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ABSTRACT

Protein-protein interactions (PPIs) play a crucial role in numerous biological pro-
cesses. Developing methods that predict binding affinity changes under substitu-
tion mutations is fundamental for modelling and re-engineering biological sys-
tems. Deep learning is increasingly recognized as a powerful tool capable of
bridging the gap between in-silico predictions and in-vitro observations. With this
contribution, we propose eGRAL, a novel SE(3) equivariant graph neural network
(eGNN) architecture designed for predicting binding affinity changes from mul-
tiple amino acid substitutions in protein complexes. eGRAL leverages residue,
atomic and evolutionary scales, thanks to features extracted from protein large
language models. To address the limited availability of large-scale affinity as-
says with structural information, we generate a simulated dataset comprising ap-
proximately 500,000 data points. Our model is pre-trained on this dataset, then
fine-tuned and tested on experimental data.

1 INTRODUCTION

Protein-protein interactions (PPIs) are pivotal in many biological processes, such as immune sys-
tem regulation, cell metabolism, signal transduction and DNA replication (Stumpf et al., 2008).
While experimentally measuring these interactions via in-vitro testing is key for advancing modern
therapeutics such as cancer therapies (Ben-Kasus et al., 2007), vaccine design (Dar et al., 2022)
and understanding viral infections (Barouch et al., 2013), these experiments remain a costly and
low-throughput process. To circumvent issues of cost and scalability, scientists employ computa-
tional models to study the impact of mutations on protein complexes. Existing models generate
scores that measure the discrepancy in Gibbs free energy ∆G between the bound and unbound
states of the complex, as well as the variation between mutant (MUT) and wild-type (WT) states
∆∆G = ∆GMUT − ∆GWT . Most of these models utilize molecular dynamics simulations or
simulation-based scoring methods, either as an energy function-based evaluator or integrated within
a simulation framework (Moal et al., 2014). Nevertheless, recent progress in classical machine
learning and deep learning techniques has led to the creation of state-of-the-art models in the field
of PPI prediction, offering enhanced speed and accuracy (Guo & Yamaguchi, 2022).

Classical machine learning techniques still hold relevance for protein property prediction problems,
an example being mmCSM-PPI (Rodrigues et al., 2021), an Extra Trees based model, leveraging
handcrafted features. Since tree-based models cannot handle multiple mutations, mmCSM-PPI ad-
dresses this challenge by averaging its handcrafted features over the number of point substitutions.
Additionally, the literature offers hybrid approaches that combine deep learning techniques for fea-
ture extraction and classical machine learning (mainly tree-based models) to output binding scores
(Liu et al., 2021), (Wang et al., 2020). The feature extraction process is either directly integrated
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into the training pipeline or trained separately in an unsupervised manner. Yet another approach
consists in designing deep learning models to predict changes in affinity of PPIs affinity. However, a
significant limitation in the majority of these models is their ability to make predictions exclusively
for single-point mutations. A notable exception to this trend is NERE (Jin et al., 2023b), which
stands out for its unique approach. Trained in a fully unsupervised manner, NERE predicts absolute
binding affinity using the structure of the mutated, designed or desired protein complex directly,
without explicitly modelling mutations.

The dependency of a model on the existence of a structure represents a limitation: in the case of
predicting the effects of mutations, the resulting protein spatial conformation is altered, and since
the availability of data from mutated structures is scarce one needs to rely on other tools, such as
simulations through classical physics or deep learning based methods. For instance, NERE predicts
the absolute binding energy by directly using the complex structure, and in case one wanted to use
NERE to evaluate the binding affinity of a structure that has not been experimentally validated, this
would likely need to be generated computationally. On the same note, GeoPPI (Liu et al., 2021)
encounters limitations emerging from the fact that it relies on embeddings of both MUT and WT
amino acids, which the authors map with a graph neural network (GNN). The solution we propose is
based on the adoption of a previously described model, which naturally handles multiple amino acid
substitutions as well as the resulting perturbations to the structure thanks to its architecture based
on GNNs (Boyer et al., 2023). In this paper, we extend the model to not only combine information
coming from atomic and residue scales, but also from the evolutionary scale by adding ESM2-
generated (Lin et al., 2022) amino acid features: ESM-generated embeddings have demonstrated
their usefulness when used in models predicting protein biophysical properties, as shown in (Jin
et al., 2023b) and (Ouyang-Zhang et al., 2023). Notably, eGRAL utilizes only the WT structure to
determine ∆∆G, as the MUT features are directly encoded in the WT graph.

To address the challenge of limited training data, we constructed our own corpus of 519404 ∆∆G
scores from single point mutations via Rosetta (Das & Baker, 2008) simulation on top of SKEMPIv2
(Jankauskaitė et al., 2019), as we believe such a Rosetta based score to be most physically accurate
for single point mutations. The model is first pre-trained on the simulated Rosetta dataset and then
fine-tuned on single and multiple mutations from the experimental SKEMPIv2 dataset.

2 METHODS

2.1 EGRAL DETAILS

The architecture of eGRAL follows that proposed by (Boyer et al., 2023). The model consists of
two eGNNs: the first eGNN generates embeddings for each residue’s atomic environment (AE) and
is trained on atomic graphs in a self-supervised way, the second eGNN is trained on residue graphs
constructed from PPI binding affinity datasets and scores mutational effects. The contribution of
this work is focused on the development of the scorer eGNN, and extends the previous procedure to
include features both from a protein language model and to account for specific partner interactions.

Residue graphs are constructed starting from the MUT residue(s) and drawing edges between
residues within a threshold distance of 9 Å, Fig. 1. The graphs can include N-hop neighbors around
the mutated residues, but the results presented with this contribution refer to a 1-hop neighborhood,
which we believe is the best trade-off between computational cost and accuracy; in the case of mul-
tiple mutations the resulting graphs may be connected or not. The graphs used to train the scorer
eGNN are built to exploit the characteristics of protein complexes. In addition to information on the
presence of a peptide bond, residue sizes and the distances between amino-acids, the edge features
include 1-hot vectors that indicate whether an edge is drawn between residues belonging to the same
chain, to different chains in the same partner, or to chains in different partners. Furthermore, node
features can include information extracted with protein language models, here ESM2 (Lin et al.,
2022): for each amino-acid node, we include the difference between the embeddings of the WT and
MUT residues, the difference between the site entropy of the WT and MUT residues, and the site
amino-acid probability (when the position is not mutated WT and MUT are the same residue). In
particular, the addition of ESM2 generated information increases roughly by a factor 20 the size
of the node features: for this reason, we choose the smallest model (esm2 t6 8M UR50D with 8M
parameters) to leverage the higher variance of its predictions and reduce overfitting.
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Figure 1: Schematic of the residue graphs. Partners AB and C refer to the individual proteins (or
sub-units) that interact to form the complex. Each node describes an amino acid represented by
multiple features, and edges are drawn between nodes within 9 Å. The nodes can include ESM2-
generated features while the edges include information on how the partners interact.

The atomic embedder eGNN is trained following (Boyer et al., 2023) but on PDBs processed with a
different procedure, explained in Appendix A.8. The multi-layer perceptrons (MLPs) implemented
in the scorer eGNN are trained with dropout activated, and the last layer of each MLP is not activated.
For further details about the architecture and training hyper-parameters, refer to Appendix A.7.

2.2 DATA

The PPI binding affinity dataset on which we aim to test eGRAL is SKEMPIv2, (Jankauskaitė et al.,
2019). However, the size of the dataset is not sufficient for training the proposed model, thus we
resort to a simulated dataset consisting of a library of 519406 protein and variant structures, with
single point mutations and scored binding energy changes ∆∆G: ROSETTAsim. ROSETTAsim is
constructed with the same PDBs of a cleaned version of SKEMPIv2, where all the entries with
invalid/ambiguous affinities, ambiguous mutations, non peer-reviewed data, more than one experi-
mental method reported, and PDB IDs with less than 10 data points are deleted: SKEMPIcl. Both
ROSETTAsim and SKEMPIcl are divided following the same training, validation, test split (listed
in Appendix A.3): the splits are generated randomly per PDB ID, without any other consideration
for any kind of similarity metric between the PDBs themselves. This is done to ensure that in-
formation does not leak through presence of the same structures between splits. For each dataset,
the subsets will have subscripts indicating the purpose (e.g. ROSETTAsim,train, ROSETTAsim,valid,
ROSETTAsim,test). Finally, we generate a test set with experimentally measured binding affinities
from (Moulana et al., 2022) and (Starr et al., 2022), consisting in 700 points and up to 7 muta-
tions (referred to as RBDtest). For a detailed explanation of the derivation of these datasets, refer to
Appendix A.1.

2.3 PRE-TRAINING AND FINE-TUNING

To assess the performance and flexibility of the added ESM features, we pre-train, fine-tune and test
two different models: one without ESM features (referred to as eGRAL-noESM), one including
ESM features (referred to as eGRAL-ESM). As opposed to (Boyer et al., 2023), where the scores
were transformed via a Fermi-Dirac function, we train the two models directly on ROSETTAsim
∆∆G scores with an AdamW optimizer and using a simple L2 loss. The model checkpoint is
chosen according to the lowest L2 loss on the validation set. Model hyper-parameters are listed in
Table 4. After the pre-training phase, we use LoRa (Hu et al., 2021) to fine-tune the two models
with experimental data from SKEMPIcl. During fine-tuning we also use a L2 loss and AdamW
optimizer, and choose the best model according to the lowest validation loss. Fine-tuning model
hyper-parameters are the same used during pre-training, and can be found in Table 4.
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3 RESULTS AND DISCUSSION

The results section is divided between the pre-training and fine-tuning phases, in order to highlight
the different behaviour of the model in the two stages. The models eGRAL-noESM and eGRAL-
ESM are trained to minimize the L2 loss, and the best model is chosen to have the lowest loss on the
validation set. The results are shown during both phases and for both models in Tables 1 and 2; the
Spearmank rank correlation coefficient is also reported. During pre-training, the models are trained,
validated and tested on ROSETTAsim, and can only be considered as an emulator of the configured
Rosetta scorer used in this work. It is thus worth noting that the intersection between ROSETTAsim
and SKEMPIcl has a Spearman correlation coefficient of only 0.37 (Appendix: A.2).

3.1 PRE-TRAINED MODEL

The metrics used to monitor the pre-training of the models are shown in Table 1. Pre-training is
done on the simulated dataset as explained in Subsection 2.2 and detailed in Appendix A.1. Pre-
trained models are tested on three different datasets: ROSETTAsim,test, SKEMPIcl,test and RBDtest.
This aims at understanding the generalization over multiple degrees of out of distribution data: as
ROSETTAsim,test also comes from simulated data, we assume its distribution will be closer to the
training and validation sets than SKEMPIcl,test or RBDtest, which instead contains experimental val-
ues.

Due to its high degree of expressiveness, eGRAL-ESM overfits the training set (ROSETTAsim,train
ρp: 0.69, ROSETTAsim,valid ρp: 0.50) and does not perform significantly better than eGRAL-
noESM model on ROSETTAsim,test (eGRAL-noESM ρp: 0.43, eGRAL-ESM ρp: 0.40) but does
on SKEMPIcl,test (eGRAL-noESM ρp: 0.34, eGRAL-ESM ρp: 0.46). Both models show rather
poor performance over RBDtest. Appendix A.4 reports figures with a more granular analysis of the
performance of the two pre-trained models over ROSETTAsim,test.

Table 1: Evaluation metric summary for the pre-trained model. RMSE is expressed in kcal/mol, ρp
is the Pearson correlation coefficient and ρs is the Spearman rank correlation coefficient.

ROSETTASIM,TRAIN ROSETTASIM,VALID ROSETTASIM,TEST SKEMPICL,TEST RBDTEST

RMSE ρp ρs RMSE ρp ρs RMSE ρp ρs RMSE ρp ρs RMSE ρp ρs

eGRALpre−trained
noESM 2.14 0.46 0.37 1.92 0.50 0.39 2.11 0.43 0.33 1.87 0.34 0.41 0.90 0.18 0.14

eGRALpre−trained
ESM 1.70 0.70 0.57 1.87 0.49 0.34 2.19 0.38 0.28 2.01 0.30 0.33 0.77 0.08 0.05

3.2 FINE TUNED MODEL

Following pre-training, the model is fine-tuned with LoRA on multiple mutations and experimental
values from SKEMPIcl. Results are shown in Table 2. With the fine-tuning procedure, both eGRAL-
noESM and eGRAL-ESM achieve an increased Pearson correlation coefficient over SKEMPIcl,test,
that goes from 0.34 to 0.47 for the former, and from 0.46 to 0.57 for the latter. Overall, neither
model’s performance improves for the RBDtest dataset. During pre-training, eGRAL-ESM overfits
the training set rapidly, which makes the fine-tuning procedure difficult. For this reason, the model
does not show the improved performance which may have been expected from the inclusion of the
ESM2 features.

For both models the test sets are then broken down by PDB IDs and number of mutations for
SKEMPIcl,test, while only per number of mutations for RBDtest, in Figure 2. The predictive power
of both models, measured with the Pearson correlation coefficient, does not strongly depend on the
identity of the PDB, which shows that the models can generalise to diverse protein complexes (for
further details refer to Appendix A.5). Figure 2 also shows the average Pearson correlation coeffi-
cient weighted by the number of data points per PDB, and seperately per number of mutations. In
terms of predictive power conditional to the number of mutations to score, both models have sig-
nificant Pearson correlation coefficient up to four substitutions on SKEMPIcl,test. On the contrary,
although Figure 2 might indicate that both models produce meaningful predictions in case of mul-
tiple substitutions over RBDtest, Figures 7 and 8 in Appendix A.6 show that this is not the case:
indeed, the models output meaningful results only in the case of single point mutations.
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Table 2: Evaluation metric summary for the fine tuned model. RMSE is expressed in kcal/mol, ρp
is the Pearson correlation coefficient and ρs is the Spearman rank correlation coefficient.

SKEMPICL,TRAIN SKEMPICL,VALID SKEMPICL,TEST RBDTEST

RMSE ρp ρs RMSE ρp ρs RMSE ρp ρs RMSE ρp ρs

eGRALfine−tuned
noESM 1.73 0.48 0.50 1.78 0.49 0.57 1.77 0.47 0.42 1.00 0.22 0.11

eGRALfine−tuned
ESM 1.70 0.47 0.52 1.72 0.47 0.55 1.73 0.50 0.42 0.78 0.17 0.07

Figure 2: Performance of fine-tuned eGRAL-ESM (top row) and eGRAL-noESM (bottom row).
Results are broken down as follows; (a) per PDB; (b) per number of mutations for SKEMPIcl,test;
and (c) per number of mutations for RBDtest. The Pearson correlation coefficient (ρ) is reported.
Marker size is proportional to the number of points used to calculate the correlation. The colouring
refers to the different PDB IDs or number of mutations. In column (b) and (c), the numbering refers
to number of mutations. The vertical line marks a significant p-value of 0.05.

3.3 DISCUSSION

eGRAL and our training procedure show significant predictive power. Indeed, we see for both mod-
els improved prediction of experimental scores after the fine-tuning process. Both models generate
useful predictions for up to four substitutions over SKEMPIcl,test. Regarding RBDtest the cut is less
clear even though we see significant predictive power in the case of single substitutions. Our model
outperforms geoPPI (Pearson ρ: −0.18, p-value: 0.07) on the single mutation subset from RBDtest,
Fig. 11.

The evidence of the advantage of adding ESM features emerges when evaluating the model on
SKEMPIcl,test after the fine-tuning step, see Table 1 and 2. Indeed, while the performance of eGRAL-
ESM is worse than eGRAl-noESM after pre-training, the fine-tuning process leads to slightly better
results. However, we want to highlight the fact that eGRAL-ESM shows a significantly larger pre-
dictive potential thanks to its higher expressivity than eGRAL-noESM: indeed, eGRAL-ESM can
achieve Pearson correlation up to 0.80 over the training set, whereas eGRAL-noESM reaches a
plateau at about 0.50. In our case, this translates into eGRAL-ESM overfitting the dataset quite
quickly, but we believe that using a model with ESM features might, in the future, be more appro-
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priate in the context of a larger simulated dataset, probably built around more diverse PDBs and
already including multiple amino acid substitutions.

To assess the robustness of our procedure and verify its usefulness compared to the state of the art,
we proceed with a variance analysis where we test eGRAL-noESM and eGRAL-ESM pre-trained
and fine-tuned with 5 different initialization seeds and 5 different training and validation splits (see
Appendix A.9); the models are trained leaving architecture and hyper-parameters fixed as in Ap-
pendix A.7. The 10 resulting models are tested on SKEMPIcl,test and the performance assessed with
Pearson ρp and Spearman rank ρs correlation coefficients: the average metrics ± standard devia-
tion across the seeds result ρp=0.37±0.11 and ρs=0.38±0.11 for eGRAL-noESM, ρp=0.47±0.04
and ρs=0.40±0.04 for eGRAL-ESM; the average metrics ± standard deviation across the splits re-
sult ρp=0.43±0.05 and ρs=0.40±0.05 for eGRAL-noESM, ρp=0.45±0.13 and ρs=0.37±0.13 for
eGRAL-ESM. Even without further hyper-parameter tuning specific to each new seed or split, the
lower bound of the performance of our procedure, calculated as mean minus standard deviation, is
better or really close to that obtained with our Rosetta scorer config (see Figure 9 and 10, which
instead has an RMSE of 2.62 kcal/mol and correlates to SKEMPIcl,test with ρp=0.33 and ρs=0.37
(Appendix A.2. Moreover, eGRAL is tested on multiple mutations, whereas the performance of
Rosetta is evaluated only for single point mutations, which we feel confident in assuming as an
easier scenario, further underlining the robustness of this work. Note that the same analysis is not
performed after the pre-training phase since eGRAL would perform at best as a Rosetta emulator at
this stage. Finally, we compare the execution speed by scoring all the possible 19 single mutations
in a position of a PDB: eGRAL-noESM takes 25s, eGRAL-ESM takes 34s, against an average of
49s (min: 31s, max: 57s) for Rosetta (further details in Appendix A.10).

Among the limitations of eGRAL, a significant one lies in the fact that it does not work with a MUT
structure directly. While the graphs encode information about the size of the residue, see Figure
1, allowing the model to understand when the complex is altered, the coordinates of the mutated
residues remain the same. We recognize that having a model that extracts information from a mu-
tated structure would be optimal but this does come with costs: experimentally derived structures
are of scarce availability, while simulated ones are often difficult to solve as well as noisy; moreover,
WT and MUT structure might generate different graphs (e.g. residues within the cut-off could end
up outside of it after substitution, and vice-versa), making it cumbersome to compare them. For
these reasons, we refrain from using a MUT structure. Another limitation emerges from the data:
eGRAL is trained on static coordinates, whereas proteins are inherently dynamic systems. Possible
approaches to tackle these issues could be techniques to train via denoising score matching and have
the model learn a less static representation of the protein geometry by either adding Gaussian noise
(Jin et al., 2023a), or rigid transformation noise (Jin et al., 2023b) to the PDB atomic coordinates.

4 CONCLUSIONS

Utilizing a simulated PPI binding score dataset, we pre-trained multiscale eGNN models, an archi-
tecture that is flexible to multiple substitutions. We then extended the procedure by introducing a
fine-tuning step to have eGRAL learn on limited experimental values. eGRAL shows good predic-
tive power and generalises well to different PDBs as well as multiple mutations. Although adding
ESM2 generated features does not significantly improve the performance on the test sets, the model
becomes more expressive and we believe evidences potential for further exploration.
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A APPENDIX

A.1 DATASETS GENERATION

Cleaned SKEMPIv2: We used the SKEMPIv2 dataset and passed it through another cleaning step as
we found some of its entries unclear. Hence from here on whenever we will talk about the SKEMPIcl
dataset, we refer to the subset of SKEMPIv2 dataset for which all entries meeting the following crite-
ria are deleted: invalid/ambiguous affinities, ambiguous mutations, non peer-reviewed data, entries
with more than one experimental method reported, all PDBs with mutation count less than ten.
Training, validation and test splits are generate by randomly splitting the dataset per PDB ID, with-
out any other consideration for any kind of similarity metric between the PDBs themselves. This
is done to ensures that information does not leak between splits (the same PDB is never shared be-
tween different splits). In the following, those splits are referred to as SKEMPIcl,train, SKEMPIcl,valid,
SKEMPIcl,test, they are listed in Appendix A.3 and their distribution shown in Fig. 4. It is this split
that is used to train and finetune the models.

Simulated data based on Cleaned SKEMPIv2: A library of protein structure variants was con-
structed using PDB IDs and their interface definitions, from SKEMPIcl. The interface corresponds
to two interacting sub-units (partner A and partner B) of the protein chain(s). From their RCSB
PDB structures, their interface residues are extracted. An interface residue is defined as any residue
on a chain of partner A with an atom within a distance of 8 Å to any other atom on a chain of
partner B. These residues are mutated to all possible amino acids, excluding the wild-type. Only
single point mutations are considered. This process generates a total library of 541680 variants. The
binding energy change ∆∆G upon mutation is then computed using a Rosetta (Das & Baker, 2008)
protocol. All wild type structures are first relaxed using the Rosetta FastRelax protocol. Mutations
are then applied to the protein structures, followed by a repacking of the surrounding residues to
accommodate the structural changes induced by the mutation. The radius for surrounding residues
selection for repacking is set to 7 Å. The structure is then refined post-mutation: a ’backrub’ tech-
nique using Rosetta BackrubMover module followed by a final minimization step using FastRelax
with the ’lbfgs armijo nonmonotone’ algorithm. Parameters for the Monte Carlo steps and tempera-
ture, crucial for the Metropolis-Hastings criterion, are set at 500 and 0.4, respectively. The ∆∆G of
binding energies is evaluated using Rosetta InterfaceAnalyzerMover module. ’Ref2015’ is consis-
tently used for all scoring tasks leading to 519406 variants successfully scored (predicted absolute
score less than 12 kcal/mol). The lists of PDB IDs from this dataset used to train, validate and test the
model is the same for both the simulated dataset ROSETTA and the experimental dataset SKEMPIcl:
the split is reported in Appendix A.3. We use the same split to ensure that there is not data leak-
age between the pre-training and the fine-tuning phases. Hence, we generate a ROSETTAsim,train,
ROSETTAsim,valid and ROSETTAsim,test that we use to pre-train our models.
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RBD test dataset: We generate a test set starting from the Desai SARS-CoV-2:ACE2 dataset
(Moulana et al., 2022): the dataset systematically maps the epistatic interactions between the 15 mu-
tations in the receptor binding domain (RBD) of Omicron BA.1 relative to the Wuhan-Hu-1 strain.
The dataset include experimental measurements of the ACE2 affinity of all possible combinations of
these 15 mutations. From it we generate a subset of up to 7 mutations (100 points per each number
of mutations); however, since there are only 15 single point mutation affinity values and we intend to
have 100 data points, we merge 85 single substitutions in Wuhan-Hu-1 taken from deep mutational
scan measurements from (Starr et al., 2022). The correlation between the overlap in the two datasets
is 88% (Spearman). For each point, the ∆Kd is calculated using the Kd (dissociation constant) of
each mutants referred to the background. For this dataset, the structure used was generated with an
Alphafold2 pipeline (Jumper et al., 2021). In the following this dataset is referred to as RBDtest.

A.2 ROSETTA BASED SCORER PERFORMANCE EVALUATION

This appendix shows how well the simulated dataset ROSETTAsim correlates to the experimental
values in SKEMPIcl. The intersection between the two datasets consists in 3741 single point muta-
tions across 229 PDBs. The results are showed in Fig. 3. For the intersection, the simulated dataset
correlates to SKEMPIcl with a RMSE of 2.62 kcal/mol and Pearson and Spearman rank correlation
coefficients of 0.33 and 0.37, respectively. We do not score multiple mutations with Rosetta as it is
safe to assume that the results would be at best as good, but likely worse, than the single mutation
scenario.

Figure 3: ∆∆G predicted by the Rosetta-based scorer against the experimental values in SKEMPIcl
for the intersection between ROSETTAsim and SKEMPIcl.

A.3 DATA SPLITS

In this appendix we list in alphabetical order the PDB IDs used for the training, validation and test
sets both with the ROSETTAsim and SKEMPIcl sets:

• Training split: 1A22, 1A4Y, 1AHW, 1AO7, 1B2S, 1B2U, 1B3S, 1BD2, 1BP3, 1C1Y, 1C4Z, 1CBW,
1CHO, 1CSE, 1CT0, 1CT2, 1DVF, 1EFN, 1F5R, 1FC2, 1FCC, 1FFW, 1FR2, 1FSS, 1FY8, 1GCQ,
1GL0, 1GUA, 1H9D, 1HE8, 1IAR, 1JTG, 1KAC, 1KIQ, 1KIR, 1KTZ, 1LFD, 1LP9, 1M9E, 1MAH,
1MI5, 1MLC, 1N8O, 1N8Z, 1NCA, 1NMB, 1OGA, 1P6A, 1PPF, 1QSE, 1R0R, 1REW, 1S0W, 1S1Q,
1SBB, 1SGN, 1SGP, 1SGY, 1SIB, 1TM3, 1TM4, 1TM5, 1TM7, 1TMG, 1U7F, 1WQJ, 1X1W, 1X1X,
1XGP, 1XGQ, 1XGR, 1XGT, 1XGU, 1Y1K, 1Y3B, 1Y3C, 1Y3D, 1Y48, 1YQV, 1YY9, 1Z7X, 2AJF,
2B0U, 2B10, 2B11, 2B2X, 2B42, 2BNR, 2BTF, 2C5D, 2DSQ, 2DVW, 2E7L, 2G2U, 2G2W, 2GOX,
2HRK, 2I26, 2J0T, 2J12, 2J1K, 2J8U, 2JCC, 2JEL, 2NU0, 2NU1, 2NU2, 2NU4, 2NYY, 2NZ9,
2O3B, 2OI9, 2P5E, 2PCB, 2PCC, 2REX, 2SGP, 2SGQ, 2VIR, 2VIS, 2VLO, 2VLP, 2WPT, 3B4V,
3BN9, 3BT1, 3BTD, 3BTE, 3BTM, 3BTQ, 3BTT, 3BX1, 3D3V, 3D5S, 3EQS, 3F1S, 3G6D, 3H9S,
3HFM, 3HH2, 3LB6, 3M62, 3MZG, 3MZW, 3N06, 3N4I, 3N85, 3NCB, 3NCC, 3NPS, 3NVN,
3NVQ, 3PWP, 3Q3J, 3Q8D, 3QDG, 3QFJ, 3QHY, 3R9A, 3RF3, 3SE3, 3SE4, 3SE8, 3SEK, 3SF4,
3SGB, 3U82, 3UIG, 3WWN, 4CPA, 4E6K, 4EKD, 4G2V, 4GNK, 4GXU, 4HFK, 4HRN, 4HSA,
4J2L, 4JFF, 4JGH, 4K71, 4L0P, 4L3E, 4LRX, 4MYW, 4NM8, 4NZW, 4O27, 4OZG, 4P5T, 4RA0,
4U6H, 4WND, 4X4M, 4Y61, 4YFD, 4YH7, 5C6T, 5CXB, 5CYK, 5E6P, 5K39, 5M2O, 5UFQ

• Validation split: 1N80, 1TM1, 2HLE, 2OOB, 2QJA, 2VLQ, 3KBH, 3LZF, 3N0P, 3SZK, 4FZA,
4MNQ, 4OFY, 4UYQ, 5TAR, 5UFE
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• Test split: 1AK4, 1B41, 1BJ1, 1EMV, 1F47, 1GC1, 1JTD, 1K8R, 1MHP, 1VFB, 2FTL, 2SIC, 3AAA,
3C60, 3L5X, 3NGB, 3SE9, 4FTV, 4P23, 4PWX, 5E9D, 5XCO

Fig. 4 shows the frequency of data points in SKEMPIcl split as above and divided per number of
mutation:

Figure 4: Frequency of data points in SKEMPIcl per number of mutation in different splits. Namely
from left to right: training, validation and test split.

A.4 ROSETTASIM TEST ADD-ONS

Figure 5: Predicted results against ground truth by pre-trained eGRAL-noESM (top row) and
eGRAL-ESM (bottom row) on ROSETTAsim,test: the predictions are reported for 4 PDB IDs. Scores
and RMSE are expressed in kcal/mol. Pearson and Spearman correlation coefficients and number of
data points are also reported.

Fig. 5 shows the predictions generated by pre-trained eGRAL-noESM (top row) and eGRAL-ESM
(bottom row) on ROSETTAsim,test for 4 different PDB IDs: the plots report also the Pearson and
Spearman correlation coefficients and the number of data points. The 4 PDBs are chosen to be a
limited representative sample of performance on both ROSETTAsim,test and SKEMPIcl,test.

A.5 SKEMPICL,TEST ADD-ONS

Fig. 6 shows the predictions generated by fine-tuned eGRAL-noESM (top row) and eGRAL-ESM
(bottom row) on SKEMPIcl,test for 4 different PDB IDs: the plots report also the Pearson and

10



Published at the GEM workshop, ICLR 2024

Figure 6: Predicted results against ground truth by fine-tuned eGRAL-noESM (top row) and
eGRAL-ESM (bottom row) on SKEMPIcl,test: the predictions are reported for 4 PDB IDs. Scores
and RMSE are expressed in kcal/mol. Pearson and Spearman correlation coefficients and number of
data points are also reported.

Spearman correlation coefficients and the number of data points. The 4 PDBs are chosen to be
as less biased as possible towards too poor or too good performance on both ROSETTAsim,test and
SKEMPIcl,test.

A.6 RBD DATASET

Figure 7: Predicted results against ground truth by fine-tuned eGRAL-noESM on RBDtest: the pre-
dictions are reported per number of mutations. Scores and RMSE are expressed in kcal/mol. Pearson
and Spearman correlation coefficients and number of data points are also reported.
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Figure 8: Predicted results against ground truth by fine-tuned eGRAL-ESM on RBDtest: the predic-
tions are reported per number of mutations. Scores and RMSE are expressed in kcal/mol. Pearson
and Spearman correlation coefficients and number of data points are also reported.

Fig. 7 and 8 show the predictions generated on RBDtest by fine-tuned eGRAL-noESM and eGRAL-
ESM, respectively. The plots report also the Pearson and Spearman correlation coefficients and the
number of data points. It is apparent that both models can output meaningful predictions for RBDtest
only in case of single point mutations.

A.7 HYPER-PARAMETERS

This sections presents the hyper-parameters of eGRAL. Table 3 shows the architecture details of the
scorer for both eGRAL-noESM and eGRAL-ESM. Table 4 instead shows the hyper-paramters used
to build the graphs, and pre-train and fine-tune the models. Whereas for the fine-tuning phase we
expected to need to decrease the learning rate and increase the dropout rate, given the small size of
SKEMPIcl,train, we found the best results with the same parameters using during the pre-training.

Table 3: Architecture details of eGRAL scorer for both models: with and without nodes featurized
with ESM. Following typical Haiku implementations, only the output sizes of the different linear
layers within the used MLP are presented. The naming of the modules from the EGCL layers
follows (Garcia Satorras et al., 2021) naming. Other naming follows (Boyer et al., 2023).

LAYER(S) SIZE ACTIVATION FUNCTION

EGRAL-NOESM EGRAL-ESM EGRAL-NOESM EGRAL-ESM

Φe [6,8] [16, 32] SWISH SWISH 2 EGCL LAYERS

HAIKU IMPLEMENTED

MLP NET

Φx [8, 1] [8, 1] SWISH SWISH

Φh [6, 8] [16, 32] SWISH SWISH

NODE FEATURES EMBEDDER [8] [256, 32] NONE NONE
HAIKU IMPLEMENTED

MLP NET
EDGE FEATURES EMBEDDER [8] [8] NONE NONE

PRE SCORING [10] [10] NONE NONE

OUTPUT [1] [1] NONE NONE
HAIKU IMPLEMENTED

LINEAR LAYER

A.8 PDB CLEANING

We used a combination of pdbcleaner and openmm to fill missing hydrogens and relax them. Pro-
tein structures preparation was carried out using a combination of OpenMM and PDBFixer Eastman
et al. (2017) to rectify common issues found in Protein Data Bank (PDB) files, such as missing
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Table 4: Hyper-parameters used for graph building, pre-training and finetuning of eGRAL-noESM
and eGRAL-ESM.

EMBEDDER SCORER

EGRAL-NOESM EGRAL-ESM EGRAL-NOESM EGRAL-ESM

LEARNING RATE 3e−4 3e−4 3e−4 3e−3

WEIGHT DECAY (ADAMW) 1e−4 1e−4 2e−2 2e−2

DROPOUT RATE - - 2e−2 3e−2

BATCH SIZE 96 96 96 96

MAX NUMBER OF NODES 500 500 80 80

MAX NUMBER OF NODES PER BATCH 500·BATCHSIZE 500·BATCHSIZE 80·BATCHSIZE 80·BATCHSIZE

MAX NUMBER OF EDGES PER BATCH 5001.5·BATCHSIZE 5001.5·BATCHSIZE 801.5·BATCHSIZE 801.5·BATCHSIZE

residues and nonstandard atoms. First crystallization artifacts such as additional solvents were re-
moved, and missing residues were added using PDBFixer to ensure structural integrity. Structures
were protonated, at pH 7 using the ”amberfb15” force field. A thousand minimization steps using
FIREMinimizer were then performed to relax the structure. Finally, atoms were renamed to conform
to Rosetta (Das & Baker, 2008) atoms naming conventions for further mutations and scoring.

A.9 VARIANCE ANALYSIS

In this appendix we provide a variance analysis for the two models, eGRAL-noESM and eGRAL-
ESM, trained on 5 different initialization seeds and 5 different data splits; architecture and hyper-
parameters for the pre-training and fine-tuning stages are the same as indicated in Appendix A.7.
Specifically, Table 5 shows the performance on SKEMPIcl,test of the two models pre-trained and
fine-tuned with the same splits of Appendix A.3 but with different initialization seeds (the first seed
corresponding to 42 is the one adopted for the results presented in the main body of the paper).
Conversely, Table 6 shows the performance of the two models pre-trained and fine-tuned with a
initialization seed of 42 but 5 different training and validation splits (the first split is what used in
the main body of the paper and explained in Appendix A.3, whereas the test split always is not
modified). For the sake of completeness, listed here are the list of PDB IDs of the 5 validation splits
adopted (the training splits can be derived from the remaining PDB IDs of the totality of training
and validation split of Appendix A.3):

• split 1: 1N80, 1TM1, 2HLE, 2OOB, 2QJA, 2VLQ, 3KBH, 3LZF, 3N0P, 3SZK, 4FZA, 4MNQ,
4OFY, 4UYQ, 5TAR, 5UFE.

• split 2: 1B41, 1BJ1, 1JTG, 1SGN, 1XGP, 2B0U, 2BNR, 2JEL, 2VIR, 3KBH, 3N06, 3Q3J, 4EKD,
4J2L, 4YFD, 5UFE.

• split 3: 1A22, 1GUA, 1KAC, 1MAH, 1MHP, 1MQ8, 1Y1K, 2B42, 2CCL, 3C60, 3HFM, 3SE3,
4GU0, 4JGH, 4Y61, 5TAR.

• split 4: 1CT0, 1FSS, 1KTZ, 1N8Z, 1REW, 1TM1, 1TM7, 1XGR, 1Z7X, 2GOX, 2OI9, 3BT1, 3N85,
3NPS, 3SGB, 4G2V.

• split 5: 1OGA, 1PPF, 1SGP, 1TMG, 1XGU, 2BTF, 2OOB, 2REX, 2VLO, 2WPT, 3L5X, 3Q8D,
3RF3, 4E6K, 4KRP, 4UYQ.

Table 5: Evaluation metric summary for the fine tuned model on SKEMPIcl,test for 5 different
seeds. RMSE is expressed in kcal/mol, ρp is the Pearson correlation coefficient and ρs is the
Spearman rank correlation coefficient. The average metrics ± standard deviation across the seeds
result RMSE=1.87±0.14, ρp=0.37±0.11, ρs=0.38±0.11 for eGRAL-noESM, RMSE=1.75±0.03,
ρp=0.47±0.04, ρs=0.40±0.04 for eGRAL-ESM.

SEED=42 SEED=43 SEED=44 SEED=45 SEED=46
RMSE ρp ρs RMSE ρp ρs RMSE ρp ρs RMSE ρp ρs RMSE ρp ρs

eGRALfine−tuned
noESM 1.77 0.47 0.42 1.98 0.27 0.32 1.85 0.35 0.35 1.68 0.51 0.44 2.05 0.24 0.35

Rosetta 1.73 0.50 0.42 1.77 0.49 0.39 1.73 0.48 0.37 1.80 0.39 0.41 1.74 0.47 0.42
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Figure 9: Comparison of the performance of eGRAL-noESM (purple bar), eGRAL-ESM (blue bar)
and Rosetta (green bar) for different initialization seeds. The performance of eGRAL-noESM and
eGRAL-ESM are the average ± standard deviation of the results of Table 5. RMSE is expressed in
kcal/mol.

Table 6: Evaluation metric summary for the fine tuned model on SKEMPIcl,test for 5 different
splits. RMSE is expressed in kcal/mol, ρp is the Pearson correlation coefficient and ρs is the
Spearman rank correlation coefficient. The average metrics ± standard deviation across the splits
result RMSE=1.81±0.03, ρp=0.43±0.05, ρs=0.40±0.05 for eGRAL-noESM, RMSE=1.80±0.13,
ρp=0.45±0.13, ρs=0.37±0.13 for eGRAL-ESM.

SPLIT 1 SPLIT 2 SPLIT 3 SPLIT 4 SPLIT 5
RMSE ρp ρs RMSE ρp ρs RMSE ρp ρs RMSE ρp ρs RMSE ρp ρs

eGRALfine−tuned
noESM 1.77 0.47 0.42 1.80 0.43 0.42 1.86 0.35 0.41 1.79 0.47 0.39 1.83 0.41 0.36

eGRALfine−tuned
ESM 1.73 0.50 0.42 1.73 0.52 0.42 2.06 0.19 0.19 1.74 0.51 0.40 1.74 0.52 0.40

A.10 ROSETTA VS EGRAL: EXECUTION SPEED COMPARISON

In this appendix, we provide a comparison of the execution speed between eGRAL and Rosetta
(Das & Baker, 2008) when scoring the ∆∆G of single point mutations. Since both eGRAL and
Rosetta adopt parallelization to score the substitutions, we compare the speed of the two models
by scoring all the possible mutations of a residue. We choose PDB 1A22 (having a medium size
between the PDB IDs reported in A.3), and we compare all the mutations at position 160. Rosetta
takes an average of 49 seconds to score each variant in parallel, whereas eGRAL-noESM takes 25
seconds and eGRAL-ESM takes 34 seconds.

A.11 GEOPPI

Following the tutorial on their github page, we ran geoPPI on the subset of our RBDtest test set
containing single point mutations.
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Figure 10: Comparison of the performance of eGRAL-noESM (purple bar), eGRAL-ESM (blue bar)
and Rosetta (green bar) for different data sees. The performance of eGRAL-noESM and eGRAL-
ESM are the average ± standard deviation of the results of Table 6. RMSE is expressed in kcal/mol.

Figure 11: Comparison between the ground truth of single point mutation ∆∆G in our RBDtest
dataset and predictions by geoPPI.
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