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We explore the landscape of the decoherence effect in mixed-state ensembles from a purification
perspective. We analyze the spontaneous strong-to-weak symmetry breaking (SSSB) in mixed states
triggered by local quantum channels by mapping this decoherence process to unitary operations in
the purified state within an extended Hilbert space. Our key finding is that mixed-state long-range
order and SSSB can be mapped into symmetry-protected topological (SPT) order in the purified
state. Notably, the measurement-induced long-range order in the purified SPT state mirrors the
long-range order in the mixed state due to SSSB, characterized by the Rényi-2 correlator. We
establish a correspondence between fidelity correlators in the mixed state, which serve as a measure
of SSSB, and strange correlators in the purification, which signify the SPT order. This purification
perspective is further extended to explore intrinsic mixed-state topological order and decoherent
symmetry-protected topological phases.
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I. INTRODUCTION

Classifying the ground states of gapped Hamiltoni-
ans is one of the landmark achievements of many-body
physics[1–3]. A central idea behind this classification is
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that two states are in the same phase if they are re-
lated by a finite-depth local unitary (FDLU) quantum
circuit—or equivalently by a finite-time evolution under
a local Hamiltonian[2, 4–8]. Restricting the class of al-
lowed evolutions, e.g., by imposing symmetries, gener-
alizes this concept to encompass “symmetry-protected”
topological phases[9–15]. The Lieb-Robinson theorem
guarantees that two states that are related by an FDLU
circuit have the same asymptotic correlations and entan-
glement structure at a large distance, and the same power
to encode quantum information[8, 16–22]. The proper-
ties of a quantum state that make it valuable for quantum
information processing tasks—e.g., the presence of non-
abelian anyons—are robust properties that are present
throughout a phase of matter, and do not depend on
fine-tuning the Hamiltonian[23].

The control and manipulation of these highly entan-
gled states enable the preparation of resource states for
Measurement-Based Quantum Computing (MBQC)[24–
26], where measurements on bulk qubits of a resource
state facilitate universal quantum computation. In re-
cent years, there has been a surge of progress in simulat-
ing quantum states of matter with nontrivial entangle-
ment on platforms summarized as the noisy intermediate-
scale quantum (NISQ) technology [27], including simu-
lating exotic quantum many-body states such as topo-
logical order, spin liquids, conformal field theory quan-
tum critical points [28] and symmetry-protected topolog-
ical (SPT) states [29–36]. A quantum state interacting
with an environment can be understood as being con-
tinuously measured by it, eventually becoming entangled
with the environment’s degrees of freedom. If the en-
vironmental qubits are inaccessible or the measurement
outcomes are lost, this effectively leads to the tracing
out of the environment’s qubits, transforming the orig-
inal quantum state into a mixed-state ensemble. It is
natural to ask if mixed states can be classified into dis-
tinct phases, separated (e.g.) by their ability to pro-
tect quantum information[37–40]. The threshold theo-
rem for quantum error correction guarantees the exis-
tence of nontrivial mixed-state phases (such as the toric
code subject to weak enough noise), which preserve quan-
tum coherence[26, 41–43]. However, the tools to charac-
terize these phases[37, 38, 44–54], as well as the transi-
tions between them, remain largely undeveloped, despite
some very recent progress[50, 55–65].

The example of the noisy toric code[41, 45, 66] illus-
trates a fundamental difference between mixed-state and
pure-state phases. Suppose we start with one of the log-
ical ground states of the pristine toric code, and then
subject it to local noise at some rate γ, without per-
forming any active error correction. At sufficiently short
times, the mixed state generated this way will remain
correctable, but at some finite time t∗(γ), the density
of errors will exceed the capacity of even the optimal
decoder to correct [41]: thus, logical information will be-
come irretrievable at some finite time. Such finite-time
transitions have no obvious pure-state analog. However,

they seem quite generic in the context of systems sub-
ject to noise and/or measurements: a conceptually re-
lated finite-time teleportation transition has been pre-
dicted in random quantum circuits in two or more di-
mensions. These observations challenge our conventional
understanding of what a phase of matter is in open sys-
tems [39, 50, 55, 56, 58, 60, 61, 63, 67–72], and what
properties are universal: in the pure-state context it is as-
sumed that finite-time evolution cannot change universal
properties of a phase, but whether a mixed-state is error-
correctable seems like a fundamental property. Even at
a technical level, the Lieb-Robinson bounds that ensure
equivalence of two pure states connected by a short-depth
circuit also apply to mixed states, and ensure that “con-
ventional” diagnostics of order, such as correlation func-
tions, cannot diverge at mixed state phase transitions.
Thus, recently proposed diagnostics of mixed-state or-
der include observables that are nonlinear in the density
matrix[26, 43, 66, 70], metrics based on whether the den-
sity matrix can be written as an ensemble of trivial-phase
pure states[31, 38], and quantities such as the conditional
mutual information [73–76] (and the related notion of
measurement-induced entanglement [40, 77]). However,
the physical interpretation of these diagnostics, and their
relation to concepts of pure-state order, remains opaque.

The noisy toric code is an example where an ordered
phase appears to lose long-range correlation under a
finite-depth local quantum channel. The reverse phe-
nomenon can also occur, and has been termed “sponta-
neous strong symmetry breaking” (SSSB) [43, 55] where
the decoherence effect triggers long-range ordering in
mixed states. SSSB occurs in product states[78] sub-
ject to finite-depth local channels, so from the point of
view of conventional correlation functions a mixed state
possessing SSSB will appear trivial. Meanwhile, observ-
ables that are nonlinear in the density matrix, such as
the Renyi-2 correlator and quantum relative entropy, be-
have singularly [43, 46, 61]. Intuitively, an open sys-
tem is said to possess a strong symmetry when the
system-environment interaction does not exchange sym-
metry charges—e.g., an open system of electrons cou-
pled to phonons has a strong fermion parity symmetry.
A pertinent question is why spontaneous strong symme-
try breaking can be triggered by decoherence and how
to characterize such unique long-range order in an open
quantum system.

The goal of this work is to characterize spontaneous
strong-to-weak symmetry breaking (SSSB) from the per-
spective of purification, specifically by considering the
mixed-state density matrix as a partial trace of a pure
state in an extended Hilbert space. From this viewpoint,
quantum channels acting on the mixed-state ensemble
are equivalent to unitary operators acting on the purified
state. Our central finding is that mixed-state long-range
order and spontaneous strong-to-weak symmetry break-
ing, induced by finite-depth quantum channels, can be
mapped to symmetry-protected topological (SPT) order
in the purified framework. This approach highlights why
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mixed-state long-range order can manifest within a finite
time: an SPT phase transition from a trivial phase is
achievable through a symmetry-breaking finite-depth cir-
cuit. Particularly, we demonstrate that SSSB in a mixed
state implies that its purification exhibits a non-vanishing
strange correlator, a hallmark of an SPT wavefunction.
We link these strange correlators to previously discussed
observables, including the fidelity correlator and type-
2 strange correlator. Furthermore, we establish a cor-
respondence between the mixed-state Rényi-2 correlator
and measurement-induced order in the corresponding pu-
rified state.

FIG. 1. Summary of results. Mapping between exotic
mixed state phenomena and its purification description.

This work is organized as follows: In Sec. III, we in-
troduce strong-to-weak Z2 symmetry breaking in mixed
states triggered by local quantum channels in both 1D
and 2D. These states can be mapped to a SPT phase
within the purification framework. We trace the Rényi-
2 correlator of SSSB back to the measurement-induced
long-range order observed in the purified SPT state. Ad-
ditionally, we find that while SSSB is unstable in 1D when
subject to a finite measurement rate quantum channel, it
becomes significantly more stable up to a certain thresh-
old in 2D and higher dimensions. In Sec. IV, the corre-
spondence between the averaged strange correlator in the
purified state and various SSSB observables in the mixed
state is demonstrated. In Sec. V, we broaden the scope of

SSSB to include a wider array of symmetry groups, such
as higher-form symmetry, subsystem symmetry, and con-
tinuous groups. Finally, in Secs. VI to VII, we explore
mixed-state topological orders and SPT phases from a
purification perspective. Fig. 1 summarizes the main re-
sults of this work in a comprehensive table.

II. GENERAL FORMALISM

A. Mixed states, quantum channels and
purifications

We begin with a many-body pure state |ψ⟩, defined
on the system Hilbert space H. Under open-system dy-
namics, the system is then coupled to an environment
Hilbert space A, which (without loss of generality) we
can take to also be prepared in a fixed pure state |0⟩.
We will follow the standard practice of referring to these
environment qubits (or more generally qudits) as ancil-
lae. The global evolution is a unitary map U defined on
H⊗A, such that U(|ψ⟩⊗|0⟩) = |Ψp⟩ ∈ H⊗A. In general,
some or all of the ancillae are inaccessible after this pro-
cess. To describe the accessible degrees of freedom in the
system, one traces out A, arriving at the density matrix
ρ̂D ≡ TrA(|Ψp⟩ ⟨Ψp|). We mainly focus on the cases in
which the initial state |ψ⟩ is a product state, the system
and ancilla are defined on a geometrically local space,
and the operator U can be written as a finite-depth, ge-
ometrically local unitary circuit.

The process we described above is one way of defining
a quantum channel, i.e., a map E between legal density
matrices on H. The perspective where the channel is
treated as a unitary in a larger Hilbert space is called the
Stinespring form of the channel. The pure state |Ψp⟩ ∈
H ⊗ A is called a purification of ρ̂D. Stinespring forms
and purifications are not unique, as ρ̂D is invariant if
one replaces the map U above with a map (IH ⊗WA)U ,
where W is an arbitrary unitary that acts only on the
environment A [79].

Maps between legal density matrices are known as
completely positive trace-preserving (CPTP) maps, and
take the general form ρ̂D = E(ρ̂) =

∑
mKmρ̂0K

†
m, where

{Km} is a set of “Kraus operators” satisfying the trace-
preserving condition

∑
mK†

mKm = IH. Here the number
of Kraus operators match the local dimension of the an-
cillary space. As we saw before, to derive the Kraus form
from the Stinespring form, one traces out over the ancil-
lary space A, such that Km = ⟨0|U†|m⟩ with {|m⟩} an
orthonormal basis in A. When the Stinespring form of a
channel involves a local unitary U as specified above, all
the Kraus operators can be chosen to be local operators.

B. Weak and strong symmetries

Recall that for a pure state, a symmetric wave function
implies that the quantum state carries a conserved charge
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with respect to the symmetry G, thereby rendering it
invariant under the symmetry transformation Ug

Ug|Ψ⟩ = eiθ|Ψ⟩, (1)

with eiθ being a global phase for all g ∈ G
For a mixed state, there are two notions of symmetry—

“weak” and “strong”. The concept of weak and strong
symmetries was first introduced for channels (or equiv-
alently, their continuous-time version, Lindblad master
equations) [80, 81]. However, as we will discuss below,
these can also be seen as induced properties of mixed-
state density matrices. We first explain them in the pu-
rification (Stinespring) picture. In this picture, a weak
symmetry exists when the system-environment unitary
U , and the initial state of the environment |0⟩, are in-
variant under a symmetry transformation that acts on
H ⊗A. Thus, for example, if a system exchanges parti-
cles with the ancilla but the total number of particles in
the purified state defined on H⊗A is conserved, that cor-
responds to a weak U(1) symmetry. On the other hand,
a strong symmetry requires that the symmetry opera-
tor acts only on H. That is, when the system interacts
with the environment, there is no charge exchange be-
tween the system and the ancilla. When a channel E is
invariant under a strong symmetry, it means that each
Kraus operator commutes with the symmetry operation,
so [Km, Ug] = 0 for all g ∈ G.

Instead of regarding these symmetries as properties of
quantum channels, we can instead treat them as prop-
erties of a mixed state ρ̂, in particular one that was ar-
rived at by applying E to a product state invariant under
G [43, 49, 55, 61]. The constraints on ρ̂ are inherited from
those on E . A weak symmetry requires that the density
matrix remains invariant under the symmetry transfor-
mation Ug, acting on both the left (ket) and right (bra)
parts of the density matrix.

ρ̂ = Ugρ̂U
†
g . (2)

The weak symmetry transformation can be interpreted
as implementing the symmetry operation on both the
ket and bra spaces of the density matrix. Physically, it
requires that the density matrix be block-diagonal, with
each block corresponding to a different charge under G.
This is intuitive since the system can exchange charge
with the bath; however, as the charge is conserved for
the system and ancilla as a whole, the reduced density
matrix of the system can still be block-diagonal in differ-
ent charge sectors. For the special case where the density
matrix is the partition function in thermal equilibrium
ρ̂ = e−βH , the invariance of ρ̂ under the weak symmetry
G implies that the Hamiltonian is G-symmetric.

Density matrices with strong symmetry, on the other
hand, are those with a definite value of the charge. When
a quantum channel has a strong symmetry, it preserves
the invariance of density matrices under the Ug symmetry
transformation which acts exclusively on either the left

or the right part of the density matrix:

eiθρ̂ = Ugρ̂ (3)

with eiθ being a global phase for all g ∈ G. If we di-
agonalize the density matrix as ρ̂ =

∑
Λ pΛ|Λ⟩⟨Λ|, the

strong symmetry condition requires that all eigenvectors
of the density matrix also be eigenstates of the symme-
try G, such that Ug|Λ⟩ = eiθ|Λ⟩, each carrying the same
symmetry charge.

C. Strong-to-Weak Symmetry Breaking (SSSB)
driven by finite-depth quantum channels

We begin by reviewing a concrete example of sponta-
neous Z2 SSSB, driven by local quantum channels, ini-
tially introduced in Ref. [43, 50, 82].

Before proceeding, we briefly revisit the correlation
functions of symmetry breaking in thermal equilibrium
ensembles. For canonical ensembles ρ̂ = e−βH of systems
with conserved charge G, both the Hamiltonian and the
thermal density matrix exhibit invariance under the weak
symmetry,

H = UgHU
†
g , ρ̂ = Ugρ̂U

†
g (4)

With the symmetry operator acting on both the left and
right parts of the density matrix, the spontaneous break-
ing of weak symmetries [83] is evidenced by the non-
vanishing two-point function Tr

[
ρ̂O(x)O†(y)

]
for a given

charged operator O(x).
Now we move on to the strong symmetry condition.

For any mixed-state density matrix invariant under the
strong symmetry Ug, the charge operator O(x) acting on
the doubled density matrix should vanish[84]:

Tr
(
O(x)ρ̂O†(x)ρ̂

)
Tr(ρ̂2)

= 0 (5)

Notably, the operators O(x) and O†(x) act simultane-
ously on the ket and bra spaces of the density matrix.
Such operations are ‘charged’ under strong symmetry
but remain neutral under weak symmetry. Prompted
by this observation, to define spontaneous SSSB, we aim
to identify the correlation function of an operator that is
charged under strong symmetry but neutral under weak
symmetry.

The non-vanishing correlation function indicative of
SSSB manifests as four-point functions acting on the dou-
bled density matrix:

tr
(
O(x)O†(y)ρ̂O(y)O†(x)ρ̂

)
tr(ρ̂2)

= CII(x, y) (6)

For some charged operators O(x) and O(y) with |x −
y| → ∞, Eq. 6, also referred to as the Rényi-2 correlator
in Ref. [43, 55] or the Edwards-Anderson correlator, is
widely used in systems with localization to characterize
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symmetry breaking within disordered ensembles. As an
immediate sanity check, we observe that such strong-to-
weak SSB is distinctive in mixed states since, for pure
states, the Rényi-2 correlator is merely the square of the
conventional correlator.

The Rényi-2 correlator can be interpreted as the corre-
lation function for the paired operators O(x) and O†(x),
which act simultaneously on the ket and bra spaces,
thereby creating a strong symmetry charge at site x.
Ref. [43, 55] presents a straightforward illustration of
SSSB by analyzing a mixed state of the 1D spin chain,
denoted as ρ̂+ = I +

∏
iXi, which demonstrates strong

Z2 symmetry generated by X ≡
∏

iXi, where Xi de-
notes the Pauli-x operator at each site i. To reach this
mixed state through local quantum channels, consider an
initial state with all qubits polarized in the Sx direction,
expressed as |ϕ0⟩ = ⊗i| →⟩i. To initiate the strong-
to-weak symmetry breaking, one implements a quantum
channel that “measures” the spin bilinear term ZiZi+1

at every bond (i, i+ 1) as:

ρ̂+ = E [ρ̂0], E =
∏
i

Ei,

Ei[ρ̂0] =
1

2
ρ̂0 +

1

2
ZiZi+1ρ̂0ZiZi+1. (7)

The resulting mixed state ρ̂+ spontaneously breaks a
strong Z2 symmetry to a weak Z2 symmetry, evidenced
by the non-vanishing correlation outlined in Eq. (6).

Tr (Z0Ziρ̂+Z0Ziρ̂+)

Tr
(
ρ̂2+
) = 1 (8)

When expressed in the Z-basis, ρ̂+ is essentially a convex
sum of GHZ states:

ρ̂+ ∼
∑
s

(|s⟩ +X|s⟩)(⟨s| + ⟨s|X), (9)

where s is a bit string in the Z-basis.

III. MIXED STATE SSSB FROM SPT
PURIFICATION

In this section, we explore the strong to weak symme-
try breaking in mixed states triggered by local quantum
channels, from the perspective of purification. Just as
all mixed states can be viewed as subsystems of a pure
state (denoted as the purification state) in an extended
Hilbert space, local quantum channels can equivalently
be described by local unitary operators acting on the pu-
rification state. While the combined ancilla and system
qubits remain in a pure state after the unitary operations,
the system’s density matrix, ρ̂, obtained by tracing out
the ancilla, generally represents a mixed state.

As the initial purified state (encompassing both the
system and the ancilla) lacks long-range order, its quan-
tum correlations remain short-ranged within the Lieb-

Robinson bound after applying finite-depth local uni-
taries. Consequently, we do not expect the system’s den-
sity matrix, after tracing out the ancilla, to exhibit any
long-range order measurable by physical observables lin-
ear in ρ̂. Meanwhile, Ref. [43, 55, 82], as summarized in
Eq. 9, provides a straightforward yet illustrative exam-
ple of how a local quantum channel could induce strong
symmetry breaking, exemplified by the Rényi-2 correla-
tor in Eq. 8. A pertinent question arises: If the mixed
state ρ̂ undergoes spontaneous strong-to-weak symmetry
breaking induced by quantum channels, what happens
to its purification states under unitary evolution? Addi-
tionally, what characteristics must the purification state
possess to allow SSSB and long-range Rényi-2 correla-
tion for the system as a mixed state, after tracing out
the ancilla?

A. 1D SSSB: Purification from SPT state

To set the stage, we focus on the purified wave function
within the extended Hilbert space, which encompasses
both system and ancilla qubits. Although we will even-
tually trace out the ancilla qubits to obtain the mixed-
state density matrix, this approach aims to explore the
SSSB of mixed states from the perspective of purification
and reveal the correspondence between conditional long-
range correlation in the purified state and the long-range
order manifested via the Rényi-2 correlator of the mixed
state.

FIG. 2. 1D SSSB and purification. A) The unitary oper-
ator entangles the system (blue) with the ancilla (red). The
unitary gates consist of a cluster of three-body gates, each
acting on two adjacent system qubits and one ancilla situated
between them. B) The unitaries fix the total Sz parity of the
two system spins on each link and the intervening ancilla spin,
ensuring ZiZ̃iZi+1 = 1. C) Such a unitary in the extended
Hilbert space is equivalent to quantum channels that measure
ZiZi+1 on adjacent spins.

The system of interest encompasses a 1D spin system,
initialized as |ϕ0⟩ = ⊗i| →⟩i, along with a chain of ancil-
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lae that resides on the links between the system’s spins,
as depicted in Fig.2. The initial state of the ancillae is
a tensor product of spins, polarized in the Sz direction,
expressed as |ϕA0 ⟩ = ⊗i|↑̃⟩i. The unitary operator U has
the following form:

U =
∏
i

Ui,i+1, (10)

Ui,i+1 =
(1 + ZiZi+1)

2
Ĩi,i+1 +

(1 − ZiZi+1)

2
iỸi,i+1

The unitary operator involves a cluster of three-body
gates, each acting on two adjacent system qubits and
one ancilla situated between them, as illustrated in Fig.2.
Here, Zi refers to the operator acting on the system
qubits, while Ỹi,i+1 acts on the ancilla. Such a unitary op-
eration exhibits a decorated domain wall feature. When
the system spins at the (i, i + 1) link are aligned par-
allel in the z-direction, the (i, i + 1) ancilla on the link

remains in the |↑̃⟩i,i+1 state. Conversely, if the system
spins at the (i, i+ 1) link are opposite in the z-direction,

ancilla at (i, i + 1) is flipped to the |↓̃⟩i,i+1 state. After
applying the local unitary, the resultant wave function in
the extended Hilbert space precisely reflects a symmetry-
protected topological (SPT) state,

|ΨSPT⟩ = U
⊗
sites i

| →⟩i
⊗

bonds (i,i+1)

|↑̃⟩(i,i+1) (11)

which corresponds to the ground state of a stabilizer
Hamiltonian,

H = −
∑
i

(
ZiZ̃i,i+1Zi+1 + X̃i−1,iXiX̃i,i+1

)
(12)

This Hamiltonian comprises two stabilizer operators.
The ZiZ̃i,i+1Zi+1 stabilizer ensures that the Sz parity

in the 3-body clusters is even, while the X̃i−1,1XiX̃i,i+1

stabilizer generates resonance between distinct spin pat-
terns that share the same Sz parity across all clusters.
The stabilizer Hamiltonian, along with the wave func-
tion, respects the following symmetry:

ZA
2 :
∏
i

Z̃i,i+1, ZS
2 :
∏
i

Xi. (13)

The ZA
2 symmetry acts on the ancilla, while ZS

2 acts on
the system. Remarkably, the unitary operator applied
in Eq. 10 preserves the ZS

2 symmetry while breaking the
ZA
2 symmetry. This outcome is expected, as no local

unitary path can connect a tensor product state with an
SPT state while preserving both symmetries. While the
SPT wave function in Eq. 11 is short-range correlated, it
carries hidden quantum correlations that can be charac-
terized by a non-vanishing string order parameter:

⟨Os⟩ = ⟨ΨSPT|Zi (

n∏
a=0

Z̃i+a,i+1+a) Zi+n+1|ΨSPT⟩ = 1

(14)

This string order reveals the conditional mutual informa-
tion shared between the system and the ancilla (see [85]).
The two-point correlation of the system spins, denoted
as ⟨ZiZi+n+1⟩, is determined by the Sz parity charge of

the ancilla on the string
∏n

a=0(Z̃i+a,i+1+a) in between.

Therefore, if we project all ancillae into the |↑̃⟩ state, the
system would transition into a spontaneously symmetry-
breaking ‘cat-state’ with long-range order (LRO) for the
two-point correlation ⟨ZiZi+n+1⟩ = 1.

Once we trace out the ancilla and obtain the system’s
density matrix ρ̂ = Trancilla |ΨSPT⟩⟨ΨSPT|, it indeed re-
produces the mixed state introduced in Eq. 9. This pro-
cess averages out the even versus odd Sz charge of the an-
cilla on the string. Consequently, the resultant two-point
correlation vanishes, as indicated by Tr[ρ̂ZiZi+n+1] =
⟨ΨSPT |ZiZi+n+1|ΨSPT ⟩ = 0. However, if we examine
the Rényi-2 correlator introduced in Eq. 8, based on two
copies of the density matrix, it remains non-vanishing at
large distances indicating SSSB.

FIG. 3. Rényi-II correlator and EPR-induced long
range order. A) Taking two copies of the SPT state
|ΨSPT⟩1 ⊗ |ΨSPT⟩2 and projecting the ancilla (indicated by
the red square) from both copies onto a symmetric EPR pair,
the post-projection state of the system (indicated by the blue
square) displays a long-range correlation characterized by the
four-point correlator. B) The tensor representation of the
Rényi-2 correlator measures the four-point correlator acting
on the double-density matrix. When we trace out the legs of
the ancilla (tensor legs contraction), it effectively projects the
ancilla in the bra and ket space onto the EPR pair.

To provide a physical interpretation of the Rényi-2 cor-
relator, we duplicate our entire Hilbert space by creating
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two identical copies of the SPT state, denoted |ΨSPT⟩1
and |ΨSPT⟩2. Next, we perform a Schmidt decomposi-
tion between the ancilla and the system for each copy of
the SPT wave function as:

|ΨSPT ⟩1 =
∑
α

λα|α⟩1s|α̃⟩1a, |ΨSPT ⟩2 =
∑
α

λ∗α|α∗⟩2s|α̃∗⟩2a

(15)

Here, we take the complex conjugate of the second copy
of the wave function, denoted by |ΨSPT⟩2. Its physical
interpretation and essentiality will be explained shortly.
|α⟩s denotes the Schmidt basis for the system, while |α̃⟩a
refers to the Schmidt basis for the ancillae. |α∗⟩ refers to
the complex conjugate of the vector in some fixed basis.
These two identical copies, |ΨSPT⟩1 ⊗ |ΨSPT⟩2, carry a
non-vanishing string order, which is essentially the prod-
uct of the strings for each copy:

⟨O1
sO

2
s⟩ (16)

= ⟨Z1
i Z

2
i (

n∏
a=0

Z̃1
i+a,i+1+aZ̃2

i+a,i+1+a) Z1
i+n+1Z

2
i+n+1⟩

We now project ancilla from the first and second copy
onto a symmetric EPR pair, hence forcing their align-
ment in the Sz direction:

P̂i,i+1 =
1

2

(
|↑̃

1
↑̃
2
⟩ + |↓̃

1
↓̃
2
⟩
)(

⟨↑̃
1
↑̃
2
| + ⟨↓̃

1
↓̃
2
|
)
(i.i+1)

(17)

This projection is implemented for every ancilla pair at
bond (i, i + 1). The normalized wavefunction, after this
projection, is given by:

|Ψ⟩pp ∼
∏
i

P̂i,i+1[(
∑
α

λα|α⟩1s|α̃⟩1a)(
∑
α′

λ∗α′ |α∗′⟩2s|α̃∗′⟩2a)]

→ |Ψ⟩pp =
1√∑
α |λα|4

∑
α

|λα|2 |α⟩1s|α∗⟩2s (18)

In the last step, we omit the ancilla qubits as they form a
tensor product of EPR pairs between two copies and are
decoupled to the system qubits. The projection P̂i,i+1

on the two ancilla copies results in the charge string
(
∏n

a=0 Z̃
1
i+aZ̃

2
i+a) being uniformly even throughout the

post-projected wave function. Consequently, the post-
projection state |Ψ⟩pp exhibits long-range order in the
four-point correlation function:

⟨Ψ|pp Z1
i Z

2
i Z

1
i+n+1Z

2
i+n+1|Ψ⟩pp = 1 (19)

Alternatively, we could trace out the ancilla from the
purified state in Eq. (11) obtaining the density matrix
ρ̂ =

∑
α |λα|2|α⟩⟨α|. Tracing out the ancilla effectively

involves projecting the ancilla in both the ket and bra
spaces to be identical. By considering the bra vector as a
duplicate copy, the ancilla tracing procedure exactly cor-
responds to the projection operation in Eq. 18. Drawing

from this analogy, the Rényi-2 correlator precisely corre-
sponds to the four-point correlation of the post-projected
wave function (see Appendix. A for detailed derivation):

Tr (Z0Ziρ̂Z0Ziρ̂)

Tr(ρ̂2)
= ⟨Ψ|ppZ1

i Z
2
i Z

1
i+n+1Z

2
i+n+1|Ψ⟩pp

(20)

This result demonstrates that the Rényi-2 correlator can
be interpreted as the correlation function of the post-
projection state |Ψ⟩pp. If we conceptualize the den-
sity matrix from the tensor perspective as illustrated in
Fig.3, tracing over the density matrix entails connect-
ing the ancilla’s legs between the ket and bra spaces.
This process is analogous to taking two copies of the
SPT state |ΨSPT⟩1 ⊗ |ΨSPT⟩2 and projecting the an-
cilla from both copies onto a symmetric EPR pair. In
this context, we consider the second copy of the wave
function in its complex conjugate form to mirror the
wave function in the bra space. This correspondence
implies that measuring any operators on the duplicated
density matrix is equivalent to duplicating the purified
state as |ΨSPT⟩1 ⊗ |ΨSPT⟩2, followed by an EPR pro-
jective measurement to ensure the ancilla in both copies
are identical. While local unitary operators acting on
the system and ancilla (with its duplicate) cannot induce
long-range order (LRO), an additional projective mea-
surement can facilitate this magic. This phenomenon
of measurement-induced long-range order was originally
proposed in Ref. [40, 85–92] as a shortcut to create the
long-range entangled state. The emergence of long-range
order in the Rényi-2 correlator is attributed to the non-
vanishing measurement-induced long-range order in its
purified state. By projecting the ancilla charges on the
string into the even sector, the post-projection state man-
ifests long-range order.

B. General quantum channel in 1D

We now delve into a broader scenario of quantum chan-
nels with a tunable error rate p. These can be interpreted
as the system being measured at a given rate, but the out-
comes of the measurement not being recorded, effectively
resulting in dephasing noise. This type of decoherence
channel can be represented as follows:

ρ̂D = E [ρ̂0], E =
∏
i,i+1

Ei,i+1,

Ei[ρ̂0] = (1 − p)ρ̂0 + pZiZi+1ρ̂0ZiZi+1. (21)

The quantum channel E preserves the strong Z2 symme-
try. When p = 1/2, the decoherence channel becomes
a pure measurement channel, leading to the mixed state
ρ+ introduced in Eq. 9 that breaks the strong Z2 sym-
metry spontaneously. A pertinent question arises: can
spontaneous strong-to-weak symmetry breaking occur at
a finite p? More specifically, is it possible to continuously
change the error rate and trigger a phase transition?
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Our previous discussion highlighted that the long-
range order in the mixed state’s Rényi-2 correlator is in-
herited from the measurement-induced long-range order
of the purified SPT state in the enlarged Hilbert space.
Therefore, it would be beneficial to examine the corre-
sponding unitaries acting on the enlarged Hilbert space,
defined as follows:

U(θ) =
∏
i

Ui,i+1(θ),

Ui,i+1(θ) =
(1 + ZiZi+1)

2
(cos(θ)Ĩi,i+1 + i sin(θ)Ỹi,i+1)

+
(1 − ZiZi+1)

2
(sin(θ)Ĩi,i+1 + i cos(θ)Ỹi,i+1)

|ΨSPT(θ)⟩ = U(θ)
∏
i

⊗| →⟩i ⊗ |↑̃⟩i,i+1 (22)

When θ = 0, the gate simplifies to the unitary introduced
in Eq. 10, which corresponds to the measurement-only
channel. At θ = π/4, the unitary only rotates the an-
cilla qubits, leaving the system qubits untouched, ensur-
ing that the system remains in a pure state after tracing
out the ancilla. Upon applying U(θ), the purified state
ΨSPT(θ) in the extended Hilbert space retains ZA

2 sym-
metry (act on the ancillae) in Eq. 13 only when θ = 0.
Returning to the quantum channel perspective, after ap-
plying this unitary and tracing out the ancilla, we return
to the general quantum channel in Eq. 21, with an error

rate p = 1−sin(2θ)
2 .

For θ within the interval (0, π/4], the wave function
ΨSPT(θ) breaks ZA

2 symmetry, leading to the immediate
disappearance of the measurement-induced long-range
order[85, 90]. As a result, the EPR-projected wave func-
tion defined as Eq. 19 decays exponentially for finite val-
ues of θ, causing the Rényi-2 correlator to exhibit only
short-range correlations. In appendix. A 1, we demon-
strate that the Rényi-2 correlator for p < 1/2 maps to the
correlation function of the 1D Ising model at finite tem-
perature, which lacks long-range order. Consequently,
SSSB in 1D is fragile and can only occur in pure mea-
surement channels at p = 1/2. In our next section, we
will show that SSSB can be more robust in a 2D quan-
tum channel, with a phase transition occurring at a finite
measurement rate.

The correspondence between local quantum channels
in the mixed state and local unitary operations in the
purified state provides new insights into our exploration
of spontaneous strong-to-weak symmetry breaking: (i)
The presence of mixed-state SSSB, detectable via the
Rényi-2 correlator, stems from the conditional mutual
information shared between the system and the ancillae
in the SPT state [77]. This raises a compelling question:
Can all mixed-state long-range orders be purified as an
SPT wave function? (ii) If a quantum channel induces
an SSSB transition in a mixed state, what occurs in its
purified state during the transition? In what follows, we
will adopt a comprehensive approach and demonstrate
how various examples of SSSB can be mapped to SPT
through purifications.

C. 2D SSSB: Purification from 1-form SPT state

We now proceed to investigate a concrete example
of SSSB on a 2D square lattice. As before, we be-
gin our analysis with the purified state defined in the
extended Hilbert space. The purified state comprises
the system qubits located at the vertices, initialized as
|ϕ0⟩ = ⊗i| →⟩i, together with ancilla qubits living on

the links. The initial state of these ancillae |ϕA0 ⟩ = ⊗|↑̃⟩,
is a tensor product of spins polarized in the Sz direc-
tion. To entangle these components, we apply a set of
three-body unitaries on the links of the square lattice as
follows:

U =
∏
i

Ux
i Uy

i ,

Ux
i =

(1 + ZiZi+x̂)

2
Ĩi+ x̂

2
+

(1 − ZiZi+x̂)

2
iỸi+ x̂

2
,

Uy
i =

(1 + ZiZi+ŷ)

2
Ĩi+ ŷ

2
+

(1 − ZiZi+ŷ)

2
iỸi+ ŷ

2

|ΨSPT ⟩ = U
⊗
i

(
| →⟩i ⊗ |↑̃⟩i+ x̂

2
⊗ |↑̃⟩i+ ŷ

2

)
(23)

In this unitary, Z denotes the operator acting on the sys-
tem qubits at the vertex, while Ỹ operates on the ancilla
located on the links. The symbols x̂ and ŷ represent the
unit vectors in the square lattice. This three-body uni-
tary operation, enforces the cluster of three spins on each
link to have an even Sz parity.

ZiZ̃i+ ŷ
2
Zi+ŷ = 1, ZiZ̃i+ x̂

2
Zi+x̂ = 1, (24)

FIG. 4. 2D SSSB and purification from 1-form SPT.
A) The unitary gates comprise a cluster of three-body gates
acting on both the x-link and y-link. B) Such a unitary in the
extended Hilbert space is tantamount to quantum channels
that measure the spin bilinears on the link.

The unitary gates in Eq. 23 preserve the Z2 symmetry
of the system qubits, denoted by X =

∏
iXi. After

applying the unitary, the resultant wave function |ΨSPT ⟩
represents an SPT state and is the ground state of the
stabilizer Hamiltonian:

H = −
∑
b

Z̃b

∏
v∈eb

Zv −
∑
s

Xs

∏
b∈vs

X̃b (25)
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Here Z̃b represents the ancilla qubit that resides on link
b, and v ∈ eb refers to the two vertex ends of the link
where the system qubits are located. In the second term,
Xs acts on the system qubits at the vertex, while a ∈
vs spans the four links connecting to the vertex. This
Hamiltonian is known as the parent Hamiltonian for the
higher-form SPT protected by a 1-form ZA

2 and a 0-form
ZS
2 symmetry[93].

ZA
2 :
∏
i∈γ

Z̃i, ZS
2 :
∏
i

Xi (26)

ZA
2 represents the 1-form symmetry that acts on the an-

cillae, with γ denoting any closed loop along the links.
ZS
2 is the 0-form Z2 symmetry (global symmetry) acting

on the system qubits. Importantly, the unitary operator
we apply preserves the ZS

2 symmetry while simultane-
ously breaking the ZA

2 symmetry. This higher-form SPT
state can be detected by a non-vanishing string order
parameter[26, 42, 93]:

⟨Os⟩ = ⟨
∏
j∈∂l

Zj(
∏
i∈l

Z̃i)⟩ (27)

Here, l represents an arbitary open string along the link,
and ∂l refers to the two endpoints of the string (on the
vertex). The string order contains a product of the ancilla

qubits Z̃i along the string, decorated with two system
qubits Zj situated at the two ends of the string. The
presence of a non-vanishing string order indicates that
the two distant system qubits share conditional mutual
information mediated by the ancilla. The two-point cor-
relation ⟨ZiZj⟩ is influenced by the 1-form charge of the
ancilla located on the open string connecting them. As
a result, projecting all ancillae into the |↑̃⟩ state leads
the system to evolve into a cat-state with long-range
order[85, 89, 90, 93, 94].

Upon tracing over the ancilla from |ΨSPT ⟩, we obtain a
density matrix reminiscent of ρ+ in Eq. 9. The quantum
channel corresponding to the unitaries in Eq. 23 is:

ρ̂D = E [ρ̂0], E =
∏
i

Ex
i Ey

i ,

Ex
i [ρ̂0] =

1

2
ρ̂0 +

1

2
ZiZi+x̂ρ̂0ZiZi+x̂

Ey
i [ρ̂0] =

1

2
ρ̂0 +

1

2
ZiZi+ŷρ̂0ZiZi+ŷ (28)

This quantum channel preserves the strong Z2 symmetry,
defined as X =

∏
iXi, which indeed corresponds to the

ZS
2 symmetry defined for the purified state in Eq. 26.
By tracing out the ancilla qubits on the links, the

mixed state density matrix exhibits spontaneous break-
ing of the strong Z2 symmetry that can be characterized
by the Rényi-2 correlator, which operates on the dou-
bled density matrix as defined in Eq. 8. As discussed
in the previous section, this corresponds to the duplicate
two-point correlation functions evaluated on the EPR-

FIG. 5. Rényi-II correlator and EPR-induced long
range order in 2D. A) The 1-form SPT exhibits a string
order, where the two-point correlation (light blue dots)
⟨Z(x)Z(y)⟩ of the system qubits is influenced by the charge

string of the ancilla (green string)
∏

a Z̃a that interconnects
them. B) Taking two copies of the SPT state |ΨSPT⟩1 ⊗
|ΨSPT⟩2 and projecting the ancilla from both copies onto a
symmetric EPR pair (illustrated by the red bond) results in
long-range order (LRO) in the four-point correlator (repre-
sented by light blue dots).

projected state |ψ⟩pp:

tr (ZiZj ρ̂ZiZj ρ̂)

tr(ρ̂2)
= ⟨Ψ|ppZ1

i Z
2
i Z

1
jZ

2
j |Ψ⟩pp. (29)

Now we consider the general decoherence channel with
a finite measurement rate:

ρ̂D = E [ρ̂0], E =
∏
i

Ex
i Ey

i ,

Ex
i [ρ̂0] = (1 − p)ρ̂0 + pZiZi+x̂ρ̂0ZiZi+x̂

Ey
i [ρ̂0] = (1 − p)ρ̂0 + pZiZi+ŷρ̂0ZiZi+ŷ (30)

which maintains strong Z2 symmetry for any value of p.
Can spontaneous strong symmetry breaking now occur

at a finite rate p < 1/2? To investigate the impact of this
general quantum channel, we return to the corresponding
unitary operators acting on the enlarged Hilbert space.
As in the 1D case we define a set of 3-body unitary gates
that operate on the links:

U(θ) =
∏
i

Ux
i (θ) Uy

i (θ),

Ux
i (θ) =

(1 + ZiZi+x̂)

2
(cos(θ)Ĩi+ x̂

2
+ i sin(θ)Ỹi+ x̂

2
)

+
(1 − ZiZi+x̂)

2
(sin(θ)Ĩi+ x̂

2
+ i cos(θ)Ỹi+ x̂

2
)),

Uy
i (θ) =

(1 + ZiZi+ŷ)

2
(cos(θ)Ĩi+ ŷ

2
+ i sin(θ)Ỹi+ ŷ

2
)

+
(1 − ZiZi+ŷ)

2
(sin(θ)Ĩi+ ŷ

2
+ i cos(θ)Ỹi+ ŷ

2
))

|ΨSPT (θ)⟩ = U(θ)
∏
i

| →⟩i ⊗ |↑̃⟩i+ x̂
2
⊗ |↑̃⟩i+ ŷ

2
(31)
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θ controls the measurement rate with p = 1−sin(2θ)
2 .

When θ = 0, the gate simplifies to the unitary intro-
duced in Eq. 23, initiating a quantum channel of pure
measurement with p = 1

2 . At θ = π
4 , the unitary only ro-

tates the ancilla qubits, so the system and ancilla remain
entangled.

Upon applying U(θ), the resulting wave function
|ΨSPT (θ)⟩ retains the ZA

2 1-form symmetry only at θ = 0.
For other values of θ, the wave function loses its 1-form
symmetry, causing the string order defined in Eq. 17 to
vanish[93]. Despite this, several significant characteris-
tics of the higher-form SPT persist even after the explicit
symmetry breaking. As discussed in Ref. [93, 95–97],
higher-form symmetries can manifest phenomena dis-
tinctly different from those of conventional 0-form global
symmetry. For example, the ground state degeneracy re-
sulting from the spontaneous symmetry breaking (SSB)
of a 1-form symmetry (interpreted as topological degener-
acy) remains robust against the explicit breaking of the
1-form symmetry. Similarly, if we weakly break the 1-
form symmetry in an SPT state, the edge mode continues
to be gapless up to a certain threshold[69]. These unique
attributes arise because 1-form symmetries, though not
present at the ultraviolet (UV) level, can emerge at the
infrared (IR) level in a gapped system with a finite cor-
relation length[98]. In our subsequent discussion, we will
show that the purified state |ΨSPT (θ)⟩ with weak 1-form
symmetry breaking (up to a certain threshold), exhibits a
non-vanishing strange correlator[20]. This strange corre-
lator precisely captures the mixed-state long-range order
resulting from SSSB.

As is delineated in Appendix. A 1, the Rényi-2 correla-
tor is mapped to the thermal two-point spin-spin correla-
tor of the 2D classical Ising model (as per Eq. (A14)) at
an inverse temperature of 2β with tanh(β) = p/(1 − p).
Consequently, there exists an extended region above a

critical error rate pc = 1
2 (1 −

√√
2 − 1) ≈ 0.178[38,

45] (equivalently, below a critical θc with sin(2θc) =√√
2 − 1), where the Rényi-2 correlator remains finite.

This represents a spontaneous strong-to-weak symmetry-
breaking transition triggered by local quantum channels
in 2D.

IV. AVERAGED STRANGE CORRELATOR IN
PURIFIED STATE

At this point, we have demonstrated that the mixed-
state long-range order, characterizing strong symmetry
breaking induced by local quantum channels, can be con-
sidered a subsystem of a purified SPT state in the ex-
tended Hilbert space. In this purification framework, the
system’s qubits are entangled with the ancilla through
local unitary gates. They exhibit conditional long-range
mutual information, contingent on the ancilla’s projec-
tion (or relatedly, conditional long-range order as mea-
sured by two-point correlators). The Rényi-2 correlator,
pertinent to SSSB, can be manifested by projecting the

ancillae in two copies of the SPT state into an EPR state
and then measuring the post-projection state’s correla-
tion function. This mapping reveals that the SSSB in
the mixed-state can be traced back to the measurement-
induced long-range order in the purified state. Upon
projecting the ancilla, the system’s qubits in the post-
projection state acquire long-range order.

To render this mapping precise, a crucial question on
our agenda involves establishing a one-to-one correspon-
dence between physical observables in the mixed state
and their purified counterpart. In Sec. III C, we examined
the spontaneous strong Z2 symmetry breaking in 2D,
triggered by quantum channels with a measurement rate
p, and determined that the SSSB transition can occur at
a specific finite rate pc. Notably, these quantum channels
can be represented as local unitary operations acting on
the purified state in the extended Hilbert space. The pu-
rified wave function is proximate to the SPT wave func-
tion when p ≤ 1/2 with weak 1-form symmetry breaking.
A natural question arises: Can we identify any parame-
ter in the purified state that exhibits singularity at the
pc threshold?

This question involves two subtleties: 1) When p <
1/2, the corresponding purified state |Ψ(θ)⟩ (where θ >
0) explicitly breaks 1-form symmetry, rendering the
‘SPT’ nature ill-defined. 2) Varying the measurement
rate p for the quantum channel defined in Eq. 30 corre-
sponds to varying θ for the local unitary gates in the pu-
rification framework, as specified in Eq. 31. This implies
that, although the Rényi-2 correlator (which is non-linear
in the mixed density matrix ρ̂) captures strong symmetry
breaking with a singularity at the critical value pc, the
purified state |Ψ(θ)⟩ change smoothly by varying θ. The
critical question then arises: How can we identify the
decoherence-induced phase transition in a mixed state
from the perspective of purification?

Ref. [49, 99, 100] proposed the ‘strange correlator’ as
an efficient measure to probe SPT order:

Os(x, y) =
⟨Ψtrivial|Ô†(x)Ô(y)|ΨSPT ⟩

⟨Ψtrivial|ΨSPT ⟩
. (32)

Specifically, the strange correlator applies a pair of dis-
tant charged operators Ô†(x)Ô(y) (which could be cho-
sen to be Z(x)Z(y) for Z2 symmetry) to the SPT wave
function and takes the inner product with a trivial wave
function, for example, a symmetric product state. The
strange correlation, notably, can exhibit long-range or-
der for both the SPT state and the symmetry breaking
state. Ref. [99] elucidated that the strange correlator
can be mapped to the correlation function of a higher-
dimensional Wess-Zumino-Witten theory, which exhibits
either long-range or quasi-long-range order.

As we demonstrated in Sec. III C, a mixed state ex-
hibiting spontaneous strong symmetry breaking in 2D
corresponds to the purified state |Ψ(θ)⟩, which weakly
breaks 1-form symmetry. Consequently, the salient fea-
tures of mixed-state SSSB should be traceable from the
purified wave function. To leverage this interrelation,
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we analyze the disorder-averaged strange correlator of
|Ψ(θ)⟩. We will demonstrate that the non-vanishing
disorder-averaged strange correlator in the purified state

precisely captures the SSSB in the mixed state.
We begin by examining the strange correlator of the

2D purified wave function in Eq. 31,

Os(x, y) =
⟨Ψtrivial|Z(x)Z(y)|ΨSPT (θ)⟩

⟨Ψtrivial|ΨSPT (θ)⟩
, |Ψtrivial(sij)⟩ = ⊗⟨i,j⟩ |sij = 1⟩ ⊗i |xi = 1⟩

|ΨSPT (θ)⟩ =
∑
{zi}

∏
⟨i,j⟩

(
1 + zizj

2
(cos θ|sij = 1⟩ − sin θ|sij = −1⟩) +

1 − zizj
2

(sin θ|sij = 1⟩ − cos θ|sij = −1⟩)
)
|{zi}⟩

(33)

In this context, sij represents ancilla qubits (in the Z
basis), situated on the links of the square lattice between
the nearest vertices at sites i and j. The term zi(xi)
denotes the spin pattern of the system qubits at vertex i
in the Z(X) basis. |{zi}⟩ refers to a specific many-body
pattern and we sum over all possible patterns. For θ = 0,
|ΨSPT (0)⟩ corresponds to the exact SPT state with 1-
form ZA

2 symmetry (acting on the ancilla) and 0-form ZS
2

symmetry (acting on the system), as defined in Eq. 26.
When θ is nonzero, the 1-form ZA

2 symmetry is broken
explicitly. At θ = π/4, the ancilla spins decouple from
the system qubits. The trivial wave function |Ψtrivial⟩ is
symmetrically chosen, with the ancilla polarized in the
Sz direction as |sij = 1⟩ and the system qubits polarized
in the Sx direction as |xi = 1⟩. After some derivation(see
Appendix. B), we can show that the strange correlator
in Eq. 33 corresponds to the spin-spin correlator of the
2D Ising model at an effective temperature given by β̃ =

− ln(tan(θ))
2 .

A. Annealed disorder average strange correlator
and type-II strange correlator

Once we trace out the ancilla, the information of the
ancilla qubits is lost, resulting in an averaging out of their
information. We can envision this process as projecting
each ancilla sij into different patterns and then taking the
disorder average for the post-projected wave function. In
the context of the strange correlator, we consider mea-
suring the annealed disorder-averaged strange correlator
by choosing various trivial states with a random assort-
ment of ancilla spins {sij = ±1}, and then uniformly
averaging over these random selections.

⟨Os(x, y)⟩2 =

∑
{sij} |⟨Ψtrivial({sij})|Z(x)Z(y)|ΨSPT ⟩|2∑

{sij} |⟨Ψtrivial({sij})|ΨSPT ⟩|2

=

∑
{sij}

∑
{z1

i ,z
2
i }

(z1xz
1
yz

2
xz

2
y)eβ̃

∑
⟨i,j⟩ sij(z

1
i z

1
j+z2

i z
2
j )∑

{sij}
∑

{z1
i ,z

2
i }
eβ̃

∑
⟨i,j⟩ sij(z

1
i z

1
j+z2

i z
2
j )

(34)

The trivial state |Ψtrivial({sij})⟩ is a direct product of
system spins polarized in the Sx direction and a random
assortment of ancilla spins {sij = ±1} polarized in the
±Sz directions. Here, we average over all {sij = ±1}
with the same probability. Eq. 34 is akin to the an-
nealed average of the two-point correlation function in
the random bond Ising model (RBIM) along the Nishi-
mori Line[101], which corresponds to the thermal corre-
lation function evaluated on the 2D Ising model at finite
temperature β (with tanh(β) = (1−sin(2θ))/(1+sin(2θ))
agreeing with that of the Rényi-2 correlator. See Ap-
pendix. B for detailed derivations).

Surprisingly, the annealed averaged strange correlator
of the purified state |ΨSPT (θ)⟩ is dual to the type-II
strange correlator of the mixed state after the ancilla
has been traced out. While the type-II strange corre-
lator was originally proposed for decoherent SPT mixed
states in Ref. [43], our findings reveal that it stems from
the annealed-average strange correlator in the enlarged
Hilbert space resulting from purification. Given that the
operators Z(x)Z(y) in the strange correlator act only on
the system’s qubits, we can alternatively express Eq. 34
as:

⟨Os(x, y)⟩2 =

∑
{sij} |⟨Ψtrivial({sij})|Z(x)Z(y)|ΨSPT (θ)⟩|2∑

{sij} |⟨Ψtrivial({sij})|ΨSPT (θ)⟩|2

=

∑
{sij} |⟨sij | ⊗ ⟨xi = 1|Z(x)Z(y)|ΨSPT (θ)⟩|2∑

{sij} |⟨sij | ⊗ ⟨xi = 1|ΨSPT (θ)⟩|2

=

∑
{sij} |⟨xi = 1|Z(x)Z(y)⟨sij |ΨSPT (θ)⟩|2∑

{sij}⟨xi = 1|⟨sij |ΨSPT (θ)⟩|2

=
Tr
[
ρ̂0Z(x)Z(y)ρ̂Z(x)Z(y)

]
Tr[ρ̂0ρ̂]

(35)

The annealed average of the strange correlator in the pu-
rified state |ΨSPT (θ)⟩ exactly maps to the type-II strange
correlator for the mixed state ρ̂. Here, ρ̂0 is chosen to be
a pure state density matrix consisting of a trivial tensor
product state |xi = 1⟩, and ρ̂ refers to the density matrix
of the system obtained after tracing out the ancilla from
|ΨSPT (θ)⟩.

Finally, we present an alternative expression of Eq. 34
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that reveals the physical interpretation of the annealed
average strange correlator, which is also the type-II
strange correlator:

⟨Os(x, y)⟩2 =

∑
{sij}⟨xi = 1|Z(x)Z(y)|⟨sij |ΨSPT (θ)⟩|2∑

{sij}⟨xi = 1|⟨sij |ΨSPT (θ)⟩|2

=

∑
{sij} p(sij)⟨xi = 1|Z(x)Z(y)|P̂ (sij)ΨSPT (θ)⟩|2∑

{sij} p(sij)⟨xi = 1|P̂ (sij)ΨSPT (θ)⟩|2

p(sij) = |⟨sij |ΨSPT (θ)⟩|2,

|P̂ (sij)ΨSPT (θ)⟩ =
|sij⟩⟨sij |ΨSPT (θ)⟩
|⟨sij |ΨSPT (θ)⟩|

(36)

The P̂ (sij)|ΨSPT (θ)⟩ represents the post-projection wave
function, obtained after projecting the ancilla qubits into
a specific sij sector. Meanwhile, p(sij) denotes the prob-
ability of measuring the ancilla in |ΨSPT (θ)⟩ with the
measurement outcome sij . Based on this decomposition,
the annealed average of the strange correlator can be in-
terpreted as follows: 1) Projecting |ΨSPT (θ)⟩ into a spe-
cific sector {sij} and measuring the strange correlator for

the post-projected state P̂ (sij)|ΨSPT (θ)⟩. 2) Averaging
over the strange correlator for different post-projected
states P̂ (sij)|ΨSPT (θ)⟩, each weighted according to the
Born probability of the respective measurement outcome.

B. Fidelity correlator and averaged strange
correlator

In Ref. [102], the authors demonstrate that the intrin-
sic measure for the spontaneous transition from strong to
weak symmetry breaking is the fidelity correlator F 1(ρ̂),

F 1(ρ̂) =

(
Tr

{√√
ρ̂Z(x)Z(y)ρ̂Z(x)Z(y)

√
ρ̂

})2

(37)

If we regard σ̂ = Z(x)Z(y)ρ̂Z(x)Z(y) as another den-
sity matrix denoted by σ̂, the above expression indeed
represents the fidelity between σ̂ and ρ̂. In particu-
lar, Ref. [102] demonstrates that nonzero fidelity implies
the mixed-state density matrix is symmetrically non-
invertible, thus rendering the strong Z2 symmetry opera-
tion non-localizable. Therefore, it can serve as a measure
to pinpoint the SSSB transition in mixed states. For the
2D transition from strong to weak Z2 symmetry break-
ing of interest, this fidelity operator corresponds to the
random bond Ising model along the Nishimori line[102].

In this section, we aim to establish a connection be-
tween the fidelity measure of strong symmetry break-
ing in mixed states and the strange correlator formal-
ism within the context of purification. Uhlmann’s the-
orem [103] ensures that the fidelity between two mixed
states, ρ̂ and σ̂, corresponds to the maximum overlap
between purification states Ψρ and Ψσ.

F 1(ρ̂) = max|⟨Ψρ|Ψσ⟩|2 (38)

Now, label the optimal purified states for the matrices
σ̂ = Z(x)Z(y)ρ̂Z(x)Z(y) and ρ̂ as Ψρ and Ψσ, respec-
tively. Given that Z(x)Z(y) are local operators and the
purified states only contain short-range correlations, the
optimal purification, which maximize |⟨Ψρ|Ψσ⟩| has the
form,

|Ψσ⟩ = Z(x)Z(y)Ua|Ψρ⟩ (39)

Here, Ua are unitary gates that only act on the ancilla
space according to the Schrödinger–HJW theorem. We
can rewrite the overlap of the optimal purified states as:

F 1(ρ̂) = |⟨Ψρ|Z(x)Z(y)Ua|Ψρ⟩|2

= |
∑
|k⟩

⟨ΨρU
a|k⟩⟨k|Z(x)Z(y)|Ψρ⟩|2

= |
∑
k

pkCk(x, y)|2

Ck(x, y) =
⟨k|Z(x)Z(y)|Ψρ⟩

⟨k|Ψρ⟩
, pk = ⟨ΨρU

a|k⟩⟨k|Ψρ⟩

(40)

Here, |k⟩ denotes a complete set of basis states for the pu-
rified state, which are symmetric product states. Ck(x, y)
represents the strange correlator for the purified state Ψρ

relative to the trivial state |k⟩.
The variable pk can be viewed as a specific distribu-

tion of ‘probability amplitude’ that depends on Ua. It is
determined by the wavefunction structure of the optimal
purified states Ψρ and Ψσ. Consequently, the expres-
sion

∑
k pkCk(x, y) can be interpreted as the probability-

weighted average of the strange correlator, calculated by
considering all possible trivial states. Eq. 40 suggests
that the probability-weighted average of the strange cor-
relator for the optimal purified state corresponds to the
fidelity correlator defined in Eq. 37. This relationship
highlights the intrinsic connection between the fidelity
correlator in mixed states and strange correlators in pu-
rification states.

Let us outline a few essentials. In Eq. 40, averag-
ing the strange correlator for the purified state involves
a probability-weighted average over all trivial states by
summing over the basis of product states for both the
system and the ancilla. This is distinct from the an-
nealed averaging defined in Eq. 34, where a specific prod-
uct state for the system is maintained while only the an-
cilla basis is summed over. Furthermore, this argument
holds only if we identify the exact form of the optimal pu-
rifications Ψρ and Ψσ, since the ‘probability amplitude’
pk involves the Ua operator in Equation 39. Indeed, we
can treat pk = ⟨ΨρU

a|k⟩⟨k|Ψρ⟩ as the scattering ampli-
tude that transfers between |UaΨρ⟩ and |Ψρ⟩, mediated
by the intermediate state |k⟩. In our previous 1D ex-
ample in Eq. 22 with parameters θ = 0 and p = 1/2,
Ua can be selected as a charge string of X acting on
the ancilla between x and y to achieve optimal purifi-
cation. For two general mixed-state density matrices,
determining and implementing their optimal purification
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presents considerable challenges. Since the precise form
of Ua is unknown, the probability distribution pk also re-
mains undetermined. Consequently, our findings reveal
the interrelationship between the average strange corre-
lator and fidelity correlator, yet the specific nature of this
averaging process continues to be unclear.

C. Measurement induced long-range order from
purification

To summarize, we bridge the connection between SSSB
in the mixed state and its SPT counterpart within the

purified framework, and establish the correspondence be-
tween physical observables from both sides. In partic-
ular, we demonstrate that measurement-induced long-
range order, along with the annealed-averaged strange
correlator in the purified state, can be dual to the Rényi-
2 correlator and type-II strange correlator in the mixed
state. Likewise, for optimal purification, the ‘probability-
averaged’ strange correlator maps to the fidelity correla-
tor of the mixed state. Below is a table that summarizes
their correspondence.

Purified state Ψ Mixed state ρ̂
EPR-projection induced correlation:

⟨Ψ|ppZ1(x)Z2(x)Z1(y)Z2(y)|Ψ⟩pp
Rényi-2 correlator:
Tr(Z(x)Z(y)ρ̂Z(x)Z(y)ρ̂)

Tr ρ̂2

Annealed-averaged strange correlator:∑
{sij}

|⟨Ψ({sij})|Z(x)Z(y)|ΨSPT ⟩|2∑
{sij}

|⟨Ψ({sij})|ΨSPT ⟩|2

Type-II strange correlator:
Tr[ρ̂0Z(x)Z(y)ρ̂Z(x)Z(y)]

Tr[ρ̂0ρ̂]

Averaged strange correlator for optimal purification:

|
∑

|k⟩⟨ΨρU
a|k⟩⟨k|Z(x)Z(y)|Ψρ⟩|2

Fidelity correlator:(
Tr
{√√

ρ̂Z(x)Z(y)ρ̂Z(x)Z(y)
√
ρ̂
})2

TABLE I. Summary of the mapping between observables for mixed states and their corresponding purification.

The strange correlator has an important connection
to the phenomenon of measurement-induced mutual
information[104]: in particular, for a general pure state
on a composite system ABCD, any strange correlator be-
tween points x ∈ A and y ∈ B lower-bounds the mutual
information between A and B generated by measuring
all the spins in D (which we consider to be the ancilla).
The precise bound is derived in Ref. [77]. Measurement-
induced mutual information is a phenomenon whereby
measuring the degrees of freedom in some part of a sys-
tem teleports information across that part, creating long-
range correlations that did not previously exist. It is a
characteristic property of SPT phases—indeed, it is what
renders them useful as resource states for measurement-
based quantum computation. In Appendix-C, we demon-
strate that the annealed average of the strange correlator
provides a lower bound for the measurement-induced mu-
tual information.

From the examples we demonstrated in the aforemen-
tioned discussion, if the density matrix ρ̂ has SSSB re-
garding strong symmetry GS , the purified state Ψρ could
be chosen to be an SPT state with GS × GA symme-
try. Here, GS acts only on the system qubits (thus being
the strong symmetry for the density matrix), and GA

acts only on the ancilla. In particular, the SPT state
exhibits a decorated domain wall structure between the

GS and GA symmetries. Therefore, projecting the an-
cilla to a specific GA sector can trigger long-range order
(or quasi-long-range order) for the system qubits[26, 42].
However, since we are focusing solely on the strong to
weak symmetry-breaking for the mixed-state, with the
ancilla degrees of freedom being traced out, the GA sym-
metry acting on the ancilla is absent in the mixed-state
density matrix. Likewise, as the purified state is not
unique, other purifications exist, and the purified state
does not necessarily need to exhibit GA symmetry in the
ancilla. This is also reflected in our 2D example of strong
Z2 symmetry-breaking discussion in Sec. III C, where the
purified state, despite breaking 1-form symmetry of the
ancilla, still supports strong to weak Z2 symmetry break-
ing in the mixed state after tracing out the ancilla.

Hence, we clarify that purification resulting in an SPT
state is a sufficient but not necessary condition for strong
symmetry breaking in a mixed state. As demonstrated
in Sec. IV, the strong symmetry breaking in the mixed
state can be attributed to the non-vanishing averaged-
strange correlator in the purified state. Thus, a tran-
sition from strong to weak symmetry breaking implies
that the purified wavefunction contains measurement-
induced long-range order: Upon projecting the ancilla,
the post-projected state exhibits a long-range correla-
tion. Such measurement-induced long-range order does
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not, in general, require the purified state to be an SPT
state, although an SPT wavefunction with a decorated
domain wall structure can be a prominent example of
measurement-induced long-range order [85].

V. GENERALIZED STRONG SYMMETRY
BREAKING DRIVEN BY LOCAL QUANTUM

CHANNELS

A. SSSB for 1-form symmetry in 2D: Mixed state
topological order

Understanding topologically ordered states in open
quantum systems is both conceptually and practically
important at the intersection of condensed matter and
quantum information science. In this section, we illus-
trate how local quantum channels can potentially trigger
a product state to evolve into a topologically ordered
mixed state through the lens of SSSB of a strong 1-form
Z2 symmetry[26, 34, 42]. In particular, we will demon-
strate that the quantum channels driving the transition
from strong to weak 1-form symmetry breaking can be
mapped to a local unitary circuit in the extended Hilbert
space. This circuit creates a symmetry-protected topo-
logical (SPT) state, protected by 1-form Z2 symmetry
(acting on the system) and global Z2 symmetry (acting
on the ancilla). The SPT wavefunction displays a mem-
brane order parameter, which, upon integrating out the
ancilla, corresponds to the correlation function of the 1-
form Z2 symmetry breaking.

We again begin with the purification perspective from
the extended Hilbert space, which comprises the ancilla
qubits located at the vertices, denoted as |ϕA0 ⟩ = ⊗i|→̃⟩i
now polarized in Sx, and system qubits living on the
links, denoted as |ϕ0⟩ = ⊗i| ↑⟩i, polarized in Sz. To en-
tangle the system with the ancilla, we apply the following
unitary:

U =
∏
i

Ui,

Ui =
1 +

∏
e∈vi

Xe

2
Ĩi +

1 −
∏

e∈vi
Xe

2
Z̃i (41)

In this context, X denotes the operator acting on the sys-
tem qubit at each link, whereas X̃ operates on the ancilla
at the vertex. e ∈ vi extends over the four links connect-
ing to the vertex at site i. This unitary gate is reminiscent
of the Z2 Gauss law, where the divergence of the system
qubits at each vertex, denoted by

∏
e∈vi

Xe, determines

the ancilla charge X̃i on the vertex. The unitary opera-
tion in Eq. 41 preserves the 1-form ZS

2 symmetry of the
system, given by GS =

∏
i∈γ Zi, with γ representing any

closed loop along the links.
The post-unitary state |ΨSPT ⟩ is the ground state of

the following stabilizer Hamiltonian:

H = −
∑
b

Zb

∏
v∈eb

Z̃v −
∑
s

X̃s

∏
b∈vs

Xb (42)

FIG. 6. 2D SSSB and mixed-state topological order.
A) The unitary gates consist of a cluster of five-body gates
acting on both the system qubits on the links (red) and the
ancilla qubits on the vertices (blue). B) A quantum chan-
nel measures the four system qubits (red) on the four links
adjacent to the vertex. C) The higher-form SPT state can
be identified by a non-vanishing membrane order parameter,
where the correlation between the non-contractible Wilson
loops (green lines acting on the system qubits) is locked by
the total charge (light blue dots acting on the ancilla) situ-
ated between them.

Here, b ∈ eq refers to the two ends of the link where
the ancilla qubits are located, while a ∈ vs extends over
the four links connecting to the vertex. This Hamiltoni-
anshares the same form as the one discussed in Eq. 25,
although the roles of system and ancilla qubits are inter-
changed. The ground state Hamiltonian is recognized as
a higher-form SPT state, protected by a 1-form ZA

2 sym-
metry acting on the system and a 0-form ZS

2 symmetry
acting on the ancilla.

ZS
2 :
∏
i∈γ

Zi, ZA
2 :
∏
i

X̃i (43)

The higher-form SPT state |ΨSPT ⟩ can be detected by a
non-vanishing membrane order parameter:

⟨Os⟩ = ⟨ΨSPT |
∏

j∈∂A

Xj (
∏
i∈A

X̃i)|ΨSPT ⟩ = 1 (44)

Here, A represents a non-contractable area shaped like a
half-cylinder, while ∂A refers to the two non-contractable
loops at the left and right boundaries of area A. Such
membrane order reproduces the Z2 Gauss Law, stating
that the total ancilla charge inside the area (

∏
i∈A X̃i)

is determined by the electric lines on the left and right
boundaries of region A as (

∏
j∈∂AXj). As these electric

lines can be treated as the Wilson loop operator W (x) =∏
j Xr+jŷ, the membrane order indicates that the cor-

relation of the Wilson loop operator ⟨W (x1)W (x2)⟩ is
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determined by the total ZA
2 charge of the ancilla between

the two Wilson loops as Fig. 6-C.
Upon tracing out the ancilla, the system’s density ma-

trix, denoted as ρ̂, exhibits a mixed-state topological or-
der with the spontaneous breaking of the strong 1-form
Z2 symmetry. The corresponding quantum channel as-
sociated with the unitary in Eq. 41 is:

Ei[ρ̂0] =
1

2
ρ̂0 +

1

2
(
∏
b∈vs

Xb)ρ̂0(
∏
b∈vs

Xb).

ρ̂0 = |... ↑↑↑ ...⟩⟨... ↑↑↑ ...|, (45)

Such a quantum channel is akin to a pure measurement
of four spins,

∏
b∈vs

Xb, on every vertex. The resulting
spontaneous breaking of the strong 1-form Z2 symmetry
can be measurable by the Rényi-2 correlator:

Tr (W (x1)W (x2)ρ̂W (x1)W (x2)ρ̂)

Tr(ρ̂2)
= 1 (46)

As we have demonstrated, such a Rényi-2 correlator
can be viewed as the correlation function of the post-
projection wave function in the enlarged Hilbert space,
which originates from duplicated copies of the purified
wave function |ΨSPT ⟩, with ancilla copies projected into
an EPR pair.

Now we consider a general decoherence channel driven
by finite-rate measurement:

Es[ρ̂0] = (1 − p)ρ̂0 + p (
∏
b∈vs

Xb)ρ̂0(
∏
b∈vs

Xb). (47)

This quantum channel can be established by incorporat-
ing unitary gates as follows:

Us(θ) =
1 +

∏
b∈vs

Xb

2
(cos(θ)Ĩs + i sin(θ)Z̃s)

+
1 −

∏
b∈vs

Xb

2
(−i sin(θ)Ĩs + cos(θ)Z̃s) (48)

When θ = 0, the gate simplifies to the unitary intro-
duced in 41. Conversely, at θ = π/4, the unitary only
rotates the ancilla qubits, leaving the system qubits un-
affected. Upon applying U(θ) where 0 < θ < π

4 , the

resultant state |Ψ(θ)⟩ breaks the global ZA
2 symmetry,

and the membrane order to vanish immediately[26, 42].
After tracing out the ancilla, the resultant density ma-
trix, ρ̂(θ), evolves under the quantum channel as follows:

Es[ρ̂0]

= (
1 + sin(2θ)

2
)ρ̂0 + (

1 − sin(2θ)

2
)(
∏
b∈vs

Xb)ρ̂0(
∏
b∈vs

Xb).

(49)

The mixed-state density matrix ρ̂ only exhibits sponta-
neous strong symmetry breaking (SSSB) for 1-form sym-
metry when θ = 0, indicating the absence of a strong
1-form symmetry-breaking transition at a finite measure-
ment rate. Specifically, when computing the Rényi-2 cor-
relation of Wilson operators in Eq. 46 for a general ρ̂(θ)

where θ > 0, it can be mapped onto the Wilson line cor-
relator of the 2D Z2 gauge theory at finite temperature,
wherein charges are thermally excited[42]. Given that
the 2D Z2 gauge theory does not demonstrate robust
topological quantum memory[105] with 1-form symme-
try breaking at finite temperatures, the Rényi-2 correla-
tion function in Eq. 46 vanishes for θ ̸= 0 in the limit
|x2 − x1| → ∞. From the SPT perspective within the
extended Hilbert space, the purified state |Ψ(θ)⟩ breaks
the global ZA

2 symmetry for θ ̸= 0, and the strange corre-
lator diminishes immediately. This is in stark contrast to
the scenario discussed in Sec. III C, where the SPT wave-
function, despite weak 1-form symmetry breaking, con-
tinues to exhibit non-vanishing strange correlators and
measurement-induced long-range correlation.

B. Subsystem SSSB in mixed state

Before embarking into the generalization of strong-
to-weak symmetry breaking to continuous symmetry
groups, we conclude the study of discrete Z2 symmetry
breaking in the context of subsystem symmetries. In par-
ticular, we consider a quantum channel on a 2D square
lattice, where qubits are situated at the vertices and all
are polarized in the x-direction, denoted as | . . .→→ . . .⟩.
A local quantum channel is applied, featuring a measure-
ment channel that concurrently measures the four spins
at the four corners of each plaquette, denoted as P .

EP [ρ̂0] =
1

2
ρ̂0 +

1

2
(
∏
i∈P

Zi)ρ̂0(
∏
i∈P

Zi). (50)

These quantum channels display strong subsystem sym-
metry, conserving the Zsub

2 charge on each row and col-
umn.

Zsub
2 :

∏
i∈row/column

Xi (51)

The density matrix of the post-quantum channel, de-
noted as ρ̂, exhibits long-range correlations that manifest
the breaking of strong subsystem symmetry. This phe-
nomenon is characterized by the four-point correlation
function within the Rényi-2 correlator:

Tr
(
Z(0,0)Z(x,0)Z(0,y)Z(x,y)ρ̂Z(0,0)Z(x,0)Z(0,y)Z(x,y)ρ̂

)
Tr(ρ̂2)

= 1

(52)
This four-point correlation function is reminiscent of the
order parameter for 2D plaquette Ising models in the sub-
system symmetry-breaking phase[106, 107]. The key dif-
ference here lies in our consideration of the spontaneous
transition from strong to weak subsystem symmetry in
a mixed state far from equilibrium. In this context, the
charged operators within the correlation function must
act on both the ket and bra spaces of the density matrix.
Specifically, operators Z(0,0)Z(x,0) acting on the ket and
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FIG. 7. Subsystem SSSB in 2D. A) The unitary gates
comprise a cluster of five-body gates on the plaquette. B)
A quantum channels that measure the four spins at the four
corners of the plaquette. C) The subsystem SPT state can
be identified by a non-vanishing membrane order parameter,
where the four-point correlation (light blue dots) at the corner
of the membrane is locked by the total charge (red) inside.

bra of the density matrix are neutral under weak subsys-
tem symmetry but are charged under strong subsystem
symmetry along the y-columns. Consequently, the pres-
ence of a non-vanishing correlator indicates the breaking
of strong subsystem symmetry.

Now, returning to the purification view, in the ex-
tended Hilbert space, the ancilla is positioned at the cen-
ter of each plaquette. The initial state of the ancilla is a
tensor product of spins polarized in the Sz direction. We
apply the following unitary operator to each plaquette P
to entangle the system with the ancilla:

UP =
(1 +

∏
i∈P Zi)

2
ĨP +

(1 −
∏

ai∈P Zi)

2
X̃P (53)

such that the global unitary is given by U =
∏

P UP .
Here, Zi refers to the operator acting on the system
qubits located at the vertices, while X̃P acts on the an-
cilla situated at the center of each plaquette.

∏
i∈P in-

cludes four system spins positioned at the corners of the
plaquette. Such a unitary operation exhibits a ‘deco-
rated corner’ feature: if the four spins at the four cor-
ners of a plaquette contain an odd number of ↓ spins, we
flip the ancilla at the center of plaquette to |↓̃⟩P . The
post-unitary wave function represents the ground state
of the subsystem SPT Hamiltonian initially proposed in
Ref. [106, 107] with the following symmetries

Zsub,S
2 :

∏
i∈row/column

Xi, Zsub,A
2 :

∏
P∈row/column

Z̃P (54)

where ZS
2 and ZA

2 act on the system and the ancilla re-
spectively. The unitary operator we apply preserves the
ZS
2 symmetry while breaking the ZA

2 symmetry. The
subsystem SPT state can be characterized by a non-
vanishing membrane order parameter[106, 107]:

Os =
∏
i∈CA

Zi(
∏
a∈A

Z̃a) (55)

In this context, A denotes a rectangular-shaped mem-
brane, and CA represents the four corners of the mem-
brane. This membrane order highlights that the four-
point correlation, denoted as ⟨

∏
i∈CA

Zi⟩, is determined
by the total Sz charge of the ancilla inside the membrane.
The Rényi-2 correlator in Eq. 52 can be interpreted as the
correlation function of the post-projection wave function
in the enlarged Hilbert space.

Finally, we discuss the stability of strong subsystem
symmetry breaking under general quantum channels. If
the quantum channel in Eq. 50 is replaced by a general
quantum channel at a finite measurement rate p, the cor-
responding purified state in the extended Hilbert space
breaks the ZA

2 symmetry, and its measurement-induced
long-range order (LRO) is no longer present. Hence,
strong subsystem symmetry breaking in 2D is unstable
under a general quantum channel at a finite measure-
ment rate p. This conclusion is supported by the Rényi-
2 correlator in Eq. 52, which maps to the 2D classical
plaquette Ising model at finite temperature, where the
subsystem symmetry breaking is absent due to strong
thermal fluctuations[108]. The situation would differ for
3D systems, where SSSB of subsystem symmetry can be
driven by quantum channels at a finite measurement rate.
We are eager to further investigate and expand upon this
line of research in our future endeavors.

C. General SSSB in the mixed state for onsite
symmetries

The SSSB for Z2 symmetry can be generalized to more
general symmetries. Here we summarize the results for
a global on-site symmetry with a finite symmetry group
G, and discuss their implications. The reader is referred
to Appendix D for details.

For a general finite symmetry group G, we can con-
struct the density matrix of the SSSB mixed state as

ρ̂S ∝
∑
g∈G

Ug, (56)

where Ug =
∏

j u
(j)
g is the global symmetry transforma-

tion given by the product of the local transformation u
(j)
g ,

which is a representation of g acting on the site j. We in-
troduce a multiplet of local order parameters Oα

Ω defined
on a local region Ω. We assume that they transform non-

trivially under G, namely Ug
†Oα

ΩUg =
∑

β Mαβ(g)Oβ
Ω,

where Mαβ(g) is a representation of g ∈ G which does
not contain the identity representation. Under this con-
dition, the usual correlation function between two distant
regions Ω1 and Ω2 asymptotically vanishes in (56):

Tr
{
ρ̂SŌα

Ω1
Oβ

Ω2

}
→ 0, (57)

when the distance between Ω1 and Ω2 is taken to ∞.
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Nevertheless, the Rényi-2 correlation function

Tr
{
ρ̂SŌα

Ω1
Oβ

Ω2
ρ̂SOα

Ω1
Ōβ

Ω2

}
Tr{(ρ̂S)2}

(58)

does not vanish in the same limit, signaling the SSSB.
In Sec. IV C, we demonstrated that a mixed-state den-
sity matrix with SSSB has a purified wave function with
measurement-induced long-range order. A general proto-
col for finding the purification and corresponding FDLU
state is called for in future studies.

D. SSSB of continuous symmetry in mixed state?

We briefly delve into the circumstances that may lead
to spontaneous strong U(1) symmetry breaking in a
mixed state, triggered by local quantum channels. In-
stead of focusing on quantum channels and the density
matrix, we choose to conceptualize this process through
purification in the extended Hilbert space generated by
local unitary gates.

The extended Hilbert space consists of a system with
an array of 1D fermion wires extended in the y-direction.
Each wire contains two flavors of 1D fermions, whose left
and right movers are denoted by ψi,L and ψi,R (i = 1, 2),
respectively. ψ1 carries a unit charge and Sz = 1

2 , while

ψ2 carries a unit charge and Sz = −1
2 . The physical

degrees of freedom in this enlarged Hilbert space encom-
pass both U(1) charge and Sz spin (denoted Us(1)). We
will assume that the spins belong to the ancilla, while
the charges belong to the system. This setup resembles
a bilayer fermion system with spins polarized in opposite
directions. In this context, the fermion ψi represents a
combination of degrees of freedom from both the system
and the ancilla. The initial Hamiltonian of the system de-
picts a trivial atomic insulator, where the left and right
fermions in each wire (with the same wire index x) are
gapped by intra-wire coupling:

H1 =
∑
x

−ψ†
1,L(x)ψ2,R(x) − ψ†

2,L(x)ψ1,R(x) + h.c.

(59)

The initial state |Φ0⟩ is invariant under charge U(1), but
it breaks Us(1) symmetry. The ground state can be de-
picted as a trivial atomic insulator.

We now consider local unitary operations that trans-
form our initial state |Φ0⟩ into a quantum spin Hall-
like state. This unitary operator would be more trans-
parent if we extract a building block as illustrated in
Fig. 8. Each building block comprises four chiral fermions
(ψ2,R(x), ψ1,L(x), ψ2,L(x + 1), ψ1,R(x + 1))T across two
wires. The entire system is a tensor product of these
building blocks. Within each building block, we apply a

FIG. 8. The blue and orange unit cell represents fermionic
1D wires ψ1,L/R(x), ψ2,L/R(x) extended along the y-direction.
The dashed black box denotes a building block between two
cells. After applying the unitary U2 in each building block, the
intra-wire coupling becomes the inter-wire coupling, which
transforms the initial atomic insulator into a quantum spin
Hall insulator.

unitary operator as follows:

U2 =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


U2(ψ2,R(x), ψ1,L(x), ψ2,L(x+ 1), ψ1,R(x+ 1))T

= (ψ2,R(x), ψ2,L(x+ 1), ψ1,L(x), ψ1,R(x+ 1))T (60)

This unitary preserves the U(1) symmetry while break-
ing the Sz conservation. The post-unitary Hamiltonian
becomes:

H2 = U∗
2H1U2

= −
∑
x

ψ†
2,R(x)ψ2,L(x+ 1) − ψ†

1,L(x)ψ1,R(x+ 1) + h.c.

(61)

The H2 Hamiltonian respects both U(1) symmetry and
Sz conservation, and is akin to the coupled-wire Hamilto-
nian for the quantum spin Hall effect[109], where spin-up
and spin-down fermions form Chern bands with opposite
Chern numbers. If we trace out the ancillae, the unitary
operation in the extended Hilbert space manifests as a
local quantum channel with strong U(1) symmetry, de-
cohering the initial state Φ0 into a mixed state density
matrix ρ̂.

As demonstrated in Ref. [40, 62, 110–112], the quan-
tum spin Hall state is characterized by string order with
a power-law decay in correlation. This suggests that
projecting the spin onto a specific pattern would in-
duce charge quasi-long-range order. Upon tracing out
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the spin degree of freedom (ancillae), the resulting mixed
state exhibits quasi-long-range order for the strong U(1)
symmetry[40].

Tr
[
eiθ(r)e−iθ(r′)ρ̂e−iθ(r)eiθ(r

′)ρ̂
]

Tr[ρ̂2]
=

1

ra
(62)

Our results suggest that the local quantum channel can
induce strong U(1) symmetry breaking accompanied by
quasi-long-range order. Within the purification frame-
work, the extended Hilbert space accommodates a quan-
tum spin Hall-type state, characterized by a power-law
decay in string order. Pressing questions arise, including
identifying the precise Kraus operators resulting from the
applied unitary gate within the quantum channel, and de-
termining whether such U(1) symmetry-breaking transi-
tions can be initiated by a general quantum channel with
a finite p. We will defer these inquiries to future studies.

VI. IMPLICATION FOR MIXED-STATE
TOPOLOGICAL ORDER AND

DECOHERENCE-INDUCED TRANSITIONS

A. Noisy toric code from Wegner’s duality

Topological quantum memory can protect information
against local errors up to finite error thresholds. Recent
studies have opened avenues for the characterization of
mixed-state topological order triggered by local quantum
channels[26, 37, 42, 43]. Refs. [45, 66] investigate the
noisy toric code by considering the ground state wave
function |ΨTC⟩ of the 2D toric code with local phase er-
rors, which can be quantitatively described as a quantum
channel that measures the Zi spin on each link:

ρ̂0 = |ΨTC⟩⟨ΨTC |, ρ̂D = E [ρ̂0],

E =
∏
i

Ei, Ei[ρ̂0] = (1 − p)ρ̂0 + pZiρ̂0Zi (63)

It has been shown that by tuning the measurement rate p,
the mixed state undergoes a transition that can be viewed
as e-anyon condensation in the error-doubled field.

Inspired by our previous discussion on the correspon-
dence between decoherence in the mixed state and uni-
tary gates in the purification picture, we can map this
quantum channel to a unitary operator in the extended
Hilbert space. The extended Hilbert space includes the
system of interest, initialized as the toric code ground
state |ΨTC⟩, together with ancilla spins which also live
on the links of the square lattice, initialized as |ϕA0 ⟩ =⊗

i |↑̃⟩i. The unitary operator U entangles the system

and ancilla spin on each link as follows:

U(θ) =
∏
i

Ui(θ),

Ui(θ) =
(1 + Zi)

2
(cos(θ)Ĩi + i sin(θ)Ỹi)

+
(1 − Zi)

2
(sin(θ)Ĩi + i cos(θ)Ỹi) (64)

The post-unitary state, upon tracing out the ancilla, re-
verts to the mixed-state density matrix induced by the
quantum channel defined in Eq. 63, with an error rate

p = 1−sin(2θ)
2 .

Suppose we apply the Wegner’s (also known as
Fradkin-Shenker) duality[37, 43, 45, 113] to the initial
toric code wave function |ΨTC⟩; the dual state becomes
a paramagnetic state with qubits positioned at the ver-
tices and polarized in Sx as |ϕ0⟩ =

⊗
i | →⟩i. The quan-

tum channel in Eq. 63 and its corresponding unitary in
the purification picture exactly match the quantum chan-
nel introduced in Sec. III C, which drives the transition
from strong to weak Z2 symmetry breaking. In partic-
ular, the Rényi-2 correlation that characterizes SSSB in
Eq. (29) can be dual to the e-string operator, which char-
acterizes the ‘anyon-condensation’ transition in the de-
coherent toric code in error-doubled fields. Inspired by
this duality, the SSSB in the mixed state is dual to the
decoherent transition in the toric code, both of which
can be reached through local quantum channels. Given
that Wegner’s duality is broadly applicable for relating
quantum paramagnetic states with G symmetry to the
corresponding ‘gauged’ lattice gauge theory, we antici-
pate that the correspondence between decoherent lattice
gauge theory and SSSB can be extended to a broader
class of scenarios, including fracton gauge theories and
twisted gauge theories.

B. Purification from the boundary of 3D TQFT

Ref.[56, 58] introduce an intrinsic mixed-state topolog-
ical order by considering a 2-qubit quantum channel to
the toric code ground state:

ρ̂0 = |ΨTC⟩⟨ΨTC |, ρ̂D = E [ρ̂0],

E =
∏
i

Ei, Ei[ρ̂0] = (1 − p)ρ̂0 + pZiXi+v̂ρ̂0ZiXi+v̂

(65)

With v̂ = ( x̂
2 ,−

ŷ
2 ). The two-body operator ZiXi+v̂ cre-

ates an f -fermion in the toric code via the e−m bound
state. Thus, the mixed state undergoes a transition that
can be viewed as f × f̄ -anyon condensation in the error-
doubled field. Notably, an f -fermion condensate cannot
be achieved in thermal equilibrium due to its fermionic
statistics, and it becomes a unique and intrinsic feature in
mixed-state quantum channels. In Ref. [56], the authors



19

analyze such intrinsic anyon condensate from the Choi-
double picture and elucidate its similarity with boundary
topological order in 3+1d Walker-Wang models.

We aim to understand the topological mixed ensembles
through the lens of the purification perspective. Reflect-
ing on this approach, we highlight that certain topologi-
cal mixed states can also be interpreted as the boundary
density matrices of some 3D topological orders. Specif-
ically, we consider the 3D topological order that has an
open boundary at z = 0, treating this as the purified
state. The ‘system’s degrees of freedom’ are encoded in
the top layer at z = 0 with the rest being the ancilla. By
tracing out the layers where z < 0, we find that the re-
duced density matrix for the top layer closely resembles
the mixed state density matrix specified in Eq. 65 or 63,
with p = 1

2 .

FIG. 9. A-B) Stacks of toric code layers along z-direction
and condense bound state of e-anyons between layers. The
deconfined excitation is the e-anyon on each layer and the m-
flux loop excitation. C-D) Stacks of toric code layers along
z-direction and condense bound state of f-anyons between lay-
ers. The deconfined excitation is the f-anyon on each layer and
the m-flux loop excitation.

As delineated in Ref. [10, 114], 3D topological or-
der can be realized through coupled-layer constructions.
This process is achieved by stacking layers of 2D topo-
logical order and by condensing bound states of anyons
between these layers. For example, by starting with an
array of 2D toric code layers aligned along the z-direction
and condensing the bound state of e-anyons between the
i-th and (i + 1)-th layers, the system transforms into a
3D Z2 gauge theory. The condensation of e-anyon pairs
between adjacent layers induces a coherence of charges
across the layers, allowing a single e-excitation to remain
deconfined and to move between layers within the bulk.
Simultaneously, the isolated m-particles in each layer be-
come confined. The resulting deconfined m-excitations
form closed flux loops, as illustrated in Fig. 9. This struc-
ture corresponds to the flux loop excitation characteristic

of 3D gauge theories. When there is an open surface at
z = 0, this surface supports deconfined e-anyons. Flux
excitations can terminate at this surface, resembling m-
anyons; notably, these m-anyons on the surface are con-
nected to the ends of flux strings extending into the bulk.
By focusing on the top surface and tracing out the rest of
the system, we are left with only the reduced density ma-
trix ρ̂top as a mixed state for the z = 0 layer. It exhibits
strong 1-form symmetry regarding the e-loop and weak
1-form symmetry regarding the m-loop. Consequently,
the reduced density matrix for the top layer, ρ̂top, re-
sembles the decohered mixed state of the toric code with
phase Z error in Eq. 63 with p = 1

2 . The weak symmetry
traces back to the connection between the m-anyons on
the surface and the flux strings from the bulk. Here, the
3D topological order with an open surface is treated as
the purification state, with all layers below (z < 0) acting
as ancillae being traced out.

Similarly, a different condensation channel involves
condensing the bound state of f-fermions between the
i-th and i + 1-th layers. Since a pair of f-fermions con-
stitutes a boson, enabling condensation in thermal equi-
librium. The condensation of f-fermion pairs between
adjacent layers induces coherence of fermion across the
layers, allowing a single f-excitation to remain deconfined
and to move between layers within the bulk. Simulta-
neously, the isolated m(e)-particles in each layer become
confined. The resulting deconfined m(e)-excitations form
closed flux loops(Fig. 9). At the open surface at z=0, it
supports deconfined f-anyons. Flux excitations can ter-
minate at the surface, resembling m-anyons on the sur-
face; notably, these m-anyons are connected to the ends
of flux strings extending into the bulk. Now, focusing on
the top surface and tracing out the rest of the system, we
are left only with the reduced density matrix, ρ̂top for the
z=0 layer. It exhibits strong 1-form symmetry regarding
the f-loop and weak 1-form symmetry regarding the m-
loop (e-loop). Thus, the reduced density matrix for the
top layer ρ̂top resembles the intrinsic topological mixed
state with a two-bit error in Eq. 65 at p = 1/2. While
our approach does not reveal the unitaries that trigger
the quantum channels, we have shown that the density
matrix of some mixed-state topological orders can be vi-
sualized as the reduced density matrix of the top surface
of 3D topological order. A more careful analysis of this
scenario will be considered in future work.

VII. VISUALIZE DECOHERENT SPT FROM
PURIFICATION PERSPECTIVE

To this end, we have explored the spontaneous strong
symmetry breaking from the purification perspective.
Specifically, we demonstrated that the long-range order
engendered by SSSB in a mixed state can be perceived
as a subsystem of an SPT wave function within the ex-
tended Hilbert space. This space encompasses multiple
degrees of freedom—denoted as the system of interest
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and ancilla qubits—that are highly entangled. Project-
ing onto the ancilla induces long-range correlations be-
tween the system qubits, eventually manifesting as the
long-range order in the mixed state. In particular, the
Rényi-2 correlator of the density matrix corresponds to
the measurement-induced long-range order of the puri-
fied wave function in the doubled space[82].

So far, it is clear that SSSB in the mixed state can
be traced back to measurement-induced long-range or-
der in the purified wave function. Therefore, it is natu-
ral to consider a wider variety of exotic mixed states in
interacting systems, such as those exhibiting Symmetry-
Protected Topological (SPT) orders in mixed states, in-
duced by decoherence or quenched disorder[37, 38, 43,
55, 59, 61, 82]. In Ref. [43, 55, 61, 82, 115–117], several
physical observables were proposed as diagnostics for the
mixed-state SPT phase, including the Rényi-2 string or-
der and the type-II strange correlator. In this section,
we will provide a physical interpretation of these SPT
observables from the purification perspective. While a
detailed exploration of mixed-state SPT and its purifica-
tion correspondence will be addressed in a forthcoming
paper, we will briefly outline the key ideas here.

We begin with an SPT wave function protected by ZS
2

and ZW
2 symmetry introduced in Ref. [61], which sup-

ports a non-vanishing string order:

Os = ⟨ΨSPT |Zi

∏
q∈l

X ′
qZj |ΨSPT ⟩ (66)

Here, Zi(Zj) represents charge operators (carrying ZS
2

charge) located at the ends of string l, while
∏

q∈lX
′
q

acts as the ZW
2 symmetry operator along string l. The

presence of non-vanishing string order suggests a mixed
anomaly between ZW

2 and ZS
2 . As a point of interest, we

consider that the SPT wave function encompasses mul-
tiple degrees of freedom, labeled as A and B, which are
extensive in space. These can be interpreted as degrees
of freedom residing on different sublattices, layers, or dif-
ferent orbitals, among other possibilities. The symmetry
operator ZS

2 acts solely on A, while both A and B are
subject to ZW

2 symmetry charge. Consequently, Zi(Zj)
affects only A, whereas the charge string

∏
q∈lX

′
q im-

pacts both A and B.

If we treat B as the ancilla qubits from the environ-
ment and trace them out, the resulting reduced-density
matrix, ρ̂A, becomes a mixed-state SPT that possesses
strong ZS

2 symmetry and weak ZW
2 symmetry. This

strong symmetry arises because the purified state |ΨSPT ⟩
does not permit the exchange of ZS

2 symmetry charge be-
tween A and B, ensuring that the subsystem A retains
its conserved ZS

2 charge. Conversely, since the ZW
2 charge

can fluctuate between subsystems A and B, the reduced-
density matrix ρ̂A exhibits only weak ZW

2 symmetry.

If we calculate the string order parameter defined in

Eq. 66 based on the mixed state density matrix ρ̂A:

Tr

ρ̂A(Zi

∏
q∈lA

XqZj)

 ∼ 0 (67)

Here, the charge string
∏

q∈lA
Xq acts solely on qubits

in subsystems A. This string order vanishes because ZW
2

represents a weak symmetry, allowing its charge to fluc-
tuate between regions A and B in the purified wave func-
tion. Although the string order of the original purified
state |ΨSPT ⟩ in Eq. 66 is non-vanishing, tracing out the
ancilla (denoted as subsystem B) effectively averages out
the even and odd charges carried by the ancilla along the
string. Indeed, the decoherence effect obscures the string
order due to the ZW

2 charge fluctuation between the sys-
tem and the ancilla.

To counteract the decoherence effect, we might con-
sider creating two identical copies of both the system and
the ancilla, denoted as |ΨSPT ⟩db = |ΨSPT ⟩1 ⊗ |Ψ∗

SPT ⟩2.
We now project the two copies of the ancilla onto the
EPR state, resulting in a post-projected wave function
that exhibits non-vanishing string order.

⟨Ψpp
SPT |

∏
t=1,2

(Zt
i

∏
q∈lA

Xt
qZ

t
j)|Ψ

pp
SPT ⟩ = const

|Ψpp⟩ =
P̂ |Ψdb

SPT ⟩
|⟨Ψdb

SPT |P̂ |Ψdb
SPT ⟩|

(68)

The projection of the double ancilla ensures that the total
charge carried by the two ancilla copies (from system B)
on the string is even. This condition allows the string
order to be represented by a string operator acting solely
on system A. Here, Zi, Zj are operators that act only on
A, and

∏
q∈lA

Xq represents the ZW
2 charge on the string,

carried exclusively by system A. Now, by transforming
the second copy of the system and ancilla back into the
bra space, the string order in Eq. 68 becomes:

⟨Ψpp
SPT |

∏
t=1,2

Zt
i

∏
q∈lA

Xt
qZ

t
j |Ψ

pp
SPT ⟩ →

Tr
[
Oρ̂AOρ̂A

]
Tr[(ρ̂A)2]

O = Zi

∏
q∈lA

XqZj (69)

This precisely maps to the Rényi-2 version of the string
order.

Likewise, we can consider measuring the strange cor-
relator in the purified state and subsequently taking its
annealed average:

⟨Os(x, y)⟩2 =

∑
{xB} |⟨Ψtrivial({xB})|ZA

i Z
A
j |ΨSPT ⟩|2∑

{xB} |⟨Ψtrivial({xB})|ΨSPT ⟩|2

=

∑
{xB} |⟨xB | ⊗ ⟨xAi = 1|ZA

i Z
A
j |ΨSPT ⟩|2∑

{xB} |⟨xB | ⊗ ⟨xAi = 1|ΨSPT ⟩|2

=
Tr
[
ρ̂0ZiZj ρ̂

AZiZj

]
Tr[ρ̂0ρ̂A]

ρ̂0 = |xAi = 1⟩⟨xAi = 1|, ρ̂ = TrB(|ΨSPT ⟩⟨ΨSPT |) (70)
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This ultimately corresponds to the type-II strange corre-
lator proposed in Ref. [43]. Our mapping indicates that
the type-II strange correlator in a mixed SPT state can be
traced back to the averaged strange correlation function
within the purified state in the extended Hilbert space.
We anticipate that our perspective offers an alternative
avenue for addressing the characterization of mixed-state
SPT phases. A thorough examination of this topic will
be presented in our forthcoming work.

VIII. SUMMARY AND FUTURE DIRECTIONS

We address the characterization of exotic mixed states
from the lens of purification, with a summary of our main
results displayed in Fig. 1. In particular, we have shown
that a mixed state ensemble, exhibiting a strong-to-
weak symmetry breaking transition, admits a purification
showcasing symmetry protected topological (SPT) order
in the limit of strong decoherence (error rate p = 1/2).
This perspective allows us to relate the SSSB transition
recently introduced in the literature and characterized
by non-vanishing Rényi-2 correlators as well as type-
II strange correlators and fidelity measures; to a non-
vanishing measurement-induced mutual information —
intrinsic to SPT phases. As we prove, the latter is lower-
bounded by the average strange correlators of the purified
state. Moreover, as we mentioned in the main text our
findings reveal the interrelationship between the average
strange correlator and fidelity, yet the specific nature of
this averaging process remains an open question.

In the first sections, we focus on purification states
with discrete strong ZS

2 and weak ZA
2 symmetries consid-

ering three different scenarios where: (1) Both ZS
2 and

ZA
2 are global (0-form) symmetries, (2) ZS

2 is global but
ZA
2 is a 1-form symmetry, and (3) ZS

2 is 1-form while ZA
2

remains a global symmetry. Further employing this per-
spective, we also discuss the purification aspects of mixed
Z2 topological order under the condensation of both e
and f particles in the error-doubled field. This field has
recently been shown to lead to intrinsic mixed-state topo-
logical order [58]. In these cases, the purified state is de-
fined on a 3D manifold with an open boundary, where the
mixed-state density matrix is akin to the reduced density
matrix of the top surface layer. The strong 1-form sym-
metry corresponds to the deconfined charge excitation
on the surface, while the weak 1-form symmetry origi-
nates from flux loop excitations in the bulk that termi-
nate at the top surface as a point defect. This approach
directly connects to and extends the results of Ref. [56],
where a similarity was noted with boundary topological
order in (3 + 1)D. Finally, we briefly extend the discus-
sion of SSSB to a general onsite symmetry group. We also
explore the landscape of U(1) strong SSSB with quasi-
long-range order in 2D by purifying it into a quantum
spin Hall-likestate. However, a detailed construction and
analysis of the corresponding U(1) symmetric quantum
channel is reserved for future work.

We conclude by illustrating several promising future
research directions. We explored the spontaneous phase
transition from strong to weak symmetries triggered by
local quantum channels, and found that this can relate to
thermal phase transitions of underlying stat-mech models
(although such exact mapping is not expected to hold in
general). From this perspective, we found that no finite
error rate p < 1/2 can lead to strong-to-weak SSB in 1D
(as long as the channels are local). In general, we also
learned that such transitions —corresponding to finite
critical error rates pc— can only occur if the number of
constraints is sufficiently large, as it e.g., happened in a
2D system with global Z2 symmetry, but not in the pres-
ence of subsystem symmetries. However, a finite thresh-
old is expected in 3D[108]. Moreover, from our discussion
of continuous U(1) symmetries, a pertinent question is
whether a Hohenberg-Mermin-Wagner-like theorem ex-
ists that bounds the occurrence of symmetry breaking
with the dimensionality of the many-body system. Sim-
ilarly, discovering new types of criticality triggered by
quantum channels in open systems and the characteri-
zation of such critical points (from a condensed matter
perspective) constitutes a promising direction.

As we discussed in Sec. VI A, the mixed-state topologi-
cal order transition triggered by decoherence in the noisy
toric code (studied in Refs.[45, 46, 50]) can be mapped to
the strong-to-weak SSSB considered in Sec.III C through
F-S duality. Here, the Rényi-2 correlator relates to the
anyon condensation order parameter in terms of the vec-
torized density matrix. Understanding the correspon-
dence of various other information-theoretical quantities,
such as coherent information and negativity defined for
mixed states, remains an intriguing open question [60].

We are aware of another work [102] that explores
the transition from strong-to-weak symmetry breaking,
which would appear on arXiv on the same day.
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Appendix A: Derivation of the Equivalence Between
the Rényi-2 correlator and EPR-Induced

Long-Range Order

To provide a physical interpretation of the Rényi-2 cor-
relator, we duplicate our Hilbert space by creating two
identical copies of the SPT state, denoted |ΨSPT⟩1 and
|ΨSPT⟩2. Next, we perform a Schmidt decomposition be-
tween the ancilla and the system for each copy of the
SPT wave function as:

|ΨSPT ⟩1 =
∑
α

λα|α⟩1s|α̃⟩1a, |ΨSPT ⟩2 =
∑
α

λ∗α|α∗⟩2s|α̃∗⟩2a

(A1)

Here, we take the complex conjugate of the second copy
of the wave function, denoted by |ΨSPT⟩2. |α⟩s denotes
the Schmidt basis for the system, while |α̃⟩a refers to the
Schmidt basis for the ancillas. |α∗⟩ refers to the complex
conjugate of the vector.

We now project the i-th ancillae from both the first
and second copies, which are positioned at the same link

(i, i + 1), forcing their alignment in the Sz direction by
projecting onto a symmetric EPR pair:

P̂i =
1

2

(
|↑̃

1
↑̃
2
⟩ + |↓̃

1
↓̃
2
⟩
)(

⟨↑̃
1
↑̃
2
| + ⟨↓̃

1
↓̃
2
|
)

(A2)

for every ancilla pair at link i. To derive the wave func-
tion after projection, we choose an alternative basis for
the purified state,

|ΨSPT ⟩ =
∑

α,{z̃i}

qα,{z̃i}|α⟩s|{z̃i}⟩a, (A3)

The system qubits is still written in the Schmidt basis
while the ancilla qubits is written in the Sz basis {z̃i}. As
the density matrix of the system is ρ̂ =

∑
α |λα|2|α⟩⟨α|,

we get: ∑
{z̃i}

qα,{z̃i}q
∗
β,{z̃i} = δα,β |λα|2 (A4)

The normalized wavefunction, after this projection, is
given by:

|Ψ⟩pp ∼
∏
i

P̂i[(
∑

α,{z̃i}

qα,{z̃i}|α⟩
1
s|{z̃i}⟩1a)(

∑
β,{z̃′

i}

q∗β,{z̃i}|β⟩
2
s|{z̃i}⟩2a)] → |Ψ⟩pp =

1√∑
α |λα|4

∑
α

|λα|2 |α⟩1s|α∗⟩2s (A5)

In the last step, we omit the ancilla degree of freedom
as they form a tensor product of EPR pairs between two
copies and are decoupled to the system qubits.

The projection P̂i,i+1 on the two ancilla copies results

in the charge string (
∏n

a=0 Z̃
1
i+aZ̃

2
i+a) being uniformly

even throughout the post-projected wave function. Con-
sequently, the post-projection state |Ψ⟩pp exhibits long-
range order in the four-point correlation function:

⟨Ψ|pp Z1
i Z

2
i Z

1
i+n+1Z

2
i+n+1|Ψ⟩pp = 1 (A6)

We will now establish that the Rényi-2 correlator pre-
cisely corresponds to the four-point correlation function
within the post-projection state |Ψ⟩pp.

After tracing out the ancilla from the purified state
|ΨSPT⟩ =

∑
α λα|α⟩s|α̃⟩a, we obtain the density matrix

ρ̂:

ρ̂ =
∑
α

|λα|2|α⟩⟨α| (A7)

Tracing out the ancilla effectively involves projecting the
ancilla in both the ket and bra spaces to be identical,
essentially aligning them in the same Sz direction. By
considering the bra vector as a duplicate copy, the an-
cilla tracing procedure exactly corresponds to the pro-

jection operation in Eq. 18. Likewise, applying the Choi-
Jamio lkowski isomorphism maps the density matrix into
a pure state within the doubled Hilbert space:

ρ̂ =
∑
α

|λα|2|α⟩⟨α| → |ρ̂⟩⟩ ∼
∑
α

|λα|2|α⟩1|α∗⟩2 (A8)

Indeed, |ρ̂⟩⟩ agrees with the post-projection wave func-
tion in Eq. 18. This similarity suggests that tracing out
the ancilla and acquiring the density matrix mirrors the
process of having a duplicated copy (originating from the
ket and bra vectors) of the system, with the ancilla in
both copies being projected to an EPR pair.

Drawing from this analogy, when calculating the
Rényi-2 correlator in Eq. 6, the operators acting on the
left and right sides of the density matrix ρ̂ can be inter-
preted as measuring operators for both identical copies
post-ancilla projection. Consequently, we can express the
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Rényi-2 correlator in the following way:

Tr (Z0Ziρ̂Z0Ziρ̂)

Tr ρ̂2

=
(
∑

α,α′ |λα|2|λα′ |2)⟨α|Z0Zi|α′⟩⟨α′|Z0Zi|α⟩∑
α |λα|4

=
(
∑

α,α′ |λα|2|λα′ |2)⟨α|Z0Zi|α′⟩(⟨α|Z0Zi|α′⟩)∗∑
α |λα|4

=
(
∑

α,α′ |λα|2|λα′ |2)⟨α|1⟨α∗|2Z1
0Z

1
i Z

2
0Z

2
i |α′⟩1|α∗′⟩2∑

α |λα|4

= ⟨Ψ|ppZ1
i Z

2
i Z

1
i+n+1Z

2
i+n+1|Ψ⟩pp (A9)

This precisely corresponds to the four-point correlation
of the post-projected wave function.

1. Derivation of the Equivalence Between the
Rényi-2 correlator and spin-correlation in classical

Ising model

After applying the unitary described in Eq. 22 and
tracing out the ancilla, we obtain a Z2 symmetric quan-
tum channel:

ρ̂D = E [ρ̂0], E =
∏
i

Ei,

Ei[ρ̂0] = (1 − p)ρ̂0 + pZiZi+1ρ̂0ZiZi+1, (A10)

with an error rate p = 1−sin(2θ)
2 . Initializing in a pure

product state ρ̂ = |→⟩ ⟨→|⊗N
, we employ the Choi-

Jamiolkowski isomorphism to write the resulting deco-
hered density matrix in the vectorized form as

ρ̂→ |ρ̂⟩⟩ =
∏
⟨i,j⟩

Ei,j |ρ̂0⟩⟩

=
∏
⟨i,j⟩

[(1 − p) + pZiZj ⊗ ZiZj ] |→⟩⊗N |→⟩⊗N

∝ exp

β∑
⟨i,j⟩

ZiZj ⊗ ZiZj

 |→⟩⊗N |→⟩⊗N

(A11)
up to an overall p-dependent factor, and with tanh(β) =
1−sin(2θ)
1+sin(2θ) . One can then write |→⟩ = (|0⟩ + |1⟩)/

√
2 in

the local Z-basis such that we finally obtain

|ρ̂⟩⟩ = 2−N
∑
σ,σ′

eβ
∑

⟨i,j⟩ σiσjσ
′
iσ

′
j |σ⟩ |σ′⟩ , (A12)

which can be rewritten as

|ρ̂⟩⟩ = 2−N
∑
σ,σ′

eβ
∑

⟨i,j⟩ σiσj |{σiσ′
i}⟩ |σ′⟩ . (A13)

Hence, diagonal expectation values on the local Z basis
are given by thermal expectation values evaluated on the

classical Ising model. In particular, one finds that the
Rényi-2 correlator maps to the 2-point thermal correla-
tion of the Ising model at temperature 2β, i.e.,

tr (ZaZbρ̂ZaZbρ̂)

trρ̂2
=

1

Z

∑
σ

e2β
∑

⟨i,j⟩ σiσjσaσb (A14)

This implies that in one dimension, the decohered den-
sity matrix lacks long-range order in Rényi-2 correlator
for any p < 1

2 . In two dimensions, it triggers a phase
transition at finite β that is akin to the 2D classical Ising
transition at finite temperature.

Appendix B: Derivation for averaged strange
correlator

We begin by examining the strange correlator of the
2D purified wave function in Eq. 31,

Os(x, y) =
⟨Ψtrivial|Z(x)Z(y)|ΨSPT (θ)⟩

⟨Ψtrivial|ΨSPT (θ)⟩

|ΨSPT (θ)⟩ =
∑
{zi}

∏
⟨i,j⟩

(
1 + zizj

2
(cos θ|sij = 1⟩ − sin θ|sij = −1⟩)

+
1 − zizj

2
(sin θ|sij = 1⟩ − cos θ|sij = −1⟩)

)
|{zi}⟩

|Ψtrivial(sij)⟩ = ⊗⟨i,j⟩ |sij = 1⟩ ⊗i |xi = 1⟩ (B1)

In this context, sij represents ancilla qubits (in the Z
basis), situated on the links of the square lattice between
the nearest vertices at sites i and j. The term zi(xi)
denotes the spin pattern of the system qubits at vertex i
in the Z(X) basis. |{zi}⟩ refers to a specific many-body
pattern and we sum over all possible patterns. For θ = 0,
|ΨSPT (0)⟩ corresponds to the SPT state, which exhibits
exact 1-form ZA

2 symmetry (acting on the ancilla) and
0-form ZB

2 symmetry (acting on the system), as defined
in Eq. 26. When θ is nonzero, the ancilla spin on the
link tilts, leading to the absence of the exact 1-form ZA

2

symmetry. At θ = π/4, the ancilla spins decouple from
the system qubits. The trivial wave function Ψtrivial is
symmetrically chosen, with the ancilla polarized in the
Sz direction as |sij = 1⟩ and the system qubits polarized
in the Sx direction as |xi = 1⟩. We can rewrite the
denominator of the strange correlator as:

⟨Ψtrivial|ΨSPT (θ)⟩ = ⟨xa = 1|P̂ (sij = 1)ΨSPT (θ)⟩
(B2)

The projection |P̂ (sij = 1)ΨSPT (θ)⟩ projects each an-
cilla qubit in ΨSPT (θ) into the sij = 1 state. The post-
measurement wave function for the system qubits then
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takes the form:

|P̂ (sij = 1)ΨSPT (θ)⟩

=
∑
{zi}

∏
⟨i,j⟩

(
1 + zizj

2
cos θ +

1 − zizj
2

sin θ)|{zi}⟩

=
∑
{zi}

eβ̃
∑

⟨i,j⟩ zizj

(e−2β̃ + e2β̃)N/2
|{zi}⟩ (B3)

With e−2β̃ = tan(θ) (note this β, θ relation is differ-
ent from the Rényi-2 correlator discussed in Sec. III C),
and with i, j only running over nearest neighbor sites.
This maps the projected wave function to the partition
function of the Ising model. Likewise, the product state∏

a ⊗|xa = 1⟩ can be written as follows:

⊗i |xi = 1⟩ =
∑
{zi}

1

(2)N/2
|{zi}⟩ (B4)

This is akin to the Ising model at infinite temperature.
Based on this notation, we can rewrite the denominator
of the strange correlator as follows:

⟨Ψtrivial|ΨSPT (θ)⟩ =

∑
{zi} e

β̃
∑

⟨i,j⟩ zizj

(2e−2β̃ + 2e2β̃)N/2
(B5)

This is akin to the partition function of the Ising model.
Likewise, the numerator can be expressed as follows:

⟨Ψtrivial|Z(x)Z(y)|ΨSPT (θ)⟩ =

=
∑
{zi}

zxzy
(2)N/2

∏
⟨i,j⟩

(
1 + zizj

2
cos θ +

1 − zizj
2

sin θ)

=
∑
{zi}

zxzye
β̃
∑

⟨i,j⟩ zizj

(2e−2β̃ + 2e2β̃)N/2
. (B6)

Based on this formulation, the strange correlator for
|ΨSPT (θ)⟩ corresponds to the spin-correlator of the

2D Ising model at an effective temperature −2β̃ =
ln(tan(θ)).

Now we consider measuring the disorder-averaged
strange correlator by choosing various trivial states with
a random assortment of ancilla spins {sij = ±1}, and
then averaging over these random selections.

Ōs(x, y) =
∑
{sij}

⟨Ψtrivial({sij})|Z(x)Z(y)|ΨSPT ⟩
⟨Ψtrivial({sij})|ΨSPT ⟩

Ψtrivial({sij}) = ⊗⟨ij⟩ |sij⟩ ⊗i |xa = 1⟩ (B7)

The trivial state |Ψtrivial({sij})⟩ is a direct product of
system spins polarized in the Sx direction and a random
assortment of ancilla spins {sij = ±1} polarized in the
±Sz directions. Here, we average over all {sij = ±1}
with the same probability. Such an averaged strange
correlator is akin to the two-point correlator of the ran-
dom bond Ising model, which vanishes at large distances
Ōs(x, y) = 0.

1. Annealed disorder average strange correlator
and type-II strange correlator

We introduce the annealed disorder average for the
strange correlator:

⟨Os(x, y)⟩2 =

∑
{sij} |⟨Ψtrivial({sij})|Z(x)Z(y)|ΨSPT ⟩|2∑

{sij} |⟨Ψtrivial({sij})|ΨSPT ⟩|2

=

∑
{sij}

∑
{z1

i ,z
2
i }

(z1xz
1
yz

2
xz

2
y)eβ̃

∑
⟨i,j⟩ sij(z

1
i z

1
j+z2

i z
2
j )∑

{sij}
∑

{z1
i ,z

2
i }
eβ̃

∑
⟨i,j⟩ sij(z

1
i z

1
j+z2

i z
2
j )

(B8)

The annealed average for the strange correlator can be
treated as two copies of Ising models, with a measure-
ment of the spin correlator acting on both copies. We
define a gauge transformation τi = z1i z

2
i , s

′
ij = sijz

2
i z

2
j ,

and consequently, the annealed average in becomes:

⟨Os(x, y)⟩2 =

∑
{s′ij}

∑
{τi} e

β̃
∑

⟨i,j⟩ s
′
ij (τxτy)eβ̃

∑
⟨i,j⟩ s

′
ijτiτj∑

{s′ij}
∑

{τi} e
β̃
∑

⟨i,j⟩ s
′
ijeβ̃

∑
⟨i,j⟩ s

′
ijτiτj

(B9)

Eq. B9 is akin to the annealed average of the two-point
correlation function in the random bond Ising model
(RBIM) along the Nishimori Line[101], where the disor-
dered bond coupling s′ij has the probability distribution

→ P (s′ij = 1) = eβ̃

e−β̃+eβ̃
. One can then easily show that

the annealed average of the random bond Ising model
along Nishimori Line can be mapped to the 2D classical
Ising model. In particular, the partition function appear-
ing in the denominator of Eq. B9 can be exactly expressed
as

∑
{τi}

∏
⟨i,j⟩

 ∑
s′ij=±1

eβ̃s
′
ijeβ̃s

′
ijτiτj


=

(
cosh2(β̃)

cosh(β)

)Nlinks ∑
{τi}

eβ
∑

⟨i,j⟩ τiτj ,

(B10)

with β coinciding with that of the Rényi-II correlator and
relates to β̃ via tanh(β) = tanh2(β̃). Hence, ⟨Os(x, y)⟩2
corresponds to the thermal correlation function evaluated
on the 2D Ising model on the square lattice at inverse
temperature β. In the following, we will recover this
result in an alternative manner.

Notably, the annealed averaged strange correlator of
the purified state ΨSPT can be mapped to the type-II
strange correlator of the mixed state after the ancilla
has been traced out. While the type-II strange corre-
lator was originally proposed for decoherent SPT mixed
states in Ref. [43], our findings reveal that it stems from
the annealed-average strange correlation in the enlarged
Hilbert space resulting from purification. Given that the
operators Z(x)Z(y) in the strange correlator act only on
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the system’s qubits, we can alternatively express Eq. 34
as:

⟨Os(x, y)⟩2 =

∑
{sij} |⟨Ψtrivial({sij})|Z(x)Z(y)|ΨSPT ⟩|2∑

{sij} |⟨Ψtrivial({sij})|ΨSPT ⟩|2

=

∑
{sij} |⟨sij | ⊗ ⟨xi = 1|Z(x)Z(y)|ΨSPT ⟩|2∑

{sij} |⟨sij | ⊗ ⟨xi = 1|ΨSPT ⟩|2

=

∑
{sij} |⟨xi = 1|Z(x)Z(y)⟨sij |ΨSPT ⟩|2∑

{sij}⟨xi = 1|⟨sij |ΨSPT ⟩|2

=
Tr
[
ρ̂0Z(x)Z(y)ρ̂Z(x)Z(y)

]
Tr[ρ̂0ρ̂]

(B11)

where

ρ̂ = Trancilla(|ΨSPT ⟩⟨ΨSPT |) ∝
∑
σ,σ′

eβ
∑

⟨i,j⟩ σiσjσ
′
iσ

′
j |σ⟩ ⟨σ′|

(B12)
with tanh(β) = (1 − sin(2θ))/(1 + sin(2θ)) (Same as for
Rényi-II correlator), and ρ̂0 = ⊗i|xi = 1⟩⟨xi = 1|. The
annealed average of the strange correlator in the purified
state ΨSPT exactly maps to the type-II strange correla-
tor for the mixed state ρ̂ (and agrees with the Rényi-II
correlator although for double temperature). Here, ρ̂0 is
chosen to be a pure state density matrix consisting of a
trivial tensor product state |xi = 1⟩, and ρ̂ refers to the
density matrix of the system obtained after tracing out
the ancilla from ΨSPT . Eq. B11 can be mapped to the
thermal correlation of Ising model:

⟨Os(x, y)⟩2 =
1

Z(β)

∑
{σ}

σxσye
β
∑

⟨i,j⟩ σiσj . (B13)

Appendix C: MIE upper-bounds for annealed
averaged strange correlators

The mutual information between two distant qubits,
A and B, provides an upper bound for connected corre-
lators between operators supported in these regions. In
this appendix, we demonstrate that the measurement-
induced mutual information, as proposed in Ref. [77], also
imposes upper bounds on strange correlators. Following
the proof and setup in Ref. [77], we consider a system of
qubits |ψ⟩ that is partitioned into three regions: A, B,
and C, along with the ancilla qubits sij , as follows:

|ΨSPT ⟩ =
∑

a,b,c,sij

ϕabc,sij |abc, sij⟩, (C1)

Here, a and b represent the two distant qubits on which
we will apply operators to examine the strange correla-
tor, while c labels states in the remaining degrees of free-
dom. We perform measurements on region C in conjunc-
tion with the ancilla {sij}, yielding the outcome |mc, sij⟩.

The resulting wavefunction is then given by:

|ψc,sij ⟩ =
⟨mc, sij |ψ⟩√
pmc,sij

=
∑
a,b

ϕab,mc,sij√
pmc,sij

|ab⟩, (C2)

with probability pmc,sij =
∑

a,b |ϕab,mc,sij |2.
In the same context, we can also define a strange cor-

relator between a trivial tensor product state |m⟩ =
|mambmc, sij⟩ and the purified state |ΨSPT ⟩:

C(ma,mb,mc, sij) =
⟨m|OAOB |ψ⟩

⟨m|ψ⟩
(C3)

Here, ma and mb denote states in regions A and B that
carry a fixed charge, while OA and OB are charged local
operators in regions A and B, respectively.

To demonstrate the relationship between strange cor-
relators and measurement-induced mutual information,
we initially represent the mutual information in terms of
relative entropy:

I(A,B)[|ψc,sij ⟩] = S(ρ̂
c,sij
AB |ρ̂c,sijA ⊗ ρ̂

c,sij
B ),

ρ̂
c,sij
AB = |ψc,sij ⟩⟨ψc,sij |,
ρ̂
c,sij
A/B = trB/A(|ψc,sij ⟩⟨ψc,sij |) (C4)

Using the norm bound S(ρ̂|σ) ≥ 1
2 ||ρ̂−σ||

2
1 and the trace

inequality ||X||1 ≥ tr(XY )/||Y ||, we obtain:

I(A,B)[|ψc,sij ⟩] ≥
1

2

(tr(ρ̂
c,sij
AB Y ) − tr(ρ̂

c,sij
A ⊗ ρ̂

c,sij
B Y ))2

||Y ||2
.

(C5)

Let Y = |mamb⟩⟨mamb|OAOB , then the right-hand side
of the inequality becomes

I(A,B)[|ψc,sij ⟩] ≥
p2mambmc,sij

2O
2

AO
2

Bp
2
mc,sij

|C(ma,mb,mc, sij)|2

>
p2mamb

2O
2

AO
2

B

|C(ma,mb,mc, sij)|2 (C6)

where OA/B represents the norm of the operator.
This suggests that the strange correlator of the post-
measurement state |ψc,sij ⟩ provides a lower bound for
the measurement-induced mutual information. If we sum
over different ancilla patterns,∑

sij
pma,mb,mc,sijI(A,B)[|ψc,sij ⟩]

pma,mb,mc

> c0
(
∑

sij
pma,mb,mc,sij |C(ma,mb,mc, sij)|2)

pma,mb,mc

= c0⟨Os(x, y)⟩2 (C7)

where c0 is a non-universal constant that depends on the
choice of pmamb

and OA/B . The first line can be in-
terpreted as the disorder-averaged measurement-induced
mutual information by projecting the purified state onto
different sij patterns and averaging the mutual informa-
tion across these projections. Thus, the measurement-
induced mutual information is lower-bounded by the an-
nealed average of the strange correlator.
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Appendix D: SSSB of general on-site symmetries

Finally, we discuss the mixed state strong-to-weak
symmetry breaking for more general global on-site sym-
metries associated with a finite symmetry group G. A
local Hilbert space of dimension d is associated with each
site, forming a d-dimensional unitary representation ug,
where g ∈ G. The order (the number of elements) of G is
denoted as |G|. ug is not necessarily irreducible, but can
be decomposed into a direct sum of irreducible represen-
tations. Let us denote the representation of g acting on

site i as u
(i)
g . The global transformation is then given by

Ug =
∏

i u
(i)
g , where i labels the lattice sites in the total

system Λ. The size of Λ (number of sites) in Λ is denoted
as |Λ|.

For the identity element e ∈ G, ue = Id. There may
be other elements g ∈ G which has the representation of
the form ug = eiθg Id. The set of all such elements g form
a subgroup H of G. For any given element h ∈ H,

ug−1hg = ug−1uhug = ug
†eiθhIdug = eiθhId (D1)

and thus g−1hg ∈ H for any g ∈ G. This means that
H is the normal subgroup of G, and we can define the
quotient group G̃ ≡ G/H. By construction, the identity

e is the only element of G̃ which has the representation
of the form ug = eiθg Id.

In a unitary representation ug, all the eigenvalues {λa}
(a = 1, 2, . . . , d) of ug have absolute value unity |λa| =

1. We can define d-dimensional complex vectors λ⃗ =

(λ1, λ2, . . . , λd, and I⃗ = (1, 1, . . . , 1). We have

trug =tI⃗∗ · λ⃗ (D2)

Cauchy-Schwarz inequality implies∣∣∣tI⃗∗ · λ⃗∣∣∣2 ≤
∣∣∣I⃗∣∣∣ ∣∣∣λ⃗∣∣∣ = d2 (D3)

Therefore

|trug| ≤ d, (D4)

and the equality holds if and only if λ⃗ ∝ I⃗, which implies

λa =eiθ, (D5)

for θ independent of the index a. This is equivalent to

ug =eiθId. (D6)

Therefore, for the quotient group G̃ = G/H,

|trug| < d if g ∈ G̃ ̸= e. (D7)

Since any h ∈ H satisfies h|H| = e (by the virtue of H
being a finite group), |H|θh is an integral multiple of 2π.
For convenience let us choose the system size |Λ| to be
an integral multiple of |H|. Then for h ∈ H, Uh = I|Λ|.

Following the construction for the case of the Z2

symmetry, we construct the “spontaneous strong G-
symmetry breaking” mixed state as follows. For each
basis state |sΛ⟩ of the entire system, we consider the sym-
metric projection

P 0|sΛ⟩ =
1

|G|
∑
g∈G

Ug|sΛ⟩ =
1

|G̃|

∑
g∈G̃

Ug|sΛ⟩ (D8)

P 0 is the projection operator to the trivial representation
sectors of G in the total Hilbert space. Then we can
define the symmetric pure state

|ΨS⟩ = Cs

∑
sΛ

P 0|sΛ⟩, (D9)

where Cs is the normalization factor so that ⟨ΨS |ΨS⟩ =
1. By construction, |ΨS⟩ is invariant under the global
symmetry transformation Ug for all g ∈ G:

Ug|ΨS⟩ = |ΨS⟩. (D10)

The density matrix of the SSSB mixed state, analogous
to Eq. (9) for G = Z2 (i.e., at p = 1/2) is constructed as
a projection to the pure state |ΨS⟩:

ρ̂S = |ΨS⟩⟨ΨS |. (D11)

By construction, ρ̂S has the strong G-symmetry

Ugρ̂S = ρ̂SUg
† = ρ̂S . (D12)

Alternatively, ρ̂S can be also written as

ρ̂S =|Cs|2
∑
sΛ

P 0|sΛ⟩⟨sΛ|P 0

=|Cs|2P 0 =
|Cs|2

|G̃|

∑
g∈G̃

Ug. (D13)

Since Tr
{
P 0
}

is the number of identity representations

NI appearing in the total Hilbert space, Cs = 1/
√
NI .

Using the on-site nature of the symmetry transforma-
tion, we also see

NI = Tr
{
P 0
}

=
1

|G̃|

∑
g∈G̃

(trug)
|Λ|
. (D14)

In the thermodynamic limit |Λ| → ∞, the sum is domi-

nated by g = e ∈ G̃ thanks to Eq. (D7). Then∑
g∈G̃

(trug)
|Λ| ∼ d|Λ| (D15)

in the thermodynamic limit |Λ| → ∞.
The normalized density matrix in the thermodynamic

limit is thus

ρ̂S ∼ 1

d|Λ|

∑
g∈G̃

Ug =
|G̃|
d|Λ|P

0. (D16)
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This implies that the number of identity representation
sectors in the total Hilbert space is asymptotically

NI ∼ d|Λ|

|G̃|
, (D17)

where |G̃| = |G|/|H|.
Now let us introduce an order parameter O. While ob-

servables in quantum mechanics are Hermitian operators,
for convenience we allow non-Hermitian operators, which
are given by a complex linear combination of Hermitian
operators, as order parameters. The order parameter O
should be “charged” under the symmetry G. Generally,
there is a multiplet of order parameters Oα defined on a
local spatial region Ω which transforms as

U†
gOαUg =

∑
β

Mαβ(g)Oβ , (D18)

where Mαβ(g) is a unitary representation of G which does
not include the identity representation. Without losing
generality, let us assume that Mαβ is an irreducible rep-
resentation of G. There is a conjugate order parame-
ter Ōj which transforms by the conjugate representation
M∗

αβ(g). Since for h ∈ H the transformation is triv-

ial U†
hOαUh = Oα, we can replace G with the quotient

group G̃ in the above.
For any density matrix ρ̂ which is weakly symmetric

under G, the expectation value of the order parameter
should vanish. Formally, this can be shown as follows.

⟨Oα⟩ = Tr{ρ̂Oα} = Tr
{
Ugρ̂U

†
gOα

}
=
∑
β

Mαβ(g)⟨Oβ⟩, (D19)

for any g ∈ G. Summing over each side over g ∈ G,

|G|⟨Oα⟩ =
∑
β

∑
g∈G

Mαβ(g)⟨Oβ⟩ = 0, (D20)

since ∑
g∈G

Mαβ(g) = 0, (D21)

for any irreducible, non-identity representation Mαβ of
G thanks to the great orthogonality relations.

As we have seen above, the vanishing of the charged
order parameter only requires the weak symmetry of the
density matrix and the strong symmetry does not make a
difference at this level. However, in Rényi-2 expectation
values, the strong symmetry plays an important role. Let
us consider the expectation value

Tr
{
ρ̂Ōαρ̂Oβ

}
(D22)

If ρ̂ is weakly symmetric, it follows that

Tr
{
ρ̂Ōαρ̂Oβ

}
= Tr

{
Ugρ̂U

†
g ŌαUgρ̂U

†
gOβ

}
=
∑
γδ

M∗
αγ(g)Mβδ(g) Tr

{
ρ̂Ōγ ρ̂Oδ

}
.

(D23)

Thus the order parameters form a tensor product repre-
sentation M∗ ⊗M of G. Since∑

g∈G

trM∗(g) ⊗M(g) =
∑
g∈G

|trM(g)|2 > 0, (D24)

the tensor product representation must contain the iden-
tity representation. Thus the Rényi-2 expectation value
is generally non-vanishing (i.e. there is no requirement
for it to vanish from the symmetry).

However, if the density matrix is strongly symmetric,
we can transform one of the order parameters only:

Tr
{
ρ̂Ōαρ̂Oβ

}
= Tr

{
ρ̂Ōαρ̂U†

gOβUg

}
=
∑
γ

Mβγ(g) Tr
{
ρ̂Ōαρ̂Oβ

}
. (D25)

Thus the Rényi-2 expectation value vanishes, following
the same logic as in Eq. (D20). Nevertheless, the Rényi-
2 correlation function can be non-vanishing and signal a
long-range order, as much as the conventional correlation
function of order parameters do in conventional ordered
phases.

In order to discuss the correlation function, we have
to invoke the locality of the order parameters: the local
order parameter Oα

Ω is defined on a local region Ω ⊂
Λ. The standard correlation function in the SSSB mixed
state (D13) between Ōα

Ω1
and Oβ

Ω2
in the SSSB mixed

state (D13) reads

⟨Ōα
Ω1

Oβ
Ω2

⟩ = Tr
{
ρ̂SŌα

Ω1
Oβ

Ω2

}
(D26)

To evaluate this, let us the reduced density matrix ρ̂ΩS on
the region Ω, where Ω = Ω1 ∪ Ω2, by

ρ̂ΩS ≡ TrΩ̄ ρ̂S (D27)

where Ω̄ is the complement of Ω. We can choose the
region Ω so that |Ω|, in addition to |Λ|, is an integral
multiple of |H| (and so does |Ω̄|). Then, using Eq. (D15),

ρ̂ΩS = TrΩ̄ ρ̂S

∼ 1

d|Λ|

∑
g∈G̃

∏
i∈Ω

u(i)g

∏
j∈Ω̄

tru(j)g

∼ 1

d|Ω| I
Ω, (D28)

Since the reduced density matrix corresponds to a com-
pletely disordered state in which there is no correla-
tion between Ω1 and Ω2, the standard correlation func-
tion (D26) vanishes.

Therefore we need to consider the Rényi-2 correlation
function to characterize ρ̂S . First we discuss the purity.
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Again using Eq. (D15),

Tr
{
ρ̂2S
}
∼Tr

 1

d2|Λ|

∑
g,g′∈G̃

UgUg′


=

1

d2|Λ| |G̃|
∑
g′′∈G

Tr{[Ug′′ ]}

∼ |G̃|
d2|Λ| d

|Λ| =
|G̃|
d|Λ| . (D29)

This is |G̃| = |G|/|H| times larger than the purity of the
completely random state. This can be also seen from
Eq. (D17).

Finally, the Rényi-2 correlation function is evaluated
as

Tr
{
ρ̂SŌα

Ω1
Oβ

Ω2
ρ̂SOα

Ω1
Oβ

Ω2

}
∼

∑
g,g′∈G̃

1

d2|Λ| Tr
{
UgŌα

Ω1
Oβ

Ω2
Ug′Oα

Ω1
Ōβ

Ω2

}
∼ 1

d2|Λ|

∑
g,g′∈G̃

TrΩ

[
UΩ
g Ōα

Ω1
Oβ

Ω2
UΩ
g′Oα

Ω1
Oβ

Ω2

]
TrΩ̄ U

Ω̄
g U

Ω̄
g′ .

(D30)

The partial trace TrΩ̄ is evaluated as

TrΩ̄ U
Ω̄
g U

Ω̄
g′ = TrΩ̄ U

Ω̄
gg′

∼ d|Ω̄|δgg′,e (D31)

for |Ω̄|, |Λ| → ∞ (while keeping |Λ| and |Ω| integral mul-
tiples of |H|). Thus only the terms g′ = g−1 contributes
to the sum.

Tr
{[
ρ̂ŌΩ1OΩ2 ρ̂OΩ1OΩ2

]}
∼ |G|
d|Λ|+|Ω|

∑
g∈G̃

TrΩ

[
UΩ
g

†ŌΩ1OΩ2UΩ
g OΩ1ŌΩ2

]
. (D32)

This is generally non-vanishing if ŌΩ1OΩ2 and OΩ1ŌΩ2

contains the identity representation of G̃ (or G).

Appendix E: Strong-to-weak symmetry breaking
criticality

Generalizing our analysis, we discuss mixed states crit-
icality under decoherence. We start from the ground
state of the Hamiltonian

H = −
∑
i

(
ZiZ̃i,i+1Zi+1 + X̃i−1,iXiX̃i,i+1 +Xi

)
,

(E1)

which is different from Eq. (12) just by the transverse
field term Xi. This is a simple model Hamiltonian for
“gapless SPT” state [118]. In fact, by a duality transfor-
mation [85], it is mapped to

H = −
∑
i

(ZiZi+1 +Xi) −
∑
i

(
X̃i−1,iX̃i,i+1

)
, (E2)

which is a critical Ising chain of Zi and the classical Ising
chain of X̃i, and they are decoupled from each other. The
correlation function of the dual model implies the string
correlation in the original model as

⟨Zi

(
j−i−1∏
a=0

Z̃i+a

)
Zj⟩ ∼

1

|j − i|1/4
, (E3)

⟨X̃i

(
j−i∏
a=1

Xi+a

)
X̃j⟩ ∼1. (E4)

The density matrix ρ̂ for Zi spins obtained by tracing
out ancilla has no long-range or quasi-long-range order,
and the usual correlation functions vanish. Nevertheless,
the Rényi-2 correlator is nonvanishing and inherits the
power-law behavior of the string correlation in the gapless
SPT state as

tr(ZiZj ρ̂ZiZj ρ̂)

trρ̂2
∼ 1

|i− j|1/2
. (E5)
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