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On the thermodynamics of two-level Fermi and Bose nanosystems
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Equations are obtained for the quantum distribution functions over discrete states in systems of
non-interacting fermions and bosons with an arbitrary, including small, number of particles. The
case of systems with two levels is considered in detail. The temperature dependences of entropy, heat
capacities and pressure in two-level Fermi and Bose systems are calculated for various multiplicities
of degeneracy of levels.
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I. INTRODUCTION

Currently, much attention is paid to the study of quantum properties of systems with a small number of particles,
such as quantum dots and other mesoscopic objects and nanostructures. In this regard, the problem of describing the
properties of such objects with taking into account their interaction with the external environment is actual.
Statistical description is usually used to study systems with a very large number of particles N in a large volume V

with a subsequent transition to the thermodynamic limit N → ∞, V → ∞ at n = N/V = const. However, statistical
methods can also be applied to the study of equilibrium states of systems with a small number of particles and even
one particle in a finite volume. When considering a many-particle system within the framework of a grand canonical
ensemble, it is assumed that it is a part of a very large system, a thermostat, with which it can exchange energy
and particles. The thermostat itself is characterized by such statistical quantities as temperature T and chemical
potential µ. Assuming that the subsystem under consideration is in thermodynamic equilibrium with the thermostat,
the subsystem itself is characterized by the same quantities, even one consisting of a small number of particles. For
example, we can consider the thermodynamics of an individual quantum oscillator [1]. In the case when an exchange
of particles with a thermostat is possible, the time-averaged number of particles of a small subsystem may be not an
integer and may even be less than unity. For this case, the equations that determine the average number of particles
in each state for the Fermi-Dirac and Bose-Einstein statistics were obtained by the authors in [2]. In this work, based
on the theory proposed in [2], the temperature dependences of entropy, heat capacities and pressure in systems with
two levels are calculated.
The model of quantum objects with two states is used to describe a wide range of phenomena [3,4]. The concept

of two-level systems was initiated by the phenomena of magnetic resonance and was further developed in connection
with the advent of lasers. Issues related to the equilibrium thermodynamics of two-level systems turned out to be less
studied [4]. The two-level model is also applicable for describing multilevel systems at temperatures lower than the
energy difference between the second and the next after it energy level.
The second section of the article presents general relations for entropy, distribution functions of particles and

thermodynamic quantities of an arbitrary number of fermions and bosons for a system with an arbitrary number
of levels. In the third and fourth sections the two-level systems of bosons and fermions are studied in detail, the
temperature dependences of their entropy, heat capacities, pressure and populations of levels are calculated. In
conclusion the obtained results are discussed.

II. ENTROPY AND DISTRIBUTION FUNCTIONS OF FERMIONS AND BOSONS

In this section we present a brief derivation of equations for the average numbers of particles in quantum states
and formulas for thermodynamic quantities for an arbitrary number of levels and number of particles, which are valid
for both Bose-Einstein and Fermi-Dirac statistics [2]. Let us consider a quantum system of non-interacting particles,
the energy levels εj of which have the multiplicities of degeneracy zj . If there are Nj particles at each level j, then
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nj = Nj

/

zj is the average number of particles at level j or the population of the level. In the case when for fermions
nj 6= 0, 1 and for bosons nj 6= 0, the average number of particles in each state is found from the condition of an
extremum of the entropy S =

∑

j Sj

∂

∂nj

(

S − αN − βE
)

= 0, (1)

where the total number of particles N and the total energy E are determined by the formulas

N =
∑

j

Nj =
∑

j

njzj , (2)

E =
∑

j

εjNj =
∑

j

εjnjzj . (3)

In (1) α, β are the Lagrange multipliers, which are found from a comparison with thermodynamic relations, wherefrom
it follows α = −µ/T, β = 1/T , T – temperature, µ – chemical potential [1]. Let us introduce the notation for the
derivative of entropy:

∂Sj

∂nj
≡ zj θj(nj). (4)

The expression for entropy Sj and the form of functions θj(nj) are different for fermions and bosons, and will be
obtained in the following sections. From (1) – (4) we find the equations that determine the population of levels

θj(nj) =
(εj − µ)

T
. (5)

For a fixed total number of particles, due to condition (2), these equations are not independent.
When constructing the thermodynamics of systems located in a limited volume, the dependence of the level energy

on volume should be taken into account. This dependence arises as a consequence of the boundary condition for the
wave function at the boundary of the volume V . For both the sphere and the cube εj ∼ V −2/3. Therefore, we will
assume that εj = ξjV

−α, where α > 0, so that dεj
/

dV = −α
(

εj/V
)

, d 2εj
/

dV 2 = α(α + 1)
(

εj/V
2
)

. In numerical
calculations we always assume α = 2/3. For the thermodynamic potential Ω = E − TS − µN the known relation
dΩ = −SdT −Ndµ− pdV is valid, therefore the pressure is determined from the condition

p = −

(

∂Ω

∂V

)

T,µ

= −
∑

j

zjnj
dεj
dV

=
α

V

∑

j

zjnjεj. (6)

To calculate heat capacities and thermodynamic coefficients it is necessary to use the expression for the differential
of population, which follows from (5):

zjθ
(1)
j (nj) dnj = −θj(nj)

dT

T
−
dµ

T
+

1

T

dεj
dV

dV, (7)

where

∂θj(nj)

∂nj
≡ zj θ

(1)
j (nj). (8)

With taking into account (7), (8) we find the differentials of the number of particles N , entropy S and pressure p :

dN = −A1
dT

T
−A

dµ

T
+B

dV

T
, (9)

dS = −A2
dT

T
− A1

dµ

T
+B1

dV

T
, (10)

dp = B1
dT

T
+B

dµ

T
−DdV. (11)
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In (9) – (11) the following notations are used:

A ≡
∑

j

1

θ
(1)
j

, A1 ≡
∑

j

θj

θ
(1)
j

, A2 ≡
∑

j

θ2j

θ
(1)
j

,

B ≡
∑

j

1

θ
(1)
j

dεj
dV

= −
α

V

∑

j

εj

θ
(1)
j

, B1 ≡
∑

j

θj

θ
(1)
j

dεj
dV

= −
α

V

∑

j

θjεj

θ
(1)
j

,

D ≡
∑

j

[

zjnj
d 2εj
dV 2

+
1

Tθ
(1)
j

(

dεj
dV

)2
]

=
α

V 2

∑

j

[

(1 + α)zjnjεj +
αε2j

Tθ
(1)
j

]

.

(12)

Systems with a fixed number of particles are usually considered. In this case dN = 0, and the differential of the
chemical potential can be excluded from (9) – (11). As a result, we arrive at the following formulas for the isochoric
and isobaric heat capacities:

CV,N =

(

A2
1 −AA2

)

A
, (13)

Cp,N =

(

A2
1 −AA2

)

A
−

(

AB1 −A1B
)2

A
(

B2 −ADT
) . (14)

We also present formulas for the coefficient of volumetric expansion

αpN =
1

V

(

∂V

∂T

)

p,N

= −

(

AB1 −A1B
)

V
(

B2 −ADT
) , (15)

the isothermal compressibility

γTN = −
1

V

(

∂V

∂p

)

T,N

= −
AT

V
(

B2 −ADT
) (16)

and the isochoric thermal pressure coefficient

βVN =
1

p

(

∂p

∂T

)

V,N

=

(

AB1 −A1B
)

p TA
. (17)

The remaining thermodynamic coefficients can be found from the above coefficients and the heat capacities [6]. The
conditions for thermodynamic stability of a system are the inequalities

(

∂p/∂V
)

T
< 0 and CV,N > 0 [1]. We also

note that the general thermodynamic relation Cp − CV = TV
(

α2
p /γT

)

turns out to be valid.

III. TWO-LEVEL BOSON SYSTEM

Using the general formulas given in the previous section, we consider a special case of a system of bosons which can
exist only in two states with energies ε2 > ε1 and multiplicities of degeneracy z1 and z2. If in a system of bosons at
each level with the multiplicity of degeneracy zj there are Nj particles, then the statistical weight of such a state in
the Bose-Einstein statistics [1]

∆Γj =
(zj +Nj − 1)!

Nj! (zj − 1)!
. (18)

In the general case, when the number of particles can be small and take fractional values, the factorials in (18) should
be determined through the gamma function N ! = Γ

(

N + 1
)

[2], so that the statistical weight (18) will be written in
the form

∆Γj =
Γ(zj +Nj)

Γ(Nj + 1)Γ(zj)
. (19)
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This implies the formula for the nonequilibrium entropy S =
∑

j Sj =
∑

j ln∆Γj , where

Sj ≡ SBj = lnΓ
(

zjnj + zj
)

− ln Γ
(

zjnj + 1
)

− ln Γ
(

zj
)

. (20)

In this case, in the equations of the previous section that determine the population of levels and thermodynamic
quantities, one should use the formulas

θj(nj) ≡ θBj(nj) ≡ ψ
(

zjnj + zj
)

− ψ
(

zjnj + 1
)

, (21)

θ
(1)
j (nj) ≡ θ

(1)
Bj (nj) ≡ ψ(1)

(

zjnj + zj
)

− ψ(1)
(

zjnj + 1
)

, (22)

where ψ(x) ≡ d ln Γ(x)
/

dx, ψ(1)(x) ≡ d 2 ln Γ(x)
/

dx2 are the logarithmic derivatives of the gamma function [5].
Functions (21), (22) can be calculated using the formulas

θBj(nj) =

∫

∞

0

e−zjnjt
(

1− e−(zj−1)t
)

et − 1
dt, θ

(1)
Bj (nj) = −

∫

∞

0

t
e−zjnjt

(

1− e−(zj−1)t
)

et − 1
dt. (23)

At zero temperature all bosons are located at the ground level, so that in this case µ = ε1 and the total number
of particles, energy and pressure are given by formulas N = z1n1, E = ε1N and p = α

(

N/V
)

ε1. The entropy, when
taking into account the discreteness of levels, at T = 0 turns out to be different from zero

SB0 = lnΓ
(

N + z1
)

− ln Γ
(

N + 1
)

− ln Γ
(

z1
)

. (24)

Thus, the third law of thermodynamics is satisfied in the Nernst formulation, according to which all processes at zero
temperature occur at a constant entropy, but not in the Planck formulation which requires turning of the entropy to
zero.
In the two-level Bose system, two characteristic temperatures can be defined. At one of them the transition of

particles from the lower level to the upper level begins

TB1 =
∆ε

ΦB

(

0, N/z1
) , (25)

and at the second characteristic temperature all particles transit from the lower level to the upper level

TB2 =
∆ε

ΦB

(

N/z2, 0
) , (26)

where ∆ε ≡ ε2 − ε1 > 0. In (25), (26) the notation is also used ΦB(n2, n1) ≡ θB2(n2) − θB1(n1). Obviously, the
condition of the existence of these temperatures is the positivity of denominators in (25), (26). These requirements
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Figure 1: Regions of existence of the characteristic temperatures (25), (26) on the plane
(

φ, η
)

, for N = 2: I – TB1, TB2

do not exist; II – only TB1 exists; III – both temperatures TB1, TB2 exist. On the curve ac ΦB(0, φ) = 0, on the curve bc

ΦB(φ/η, 0) = 0. Coordinates of points: a – (0, 0.22); b – (0, 4.5); c – (2, 1).
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are satisfied not for all values of the quantities z1, z2, N . There are three possibilities: I) the existence condition is
not satisfied in both cases, and the temperatures TB1, TB2 do not exist; II) the existence condition is satisfied for
(25), but it is not satisfied for (26), so only the temperature TB1 exists and the temperature TB2 is missing; III) both
temperatures TB1, TB2 exist. It is convenient to introduce variables:

η ≡
z2
z1
, φ ≡

N

z1
. (27)

The regions I, II, III on the plane
(

φ, η
)

are shown in Fig. 1. In the figures, for convenience, we assume that η
and φ can take arbitrary positive values. Only those values of η and φ correspond to the physical parameters, for
which conditions (27) are satisfied. In the notation (27) TB1 = ∆ε

/

ΦB(0, φ) and TB2 = ∆ε
/

ΦB(φη
−1, 0). Note that

functions ΦB(0, φ) and ΦB(φη
−1, 0) depend also on the number of particles N as on a parameter.

The dependences of the dimensionless temperatures τB1 = TB1

/

∆ε and τB2 = TB2

/

∆ε on η for a fixed parameter
φ are shown in Fig. 2. In the region I (Fig. 1) the temperatures TB1, TB2 do not exist. Physically, this means
that in the case when the multiplicity of degeneracy of the upper level is considerably less than the multiplicity of
degeneracy of the ground level (η < η1 in Fig. 2), all particles remain locked at the ground level at arbitrary permissible
temperatures, and n2 = 0, so that energy cannot be transferred to the system and it remains adiabatically isolated
from the thermostat. In this case the pressure and entropy remain constant, and the heat capacities are equal to zero.

0 2 4
0

10

20

30

40

IIIIII

2A

1A

21B

21

 

 

Figure 2: Dependences of the temperatures τB1 (1) and τB2 (2) on η for z1 = 8, N = 2, φ = 0.25; the point A1 = (0.38, 5.85)
for z2 = 3, the point A2 = (4.13, 39.44) for z2 = 33; η1 = 0.33, η2 = 4.02.

In the region II (Fig. 1) there is the temperature TB1 (η1 < η < η2 in Fig. 2) at which the transition of particles
from the lower to the upper level begins, and the dependence of populations on temperature at T > TB1 is determined
by the system of equations

θB1(n1) =
(ε1 − µ)

T
, θB2(n2) =

(ε2 − µ)

T
, N = z1n1 + z2n2. (28)

In the limit of high temperatures T → ∞ the populations of levels tend to constant values n1∞ and n2∞, which
are determined by the conditions θB1(n1∞) = θB2(n2∞) and N = z1n1∞ + z2n2∞. The temperature dependences
of the entropy and heat capacities for this case are shown in Fig. 3a. At temperatures T < TB1 the entropy SB1

and pressure are constant, and the heat capacities are zero. At temperature TB1 the entropy and pressure begin to
increase monotonically, and the heat capacities take on by jumps finite values. Initially, the heat capacities increase
reaching their maxima, and with a further increase in temperature they decrease monotonically. In the limit T → ∞
the entropy tends to a finite value SB∞, and the heat capacities tend to zero.
In the region III (Fig. 1) there exist two temperatures TB1, TB2 (η > η2 in Fig. 2). In this case at TB1 the transition

of particles from the lower to the upper level begins, and at T = TB2 all particles transit to the upper level, so that
the lower level proves to be empty n1 = 0. In the temperature range TB1 < T < TB2 the temperature dependence
of populations is determined by equations (28). The temperature dependences of the entropy and heat capacities for
this case are shown in Fig. 3b. Here also at temperatures T < TB1 the entropy SB1 is constant and the heat capacities
are zero. At temperature TB1 the entropy begins to increase monotonically up to a maximum value SB2 at TB2, and
the heat capacities take on by jumps finite values. With an increase in temperature the heat capacities first increase,
and then they begin to decrease down to finite values at temperature TB2. At T > TB2 the entropy SB2 and pressure
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Figure 3: Dependences of the entropy SB(τ ) (1), the heat capacities CBV (τ ) (2) and CBp(τ ) (3) on the dimensionless temper-
ature τ = T/∆ε for the two-level boson system. (a) Region II. Jumps of heat capacities at τB1: ∆CBV = 13.84, ∆CBp = 14.92.
Entropy values: SB1 = 12.41, SB∞ = 43.74. Parameters: z1 = 8, z2 = 96, N = 16; τB1 = 0.21, n1∞ = 0.08, n2∞ = 0.16.
(b) Region III. Jumps of heat capacities at τB1: ∆CBV = 17.99, ∆CBp = 21.49; jumps at τB2: ∆CBV = −0.43, ∆CBp = −0.44.
Entropy values: SB1 = 8.77, SB2 = 33.87. Parameters: z1 = 8, z2 = 256, N = 8; τB1 = 0.18, τB2 = 1.2.

remain constant, and the heat capacities turn to zero by jumps. In this region of high temperatures the energy of the
system reaches its maximally possible value and no longer increases with increasing the thermostat temperature.

IV. TWO-LEVEL FERMION SYSTEM

Let us consider a system of fermions which can exist in two states with energies ε2 > ε1 and multiplicities of
degeneracy z1 and z2. Such a system can contain no more than z1 + z2 particles. If there are Nj ≤ zj particles at
each level j, then the statistical weight of such a state in the case of Fermi-Dirac statistics is given by the well-known
formula [1]

∆Γj =
zj!

Nj!
(

zj −Nj

)

!
. (29)

In the general case, when the number of particles can be small and take fractional values, the factorials in (29) should
be determined through the gamma function [2], so that the statistical weight (29) will be written in the form

∆Γj =
Γ(zj + 1)

Γ(Nj + 1)Γ(zj −Nj + 1)
. (30)

This implies the formula for nonequilibrium entropy S =
∑

j Sj =
∑

j ln∆Γj , where

Sj ≡ SFj = lnΓ(zj + 1)− ln Γ(zjnj + 1)− ln Γ
[

zj(1 − nj) + 1
]

. (31)

For a system of fermions in the equations of Section II, which determine the population of levels and thermodynamic
quantities in the general case, it should be taken

θj(nj) ≡ θFj(nj) ≡ ψ
[

zj
(

1− nj

)

+ 1
]

− ψ
(

zjnj + 1
)

, (32)

θ
(1)
j (nj) ≡ θ

(1)
Fj (nj) ≡ −ψ(1)

[

zj
(

1− nj

)

+ 1
]

− ψ(1)
(

zjnj + 1
)

. (33)

To calculate these functions one can use the formulas

θFj(nj) =

∫

∞

0

e−zjnjt − e−zj(1−nj)t

et − 1
dt, θ

(1)
Fj (nj) = −

∫

∞

0

t
e−zjnjt + e−zj(1−nj)t

et − 1
dt. (34)

In the two-level fermion system two cases must be distinguished: A) the number of particles is less than or equal to
the multiplicity of degeneracy of the lower level 0 < N ≤ z1, B) the number of particles is greater than the multiplicity
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of degeneracy of the lower level z1 < N ≤ z1 + z2. In the case A), at zero temperature all particles are at the ground
level n1 ≤ 1, n2 = 0, so that the number of particles, energy and pressure are determined by the formulas N = z1n1,
E = ε1N and p = α

(

N/V
)

ε1, and the chemical potential µ = ε1. The entropy is given by the formula

SFA = lnΓ(z1 + 1)− ln Γ(N + 1)− ln Γ
[

z1 + 1−N
]

. (35)

If the level is not filled N < z1, then the entropy (35) at T = 0 is nonzero and the third law of thermodynamics
is satisfied in the Nernst formulation. Only when the level is completely filled N = z1 the entropy turns to zero,
and then the third law of thermodynamics turns out to be valid in the Planck formulation. In the case B) at zero
temperature the lower level is filled, and N − z1 particles are located on the upper level. Only particles of the upper
level contribute to the entropy, so that

SFB = lnΓ(z2 + 1)− ln Γ(N + 1− z1)− ln Γ(z1 + z2 + 1−N). (36)

It turns to zero only if both levels are completely occupied N = z1 + z2. The energy and pressure in this case are
given by the formulas E = ε1z1 + ε2(N − z1), p =

(

α/V
)[

ε1z1 + ε2(N − z1)
]

, and the chemical potential µ = ε2.
For the case of two-level fermion system four characteristic temperatures can be determined. At the temperature

TF1 =
∆ε

ΦF

(

0, φ
) (37)

particles from the lower level begin to transit to the upper empty level. At the temperature

TF2 =
∆ε

ΦF

(

φη−1, 0
) (38)

all particles from the lower level, which becomes empty, transit to the upper level. At the temperature

TF3 =
∆ε

ΦF

(

(φ− 1)η−1, 1
) (39)

particles from the lower, completely filled level, begin to transit to the upper, partially filled level. Finally, at the
temperature

TF4 =
∆ε

ΦF

(

1, φ− η
) (40)
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Figure 4: Regions of existence of the characteristic temperatures (37) – (40): IA (0aa′), IB (cdf) – none of these temperatures
exist, IIA (aa′ghb) – only TF1 (37) exists, IIB (gcdb′h) – only TF3 (39) exists, IIIA (bhe′u) – TF1 (37) and TF2 (38) exist,
IIIB (hb′l′e′) – TF2 (38) and TF3 (39) exist, III′A (a′eg) – TF1 (37) and TF4 (40) exist, III′B (ecg) – TF3 (39) and TF4 (40) exist.
Region (efl) is forbidden, because the condition N ≤ z1 + z2 is not satisfied here.
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particles completely fill the upper level, while some part of them remains at the lower level. In formulas (37) – (40) we
use the notation ΦF (n2, n1) ≡ θF2(n2)−θF1(n1). Note that the functions in the denominators of formulas (37) – (40),
written in the variables (φ, η), depend also on N as on a parameter. Obviously, the condition of the existence of these
temperatures is the positivity of denominators in (37) – (40). These requirements are satisfied not for all values of the
quantities z1, z2, N . The regions where these temperatures may exist on the plane (φ, η), (27) are shown in Fig. 4.
The dependences of the dimensionless temperatures τF = TF

/

∆ε on the parameter η at a fixed parameter φ
in different cases are shown in Fig. 5. There are four regions of variation of the parameter φ, where characteristic
temperatures depend differently on the parameter η: a) 0 < φ < 1/2 (Fig. 5a), b) 1/2 < φ < 1 (Fig. 5b), c) 1 < φ < 2
(Fig. 5c), d) φ > 2 (Fig. 5d).
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Figure 5: Dependences of the dimensionless temperatures on the parameter η, characterizing the ratio of the degeneracy factors
of the upper and lower levels.
(a) τF1 (37) – 1, τF2 (38) – 2 for z1 = 16, N = 2 and φ = 0.125; η1 = 0.17, η2 = 4.72; A1 = (0.188, 12.2) – matches to z2 = 3,
A2 = (4.75, 137.1) – matches to z2 = 76 (not shown).
(b) τF1 – 1, τF2 – 2, τF4 (40) – 3 for z1 = 16, N = 14 and φ = 0.875; η4 = 0.086, η2 = 27.5; A1 = (0.063, 0.36), A4 = (0.063, 2.88)
– match to z2 = 1, A2 = (27.5, 1862.4) – matches to z2 = 440 (not shown).
(c) τF3 (39) – 1, τF2 – 2, τF4 – 3 for z1 = 16, N = 18 and φ = 1.125; ηb = 0.125, η4 = 0.22, η2 = 35.1; A3 = (0.186, 0.35),
A4 = (0.186, 2.06) – match to z2 = 3, A2 = (35.13, 802.1) – matches to z2 = 562 (not shown).
(d) τF3 – 1, τF2 – 2 for z1 = 16, N = 40 and φ = 2.5; ηb = 1.5, η3 = 1.52, η2 = 76.9; A3 = (1.56, 1.65) – matches to z2 = 25,
A2 = (76.9, 13825.9) – matches to z2 = 1230 (not shown).

The temperature dependences of the entropy and heat capacities for the cases b) 1/2 < φ < 1 and d) φ > 2 are
shown in Figures 6 and 7.
In the range of the parameter values b) 1/2 < φ < 1 (Fig. 6) in the region IIIA (Fig. 6c), at temperatures τ < τF1

the entropy SF1 is constant and the heat capacities are equal to zero. At τ = τF1 the heat capacities take on by
jumps finite values, then with increasing temperature they reach maximums and begin to decrease. At temperature
τ = τF2 the heat capacities turn to zero by jumps. The entropy on the interval τF1 < τ < τF2 increases monotonically
from SF1 to SF2. The pressure increases monotonically with increasing temperature. In the temperature region with
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Figure 6: Dependences of the entropy SF (τ ) (1) and the heat capacities CFV (τ ) (2), CFp(τ ) (3) on the interval b) 1/2 < φ < 1.
(a) Region III′A. Jumps of heat capacities at τF1: ∆CFV = 2.75, ∆CFp = 2.83; jumps at τF4: ∆CFV = −0.045, ∆CFp =
∆CFV − 1.6 · 10−4. Entropy values: SF1 = 4.8, SF2 = 6.3. Parameters: z1 = 16, z2 = 1, N = 14; τF1 = 0.36, τF4 = 2.88.
(b) Region IIA. Jumps of heat capacities at τF1: ∆CFV = 12.14, ∆CFp = 13.02. Entropy values: SF1 = 4.8, SF∞ = 18.7.
Parameters: z1 = 16, z2 = 16, N = 14; τF1 = 0.19.
(c) Region IIIA. Jumps of heat capacities at τF1: ∆CFV = 40.4, ∆CFp = 46.2; jumps at τF2: ∆CFV = −0.397, ∆CFp = −0.400.
Entropy values: SF1 = 4.8, SF2 = 71.4. Parameters: z1 = 16, z2 = 1000, N = 14; τF1 = 0.11, τF2 = 1.19.

temperature dependences, the populations are determined by the system of equations (28) with the account of the
substitution θBj(nj) → θFj(nj). In the region IIA (Fig. 6b) there is no the limiting temperature τF2, so that at τ → ∞
the heat capacities tend to zero, and the entropy tends to the limiting value SF∞. In the region III′A (Fig. 6a), in
the temperature range τF1 < τ < τF4 the heat capacities decrease monotonically, and at τ = τF4 they turn to zero
by jumps. In this case, the entropy on the interval τF1 < τ < τF4 increases monotonically from SF1 to SF2. The
variation of the entropy and heat capacities with temperature in the case c) 1 < φ < 2 is similar.
In the range of the parameter values d) φ > 2 (Fig. 7) in the region IB, the state of the system does not change

at arbitrary temperatures of the thermostat. In the region IIB (Fig. 7a), at temperatures τ < τF3 the entropy SF1

is constant and the heat capacities are equal to zero. At τF3 the heat capacities take on finite values by jumps. If
z2 > 30, then at τ > τF3 the heat capacity curves have maxima and at τ → ∞ they tend to zero. For z2 < 30 the heat
capacities decrease monotonically. The entropy at τ > τF3 monotonically increases to the limiting value SF∞. In the
region IIIB (Fig. 7b) there exists the limiting temperature τF2, at which the heat capacities turn to zero by jumps and
the entropy reaches its maximum value SF2. The variation of the entropy and heat capacities with temperature in
the case a) 0 < φ < 1/2 is similar to the case d).
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Figure 7: Dependences of the entropy SF (τ ) (1) and the heat capacities CFV (τ ) (2), CFp(τ ) (3) on the interval d) φ > 2.
(a) Region IIB. Jumps of heat capacities at τF3: ∆CFV = 15.10, ∆CFp = 15.45. Entropy values: SF1 = 49.7, SF∞ = 74.7.
Parameters: z1 = 16, z2 = 128, N = 34; τF3 = 0.19. Maximums on the curves for heat capacities appear at z2 ≃ 30.
(b) Region IIIB. Jumps of heat capacities at τF3: ∆CFV = 38.57, ∆CFp = 40.01; jumps at τF2: ∆CFV = −0.414, ∆CFp =
−0.415. Entropy values: SF1 = 103.6, SF2 = 175.8. Parameters: z1 = 16, z2 = 2400, N = 34; τF3 = 0.12, τF2 = 1.18.

V. DISCUSSION AND CONCLUSIONS

In this work we studied the thermodynamic properties of systems of non-interacting bosons and fermions with a
small number of particles. The equations for the average number of particles in each quantum state for an arbitrary
number of particles were previously obtained by the authors in [2]. In the work, within the framework of theory [2],
the temperature dependences of the entropy, heat capacities and pressure are calculated under the assumption that
particles can be in two degenerate states.
It is shown that in the case of bosons, which at zero temperature are all at the lower level, with an increase in

temperature, depending on the multiplicity of degeneracy of the upper level, three qualitatively different situations
are possible. When the degeneracy factor of the upper level is low z2 ≪ z1, all particles, regardless of the thermostat
temperature, remain at the lower level (region I, in Fig. 1). The entropy is constant in this state. Due to the low
degeneracy factor of the upper level, the system cannot receive energy from the thermostat and therefore turns out to
be adiabatically isolated. With a greater degeneracy factor of the upper level, at a certain temperature TB1 (25), the
transition of particles to the upper level becomes possible (region II, in Fig. 1). In this case the entropy and pressure
begin to increase with increasing temperature, and the heat capacities at TB1 take on finite values by jumps. At high
temperatures in the limit T → ∞, particles remain distributed between two levels with finite populations, the entropy
and pressure tend to constant values, and the heat capacities tend to zero (Fig. 3a). Finally, with a further increase
of the degeneracy factor of the upper level, a case is possible when at a certain limiting temperature TB2 (26) all
particles transit to the upper level, and the lower level becomes empty (region III, in Fig. 1). This temperature can
be considered as an analogue of the Bose-Einstein condensation temperature, below which the filling of the ground
level begins. At T ≥ TB2 the energy of the system reaches its maximally possible value, so that with an increase in
the thermostat temperature the transfer of heat from the thermostat to the system becomes impossible. At TB2 the
heat capacities turn to zero by jumps (Fig. 3b). Since the entropy at zero temperature for a system of bosons with
account of discreteness of levels turns out to be finite and non-zero, the third law of thermodynamics is satisfied in
the Nernst formulation.
In a gas of non-interacting fermions at zero temperature there are several qualitatively different states. If the

number of particles does not exceed the degeneracy factor of the ground level N ≤ z1, then all particles at T = 0 are
located at this lower level. When the degeneracy factor of the upper level is low z2 ≪ z1 and N ≤ z1/2, all particles
at any thermostat temperature, as in the case of bosons, remain at the lower level (region IA, Fig. 4). In this state the
system has a constant entropy and turns out to be adiabatically isolated. With an increase of the degeneracy factor
of the upper level and for a small number of particles, at a certain temperature TF1 (37) the transition of particles
to the upper level becomes possible (region IIA, Fig. 4). At that the entropy and pressure begin to increase, and the
heat capacities take on finite values by jumps. At high temperatures in the limit T → ∞, particles remain distributed
between two levels with finite populations, the entropy and pressure tend to constant values, and the heat capacities
tend to zero. With a further increase of the degeneracy factor of the upper level (region IIIA, Fig. 4), at a certain
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limiting temperature TF2 (38) all particles transit to the upper level, and the lower level becomes empty. With an
increase in temperature the state of the system does not change, its entropy and pressure remain constant, and its heat
capacities are equal to zero. When the condition N > 2z1 is satisfied, there is the region IB similar to the region IA
(Fig. 4), where the system remains in the ground state at all permissible temperatures. Here, with increasing z2 there
also exist states similar to the previous case N ≤ z1/2 (regions IIB and IIIB, Fig. 4). The temperature dependences
of the entropy and heat capacities for the case N > 2z1 are shown in Fig. 7.
If the inequality z1/2 < N ≤ z1 is satisfied, then even for a low degeneracy factor of the upper level z2 ≪ z1 the

region of adiabaticity of the system is absent at all temperatures, and at TF1 (37) the transition of particles to the
upper level begins in it. At the temperature TF4 (40) the upper level proves to be filled, and particles continue to
remain at the lower level (region III′A, Fig. 4). With an increase of the degeneracy factor of the upper level the system
successively passes into the regions IIA and then IIIA, shown in Fig. 4. The temperature dependences of the entropy
and heat capacities for this case z1/2 < N ≤ z1 are presented in Fig. 6.
In the second qualitatively different situation, when N > z1, at zero temperature the lower level is completely

occupied and N − z1 particles are located at the upper level. When the condition z1 < N ≤ 2z1 is satisfied, in the
region III′B (Fig. 4) at the temperature TF3 (39) there begins the transition of particles to the upper level. At TF4

(40) the upper level proves to be filled, and a part of particles remains at the lower level. The state does not change
with increasing temperature. At higher values of z2 (region IIB, Fig. 4) only the temperature TF3 exists, and in the
limit T → ∞ particles become distributed between two levels with finite populations. At yet more high values of z2
(region IIIB, Fig. 4), in addition to TF3 there exists the limiting temperature TF2 (38) at which all particles transit
to the upper level and the lower level becomes empty.
Note that the issue of negative and limiting temperatures in systems with a limited spectrum was considered by

Yu.B. Rumer [6, 7]. In our case, by the temperature of a system with a small number of particles we mean the
temperature of the thermostat with which it is in equilibrium, so that the temperature is always positive. In the
above consideration, due to the finite number of levels, there exist limiting temperatures at which the energy of the
system becomes maximum, so that a further increase in the temperature of the thermostat does not lead to an increase
in the energy of the system.
In conclusion, we formulate the general features of the thermodynamics of two-level systems with a finite number

of bosons and fermions:
1. At zero temperature the entropy can be non-zero, so that the third law of thermodynamics is satisfied in the

Nernst formulation.
2. With a small degeneracy factor of the upper level particles can remain at the lower level at arbitrary temperatures.
3. As the degeneracy factor of the upper level increases, the transition of particles from the lower to the upper level

becomes possible, such that in the limit of high temperatures particles are distributed between two levels with finite
populations.
4. At yet greater degeneracy factor of the upper level there exists the limiting temperature at which the upper

level becomes maximally filled, so that the energy reaches its greatest value. A further increase in the thermostat
temperature does not change the state of the system.
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