baddeley, A., A. Jammalamadaka, and G. Nair (2014). Multitype point process analysis of spines on the

dendrite network of a neuron. Journal of the Royal Statistical Society. Series C (Applied Statistics) 63 (5),

673–694.

Baddeley, A., G. Nair, S. Rakshit, G. McSwiggan, and T. M. Davies (2021). Analysing point patterns on

networks — a review. Spatial Statistics 42, 100435.

Baddeley, A., E. Rubak, and R. Turner (2015). Spatial Point Patterns: Methodology and Applications with R.

CRC Press.

Barr, C. D. and F. P. Schoenberg (2010). On the voronoi estimator for the intensity of an inhomogeneous

planar poisson process. Biometrika 97 (4), 977–984.

Brix, A. (1999). Generalized gamma measures and shot-noise cox processes. Advances in Applied Probabil-

ity 31 (4), 929–953.

Cronie, O., M. Moradi, and J. Mateu (2020). Inhomogeneous higher-order summary statistics for point

processes on linear networks. Statistics and Computing 30 (5), 1221–1239.

Cronie, O. and M. N. M. van Lieshout (2016). Summary statistics for inhomogeneous marked point pro-

cesses. Annals of the Institute of Statistical Mathematics 68, 905–928.

Cronie, O. and M. N. M. Van Lieshout (2018). A non-model-based approach to bandwidth selection for

kernel estimators of spatial intensity functions. Biometrika 105 (2), 455–462.

Davies, T. M. and A. Baddeley (2018). Fast computation of spatially adaptive kernel estimates. Statistics

and Computing 28, 937–956.

Diggle, P. (1985). A kernel method for smoothing point process data. Journal of the Royal Statistical Society:

Series C (Applied Statistics) 34 (2), 138–147.



12 Eckardt and Moradi

Diggle, P. J. and R. K. Milne (1983). Bivariate cox processes: Some models for bivariate spatial point

patterns. Journal of the Royal Statistical Society: Series B (Methodological) 45 (1), 11–21.

Eckardt, M., C. Comas, and J. Mateu (2023). Summary characteristics for multivariate function-valued

spatial point process attributes. Submitted for publication.

Ghorbani, M., O. Cronie, J. Mateu, and J. Yu (2021). Functional marked point processes: a natural structure

to unify spatio-temporal frameworks and to analyse dependent functional data. TEST 30, 529–568.

Guan, Y. (2005). Tests for Independence Between Marks and Points of a Marked Point Process. Biomet-

rics 62 (1), 126–134.

Guan, Y., M. Sherman, and J. A. Calvin (2007). On asymptotic properties of the mark variogram estimator

of a marked point process. Journal of Statistical Planning and Inference 137 (1), 148–161.

Illian, J., A. Penttinen, H. Stoyan, and D. Stoyan (2008). Statistical Analysis and Modelling of Spatial Point

Patterns. John Wiley & Sons, New York.

Jalilian, A., Y. Guan, J. Mateu, and R. Waagepetersen (2015). Multivariate product-shot-noise cox point

process models. Biometrics 71 (4), 1022–1033.

Loader, C. (2006). Local regression and likelihood. Springer Science & Business Media.

Mateu, J. and M. Moradi (2024). Non-parametric intensity estimation for spatial point patterns with R.

In H. Doosti (Ed.), Flexible Nonparametric Curve Estimation. Springer Nature.

Mateu, J., M. Moradi, and O. Cronie (2020). Spatio-temporal point patterns on linear networks: Pseudo-

separable intensity estimation. Spatial Statistics 37, 100400.

Miscouridou, X., S. Bhatt, G. Mohler, S. Flaxman, and S. Mishra (2022). Cox-hawkes: doubly stochastic

spatiotemporal poisson processes. Transactions on Machine Learning Research.

Møller, J., A. R. Syversveen, and R. P. Waagepetersen (1998). Log gaussian cox processes. Scandinavian

Journal of Statistics 25 (3), 451–482.

Møller, J. and R. P. Waagepetersen (2004). Statistical Inference and Simulation for Spatial Point Processes.

Chapman and Hall/CRC, Boca Raton.

Moradi, M. (2018). Spatial and Spatio-Temporal Point Patterns on Linear Networks. PhD dissertation, Uni-

versity Jaume I.

Moradi, M., O. Cronie, E. Rubak, R. Lachieze-Rey, J. Mateu, and A. Baddeley (2019). Resample-smoothing

of Voronoi intensity estimators. Statistics and Computing 29 (5), 995–1010.

Moradi, M. and A. Sharifi (2024). Summary statistics for spatio-temporal point processes on linear networks.

Submitted for publication.
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