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Abstract

Prediction of flow to boreholes or excavations in fractured low-permeability rocks is important for
resource extraction and disposal or sequestration activities. Analytical solutions for fluid pressure and
flowrate, when available, are powerful, insightful, and efficient tools enabling parameter estimation
and uncertainty quantification. A flexible porous media flow solution for arbitrary physical dimension
is derived and extended to double porosity for converging radial flow when permeability and poros-
ity decrease radially as a power law away from a borehole or opening. This distribution can arise
from damage accumulation due to stress relief associated with drilling or mining. The single-porosity
graded conductivity solution was initially found for heat conduction, the arbitrary dimension flow
solution comes from hydrology, and the solution with both arbitrary dimension and graded perme-
ability distribution appeared in reservoir engineering. These existing solutions are here combined and
extended to two implementations of the double-porosity conceptual model, for both a simpler thin-
film mass transfer and more physically realistic diffusion between fracture and matrix. This work
presents a new specified-flowrate solution with wellbore storage for the simpler double-porosity model,
and a new more physically realistic solution for any wellbore boundary condition. A new closed-form
expression is derived for the matrix diffusion solution (applicable to both homogeneous and graded
problems), improving on previous infinite series expressions.

Keywords: double porosity, excavation damaged zone, porous media flow, fractured rock, salt, analytical
solution

1 Introduction

Fluid flow through damage-induced fracture networks in otherwise low-permeability crystalline rocks
(e.g., granite, argillite or halite) is of interest to geothermal energy production (Tao et al, 2021), radioac-
tive waste disposal (Tsang et al, 2005), hydrogen storage (AbuAisha and Billiotte, 2021), and compressed
air energy storage (Kim et al, 2012). Rock damage around an excavation (i.e., the Excavation Damaged
Zone, EDZ; Davies and Bernier (2005)) increases the connected porosity, and leads to increased per-
meability. Fractured rock often has higher porosity and permeability than intact rock. Damage near a
borehole or excavation will decrease the relative contribution from flow in the lower-permeability far-
field, and will confound the estimation of hydrologic properties using approaches that assume uniform
homogeneous distributions of permeability and porosity. There is a need for a flexible analytical solution
for flow to a borehole or excavation in the presence of damage, that includes wellbore storage, double-
porosity flow, and variable flow dimension. This is most evident in a mechanically weak, low-permeability
medium like salt, but should also apply to other low-permeability fractured rocks like granite or shale.
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In salt, the far-field (i.e., undamaged) permeability is unmeasurably low (Beauheim and Roberts,
2002) due to salt’s tendency to creep shut any unsupported openings. The permeability around a borehole
in salt is derived from accumulated damage due to stress redistribution around the excavation itself
(Wallace et al, 1990; Stormont et al, 1991; Cosenza, 1996; Hou, 2003; Kuhlman, 2014).

Stormont et al (1991) presented brine and gas permeability data measured in salt for packer-isolated
intervals of small boreholes before and after a central 1-meter diameter borehole was drilled (i.e., a mine-
by experiment). Figure 1 shows these data support the conceptual model of permeability and porosity
decaying away from an excavation. Cosenza (1996) proposed the power-law model for permeability and
porosity plotted in the figure. These data show porosity and permeability decrease with distance from the
central excavation. Two lines are shown with to the data; one is a monomial power-law, the other includes
an additive background term. The two curves differ primarily away from the excavation (r/rw ≥ 3), where
larger uncertainties in estimated porosity and permeability exist, for three reasons. First, the access drift
EDZ (test conducted in the floor of a 5-m wide room) is superimposed on the 1-m borehole EDZ. Second,
the small-diameter (2.5-cm) measurement boreholes themselves each have a small EDZ overprinted on the
1-m borehole EDZ. Lastly, the apparent background permeability may represent the measurement limit
of the packer system used (i.e., compliance of the packer inflation elements and working fluid). Especially
in salt, the undisturbed background permeability is near zero, and is difficult to measure consistently in
the field (Beauheim and Roberts, 2002). The power-law distribution of permeability matches the more
certain near-field permeability distribution, and is conceptually more elegant than a finite domain or a
flow domain with piece-wise heterogeneous properties (i.e., a higher-permeability EDZ adjacent to lower-
permeability intact rock). Other investigations have also shown porosity and permeability decaying away
with distance from an excavation in crystalline rocks (Shen et al, 2011; Cho et al, 2013; Ghazvinian,
2015) and sedimentary rocks (Perras et al, 2010; Perras and Diederichs, 2016).

Fig. 1 Permeability and porosity observations around a 1-m borehole (radial distance scaled by excavation radius) in salt
from small-scale mine-by experiment (data from Stormont et al (1991))

Salt permeability has been related to both the confining and shear stresses (Reynolds and Gloyna,
1960; Lai, 1971; Stormont and Fuenkajorn, 1994; Alkan, 2009). Confining stresses reduce fracture aperture
and bulk permeability, while shear stresses are associated with increased bulk permeability. Aydan et al
(1993) present solutions for radial and tangential plane stress and strain (i.e., dilatation or a change in
porosity) around a circular excavation. Strain is proportional to r−2

D or r−3
D (where rD is radial distance
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into the formation scaled by the excavation size), depending on whether the region is experiencing elastic
(exponent 2) or plastic (exponent ≈ 3) deformation. These relationships illustrate a possible behavior
of rock in the EDZ. The true extent of the EDZ depends on drilling or excavation method, borehole or
tunnel geometry, state of stress, and rock mechanical properties (Hudson et al, 2009). Softer or weaker
sedimentary rocks like argillite or halite typically have a larger EDZ than stiffer or stronger rocks like
granite.

There are several well-known empirical power-law relationships between porosity and permeability
in fractured or granular media (e.g., Kozeny, 1927; Carman, 1937) and many studies have discussed
their applicability (David et al, 1994; Kuhlman and Matteo, 2018). Permeability in fractured rocks is
more sensitive to small changes in porosity than granular rocks (i.e., fractured rocks have higher pore
compressibility resulting in larger exponents in porosity-permeability relationships).

Based on evidence from these observations, graded dimensionless porosity is assumed to follow

n(r) = n0

(
r

rw

)−η

, (1)

where rw is the borehole or excavation radius [m], n0 = n(rw) is maximum porosity at the borehole wall,
and η is a dimensionless exponent (see Table 1 for a list of physical variables and notation). Using the
same form, the graded permeability can be represented with the form

k(r) = k0

(
r

rw

)−κ

, (2)

where k0 = k(rw) is the maximum permeability [m2] at the borehole wall and κ is another dimensionless
exponent. Based on lab measurements on fractured granite, the empirical relationship κ ≈ 3η has been
proposed (Kranz et al, 1979; David et al, 1994). The Stormont et al (1991) salt data (Figure 1) support
η = 4.5 and κ = 17, which shows a somewhat faster-decaying permeability (κ = 3.8η) than seen in
granitic rocks.

The power-law permeability and porosity distribution conceptual model presented here is an alterna-
tive to flow models using wellbore skin (Streltsova, 1988; Pasandi et al, 2008), finite domain (Gelbard,
1992; Lin et al, 2016), or low-permeability non-Darcy flow with a threshold gradient (Liu, 2014, 2017).
These three conceptualizations all lead to reduced contributions of flow from the far field, but only bore-
hole skin can account for observed distributions of higher porosity or permeability near the excavation,
which are important when analyzing pressure or flowrate data at early time. The contribution from lower
permeability in the far field are more important at late time. Finite domains and skin can have analytical
flow solutions, but low-permeability non-Darcy flow does not typically lend itself to analytical solutions.

Barker (1988) developed a generalized solution for converging flow to a borehole with variable non-
integer dimension, D. This conceptualization has been used to characterize flow in fractured systems,
where lower-dimension (i.e., D < 3) results associated with discrete fractures are more common than
higher dimension results (Beauheim et al, 2004; Le Borgne et al, 2004; Bowman et al, 2013; Ferroud et al,
2018). Doe (1991) extended the solution of Barker (1988) to the conceptualization where permeability
varies with radial distance, through analogy with the heat conduction literature (Carslaw and Jaeger,
1959).

A single-porosity flow solution is derived here with power-law variable properties, like the approach
of Doe (1991) (who did not present a derivation). The single-porosity solution is then readily extended
to a double-porosity conceptualization, using first the approach of Warren and Root (1963) for thin-film
mass transfer between fractures and matrix, then the more physically realistic matrix diffusion approach
of Kazemi (1969).

Double-porosity flow is a common and efficient conceptualization in fractured rocks (Aguilera, 1980;
van Golf-Racht, 1982; Da Prat, 1990). The medium is conceptualized as two communicating physically
overlapping continua including fractures with high permeability (but little to no storage) and matrix or
intact rock with significant storage (but little to no flow) (Barenblatt and Zheltov, 1960; Barenblatt et al,
1960). Many extensions to the basic double-porosity conceptual model exist, including multiple matrix
or fracture porosities, and different assumptions about the geometry or underlying physics governing
flow in the fractures or matrix (Chen, 1989; Kuhlman and Heath, 2021). The Warren and Root (1963)
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solution simplifies the exchange between matrix and fractures to a mass-transfer thin-film approxima-
tion, leading to numerous analytical solutions (Aguilera, 1980; Chen, 1989). It is commonly used for this
reason, even though it is well-known that spatial pressure gradients in matrix blocks are important, as
the matrix is low-permeability and would therefore be expected to experience steep, slow-changing gra-
dients. A series representation of the Kazemi (1969) solution is used here, an extension of the multirate
mass transfer model to double-porosity flow (Kuhlman et al, 2015). The more physically correct (but
more difficult to solve) solution can be represented by an infinite series of porosities, which can either
represent an infinite number of Warren-Root type matrix porosities, or if the coefficients are chosen
specifically, a single Kazemi-type matrix diffusion porosity. More recently, Wang et al (2021) has devel-
oped a semi-analytical solution for flow in a double-porosity formation, for the case when non-Darcian
flow is significant. Moutsopoulos et al (2022) have provided analytical and semi-analytical solutions for
two classical problems in flow of unconfined double-porosity aquifers, based on Moutsopoulos (2021).
De-Smedt (2022) presented an analytical solution for flow in double-porosity media for fractional flow
dimensions, which is a generalization of De-Smedt (2011). Hayek et al (2018) presented a semi-analytical
solution for flow due to pumping a double-porosity aquifer via a constant-pressure boundary condition
(without wellbore storage) where permeability varied as a power law.

The fractal reservoir flow problem (Chang and Yortsos, 1990) is also analogous to the radially variable
properties approach presented here, but the governing equations of the two problems are only equivalent
when the spectral exponent (θ in Chang and Yortsos (1990)) in the fractal problem is zero. The fractal
reservoir governing equation is typically solved approximately, since the additional terms due to non-zero
spectral exponent in the governing equation do not readily allow closed-form analytical solution.

In the next section, the governing equations and boundary conditions are developed for the variable-
dimension single-porosity flow problem (Doe, 1991). This solution is mapped onto the modified Bessel
equation, allowing solution for flow to both specified pressure (type-I) and specified flowrate with wellbore
storage (type-III). These more general single-porosity solutions are shown to degenerate down to several
well-known cases. The single-porosity solutions are then extended to a simpler Warren-Root type double-
porosity model for type-I (Hayek et al, 2018) and type-III (new) and then a new Kazemi type double-
porosity model. The Kazemi series solution approach is then summed analytically to arrive at a new
closed-form expression for the response in Laplace space, a solution that is new for both graded and
homogeneous domains. Finally, a summary and discussion of limitations is given for the new solutions.

The approach taken here, representing the porosity and permeability of fractured rocks as power-law
distributions, was first developed by Delay et al (2007), and first pursued by the author for applications
in deep (> 3 km) borehole disposal of radioactive waste in basement rock (Brady et al, 2017; Kuhlman
et al, 2019). The approach is also applicable to flow in salt surrounding excavations, like those in mine-by
experiments (Stormont et al, 1991).

2 Development of Flow Problem

To introduce and contrast with the dual-porosity solution, the single-porosity solution is developed first.
To make a single solution for Cartesian linear, cylindrical, and spherical geometries, a variable-dimension
approach like Barker (1988) is used, including variable permeability and porosity, like Doe (1991). The
governing equation for slightly compressible time-dependent change in pressure p [Pa] in a general 1D
coordinate (Barker, 1988) is

n(r)c
∂p

∂t
=

1

rm
∂

∂r

[
k(r)rm

µ

∂p

∂r

]
, (3)

where c is bulk compressibility [1/Pa] and the dimensionless parameter m is 0 for a Cartesian strip, 1
for a cylinder, and 2 for a sphere (i.e., m = D − 1, where D is the dimension). The derivative of the
bracketed term in (3) is expanded via chain rule; starting from (2), dk

dr = −κk(r)/r is substituted with
the definitions of k(r) and n(r), to get

n0c

(
r

rw

)−η
∂p

∂t
=

k0
µ

(
r

rw

)−κ [
m− κ

r

∂p

∂r
+

∂2p

∂r2

]
. (4)

For converging radial flow in a semi-infinite domain, the relevant wellbore boundary conditions are
constant-pressure (type-I), constant-flux (type-II), or constant-flux with wellbore storage (type-III in
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Laplace space). The initial, far-field, and source borehole boundary conditions for a borehole in an infinite
symmetric domain are

initial p(r, t = 0) = 0

far− field p(r → ∞, t) < ∞
wellbore type− I pI(r = rw, t) = p1(t); or (5)

wellbore type− II
Amk0
µ

∂pII(t)

∂r

∣∣∣∣
r=rw

= Q(t); or

wellbore type− III
Amk0
µ

∂pIII(t)

∂r

∣∣∣∣
r=rw

= Q(t) +
Ac

ρg

∂pw(t)

∂t
,

respectively. See Appendix A for definition of source borehole boundary condition terms. These boundary
conditions represent a homogeneous uniform initial condition, a requirement that the solution remains
finite at large distance, and a specified pressure or pressure gradient at the source (r = rw).

The Type-II boundary condition (specified flowrate) is a special case (σ = 0) of the wellbore storage
boundary condition (flowrate linearly proportional to change in pressure), so it is not developed further.

2.1 Dimensional Analysis

A solution is derived for equation (4), using the approach of Doe (1991), which was based on analogy
with the heat conduction literature (Carslaw and Jaeger, 1959). Reducing the governing equation (4) to
dimensionless form using characteristic time, Tc = n0cL

2
cµ/k0, and characteristic length, Lc = rw, leads

to

rκ−η
D

∂pD
∂tD

=
m− κ

rD

∂pD
∂rD

+
∂2pD
∂r2D

, (6)

where the dimensionless quantities rD = r/Lc, tD = t/Tc, and p
{I,III}
D = p/p

{I,III}
c are used (see Table 2

for a summary of dimensionless quantities).
The characteristic pressure change is given by pIc = p̂1, where p1(t) = p̂1ft separates the time-

dependent specified pressure into a constant characteristic pressure and a dimensionless variable time
behavior (for a constant specified pressure, ft = 1). The dimensionless type-I initial and boundary
conditions are

pD(rD, tD = 0) = 0

pD(rD → ∞, tD) < ∞ (7)

pID(rD = 1, tD) = ft.

Using pIIIc = rwQ̂µ
Amk0

, where Q(t) = Q̂ft similarly separates the time-dependent volumetric flowrate
into a constant characteristic flowrate and a dimensionless time behavior. The dimensionless type-III
source borehole boundary condition is

∂pIIID

∂rD

∣∣∣∣
rD=1

= ft + σ
∂pIIID

∂t
, (8)

where σ is a dimensionless wellbore storage coefficient (see Appendix A) and the same initial and far-field
conditions apply as the type-I case.

2.2 Laplace Transform

Taking the dimensionless Laplace transform
(
f̄(s) =

∫∞
0

e−stDf(tD) dtD
)
of the governing partial dif-

ferential equation (6) (without loss of generality assuming zero initial condition) leads to the ordinary
differential equation

d2p̄D
dr2D

+
m− κ

rD

dp̄D
drD

− sp̄Drκ−η
D = 0, (9)
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assuming κ, η, and m are not functions of time, and s is the dimensionless Laplace transform parameter.
The transformed type-I and far-field boundary conditions (7) are

p̄D(rD → ∞) < ∞ (10)

p̄ID(rD = 1) = f̄t,

where f̄t represents the Laplace transform of the boundary condition’s time behavior. For a unit step
change at t = 0 (where ft = 1, a typical assumption), f̄t = 1

s . Other temporal behaviors are simply
handled, including a step change at a non-zero time, an exponentially decaying source term, an arbitrary
piecewise-constant or piecewise-linear behavior, or a sinusoidal source term (Kruseman and de Ridder,
1994; Mishra et al, 2013).

The transformed wellbore-storage boundary condition is

dp̄IIID

drD

∣∣∣∣
rD=1

= f̄t + σsp̄IIID , (11)

which now more clearly resembles a Type-III boundary condition.

2.3 Numerical Inverse Laplace Transform

The governing equations and associated boundary conditions are solved exactly in Laplace space, then
numerically inverted back to the time domain using one of several viable approaches (Kuhlman, 2013).
The equations were rapidly prototyped and inverted using the Python library mpmath (Johansson et al,
2017), which provides arbitrary precision special functions and numerical inverse Laplace transform
algorithms. A Fortran program was also developed to facilitate plotting and parameter estimation, imple-
menting the inversion algorithm of de Hoog et al (1982). Python and Fortran implementations of the
solution are available at https://github.com/klkuhlm/graded.

3 Solution of Flow Problem

3.1 Mapping onto Modified Bessel Equation

The governing ordinary differential equation (9) can be made equivalent to a form of the modified Bessel
equation after a change of variables first used by Lommel (1868) for the standard Bessel equation.
Appendix B illustrates an analogous change of variables to the modified Bessel equation. Comparing
(9) to this scaled version of the modified Bessel equation (41), they are equivalent given the following
correspondences

α =
1

2
(κ−m+ 1) γ =

1

2
(κ− η + 2) (12)

ν =

√
α2

γ2
=

κ−m+ 1

κ− η + 2
β =

√
s

γ2
=

√
4s

(κ− η + 2)
2 .

The transformed modified Bessel equation has the general solution (37)

y = zα [AIν (βz
γ) +BKν (βz

γ)] , (γ ̸= 0) , (13)

where A and B are constants determined by the boundary conditions and Iν(z) and Kν(z) are the first-
and second-kind modified Bessel functions of non-integer order and real argument (McLachlan, 1955;
Bowman, 1958; Spanier and Oldham, 1987; DLMF, 2023).

The finiteness boundary condition (10) requires A = 0 to keep the solution finite as rD → ∞, since
the first-kind modified Bessel function grows exponentially with increasing real argument, leaving

p̄D (rD) = rαDBKν (βr
γ
D) , (14)

6
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which is not defined for γ = 0 (i.e., κ−η = −2, which is unrealistic because κ is larger than η for physical
reasons), and B is determined by the Laplace-space source borehole boundary conditions.

3.2 Constant-Pressure (Type-I) at Borehole

The borehole boundary condition (rD = 1) for specified change in pressure leads to the solution (the
Warren and Root (1963) double porosity solution for this wellbore boundary condition is equivalent to
Hayek et al (2018))

p̄ID(rD) = f̄tr
α
D

Kν (βr
γ
D)

Kν (β)
(15)

and its radial gradient (i.e., proportional to flow of fluid into the borehole)

dp̄ID
drD

= f̄tr
α−1
D

[
(α− γν)

Kν (βr
γ
D)

Kν (β)
+ βγrγD

Kν−1 (βr
γ
D)

Kν (β)

]
, (16)

using a recurrence relationship for the derivative of the Bessel function in terms of Bessel functions of
adjacent orders (DLMF, 2023, §10.29.2).

Restricting κ ≥ η (i.e., permeability decreases as fast or faster than porosity), then γ > 0 and α = γν
(for γ < 0, α− γν = 2α). This physically motivated restriction on parameters simplifies (16) to

dp̄ID
drD

=
√
sf̄tr

α+γ−1
D

Kν−1 (βr
γ
D)

Kν (β)
, (17)

since βγ =
√
s for γ > 0. When evaluated in the source borehole (rD = 1), the solution simplifies further.

Figure 2 shows plots of the predicted pressure gradient at rD = 1 due to a constant-pressure condition
there (top row) and the predicted decrease in pressure radially away from the boundary (values of η, κ,
and m for each simulation are listed in the caption and title of each figure). Both rows of plots show
the variability with the porosity exponent (η, given by the line color) and the permeability exponent
(κ = ητ , given by the line type). The same results are shown for Cartesian linear (m = 0), cylindrical
(m = 1), and spherical (m = 2) geometries in three columns.

For a given set of parameters, a higher-dimensional domain (larger m) leads to a slower drop in pro-
duced fluids at any time. The highest sustained flowrate for all dimensions is achieved with constant
properties in space (i.e., the red curve η = κ = 0). More negative exponents in the porosity and perme-
ability power-laws lead to more rapid decrease in flowrate, as the contribution to flow from large radius
vanishes when the exponent increases in magnitude. These types of responses might be mis-interpreted
as being associated with lower permeability (which would also lead to a faster decrease in flowrate) using
a model with constant properties and a fixed dimension.

In the source well (top row of subplots), the effect of κ is different and are predicted to reverse between
dimensions. For η = 3 (black lines), the κ = {3, 6, 9} cases are swapped between m = 1 and m = 2. For
η = 2 (blue lines), the κ cases are swapped between m = 0 and m = 1.

The bottom row of figures shows the predicted pressure with distance at tD = 10. At locations away
from the source well (rD > 1), changes in the porosity exponent, η, have relatively less impact than
changes in the permeability exponent, κ (different colored solid lines are close together, while colored
lines of different line type are widely separated). The dimensionality (m) has a smaller effect at locations
away from the source borehole than it had on the gradient predicted at the source borehole.

3.3 Constant-Flowrate with Wellbore Storage (Type-III)

The wellbore-storage boundary condition for the specified flowrate solution at rD = 1 results in the
general solution (that is new for any double-porosity solution with power-law variation in material
properties)

p̄IIID (rD) = f̄tr
α
D

Kν (βr
γ
D)

(α− γν + σs)Kν (β) + βγKν−1 (β)
, (18)

which can be simplified using α = γν and βγ =
√
s to

p̄IIID (rD) = f̄tr
α
D

Kν (βr
γ
D)√

sKν−1 (β) + σsKν (β)
. (19)
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Fig. 2 Type-I flowrate (top row at rD = 1) and pressure (bottom row at rD > 1 and tD = 10) solution at borehole for
m = 0, 1, 2 (Cartesian, cylindrical, and spherical) and at different radial distances. Line color indicates η; line type indicates
κ/η. Line segments in top row illustrate slopes of 1/2, 1, and 3/2.

Analogous to the results for the Type-I solution but only showing them = 1 andm = 2 cases, Figure 3
shows the predicted pressure through time at the boundary for a specified flowrate at the boundary.
Figure 3 results are for no wellbore storage (σ = 0), while Figure 4 shows the same results with non-
zero wellbore storage (all model parameters listed in caption or title of each figure). Wellbore storage is
important at early time, leading to a smaller predicted change in pressure, with the predicted response
giving a characteristic 1 : 1 slope on log-log plots before formation storage contributes significantly to
the flow (i.e., pumping in a bathtub). Wellbore storage makes more of a difference (i.e., shows a larger
deviation from σ = 0 case) for larger η (and κ, since κ = 2η).

3.4 Parameter Combinations Yielding Simpler Solutions

When η = κ = 0, permeability and porosity are constant in space; in this case (9) simplifies to

d2p̄D
dr2D

+
m

rD

dp̄D
drD

− sp̄D = 0, (20)
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Fig. 3 Type-II solution (Type-III with σ = 0) at borehole for m = 1, 2 (cylindrical and spherical). Line color indicates η;
line type indicates κ/η.

which is the dimensionless form of the equation solved by Barker (1988). In this case γ = 1, α = (1−m)/2,
ν = α, and β =

√
s. The solution in Laplace-space under these conditions becomes

p̄D (rD) = rνDBKν

(√
srD

)
, (21)

which was found by Barker (1988, Eqn. 15).
When η = κ = m = 0 the time-domain solution simplifies to pD(t) = 1/

√
πt, because ν = 1/2 and

ν − 1 = −1/2, the numerator and denominator of (17) are equal since Kν(z) ≡ K−ν(z).
Another simplification occurs when m = κ = η, not necessarily zero. In this case, the permeability

and porosity decrease at the same rate radially that the surface area of the domain grows in size (A0 ∝ 1,
A1 ∝ rD, A2 ∝ r2D), resulting in an equivalent Cartesian coordinate system,

d2p̄D
dr2D

− sp̄D = 0, (22)

which has a solution in terms of sin(
√
srD) and cos(

√
srD) or exp(±

√
srD) and typically has an explicit

inverse Laplace transform. In this case α = ν = 1/2, γ = 0, and β =
√
s.

When ν = n ± 1
2 (for n integer), the modified Bessel functions become modified spherical Bessel

functions (DLMF, 2023, §10.47), and when ν = ± 1
3 , they become Airy functions (DLMF, 2023, §9.6).

These additional special cases are not handled differently here (i.e., the more general solution in terms
of modified Bessel functions is still valid), since in the case given here ν varies with κ, η, and m (12).

4 Extension of Solution to Double Porosity

4.1 Mass-Transfer Coefficient Approximation

Beginning with the Warren and Root (1963) formulation for double-porosity (i.e., high-conductance frac-
tures and high-capacity matrix), the power-law permeability and porosity distributions are incorporated.
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Fig. 4 Type-III solution at borehole (rD = 1), for m = 1, 2 (cylindrical and spherical). Line color indicates η; line type
indicates σ. All curves for κ/η = 2.

The equations for double-porosity flow in the fractures and matrix are

1

rm
∂

∂r

[
kf
µ

∂pf
∂r

]
= nrcr

∂pr
∂t

+ nfcf
∂pf
∂t

α̂kr
µ

(pf − pr) = nrcr
∂pr
∂t

(23)

where α̂ is the shape factor [1/m2] of Warren and Root (1963), subscript f indicates fracture, and
subscript r indicates matrix (rock). The matrix equation does not involve a spatial gradient of pressure,
nor a matching of pressure and flux at the boundary, but simply a difference between the fracture and
matrix pressure (i.e., the mass transfer coefficient approximation often used for heat transfer across thin
films). This behavior is sometimes referred to in the petroleum engineering literature as “steady-state”
flow between the fracture and matrix (Da Prat, 1990), but it also represents one-dimensional diffusion
in the matrix with a thin-film mass-transfer approximation between the fracture and matrix reservoirs,
analogous to Newton’s law of cooling.

Substituting the permeability ki = ki0

(
r
rw

)−κi

and porosity ni = ni0

(
r
rw

)−ηi

(i ∈ {f, r}), then
converting to dimensionless form using an analogous approach to Warren and Root (1963), where
ω = nf0cf/ (nr0cr + nf0cf ) is the dimensionless fracture storage coefficient and λ = α̂krr

2
w/kf is the

dimensionless interporosity exchange coefficient. Finally, taking the Laplace transform of both equations
results in the pair of ordinary differential equations[

d2p̄fD
dr2D

+
m− κf

rD

dp̄fD
drD

]
r−κf = (1− ω)r−ηr

D p̄mDs+ ωr
−ηf

D p̄fDs

λ (p̄fD − p̄rD) r−κr

D = (1− ω)r−ηr

D p̄rDs. (24)

Solving for matrix pressure in the matrix equation, p̄rD = p̄fDλr−κr

D /
[
(1− ω)sr−ηr

D + λr−κr

D

]
, and sub-

stituting this into the fracture equation leads to a single equation solely in terms of dimensionless
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Fig. 5 Type-I flowrate solution at borehole (left) and Type-II solution for pressure (σ = 0, right), for m = 1 (cylindrical).
Line color indicates λ; line type indicates ω.

Laplace-domain fracture pressure[
d2p̄fD
dr2D

+
m− κf

rD

dp̄fD
drD

]
r−κf = r−ηr

D p̄fD

{
(1− ω)sr−κr

D λ

(1− ω)sr−ηr

D + λr−κr

D

}
+ ωr

−ηf

D p̄fDs. (25)

To force the term in curly brackets in (25) to be independent of rD, κr = ηr is assumed. Setting κr

and ηr equal to ηf allows rD and p̄fD to be similar form to previous solutions. Simplifying the subsequent
notation κf → κ, ηr → η, and p̄fD → p̄D results in

d2p̄D
dr2D

+
m− κ

rD

dp̄D
drD

= rκ−η
D p̄D

[
(1− ω)sλ

(1− ω)s+ λ
+ ωs

]
, (26)

which is the same form as (9). This solution corresponds to the same scaled Bessel equation, with only
the definition of β changing to

βWR =

√[
λ

λ/(1− ω) + s
+ ω

]
s

γ2
. (27)

Any more general spatial behavior of matrix properties (e.g., ηr ̸= κr) would not be solvable with the
same approach. This limitation still makes physical sense, as the the most important terms to vary with
space are the fracture permeability and the matrix storage. Setting κ = η = 0 and m = 1 results in the
Warren and Root (1963) solution.

Figure 5 shows typical solution behaviors for the cylindrical (m = 1) case for Type-I and Type-II
wellbore boundary conditions, for η = 3 and κ = 6. Figure 6 shows behavior from the “middle” curve in
Figure 5 (λ = 10−5 and ω = 10−4), for a range of porosity and permeability exponents similar to those
shown in Warren and Root (1963), listed in the figure caption.

11



Fig. 6 Type-I flowrate solution at borehole (left) and Type-II solution for pressure (σ = 0, right), for m = 1 (cylindrical).
All curves are for λ = 10−5 and ω = 10−4 (middle curves shown in Figure 5). Line color indicates η; line type indicates κ/η.

4.2 Matrix Diffusion

The matrix diffusion problem of Kazemi (1969) is more physically realistic (Aguilera, 1980; Da Prat,
1990), but it is typically solved numerically or via late-time approximations (De Swaan, 1976), rather
than analytically like Warren and Root (1963). The series approach of Kuhlman et al (2015) is used
here to represent matrix diffusion in a single matrix continuum through the sum of an infinite series of
Warren-Root matrix continua, and the infinite sum is then analytically summed.

The generalization of (23) to multiple matrix continua starts with

1

rm
∂

∂r

[
kf
µ

∂pf
∂r

]
=

N∑
j=1

njcj
∂pj
∂t

+ nfcf
∂pf
∂t

α̂jkj
µ

(pf − pj) = njcj
∂pj
∂t

j = 1, 2, . . . N, (28)

where N is the number of matrix continua (one additional equation for each continuum). Similarly taking
the Laplace transform of this set of equations, solving for p̄f , substituting the matrix equations into the
fracture equation, and simplifying the notation leads to

d2p̄D
dr2D

+
m− κ

rD

dp̄D
drD

= rκ−η
D p̄Dωs(1 + ḡ), (29)

where

ḡ =

N∑
j=1

ξ̂juj

s+ uj
(30)

is a matrix memory kernel (Haggerty and Gorelick, 1995), ξ̂j is related to the storage properties of each
matrix continuum (analogous to ω of Warren and Root (1963)), and uj is related to the interporosity
flow coefficient of each matrix continuum (analogous to λ of Warren and Root (1963)). The Laplace-
space memory kernel approach is flexible, and is used elsewhere in hydrology and reservoir engineering
(Herrera and Yates, 1977; Haggerty et al, 2000; Schumer et al, 2003). Equation (29) can be simplified to
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Warren and Root (1963) with a particular choice of ḡ and N = 1, and to the solution for a triple-porosity
reservoir (Clossman, 1975) with a different choice of ḡ and N = 2 (Kuhlman et al, 2015).

When N → ∞ in (30), the it is more convenient to specify the mean and variance of the parameter
distributions than the individual parameters associated with each porosity. Several different distribu-
tions are possible (Haggerty and Gorelick, 1995). In the form presented by Kuhlman et al (2015), the
parameters are specified as the infinite series

uj =
(2j − 1)2π2λ

4(1− ω)
ξ̂j =

8(1− ω)

(2j − 1)2ωπ2
j = 1, 2, . . . N → ∞ (31)

which leads to the Kazemi (1969) solution for matrix diffusion. The parameters λ and ω have the same
definitions as in Warren and Root (1963).

Setting κ = η = 0 results in the solution of Kuhlman et al (2015). The new governing equation is the
same form and the modified Bessel function solution, only requiring re-definition of β as

βKZ =

√√√√[ N∑
j=1

ωξ̂juj

uj + s
+ ω

]
s

γ2
, N → ∞. (32)

Substituting the definitions of u and ξ̂ from (31) and simplifying leads to

βKZ =

√√√√[ N∑
j=1

2λ

W 2
j λ/(1− ω) + s

+ ω

]
s

γ2
, N → ∞, (33)

where Wj = π(2j − 1)/2. This is similar in form to (27) but the term in the denominator grows as the
index increases, illustrating how the series solution approximates the Kazemi (1969) solution through an
infinite series of modified Warren and Root (1963) matrix porosities.

Further simplifying the approach of Kuhlman et al (2015), the infinite series in (33) can be evaluated
in closed form using residue methods (Wolfram Research, Inc., 2021), resulting in

βKZ =

√√√√[√λ(1− ω)

s
tanh

(√
s(1− ω)

λ

)
+ ω

]
s

γ2
, (34)

where tanh(·) is the hyperbolic tangent. This closed-form expression derived here is more accurate
and numerically more efficient than truncating or accelerating the infinite series in (32), which is an
improvement over the series presented in Kuhlman et al (2015) for graded or homogeneous domains.

Figure 7 illustrates the transition from the Warren and Root (1963) (N = 1) to the Kazemi (1969)
series approximation for increasing terms (N = {2, 10, 100, 1000}, heavy colored solid lines) and the
expression for the infinite sum (34) (heavy black dashed line) for flow to a specified flux (type-II, σ = 0)
cylindrical (m = 1) borehole of constant material properties (κ = η = 0). The bounding Theis (1935)
behavior is shown for the fracture and matrix compressibilities (thin red dashed lines).

5 Applications and Limitations

A general converging radial flow solution for specified flowrate or specified wellhead pressure was derived
for domains with power-law variability in porosity and permeability due to damage. The single-porosity
version has already been presented by Doe (1991), and a solution for constant-pressure condition without
wellbore storage was derived by Hayek et al (2018), but the specified-flowrate double-porosity solution
with wellbore storage presented here is new. The infinite series approximation to Kazemi was summed
analytically, resulting in a new closed-form expression of the series presented in Kuhlman et al (2015),
which is an improvement for both graded and homogeneous properties. The newly developed analytical
solutions are more general (i.e., several existing solutions are special cases of the new solution) and
include more behaviors typical in well-test solutions (i.e., wellbore storage, positive skin, double porosity),
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Fig. 7 Type-II solution for pressure at source borehole (σ = 0), for m = 1 (cylindrical) for different number of terms. All
curves are for λ = 10−5, ω = 10−4, κ = η = 0.

while still being straightforward and parsimonious (i.e., as few free parameters as possible) in their
implementation.

The basic flow solution assumes linear single-phase flow of a fluid in a slightly compressible formation.
The double-porosity solution assumes the fractures are high permeability, with low storage capacity,
while the matrix (i.e., intact rock between fractures) is high storage capacity with low permeability.
These assumptions are representative for analytical solutions to subsurface porous media flow problems
in the hydrology and petroleum engineering literature, and are shared by the solutions of Barker (1988),
Doe (1991), Warren and Root (1963), Kazemi (1969), and Kuhlman et al (2015).

To apply this analytical solution to observed data, either observed data would be transformed into
dimensionless space, or the analytical solution could be transformed to dimensional space, then a param-
eter estimation routine would be used to minimize the model-data misfit, and possibly explore the
uncertainty or uniqueness of the solution. The solution method developed to solve these solutions uses
numerical inverse Laplace transforms and runs quickly enough to be used in parameter estimation (e.g.,
Monte Carlo methods that require hundreds of thousands of evaluations).

The analytical solution might be of most use with parameter estimation to fit observations, but
the non-uniqueness of the curves may make estimation of unique physical parameters difficult, without
further physical or site-specific constraints. Realistically, the parameters in the Bessel equation may be
estimable (i.e., α, β, γ, and ν defined in (12)), but without defining the flow dimension (m) or the
relationship between the porosity and permeability exponents (τ = κ/η), it may be difficult to identify
all the parameters from data alone, since many the curves have similar shapes, unlike classical Type
curves (Bourdet et al, 1989).
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Ac borehole cross-sectional area m2

Am borehole cylindrical surface area m2

c bulk compressibility 1/Pa
ft time variability −
g gravitational acceleration m/s2

h hydraulic head m
k permeability m2

Lc characteristic length (rw) m
m dimension (D − 1) −
n porosity −
p change in pressure Pa
s Laplace transform parameter −
Q volumetric flowrate m3/s
r distance coordinate m
rw borehole or excavation radius m
α̂ Warren and Root (1963) shape factor 1/m2

η porosity power-law exponent −
κ permeability power-law exponent −
ρ fluid density kg/m3

µ fluid viscosity Pa · s

Table 1 Physical Properties and Parameters

pD scaled pressure p/pc
tD scaled time tk0/n0cL2

cµ
rD scaled distance r/Lc

λ interporosity exchange coefficient α̂krr2w/kf
σ wellbore storage coefficient Ac/(rwn0cρgAm)
ω fracture storage coefficient nf0cf/(nr0cr + nf0cf )

Table 2 Dimensionless Quantities
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6 Appendix A: Wellbore Storage Boundary Condition

The wellbore-storage boundary condition accounts for the storage in the finite borehole arising from the
mass balance Qin −Qout = Ac

∂hw

∂t . Qin [m3/s] is volumetric flow into the borehole from the formation,

Qout is possibly time-variable flow out of the well through the pump (Q(t) [m3/s]), and ∂hw

∂t is the change
in hydraulic head [m] (hw = pw

ρg + z) of water standing in the borehole through time, pw is change in

pressure [Pa] of water in the borehole, ρ is fluid density [kg/m3], z is an elevation datum [m], and g is
gravitational acceleration [m/s2]. Ac is the cross-sectional surface area of the pipe, sphere or box providing
storage (it may be a constant or a function of elevation); for a typical pipe, it becomes Ac = πr2c , where
rc is the radius of the casing where the water level is changing. The mass balance is then

Amk0
µ

∂p

∂r

∣∣∣∣
r=rw

−Q(t) =
Ac

ρg

∂pw
∂t

, (35)

where Am is the area of the borehole communicating with the formation. For the integer m considered
here these are A0 = b2, A1 = 2πrwb, A2 = 4πr2w (b is a length independent of the borehole radius).

Assuming the change in water level in the borehole (hw = pw/ (ρg)) is equal to the change in formation
water level (h = p/ (ρg)), this can be converted into dimensionless form as

∂pD
∂rD

∣∣∣∣
rD=1

− ft = σ
∂pD
∂t

, (36)

where σ = Ac/ (rwn0cρgAm) is a dimensionless ratio of formation to wellbore storage; σ → 0 is an
infinitesimally small well with only formation response, while σ → ∞ is a well with no formation response
(i.e., a bathtub).

7 Appendix B: Transformation of Modified Bessel Equation

Following the approach of Bowman (1958), alternative forms of the Bessel equation are found, this
approach is a simplification of the original approach of Lommel (1868). An analogous approach is applied
here to “back into” the desired modified Bessel equation. The equation satisfied by the pair of functions

y1 = xαIν (βx
γ) , y2 = xαKν (βx

γ) (37)

is sought, where α, β, γ, and ν are constants. Using the substitutions ζ = yx−α and ξ = βxγ gives
ζ1 = Iν (ξ) and ζ2 = Kν (ξ), which are the two solutions to the modified Bessel equation (DLMF, 2023,
§10.25.1),

ξ
d

dξ

(
ξ
dζ

dξ

)
− (ξ2 + ν)ζ = 0. (38)

Given

ξ
d

dξ

(
ξ
dζ

dξ

)
=

x

γ2

d

dx

(
x
dζ

dx

)
, (39)

and

x
d

dx

(
x
dζ

dx

)
=

y′′

xα−2
− (2α− 1) y′

xα−1
+

α2y

xα
, (40)

the standard-form equation satisfied by y is

y′′ + (1− 2α) y′ +
α2y

xα
−
(
β2γ2x2γ−2 − α2 − ν2γ2

x2

)
y = 0. (41)
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This equation can be compared to the Laplace-space ordinary differential equation (9), allowing direct
use of the product of powers and modified Bessel function (37) as solutions (13).
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