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Abstract

Surrogate neural network-based partial differen-
tial equation (PDE) solvers have the potential to
solve PDEs in an accelerated manner, but they
are largely limited to systems featuring fixed
domain sizes, geometric layouts, and bound-
ary conditions. We propose Specialized Neu-
ral Accelerator-Powered Domain Decomposition
Methods (SNAP-DDM), a DDM-based approach
to PDE solving in which subdomain problems
containing arbitrary boundary conditions and ge-
ometric parameters are accurately solved using
an ensemble of specialized neural operators. We
tailor SNAP-DDM to 2D electromagnetics and
fluidic flow problems and show how innovations
in network architecture and loss function engineer-
ing can produce specialized surrogate subdomain
solvers with near unity accuracy. We utilize these
solvers with standard DDM algorithms to accu-
rately solve freeform electromagnetics and fluids
problems featuring a wide range of domain sizes.

1. Introduction
Large scale physics simulations are critical computational
tools in every modern science and engineering field, and
they involve the solving of parametric partial differential
equations (PDEs) with different physical parameters, bound-
ary conditions, and sources. Their ability to accurately cap-
ture underlying physical processes makes them particularly
well suited in modeling and optimization tasks. Convention-
ally, PDE problems are set up using discretization methods
such as the finite element or finite difference formalisms,
which frame the PDE systems as large sparse matrices that
are solved by matrix inversion. Problems are set up from
scratch every time and computational scaling with domain
size is fundamentally tied to the scaling of matrix inversion
algorithms.
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Neural network-based approaches to solving PDE problems
have emerged and have garnered great interest due to their
tantalizing potential to exceed the capabilities of conven-
tional algorithms. One of the earliest and most prominent
concepts is the Physics Informed Neural Network (PINN),
which produces an ansatz for a given PDE problem (Raissi
et al., 2019; Karniadakis et al., 2021; Cai et al., 2021).
PINNs have been shown to be able to solve wave prop-
agation problems with fixed domain size and domain ge-
ometry, but their accuracy is sub-optimal (Moseley et al.,
2020; Rasht-Behesht et al., 2022) in systems featuring high
spatial frequency phenomena (Wang et al., 2022; Farhani
et al., 2022). In addition, they require retraining every time
the PDE problem is modified, making them unsuitable for
solving generalized parametric PDE problems.

Neural Operators, which are the focus of this study, have
also been recently proposed as deep network surrogate PDE
solvers. Unlike PINNs, Neural Operators learn a family of
PDEs by directly learning the mapping of an input, such
as PDE coefficients, to corresponding output solutions us-
ing simulated training data. PDE solutions are evaluated
through model inference, as opposed to model training,
which enables exceptionally high speed PDE problem solv-
ing. Initial work on Neural Operator models can be traced
to PDE-Net (Long et al., 2018; 2019), and additional im-
provements in network architecture have been proposed
with DeepONet (Lu et al., 2019) and Fourier Neural Opera-
tors (FNO) (Li et al., 2020). While much progress has been
made, Neural Operators cannot yet directly scale to large
arbitrary domain sizes, and they cannot accurately handle
arbitrary boundary conditions. These challenges arise due
to multiple reasons: 1) the dimensionality of PDE problems
grows exponentially with problem scale and can outpace
the expressiveness of deep neural networks; 2) it remains
difficult to scale neural networks to large numbers of param-
eters; and 3) the large scale generation of training data for
the training of large scale models is resource consuming.

In this work, we propose Specialized Neural Accelerator-
Powered Domain Decomposition Methods (SNAP-DDM),
which is a qualitatively new way to implement Neural Op-
erators for solving large scale PDE problems with arbitrary
domain sizes and boundary conditions. Our method cir-
cumvents the issues posed above by subdividing global
boundary value problems into smaller boundary value sub-
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domain problems that can be tractably solved with Neural
Operators, and then to stitch together subdomain solutions
in an iterative, self-consistent method using Domain Decom-
position Methods (DDMs). DDMs are the basis for solving
large PDE problems with parallel computing (Smith, 1997;
Dolean et al., 2015), and they can be implemented using vari-
ous algorithms including the Schwarz, finite-element tearing
and interconnecting (Wolfe et al., 2000), optimized Schwarz
(Gander et al., 2002), two-level (Farhat et al., 2000), and
sweeping preconditioner (Poulson et al., 2013) methods.
While DDM methods have been previously explored in the
context of PINNs (Jagtap et al., 2020; Jagtap & Karniadakis,
2021), the accurate solving of arbitrary PDE problems using
the combination of Neural Operators and DDM has not been
previously reported.

A principal challenge in adapting Neural Operators to DDM
is that the subdomain solvers require exceptional accuracy
and generalizability to enable accurate DDM convergence
(Corigliano et al., 2015). To address this challenge, we
train specialized Neural Operators that each solve particular
classes of subdomain problems, such as those containing
only sources or structural geometric parameters as model
inputs. We also propose the Self-Modulating Fourier Neu-
ral Operator (SM-FNO) architecture, an augmented FNO
architecture with modulation connections that is capable of
learning complex PDE boundary value operators with over
99% accuracy. We integrate these Neural Operators directly
into a Schwarz DDM iterative framework, where field solu-
tions within each subdomain are iteratively solved until the

fields in and between every subdomain are self-consistent,
at which point the global field solutions are converged.

2. Methods
For this study, we will initially focus on classical electro-
magnetics (EM) as a model system for detailed analysis,
followed by demonstrations of SNAP-DDM to fluid me-
chanics problems. Classical EM PDEs are governed by
Maxwell’s equations. The frequency domain magnetic field
wave equation is:

∇× (
1

ε(r)
∇×H(r))− µ0ω

2H(r) = iωJ(r) (1)

ω is angular frequency, ε(r) is a heterogeneous dielectric
material distribution that is a function of spatial position
r, J(r) is the current source distribution, and H(r) is the
magnetic field distribution to be solved.

2.1. SNAP-DDM

To solve an arbitrarily sized PDE system, we consider a
domain decomposition approach where the global domain
is subdivided into overlapping subdomains with fixed 64×
64 grids (Figure 1a). Each subdomain for a given DDM
iteration poses a boundary value problem that are solved
using a specialized pretrained subdomain model. In this
study, we utilize the overlapping Schwarz DDM formalism
using Robin boundary conditions for each subdomain solver
(Figure 1b)(Gander et al., 2001; Dolean et al., 2009).

Figure 1. SNAP-DDM framework, with Electromagnetics as a demonstration. a) Global simulation domain and corresponding H-field
solution for a 2D electromagnetics problem featuring arbitrary sources, global boundary conditions, and freeform grayscale dielectric
structures. The global domain is subdivided into overlapping subdomains parameterized by position (i, j). Three types of specialized
Neural Operator models are trained to solve for three types of subdomain problems. b) Expression for the Robin type boundary condition
used in the specialized Neural Operator subdomain models. k(r) = 2πε(r)/λ is the wave vector in a medium with dielectric constant ε
and n is the outward normal direction. c) Flow chart of the iterative overlapping Schwarz method. In iteration k, electromagnetic fields in
each subdomain are solved using the specialized Neural Operators, and the resulting fields are used to update the subdomain boundary
value inputs for iteration k + 1. The “Boundary value update” box shows how solved fields in the (i, j) subdomain are used to update the
boundary value fields in nearest neighbor subdomains for subsequent iterations. B.V.: boundary value. PML: perfectly matched layers.
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The DDM iterative algorithm is illustrated in Figure 1c and
the procedure is summarized as follows:

1. The field is initialized to be zero everywhere.

2. For the kth iteration, a boundary value problem is
solved using a specialized subdomain model at each
subdomain. For each subdomain, the inputs are the
subdomain Robin boundary values and a specialized
image of the domain (i.e., image of the material, source,
or boundary layers) and the output is the field map.

3. Fields outputted from the models are used to update the
subdomain Robin boundaries in all subdomains, which
are used as model inputs for the (k + 1)th iteration.

4. The algorithm terminates when a predetermined num-
ber of iterations is executed or when the physics residue
falls below a predetermined threshold.

It is essential that the trained subdomain PDE surrogate
solvers have near unity accuracy to ensure that the DDM
algorithm accurately converges. Therefore, we train spe-
cialized neural operators that each solve specific classes of
PDE problems. For 2D EM problems, we consider three
types of Neural Operators that each specialize in solving:
1) subdomains containing only PMLs in air; 2) subdomains
containing only sources in air; and 3) subdomains contain-
ing only heterogeneous grayscale material and air structures.
In this way, we partition complex PDE systems into regions
with similar physical characteristics, which reduces the di-
mensionality of the learning problem and enables special-
ized physics to be more accurately captured in each network.

Additional specialized neural operators can be considered
with increasing problem domain complexity without loss of
generality.

2.2. Self-Modulating Fourier Neural Operator

For the subdomain models, we modify the original FNO
architecture (Li et al., 2020) and introduce the Self-
Modulating Fourier Neural Operator (SM-FNO) subdomain
surrogate solver (Figure 2). We specifically incorporate two
key features, the first of which we term a modulation en-
coder. Mechanistically, we utilize multiple residual blocks
and fully connected layers to compress the input data into a
latent modulation tensor, which then modulates each linear
transformation R in the neural operator through element-
wise multiplication (Figure 2). This concept builds on our
observation that in the original FNO architecture, the lin-
ear transform weight R in each Fourier layer is fixed and
are independent of the network input parameters, limiting
the ability of the neural operator to accurately process the
highly heterogeneous input data featured in our problem.
This modification is inspired by the efficacy of self-attention
in transformer architectures (Vaswani et al., 2017) and multi-
plicative interactions between inputs in PINNs (Wang et al.,
2021a). Other works have also attempted to modify the in-
tegral kernel in the FNO layers, with smoothened masking
functions that mostly applies to binary input shapes??. With
our grayscale input that represents material dielectric data,
our learnable modulation offers more flexibility. We show
in Section 4 that the modulation method we introduced is
crucial to enhance the expressivity of the model.

The second feature we propose is the explicit addition of

Figure 2. Self-Modulating Fourier Neural Operator architecture for DDM subdomain solvers. Modifications to the standard Fourier Neural
Operator (FNO) are highlighted in red and include: 1) the addition of self-modulation connections that encode the input into a tensor,
which is then multiplied with the linear transformation matrix R* in each Fourier layer; and 2) the addition of residual connections inside
each Fourier layer. a: network input comprising a stack of images specifying the specialized subdomain layout and Robin boundary
values. u: network output comprising a stack of images specifying the real and imaginary H-field maps. P: fully connected layer that
increases the number of channels. Q: fully connected layer that decreases the number of channels. F : Fourier transform. σ: leaky-ReLU
activation function (Xu et al., 2015). W: channel mixer via 1-by-1 kernel convolution. R: original linear transform on the lower Fourier
modes. R*: modulated linear transform through an element-wise multiplication with the modulation tensor.
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a residual connection within each Fourier layer. The resid-
ual connection concept dates back to the ResNet architec-
ture (He et al., 2016), where such connections were shown
to mitigate the vanishing gradient problem and enable the
training of deeper models. From our experiments, we have
discovered that explicit residual connections are necessary
for training deeper FNOs, especially when inputs are aug-
mented with auxiliary data like boundary values. We note
that the residual connection is equivalent to initializing the
1 × 1 convolutional layer W using identity plus Kaiming
or Xavier initialization (He et al., 2015), but we keep the
residual connection in Figure 2 for clarity and ease of im-
plementation. We also note that related concepts involving
the addition of residual connections to the FNO architecture
have been explored elsewhere (Tran et al., 2021).

2.3. Hybrid data-physics loss function

To train the subdomain solvers, we apply a training scheme
that utilizes a hybrid data-physics loss function:

L = Ldata + α(Lpde + cLbc) (2)

Detailed expressions of the data and physics loss terms are
in Appendix B. c is a constant weight set to 1 for simplicity
(we found the model performance is insensitive to its value
between 0.1 and 10) and α is a dynamic weighting term
that balances data loss and physics loss from history loss
statistics. Regularization of network training with physical
loss serves to explicitly enforce physical relationships be-
tween nearest neighbor fields, which enhances the accuracy
of magnetic field spatial derivatives calculated using the fi-
nite differences method (Chen et al., 2022b). Such accuracy
is critical for evaluating electric fields and Robin boundary
conditions from inferenced magnetic fields.

3. Experiments
3.1. Data generation

We used an established finite-difference frequency domain
(FDFD) solver (Hughes et al., 2019) to generate 1000 full-
wave simulations, each containing heterogeneous dielectric
distributions (refractive index from 1 to 4) within a 960×960
grids simulation domain. The structural layouts are spec-
ified by a pipeline inspired from image processing, with
details provided in Appendix A. Random magnetic current
sources surrounding the devices are specified as a superpo-
sition of sinusoidal functions with random amplitudes and
phases. 40-grid-thick uniaxial PML layers are place on the
4 sides (Gedney, 1996). The resulting simulated fields are
then cropped into 64× 64 grids sections to produce the sub-
domain training dataset. Using this approach, we generate
a total of 1.2M subdomain training data samples (100k for
the PML solver, 100k for the source solver, and 1M for the
grayscale material solver).

3.2. Subdomain network benchmark

We benchmark our trained SM-FNO subdomain solver with
the UNet (Ronneberger et al., 2015), Swin Transformer (Liu
et al., 2021) (details in Appendix E), the classical FNO,
and the recently improved version of FNO termed F-FNO
(Tran et al., 2021). We also train our SM-FNO solver with-
out physics loss. The networks are trained with both 100K
and 1M total data to show their dependency on data scal-
ing, except for the Swin Transformer model, which is only
benchmarked on 100k training data (training on 1M data
would take 2 months). The 100k and 1M data are split
into 90% training data and 10% test data. All models use
a batchsize of 64 and are trained for 100 epochs for 100k
training data or 50 epochs for 1M training data. The Adam
optimizer with an individually fine-tuned learning rate is
used with an exponential decay learning rate scheduler that
decreases the learning rate by 30× by the end of training. A

Table 1. Electromagnetics: Subdomain model benchmark on 10k test data

.

MODEL (TRAINED ON 100K DATA) Ldata (%) Lpde (A.U.) Lbc (A.U.) PARAM (M) FLOP (G)

FNO-V1 9.04 2.21 0.309 73.8 0.79
F-FNO-V1 8.32 1.69 0.163 4.9 1.45
UNET-V1 5.40 0.73 0.099 5.2 1.53
SWIN T-V1 5.15 2.15 0.148 1.9 9.60
SM-FNO-V1-DATA-ONLY(OURS) 3.95 7.08 0.162 4.7 0.66
SM-FNO-V1(OURS) 3.85 0.50 0.067 4.7 0.66

MODEL (TRAINED ON 1M DATA) Ldata (%) Lpde (A.U.) Lbc (A.U.) PARAM (M) FLOP (G)

FNO-V2 5.34 1.43 0.124 131.2 1.86
F-FNO-V2 3.52 0.84 0.078 13.3 2.59
UNET-V2 2.93 0.44 0.080 11.1 3.28
SM-FNO-V2-DATA-ONLY(OURS) 1.36 2.76 0.073 10.2 1.43
SM-FNO-V2(OURS) 1.01 0.30 0.030 10.2 1.43
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padding of 20 grids is applied to all FNOs.

We consider only the material subdomain model in this
analysis for simplicity and specify architectures with similar
floating point operations (FLOP) and model weights. All
data in Table 1 and plots in Figure 3 are conducted on
10k newly generated, unseen test data. We see that the
specification of a targeted model architecture is crucial to
achieving high accuracy. The vanilla FNO fails to learn
the problem with good accuracy, even with a large number
of model weights. While the Swin transformer requires
relatively fewer neural network weights, the expensive self-
attention operations require over 10x FLOPs compared to
FNO-based architectures. A comparison of SM-FNO-data-
only and SM-FNO indicates that the explicit inclusion of
Maxwell’s equations leads to a dramatic reduction of Lpde

and Lbc, which is essential to getting the DDM algorithm
to converge. Our largest model, SM-FNO-v2, is 99.0%
accurate and features exceptionally low Lpde and Lbc.

Model FLOPs are computed using the open-source library
fvcore. The FLOPs of FFT operations are computed us-
ing the formula: 2L(NC2 +NC logN) for 2d FFTs, and
2L((H +W )C2 +NC(logH + logW )) for 1d FFTs, in
which N = HW is the number of grids of each channel, L
is number of layers and C is number of channels (Guibas
et al., 2021). The factor 2 accounts for forward and inverse
FFT operations.

3.3. Large scale electromagnetics simulations

Large scale electromagnetic simulations comprising high
contrast heterogeneous media are notoriously hard to solve
using end-to-end neural surrogate solvers. We show in Ap-
pendix F that the training of a Fourier neural operator to
solve full-scale problems leads to fundamental scaling bot-
tlenecks in dataset size, model size, and memory usage. We
also show in Appendix G that PINNs struggle to scale up to
large simulation domains comprising high dielectric contrast
media, and that the solutions produced from trained PINN
models are particularly sensitive to their detailed initializa-
tion and training conditions. These results are consistent
with recent large scale simulation demonstrations in the
literature: one concept based on graph networks featured
errors of 28% (Khoram et al., 2022) and another concept
based on neural operators featured errors ranging from 12%
to 38% (Gu et al., 2022).

On the other hand, our SNAP-DDM algorithm combining
trained subdomain surrogate solvers with the overlapping
Schwartz DDM method produces a qualitatively different
and better result. To demonstrate, we solve a variety of large
scale electromagnetics problems featuring a wide range
of dielectric constant and domain size configurations. We
use the SM-FNO-v2 architecture for the material and PML
models and the lighter SM-FNO-v1 network for the source

model. For each problem, the global domain is initially
subdivided into an array of subdomains, each of which are
classified as PML, source, or material subdomains. Dur-
ing each SNAP-DDM iteration, data from subdomains of
a given class are aggregated into a batch and inputted into
the corresponding specialized SM-FNO, which infers and
outputs the H-field solutions of the batch in a parallelized
manner. The DDM algorithm is stopped after a predeter-
mined number of iterations.

Representative electromagnetic simulation results are shown
in Figure 4 and demonstrate the versatility and accuracy of
SNAP-DDM. The simulations feature widely varying global
domain sizes, indicating the ability for our scheme to readily
adapt to arbitrary global domain sizes through the tiling of
different numbers of subdomains and tailoring the amount
of overlap between subdomains. Some of these simulations
feature the use of PML boundaries on all sides, which is
ideal for purely scattering simulations, while others com-
prise half PML and half Bloch periodic boundaries, which
are a natural boundary choice for semi-periodic systems.
The off-normal incident field in the thin film problem is
achieved by tailoring the line source profile with the ap-
propriate Bloch phase. For all of these examples, the final
and ground truth fields appear indistinguishable, and the
absolute error in the final fields in all cases is near 5%.

3.4. Time complexity

In this section, we benchmark the time complexity between
SNAP-DDM and a conventional FDFD solver for 2D EM
problems. Based on the current accuracy level of SNAP-
DDM, we choose to benchmark the time it takes to reach
an average mean absolute accuracy of 15%, evaluated on
10 random devices for each domain size. For SNAP-DDM,
the number of iterations required for convergence strongly
depends on the material refractive index, and we therefore
benchmark computation time for simulation domains con-
taining either silicon dioxide (n = 1.5) or titanium dioxide (n
= 2.48). Square domains with sizes ranging from 600× 600
grids to 2100× 2100 grids are evaluated. The FDFD bench-
mark simulations are performed on 10 grayscale dielec-
tric structures for each domain size with refractive indices
ranging from those of silicon dioxide to titanium dioxide.
SNAP-DDM is run with one NVIDIA RTX A6000 GPU,
and the FDFD solver runs on single CPU of model Intel
Xeon Gold 6242R. From the time benchmark, we observe
that for silicon dioxide, which has a relatively low refractive
index, SNAP-DDM has better performance compared to the
FDFD solver. However, for titanium dioxide, SNAP-DDM
requires significantly more iterations and ultimately takes a
much longer time than FDFD.
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Figure 3. Benchmarking of material boundary value subdomain solvers on unseen test data. The model inputs are a grayscale material
dielectric distribution image (ε = 1 to ε = 16) and Robin boundary conditions, and the outputs are images of the real and imaginary
H-fields. The real parts of outputted H-fields are shown. The L1 data loss is normalized to the mean absolute ground truth field value and
the physics residue map is the summed expression in Equation 5.

Figure 4. SNAP-DDM evaluated on different electromagnetics systems. These systems include: a) a titanium dioxide microlens, b) a thin
film silicon-based metasurface, c) a volumetric grayscale metamaterial scatterer, and d) an optimized grayscale thin film stack featuring
high reflectivity. The simulation domain contains grid resolution with physical dimensions of 6.25nm and the wavelength λ = 1.05µm.
Ground truth fields, model output fields, and field error are plotted on the same scale for each device. The largest simulation domain is in
(a) and comprises an array of 40× 40 subdomains.

3.5. SNAP-DDM steady state fluid flow simulations

The SNAP-DDM concept can apply to a broad range of
steady state PDE problems, and we demonstrate here the
application of SNAP-DDM to 2D steady state fluid flow

problems. Fluid mechanics systems are governed by the
incompressible Navier-Stokes (NS) equation, which is:

∂u

∂t
+ (u · ∇)u− ν∇2u = −1

ρ
∇p (3)

6



Towards General Neural Surrogate Solvers with Specialized Neural Accelerators

Table 2. Steady state flow: subdomain model benchmark on 10k test data

Model Ldata (%) Lpde (a.u.) Lbc (a.u.) Param (M) FLOP (G)

FNO 6.5 1.77 2.44 69.2 0.34
Swin T 5.1 1.10 0.13 1.9 9.60
UNet 1.8 0.35 0.10 5.2 1.53
SM-FNO(ours) 1.3 0.23 0.06 4.7 0.66

We solve steady state flows in an arbitrary-shaped pipe with
circularly shaped obstacles and a viscosity of ν = 0.08
(Chen & Doolen, 1998). To train our subdomain boundary
value solvers for these problems, we first simulate flows
using the time domain Lattice-Boltzmann Method and run
the simulations until the flows are at steady state. A total
of 200 ground truth simulations with 900 × 600 grids are
generated, from which the data for 100k subdomains with
64× 64 grids is produced as the subdomain training dataset.
Further details are in Appendix A. The subdomain model
takes an image of the obstacle and velocity field (u, v) Robin
boundary conditions as inputs, and it outputs images of the
full velocity field. Ground truth pressures are used with the
steady state version of Equation (3) to compute physics loss.

Benchmark results of our SM-FNO subdomain solver are
summarized in Table 2 and Figure 6a, and they indicate that
our SM-FNO network displays the lowest data and physics
loss compared to alternative subdomain solver architectures,
with data loss approaching 1%. Demonstrations of steady
state fluid flow simulations with SNAP-DDM are shown in
Figure 6b, where the simulations produce velocity profiles
with errors less than 15%. The reduced accuracy in the flow
SNAP-DDM simulations, compared to those from electro-
magnetics, is likely due to the sub-optimal performance of
Schwartz DDM with Robin boundary conditions for steady
state flow problems. DDM for fluids problems continues to
be a topic of active research, and further improvement in
SNAP-DDM for fluids will be followed up in future work.

Figure 5. Time complexity comparison with SNAP-DDM and a
conventional FDFD solver for two different dielectric materials.

4. Ablation study
We perform an ablation study to understand the contribution
of each modification to the FNO featured in our SM-FNO.
Results are shown in Table 3 where L is the number of layers,
C is the number of channels (hidden dimension), and M is
the number of Fourier modes for linear transform. We start
with the vanilla FNO without residual connections and find
that the model fails to consistently learn for depths larger
than 4 layers. Upon training with 4 layers, increases in hid-
den dimension and number of modes increases model size
without contributing much to performance. When self modu-
lation is removed from the SM-FNO, deeper networks could
be trained with the residual connection but different depths
and widths produced similar sub-optimal performance. This
indicates that without the modulation path, model expres-
sivity is limited. When we remove the residual connections
from the SM-FNO, the model did not work well with large
depths. The best model contained 4 layers and produced
reasonable accuracy.

It is clear the two modifications that we added to the FNO
architecture are both synergistic and essential to improving
subdomain solver accuracy: the residual connection enables
deep architectures to be trained while the self-modulation
connection increases the model expressivity by promoting
self-multiplicative interactions within each input. In addi-
tion, the hybrid physics-augmented training scheme signifi-
cantly lowers the physical residue while slightly reducing
the data loss. We also point out that our use of Robin bound-
ary conditions ensures that the subdomain solvers solve a
well-posed PDE problem, unlike alternative boundary con-
ditions such as Dirichlet boundary conditions.

The accuracy of the SNAP-DDM framework is dependent
on multiple factors. Plots of DDM accuracy versus iterations
for 20 devices under different setups is shown in Figure 7.
These plots show that error from SNAP-DDM increases
significantly when we replace the large material model with
a lighter version, indicating the need for the subdomain
models to have near unity accuracy. These plots also show
that when a fraction of models is trained without physics,
SNAP-DDM error also increases, indicating the need for
hybrid data-physics training for all subdomain models.
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Figure 6. SNAP-DDM pipeline for steady-state fluid flow problems. a) Subdomain model benchmark. b) Steady state fluid flow velocity
fields solved with SNAP-DDM. Subdomain grid sizes are 8× 8 (left) and 8× 5 (right).

Table 3. Ablation study

Model Ldata Lpde Lbc Param FLOP L C M
(%) (a.u.) (a.u.) (M) (G)

FNO without residual connection 16.01 1.92 0.217 41.0 0.97 4 100 16
SM-FNO remove residual connection 7.61 1.03 0.123 8.9 0.78 4 44 16
SM-FNO remove self modulation - 1 8.04 1.93 0.166 42.0 1.00 10 64 16
SM-FNO remove self modulation - 2 6.11 3.29 0.155 32.8 0.82 20 40 16
SM-FNO-v1 3.85 0.50 0.067 4.7 0.66 16 16 16
SM-FNO-v2-data-only 1.36 2.76 0.073 10.2 1.43 16 24 16
SM-FNO-v2 1.00 0.30 0.030 10.2 1.43 16 24 16

5. Limitations and future work
There are multiple potential speedup strategies with SNAP-
DDM that can be considered in future work. Precondition-
ing is a common strategy in DDM for improving converg
speed by reducing the condition number of the system, espe-
cially for large ill-conditioned problems (Vion & Geuzaine,
2014; Gander & Zhang, 2019). Increasing the subdomain
size, and more generally incorporating a non-uniform grid

or mesh-to-grid approach to subdomain solving, has the po-
tential to introduce computational savings(Liu et al., 2023),
though a further quantitative analysis into the balance be-
tween model size and latency is required. More sophisti-
cated SNAP-DDM implementations may incorporate multi-
level or multi-grid concepts for initialization and improved
memory management, as well as higher order boundary
conditions.

Figure 7. SNAP-DDM convergence curves with different types of subdomain solvers. The plots show DDM algorithm error versus
iteration count, with each curve representing field error from a simulated random grayscale device within a 900× 900 grids domain (15
by 15 subdomains). a): The proposed setup with 3 specialized subdomain models. b) Same as (a) but use of a lighter material model
trained on 100k data. c) Same as (a) but use of source and PML models trained using only data loss. The slower convergence curves
correspond to materials with higher average dielectric constant.
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Code for this project could be found at:

https://drive.google.com/drive/folders/1LaCl7nSeNiIWKLlZMhJXFDUUuk7CwtDd?usp=
sharing

A. Data generation
To generate random geometric distributions for 2D EM problems that include both regular-shaped objects and structures
with free-form topologies, we adopt a pipeline inspired from image processing:

1. Generate random noise map in range (0, 1).

2. Threshold by some level between 0 and 1.

3. Erode the map with a Gaussian filter.

4. Dilate the map using filters with tilted elliptic profiles.

5. Apply Gaussian filter for smoothing.

By tuning the threshold level, filter weight, and erosion and dilation parameters, random shaped geometries with different
feature size distributions are generated. We generate Gaussian random fields and Voronoi diagrams with grayscale values
between 1 and 16, and then we use the random geometries as masks to create the grayscale material distributions used to
produce ground truth data. The Gaussian random field creates a continuously changing dielectric that are representative of
features appearing in freeform metamaterial designs. The Voronoi diagram creates boundaries between different constant
regions that produces material boundary features in the training data.

Line sources with a mix of random sinusoidal profiles are placed on all four sides of the generated grayscale material to
create randomly scattering fields in all directions. Uniaxial PML boundaries are places on all four sides with thickness of 40
grid cells. We use ceviche FDFD solver to generate 1000 fullwave simulations of size 960 by 960 grids, with grid resolution
of 6.25nm and wavelength of 1050nm. We then cropped the fields and physical properties to produce an 100k material
dataset, an 1M material dataset, an 100k source dataset and an 100k PML dataset for training specialized subdoamin models.

Figure 8. Pipeline for data generation. a) Image processing-inspired procedure for generating random dielectric geometries. b) Two kinds
of grayscale geometries and corresponding simulated H-fields. c) Flows in arbitrarily-shaped pipe with circular obstacles.

For steady state fluids simulations, we generate pipes with arbitrarily-shaped middle sections that are created by connecting
two random Bézier curves. The idea is to create boundaries beyond straight vertical walls that may appear in freeform flow
flow scenarios. Circular obstacles with randomly sampled radii are placed in the pipe in a manner where a minimum gap
size is guaranteed. We use constant velocity(u = u0, v = 0) as the boundary condition for the inlet surface. For the bottom
outlet, v = 0 and P = constant is used as the boundary condition. The viscosity is fixed to be 0.08 and steady state flow is
reached when the relative velocity change after 100 time steps is less than 10−4. The steady state solution is not guaranteed
in this way, but we found that 199 out of 200 simulations reached steady state. For both EM and fluids cases, subdomain
data is produced by cropping data from large-scale simulations with optional rotation as data augmentation method.
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B. Loss functions
Here we present the data-physics loss function used to train the subdomain models:

Ldata =
1

N

N∑
n=1

∣∣∣∣∣∣H(n) − Ĥ(n)
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1

(4)

Lpde =
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N
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(5)
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∣∣∣∣∣∣g − (
jk(r)H(n) − ∂H(n)

∂n
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1

(6)

in which Ĥ is the ground-truth magnetic field, k(r) = 2πε(r)/λ is the wave vector in the medium.

C. Hybrid data-physics training scheme
The subdomain solvers are trained using a hybrid loss function composed of a data term, Ldata, and a physics loss term,
Lphysics, which is scaled by a hyperparameter α:

L = Ldata + α · Lphysics.

Previous work in physics-augmented neural network training has demonstrated that training convergence and performance is
sensitive to the relative magnitude of the physics loss term compared to the data loss term (Chen et al., 2022a). To maximize
the generality of the proposed training setup, we employ a dynamically tuned hyperparameter, α, which is scaled throughout
the training process, like the approach taken in the WaveY-Net study (Chen et al., 2022a). At the end of each epoch, α is
modified such that the ratio between α · Lphysics and Ldata is a constant, α′, throughout the entire training process. The
practice of dynamically tuning the physics loss coefficient greatly stabilizes training convergence across different simulation
problems, thereby allowing a working training scheme to readily generalize to problems governed by different physics
equations.

The constant physics ratio, α′, is neural network model dependent and appears insensitive to the two types of problems
being simulated. All the FNO models are trained with α′ = 0.3 and the U-Net and Swin Transformer are trained with
α′ = 0.1. However, due to the slower learning rate of vision transformers compared to convolutional neural networks, α′ is
set to 0 for the first 50 training epochs to prevent divergent training behavior. Divergent behavior occurs in domains with
high contrast material due to the presence of strong optical resonances. Without substantial influence from data to push the
optimization in regimes with the correct resonances, unstable interplay between bulk and boundary physics loss leads the
optimization process astray.

D. Implementation details for U-Net
The U-Net architecture employed in this study is constructed as follows:

• Each half of the U-shaped architecture contains 5 blocks of convolutional layers;

• Each convolutional block is composed of 6 convolutional layers;

• Each convolutional layer is composed of a sequence of operations: convolution, batch normalization, and ReLU
activation;

• The number of convolutional kernels contained in the convolutional layers of each block is increased by a factor of two
compared to the previous block’s number, starting with 30: 30 · (2(block−1)). The number in the blocks of the second
half of the U-shaped architecture mirror those in the first half.
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E. Implementation details for Swin Transformer
We designed our implementation of the Swin Transformer with the same shifting windows and windowed attention as
featured in previous architectures (Liu et al., 2021). Notably, we abstain from utilizing patch merging, as our network design
maintains consistent input and output dimensions. Our architecture comprises multiple stacked Swin Transformer layers, all
configured with uniform patch sizes. The hyperparameters regarding the model is chosen based on the Swin transformer
model used in image semantic segmentation tasks, and adjusted based on the input size of our subdomain problem.

To elaborate on the architectural parameters:

• Patch Size: We employ a patch size of 1.

• Window Size: Each attention window spans 9 patches.

• Number of Heads: Multi-head attention is applied with 16 attention heads.

• Swin Transformer Blocks: Each layer of the network contains 16 Swin Transformer blocks with window shifting
enabled.

• Layers: The network is formed by stacking 4 such layers.

We initialize trainable absolute positional encodings drawn from a normal distribution with a mean of 0 and a standard
deviation of 0.01. For encoding domain-specific information, such as the input refractive index in EM simulations or
obstacles in fluid simulations, we employ a matrix multiplication to transform these data into a 48-dimensional vector.
Boundary conditions are treated similarly but encoded using a separate encoder. These encodings are then padded around the
original image for 4 times, leading to an overall 72 by 72 input to the network. Corners not covered are left as 0. The output
of the network is subsequently transformed using another matrix multiplication to ensure it conforms to the dimensions
required for the final output. For training the model, we use Adam optimizer with learning rate set to 0.001 for initial, and
then exponentially decay it to 0.0001 over the training course of 50 epochs. We do not use dropout or weight decay during
training.

F. End-to-end FNO on the full problem
In this section, we demonstrate the results and difficulties in training an SM-FNO model on the full-sized problem consisting
of 960 by 960 grids. The training data consists of a total of 1000 data samples, which is split into 900 training samples and
100 test samples. Each input device consist of a random grayscale dielectric material map, a map of 4 line sources with a
random profile, and a PML map produced by a 40-grid thick UPML on four sides, which is constant.

We trained an SM-FNO model with 6 layers, 64 channels and 16 Fourier modes. The model has 262M weights and 531G
FLOP per input device. The Adam optimizer is used with learning rate starting at 3e-4 and annealed to 1e-5 over 100 epochs.
We used an NVIDIA RTX A6000 GPU with 48GB memory, and could fit up to a batch size of 4 during training.

From the training curve and sample visualizations, it is clear that the model is able to overfit to the training data and learn
the lower frequency spectrum of the fields, but fails to generalize to test data. This is expected as we have seen that we need
more than 100k data even for a 64 by 64 grids subdomain with heterogeneous material and arbitrary boundary. It is expected
that orders of magnitude more data is required to learn similar problems on a larger scale.

We believe it is theoretically possible that with sufficient resources and time, an end-to-end model could be trained for a
large problem. As a quick comparison, it takes about 2 hours to generate the 1000 training samples on a desktop with 40
CPU cores. It would take over 2 months to generate 100k data. The scaling would be even worse for problems in 3D.

At the same time, we have demonstrated that cropping the same 1000 simulations to create a subdomain dataset with size on
the order of 100k to 1M could be sufficient for building semi-general subdomain solvers that are capable of solving a broad
range of problems.

Other methods could be beneficial in practice, like generating low-resolution data and using physics to help formulate
high-resolution solutions (Li et al., 2021). We note that for wave-like problems, a minimum number of points needs to
be sampled per wavelength to avoid aliasing, which sets the lower bound for problem complexity. Besides, end-to-end
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Figure 9. SM-FNO trained on full-sized problem with 960 by 960 grids. a) Training curve for 100 epochs. b) The input PML map shared
for each device. c) Samples from the training and testing datasets.

methods are usually designed for a fixed physical domain size, while the DDM approaches have the flexibility to be applied
to different sized problems.

G. End-to-end PINN on the full problem
In this section, we consider a broader comparison with physics-informed baselines by evaluating the performance of PINNs
on the same simulation setup illustrated in Figure 1a of the main text. Physics-informed PDE solvers can be categorized into
domain-specific solvers (Raissi et al., 2019; 2017a;b) and operator (general function-to-function) solvers (Li et al., 2023;
Wang et al., 2021b). In this section, we benchmark physics-informed domain-specific solvers on full-sized problems.

Table 4. Range of values for hyperparameter sweep
Hyperparameter Values

Starting Learning Rate
min: 1e-5
max: 1e-3

ADAM Weight Decay
min: 1e-8
max: 1e-3

Activation Multiplier (w0)
min: 1
max: 30

No. Hidden Layers
min: 2
max: 5

Layer Height {32, 64, 128, 256}

B.C. Weight
min: 1
max: 20

We benchmark a fully connected PINN architecture with sine activation (Song et al., 2022) on a total of 12 full-sized
problems: {air, SiO2, TiO2, Si} × {50 by 50, 120 by 120, 250 by 250}. The simulation domain is heterogeneous (containing
either silicon oxide, titanium oxide, or silicon, and air), is surrounded by Robin-type boundary conditions, and the source
is located outside of the domain. For each of the 12 problems demonstrated in Fig. 10, we perform Bayesian sweeps
over the possible values specified in Table 4. This is because each PINN setup is highly sensitive to the unique Robin
boundary conditions of each solution, requiring careful tuning of the training hyperparameters. A total of 50 training runs
are performed in each of the 12 sweeps, over a sub-range of hyperparameters that was determined as most promising based
on the results of a random-selection sweep of the SiO2 120 by 120 simulation problem consisting of 1200 training runs.

The optimal parameters determined by each Bayesian sweep are recorded in Fig. 11. The variety of these results illustrates
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Figure 10. PINNs trained on full-sized problems. Here we show the results of training PINNs with sine activation functions on different
problem sizes and material types. Three problem sizes are investigated: a) 50 by 50, b) 120 by 120, and c) 250 by 250. For each problem
size, a binary mask defines the material geometry, and four different materials with the same geometry are used to construct 4 different
problems. We conduct thorough parameter and architecture searches within each problem, and the L1 loss for the best models are
reported.

the challenges related to training domain-specific PINNs on general, heterogeneous simulation domains. Convergence is
highly sensitive to the selection of the hyperparameters, but the most sensitive set of hyperparameters is not constant across
simulation setups. However, as illustrated in Fig. 11, the most common hyperparameter of high importance to the outcome
of the sweep, as determined by the multivariate ”importance” calculation (Liu & Motoda, 1998), is the boundary condition
weight (i.e., the weighing factor between the bulk loss and the boundary condition loss during training). Applying PINNs
to general simulation domains is thus a laborious training process due to the high sensitivity of model performance on
non-consistent sets of training hyperparameters.

A general trend emerges in the simulation sweep, as illustrated in Fig. 10: as the material refractive index increases (and
with it the complexity of the field profile), and the simulation domain size scales up, the performance of the PINN rapidly
deteriorates. Although the PINN performs reasonably well for smaller domain sizes with domains consisting of relatively
lower refractive index materials, the fully connected model PINN is incapable of scaling to the larger domain sizes solved
by SNAP-DDM with the same levels of accuracy.

The physics training aspect of domain-specific solvers is closely related to the training process in operator learning. There is
significant progress in physics-informed operator solvers. Physics-informed neural operators (PINOs) for example, rely
on the FNO framework to learn the function-mapping operator by training on both data and PDE constraints at different
resolutions. (Li et al., 2023) Although it is demonstrated to work well for heterogeneous simulation domains and has
several interesting properties, such as training on lower-frequency problems and generalizing to higher-frequency sources,
PINO is implemented using the FNO as a backbone, which results in difficulties in scaling to higher dimensions. (Li et al.,
2023) PIDeepONets (Wang et al., 2021b) is another example of momentous progress in physics-informed operator learning,
which biases the output of DeepONets (Lu et al., 2021) towards physically robust solutions. PIDeepONets augments
DeepONets by using automatic differentiation over the input variables, similar to PINNs. (Wang et al., 2021b) Although
these models demonstrate impressive solution accuracy improvements, generalizability, and data efficiency, the models
are computationally expensive to train because the training dataset size is a product of the number of input functions and
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Figure 11. Optimal training hyperparameters for each simulation problem, determined as a result of individual Bayesian sweeps. As
determined using a multivariate importance score calculation over all hyperparameters, red denotes the most sensitive hyperparameter,
and blue the second-most.

evaluation coordinates. (Wang et al., 2021b) The training computational complexity is further complicated by the significant
computational graph size increase due to the automatic differentiation of the input parameters, resulting in significantly
longer training time compared to DeepONets. PIDeepONets was not able to converge when trained on the Helmholtz
equation for the H field, although this can likely be ameliorated by increasing the number of training collocation points and
careful tuning of the training hyperparameters with sufficient compute availability.
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