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Finite Sample Analysis and Bounds of Generalization Error of Gradient Descent in
In-Context Linear Regression*

Karthik Duraisamyf

Abstract. Recent studies show that transformer-based architectures emulate gradient descent during a forward pass,
contributing to in-context learning capabilities— an ability where the model adapts to new tasks based on a
sequence of prompt examples without being explicitly trained or fine tuned to do so. This work investigates
the generalization properties of a single step of gradient descent in the context of linear regression with
well-specified models. A random design setting is considered and analytical expressions are derived for the
statistical properties and bounds of generalization error in a non-asymptotic (finite sample) setting. These
expressions are notable for avoiding arbitrary constants, and thus offer robust quantitative information and
scaling relationships. These results are contrasted with those from classical least squares regression (for
which analogous finite sample bounds are also derived), shedding light on systematic and noise components,
as well as optimal step sizes. Additionally, identities involving high-order products of Gaussian random
matrices are presented as a byproduct of the analysis.
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1. Introduction. Significant developments in large language models have led to much research
on enhancing and understanding learning processes of Transformers [23, 14]. Among other char-
acteristics, Transformer models have been shown to mimic the mechanisms of gradient descent
during their forward pass [24]. This behavior has been related to in-context learning abilities of
Transformers [8]. In-context examples typically consist of input-output pairs that are directly re-
lated to a specific task. This mechanism allows the Transformer to process a new query input by
leveraging the prompt examples to generate the corresponding predictive output effectively. The
connections between in-context learning and gradient descent have been widely studied over the
past two years. von Oswald et al. [24] show that training Transformers on auto-regressive tasks
mimics gradient-based meta-learning. In other words, Transformers learn in-context by emulating
gradient descent, becoming meta-optimizers and excelling in regression tasks. Dai et al. [6] hy-
pothesize that attention values act as meta-gradients, enabling implicit fine-tuning for in-context
learning.

While the present work is strongly motivated by the above connections and hypotheses, the
primary focus of this paper is on the foundational aspects of gradient descent method. We consider
a case of in-context linear regression with a well-specified model, and aim to investigate the extent
to which a single step of gradient descent can generalize across examples from a noisy distribution.
The focus on the single step is because of the relevance to in-context learning as described above.

The problem setting is as follows. Assume we have a model y = Wyz, where for simplicity we
assume x € R™ corresponds to realizations from the standard normal distribution. Wy € R™*™ is
the existing weight matrix and y € R™ is the output. As in the in-context setting, assume that we
get N i.i.d. data pairs {z1,y1},...{zn,yn} where p(y;|z;) = N (yi; Wiz, 02I). We are interested in
the properties of one-shot gradient descent, for an testing input zy4; = 2. Particularly, we would
like to know the statistical properties of the prediction y and bounds on the generalization error.
We will compare these results to least squares regression (on the given data pairs). A random
design setting will be concerned (i.e. the in-context data available to us is drawn randomly).

Indeed, properties of gradient descent have been studied for a long time, with much of the work
devoted to convergence properties (e.g. [22, 13]). Optimality of stochastic gradient descent has
also been addressed from various perspectives (e.g. [21]). Ref. [19] presents upper bounds on the

*Submitted to the editors 05/03/2024.
Funding: This work was funded by AFOSR under contract FA9550-17-1-0195.
TUniversity of Michigan, Ann Arbor, Ml (kdur@umich.edu, http://caslab.engin.umich.edu).

1


mailto:kdur@umich.edu
http://caslab.engin.umich.edu

2 K. DURAISAMY

generalization error that depend on local statistics of the stochastic gradients using information-
theoretic constructs. We seek results that are non-asymptotic (i.e. by considering finite samples),
not containing arbitrary constants, and not requiring bounded covariates. In fact, it can be argued
that such results are hard to come by even in conventional linear least-squares regression. For
instance, Gyorfi et al. [10] and Catoni’s [5] error bounds for least squares regression are well-
crafted, but contain an arbitrary constant. Many publications contain terms such as O(-), thus
rendering an asymptotic error estimate. Audibert & Catoni [1] require N >> nlogn and Hsu
et al. [12] require N >> n. Classical PAC-Bayesian bounds [16] require bounded loss functions
or additional parameters beyond the data [9]. The author is careful to emphasize that the above
works are rigorous, and focused on a more general - and thus more practically relevant - setting
than the present one, and that a bound can be useful even under the above conditions.

The outline and main contributions of the paper are as follows: The expected generalization
error of in-context gradient descent (for linear regression with well-specified models) is derived in
Section 2. Comparisons are made with classical least squares regression and a breakdown of the
systematic and noise components and an expression is provided for the optimal step size . In
sections 3 and 4, probabilistic bounds are derived for gradient descent and least squares regression.
Section 5 explores connections to existing work. As a byproduct of this work, several identities were
derived involving high order products of Gaussian random matrices, and provided in the Appendix.

2. Expected Generalization Error. As mentioned in the introduction, the in-context learning
setting is equated to one step of gradient descent over a ‘prompt’ of IV i.i.d. data-pairs from a new
task. Gradient descent yields an output with the new weights, i.e. g = (Wy + AW)zZ.

Theorem 2.1 (Expected Error). Given X = [v1 xo ... xy] € R™N which is a i.i.d standard
normal random matriz and Y £ [y1 y2 .. yn] € R™ N with yi = Wia; + 0%z and z; € R™ is an
i.i.d. sample from the standard normal distribution. For a step size n, the expected mean squared
error for a step of gradient descent is E[¢] = ||[W1 — Wol|% ((1 —n)* + n* %) + 0% (m + n? %)

Proof. For a mean squared training loss, it is easy to see that the update to the weights after
one step of gradient descent is

__n )T e _ T
AW——NZ(WOQCZ yir! &= (WX —Y)XT.

K
Given y; = Wix; + oz,

AW = —%(WOX WX -02)XT

_n _ T, N 5T
_N(W1 W) XX +aNZX )

where Z £ [21 2y .. zy] € R™N, Given X, Z, it can be shown that the distribution of the weight
update is

(n+1)(Wy — Wo)T (W7 — W0)> ;

==

AW ~ W <77(W1 — W),

where W is the Wishart distribution.
We are interested in determining the statistical properties of the generalization error for the
above random design case. We will begin with the expected mean squared error, which for a given
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test location # is £ = ||Wh@ + 02 — (Wy + AW)Z||3. Substituting AW,
_ s _n T T -
= | (W — W, N(W1 Wo) X X" ) &— O'NZX i+ 023

E[¢] = E[| (( Wo)(I — NXXT> 22]4+02E[5T 2] + o ]7\7[2151 [ix27ZX 7]

E[|A(I — aQ)z||3]+0*m + 0?a®?Nn where a £ ,Q 2 XXT AL W, — Wy
E;[0] = Tr[(I — aQ)AT A(I — aQ)]+0*m + o%a’Nn

[
= Tr[ATA — aQAT A — AT AaQ + a*?QAT AQ|+0*m + 0%a*>Nn
E[(] = Tr[ATA](1 — aN — aN + a*((n + 1)N + N?))+o?m + 0?a*Nn
= Tr[ATA](1 — 2aN + a*((n + 1)N + N?))+o’m + 0%a*Nn. [ ]

Consider m = 1 for simplicity. The above yields

(2.1) E[(] = (|W1 — Wy [3 (( — )%+’ ; >—|—0 (1+7%)-

Note that standard least squares regression yields (see Section 4)

N N
= — 2 - — P — < N<n—
E[¢] = ||[Wy — Wol|5 (1 )—I—a <1+n_N_1> for 2< N<n-—1

n

—-_n —

In the under-parametrized regime (i.e. N < n), the systematic error in Least squares (or more
precisely, Least Norm) regression drops linearly, whereas the error due to noise grows. The blow
up near N = n and the double descent behavior is attributable to noise amplification, and is - by
now - well studied [2, 3]. For N > n, there is no systematic error as is well known.

Figure 1 shows for n =40, m = 1,1 = 1, empirical evaluations (for each N, we used 500 random
designs and 500 test evaluations) compared to the above analytical expressions. W; was sampled
from the standard normal distribution and normalized such that ||[Wi|s = 1 and o2 was varied
to yield different signal-to-noise ratios. The breakdown of the different components of the testing
error is also shown for [|[Wy||3 = o2.

Examining Equation 2.1, we can determine the optimal step size

N
N—l—n+1+l|WH2n

Tlopt =
for gradient descent. In realistic scenarios, we do not know the signal to noise ratio, and thus a
practical guide would be

N _ n+1

Mot = NITnt1 =~ Ntn+tl

which for the noiseless case yields

N
E[f] = [|Wh]? (1 - N—I—n~|—1> :

This is shown to greatly reduce the generalization error as shown in Fig 3.
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Figure 1: Expected Generalization Error for n = 40;m = 1;1 = 1. Top : ||[W1|3/0? = 1; Bottom
left : |W1]|3/0? = 2; Bottom right: ||[W1]|3/0? = 0.5

3. Bounds. In the previous section, we examined the expected error in in-context regression.
In this section, we derive probabilistic bounds for the generalization error.

Theorem 3.1 (Bounds on Generalization Error). As in the prior setting, assume X = [z ...
as an i.i.d standard normal random matriz and Y = [y

c Ran

Y2

ZN|

yn| € RN ayith

Y = wipzvi + 022 and z; € R™ is an i.i.d. sample from the standard normal distribution. With
at least a probability of 1 — 0,the generalization error of gradient descent (with a step size of 1) is

bounded by

(3.1)

t<

||wy — woll3(n +1) + o*(n + N)

v

N W3

)
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where
12n4+6n2  6n+2n2 4n
A 4
V=o (2 + N3 + N2 + N)
724+ 60n+12n2 12+ 16n+4n?2  4+4n
2 2
+ o”fJwr — wol|3 ( NE + e + N >
4 (90 +48n +6n% 20 + 100 + 2n?
+ le - on2 N3 + N2

Note: For the noiseless case, therefore with at least a probability of 1 — §, we can guarantee that
the generalization error is bounded by

[90+48n+6n2 + 20+10n+2n2]
N3 N2

(3.2) ?< + |w1 — wol|3.

- | N 0

For large n, we have

n 2
(3.3) <+ (1 + \/;> [[wy — woll3-
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Figure 4: Empirical CDF and theoretical bounds for n = 40;m = 1. Left : N=8; Middle: N=20;
Right: N=60

Figure 4 verifies the empirical CDF (generated using 8 x 10% samples) for a case with signal to
noise ratio of 1.

Proof. We will use the Chebyshev concentration inequality, which requires the variance. We
first pursue the noise free case. Following the setup of Proof 1, for the noiseless case

2 2T —aQ)ATA(I — aQ)2zT (I — aQ)AT A(I — aQ)i.

sYs

where

et HQEXXT AZW, - Wy .

(02, = 2Tr[A(I — aQ)(I — aQ)ATA(I — aQ)(I — aQ)A”] + (Tr[A(I — aQ)(I — aQ)A"])
= 2Tr[B(I — aQ)(I — aQ)B(I — aQ)(I — aQ)] + (Tx[B(I — aQ)(I — aQ)))?,

where B £ AT A. We have used the following identity:

If X ~N(0,1) then Ex[z?TCTCxaTCTCx] = 2Tr(CCTCCT) + Tr[CCT]?. The manipulations
below require expectations involving permutations of products of 8th order Gaussians. See Appen-
dix.

E[(Z,.] = 2ETr[B(I — 2aQ + a”QQ)B(I — 2aQ + a*QQ)]
+ E[Tr[B(I — aQ)(I — aQ)] Tr[B(I — aQ)(I — aQ)]]
= 2ETr[BB — 4aBBQ + 24’ BBQQ + 46> BQBQ — 4a* BQBQQ
+a*BQQBQQ] + E[Tr[B]? — 4aTr[B]Tr[BQ] + 2a*Tr[B|Tr[BQQ)] + 4a*Tr[BQ|Tr[BQ)
— 40’ Tr[BQ|Tr[BQQ) + o' Tr[BQQ| Tx[BQQ)]]
= 2Tr[B?(1 — 4aN + 2a*((n + 1)N + N?)) + 2ETr[4a* BQBQ — 4a* BQBQQ
+a*BQQBQQ] + Tr[B]*(1 — 4aN + 2a*(1 +n + N)) + E[4a*Tr[BQ|Tr[BQ
— 40’ Tr[BQ|Tr[BQQ) + o' Tr[BQQ| Tx[BQQ)]]
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E[(7,.] = 2Tx[B?|(1 — 4aN + 2a*((n + 1)N + N?))
+ 8a*N((N + 1)Tr[B?] + Tr[B]?)
—8a®N((4+n+ (3+n)N + N)Tr[B?] + (2 + n + 2N)Tr[B]?)
+2a*N((20 + n(11 +n) + 21N + n(7 +n)N +2(3 +n)N? + N3)Tr[B?]
+ (10 4 5n + n? + 5(2 + n)N + 4N?)Tr[B]?)
+ Tr[B]?(1 — 4aN + 2a*((n + 1)N + N?))
+ 4a®> N (NTr[B)* + 2Tr[B?))
—4a®N(2(2 +n 4+ 2N)Tr[B?] + (2 + N(1 +n + N))Tr[B]?)
+a*N(2(10 4+ 5n 4+ n2 +5(2 + n)N + 4N?) « Tr[B?] + (n®N + 2n(3 + N + N?)
+ (14 N)(10 + N + N?))Tr[B]?)
=1+aN(-4+a2b+n+3N)+al2+N)B3+n+N)(—4+a(b+n+N)))))
(2Tr[B?] + Tr[B]?).

The varjance Var((eys) = E[(Z,] — E*[(sys] was verified using 10'® samples for several combi-

nations of N and n. Nevertheless the above formula is unwieldy. Examining the case where m =
2 2
Lwg = 0 and n = 13 Ellsys] = %5 w1 — w3 and Var[f] = [90+4§V@+6" + 20-Lnt2n } [Jwi —wo[3.

Chebyshev’s inequality states that for any random variable X, and € € R,

Var(X
Pz —E[X]| > ¢) < W
€
Thus
n+1 1 [90+48n +6n% 20+ 10n + 2n?
P([lsys — =5 llwr = woll3| <€) >1- = NE + e [lwy — w3

Define 6 £ V‘“;W. Therefore with at least a probability of 1 — .

€

1 90+487:L3+6’n2 + 20+10n2+2n2
n N N
(34) gsys < N + S le - UJ()H%

Now we consider the noise terms. Define D = A(I — aQ) —acZX7T

> = (Di + 02)Y(Di + 02)(Dz + 02)T(Di 4 02)
E;[(%] = 2Tr[DDTDDT| + 46221 DD 5 + (Tr[DDT] 4 0257 2)?
= 2Tv[DDTDDT] + 46227 DD 2 + Te[DDT)? + 0427257 2 + 20257 5 Tx[DDT]
E:;[?] = 2Te[DDT DDT] + 40*Tr[DDT| + Tr[DDT]? + (2m + m?)o? + 20°*mTr[DDT].

Let’s switch to m = 1 for tractability ¢/’ 2 A(I — aQ);CT 2 —acXT and z = ZT. The
expressions below require new identities that are presented in the Appendix.
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E::[0%] = 3(Cz 4+ )T (Cz + ¢)(Cz 4+ )T (Cz + ¢) + 60%(Cz + ¢)T (Cz + ¢) + 30*
E.::[0%] = 6 Tr[CcCTCCT) 4+ 127 COT ¢ + 3(Tr[CCT] + ¢Te)? 4 60X (Tr[CCT] + cTe) + 30
= 6a’'0? Tr[QQ] + 12a%0” Tr[BQ — 2aBQQ + a* BQQQ] + 3a’c” Tr[Q] Tr[Q]+E[(,,]
+ 6a%0? Tr[Q)(AAT — 26 AQAT + a> AQQAT) + 60%a® Tr[Q)
+ 60°Tr[B — 2aBQ + a>’BQQ)] + 30!
E[(*] = 6a’0c*Nn(N 4 n + 1) + 12a%0* Tr[B](N — 2aN(N +n + 1)
+a’N@A+n?+3n(14+N)+ NB+N))) +3a*c N (2n + Nn?)
+ 6a%0*Tr[B](Nn — 2aN(2 4+ Nn) + a*N(1 +n + N)(4 + nN))
+ 60%a*nN + 602Tr[B](1 — 2aN + a>N(N +n +1)) 4+ 30 —i—E[Egys]

For n =1, we get

E[?] =

12n + 6n2 6n + 3n?2 on
4
o <3+ NE + N2 +_”>

62

eys]

724+60n+12n2 124+ 18n+6n2 6n 6
2
4"1&{13]0‘ (i N3 + N2 + zif + ]V,> ‘%HZ[

Varl[l] = o*

91 12n + 6n2 n 6n + 2n? +4n
N3 N2 N

724 60n 4+ 12n? 12+ 16n+4n® 4+ 4n
2
+ o“Tr[B] < NE + N2 + N >
90 + 48n + 6n2 20 + 10n + 2n?
+ Tr[B)? ( 3 + N2 ) . [ ]

4. Results for Least Norm and Least Squares Regression.

Theorem 4.1 (Properties of Least Squares Regression). Given X = [x; z2 .. zy] € RPNV,

which is a i.4.d standard normal random matriz and Y = [y1 ya2 .. yn] € RPN with y; =
wfxi + 0%z and z € R™ is an i.i.d. sample from the standard normal distribution. Then, the
generalization error in Least norm (centered on Wy ) and Least Squares regression has the following

properties

N N
E[ﬁ]:\\Wl—W()]]%(l—n)—i—aQ (1+]V—1) i 1< N<n-1

_n_

3(N — 1)(N — 3)

E[EQ]:UZL(anfl)(an—B) N >n+3
B 3(n—1)(n 3) (n—1)(n—N)
E[f?] = 04(n Din N _3) + 602 (| W1 — Woll3 N D)
+3||W1—W0H§(n N)( L) R Y

n(n + 2)

Note: A version of the first two equalities can be found in Belkin et al. [3] and are verified in Figure 1.
The last two equalities above are novel to the knowledge of the author, and are verified in Figure 5
Hastie et al. [11] have derived formulae for variance under slightly more general conditions, but



GRADIENT DESCENT IN LINEAR REGRESSION

100 % ; I ‘ .
\ I 1 © LSQ (Empirical)
90 1 I | - — LSQ (Analytical) | |
! | ! x  GD (Empirical)
80| Lo || - - GD (Analytical)
v ! v Bayes
70+ I 1 .
LI ¢
\
60 L ! ‘ 1
—_— 1 \
[} \ 1
=0 L |
% ¥ \
\ v ‘
40 'y v \ 1
I 6 q
1 \
30+ X, v o\ 1
dv O« .
¥ \
20} /v Y ota 1
o T ¥ -
> -
10¥ Trssyy o
0 1 1 1 1 1
0 20 40 60 80 100 120
N
100 |, . . ‘ 100 . ; . ‘ ‘
L 1 © LSQ (Empirical) 1 1 1 © LSQ (Empirical)
90 Y 1 - - LSQ (Analytical) || 90 ' 1 1 - - LSQ (Analytical) ||
\ ! x  GD (Empirical) ' 1 ! x  GD (Empirical)
80 v \ - - GD (Analytical) || 80 ! 1 ’ - - GD (Analytical) |
70l : “ \ v Bayes 70l \ : \ v Bayes
1 ! Vo Py
L \ @ L \ 1
60 $v Lo 60 ! \
<L 1 9 \ 1
= s ; SN = 50/ e \
1 \ \ X \
a0} /v Xoy 40| v, \
30 4 N, 30 X A
r /v \Y r \
2‘59 053.\ dl \’\vvv o
20 TN e, 20| re ", e
g Tk g e lvy
10} 00000 10, 0@ TEIELE 9 0ppgl
0 : : ‘ : : 0 : ‘ : : :
0 20 40 60 80 100 120 0 20 40 60 80 100 120
N N

Figure 5: E[¢?] for n = 40;m = 1;n = 1. Top : |[|[W1|3/0? = 1; Bottom left : ||W;]3/0?

2;
Bottom right: ||W1]|3/0% = 0.5

these results are asymptotic in nature. Very recently, Zhou et al. [26] derive a related expression,
but they do not assume # and § are random as in the present context '. Belkin et al. [3] derive
statistical bounds that are related. These results can be employed with concentration inequalities
as in the previous section to construct bounds for the generalization error. Figure 6 shows such a
comparison for the n = 40 example considered in previously.

Proof. Over-parametrized case

!They have cited an unpublished, early version of this work [7]
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Figure 6: Analytical bounds for n = 40;m = 1. Left : N=60; Right: N=80

Let us consider the over-parametrized case first:

C=||(Wi = W)i+ozl[3 = |lof — 0 ZX i[5
E[(] = E[(02 — 0ZXT2) (02 — 0 ZX )]
= E[a T2+ Blo?2T X 2T 27X T 4]
=02 + PExz[Te[X T ZT ZXT]
= 0% + o Ex[Tr[X T X 1]
=0 + o’ Ex[Tr[(XXT) 1]

2 n
= 14+ —].
0<+N—n—1>

= (02—-0ZX @) (02 —0ZX Vi) (02— 0ZXT2) (05 — 0 ZXT7)
Es[0?) = o' QTe[ZX X 212X T X1 7T 4 45T ZX X T 275 4+ Te[ZX TX T 272 4 57527 2

+ 231 [ZzX T X T ZT)
Ez:[0%) = o* QTr[zT (X XT) 22l (X XT) o) 4 4T [T (X XT) 7 L2) + Te[2T (X XT) 122 + 3

+2Tr[z T (X XT)712))
E.s3[0?] = o*(6Tr[(X XT) 2] + 3Tr[ X XT) 12 4 6Te[(X XT) 7Y + 3)

o (6Te(W,, (I, N)W,, (I, N)) + 3Te(W,, (I, N))Tx(W,, (I, N)) + 6Te(W,, ' (I, N)) + 3) ]

where W, ! represents the Inverse Wishart distribution. The expectation of the last expression can
be compactly reduced using standard Wishart distribution identities, except the term involving

the trace of the product of inverse Wishart matrices, which we obtain from Pielaszkiewicz &
Holgersson [20] (page 8). With this identity,

N —1)n n(n(N —n —2)+2)
E EA]EZEAQZ 4 ( 4
KB = b0 T N DV =) T2 (N—n— 3N —n = 1)(N —n)
4 n 4
+60N_n_1+3a

4 3(IN-D{N -3)
(N—n—1)(N—-n-3)’

=0

as long as N > n + 3.
Under-parametrized case
Next, we consider the under-parameterized case for which the Lagrangian £ is defined as:

LW, A) = tr(W — Wo)(W — Wo)T) + tr(AT(WX - Y))
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where A is a matrix of Lagrange multipliers. It is easily shown that first order optimality yields
W = Wy + (Y — WoX)(XTX)"1XT. In the present setup, Y = W1 X+0Z. Therefore W =
Wo(I — P) + WiP+oZ X", where X+ 2 (XTX)"1XT and P & X(XTX)"1XxT.

For a test location Z,

(= ||(Wy = W)i4oz||3 = ||(W1 — Wo)(I — P)i+o2 — o ZX T3

Taking the expectation of the first term (wrt) &, we have Tr[(I — P)(W; — Wo)T (Wy — Wo)(I —
P)] = Tr[(I — P)(Wy — Wo)T (W1 — Wp)] Then taking the expectation of the first term wrt to X,
we have

Te[(Wh — Wo)T (Wy — Wo)E[I — PJ] = Te[(Wi — W) (Wy — W) (1 - Z) |

The contribution of the second term to E[¢] is o2.
The third term is Ez[#7 X727 Z2X*3] = Tr[XTTZTZX7*], thus Exz[Tr[XTTZTZXT])] =

Tr[X+tTX*] = Tr[(XT X)~!]. Finally,

Ex[T{(XTX) ) = —

n—N-—-1

Therefore
N N
_ _ 2 _ 2
E[ﬁ]—HWl W()H <1 n)—i—o‘ <1+n_ _1>.

Now we consider the second moment. Define C & —oX*T:c & (I — P)b;z = ZT;b & (W; —
Wo)T.

E.::[0?] = 6 Te[CCTCCT] + 127 CCT e + 3(Tr[CCT] + cTe)? + 60*(Te[CCT] + cTe) 4 302
=60 Te[ X TTXTXTTXH] +120%07 (I — P)XTTXT(I — P)b + 30 Te[ X TT X T]?
+3bT(I — P)bbT (I — P)b
+ 602 Tr[X T X TIpT (I — P)b + 60 Te[ X T X 4 60207 (I — P)b + 30
=60 Tr[(XT X)) + 30 Te[(XT X)) + 36T (1 — P)bb™ (I — P)b
+ 602 Te[(XTX)"pT (I — P)b + 60 Te[(XT X)) 4 60207 (I — P)b + 30*

(n—1)N

(n—N-3)(n—N—-1)(n—N)

N(N(n—N —2)+2)

(n—N-3)(n—N—1)(n— N)

%Hb“% <1 - JD - 604$ + 60%||b|13 (1 - Z) + 304

_ 4 3(n—1)(n—3) +602(n—1)(n N) (n—N)(n—N—i—Q).

(n—N-1)(n— N —3) nin—N—1) n(n + 2)

E[¢*] = 60*

(n—N)(n— N +2)

R e

+ 30

+ 602

10115 + 3110113

In the derivation above, we have used the following
1. Noting that I — P will have n — N unity eigenvalues (rest are zero). We will write (I — P) =
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—N . .
STV vl where v; are its eigenvectors.

n—N n—N
(I = P)ob" (I — P)o = b" Y (viv] )bb" > (vj0] )b
i=1 j=1

= (n — N)bLviol b vivfb + (n — N)(n — N — 1)bTvyol b vavd
=(n—N)bTv)*+ (n— N)(n— N —1)(bTv1)2 (b vs)?
3 1
E[b" (I — P)bb" (I — P)b] = ||b||3(n — N) <n(n+2) +(n—N — 1)n(n+2)>
(n—N)(n—N+2).

= ||b||2

The penultimate step uses identities 29 and 30 in Section 6.1.
2. X*tP = X" and hence X (I — P) =0.
3. Write X = ULVT

Te[(XTX) ' (1 - P)b = (Tx[(vEUTUSVT) ) (07 (1 - usvE(vEuTusvT)tvsuT)n)

1
_ T T
= (Zaz) (b" (I -UU" D).
i=1 1 I
Since the elements of X are i.i.d Gaussian random variables, the singular vectors U and V'
are uniformly distributed on the unit sphere. Because of the rotational invariance of the
singular vectors, the columns of U and V do not depend on the particular values of the
singular values o, and thus the two bracketed terms above are independent of each other.
Thus

E[Te[(XTX)"oT (I — P)b] = E[Te[(XTX) " EBT (I — P)b]

N N
= p|F(1-—). |
=B (1)

Figure 7 shows the different components of E[¢?] for a sample case, comparing the systematic
(terms involving ||W7 — Wpl[3), pure noise (terms involving o*) and ’interactions’ (terms involving
|W1 —Wo||30?). Even for the un-optimized gradient descent (i.e. n = 1), the implicit regularization
appears to be highly beneficial.

5. Connections to existing work & Conclusions. This study investigated the performance
of gradient descent in a in-context linear regression setting, providing qualitative insights and
quantitative characterization of the statistical properties of the generalization error. The derived
generalization error bounds were contrasted with those from least squares regression, demonstrating
that a single step of gradient descent can offer a comparable performance in certain contexts,
especially in high noise settings. An expression for the optimal step size was derived. The analysis
of systematic and noise components offered a comprehensive view of the factors contributing to
generalization error.

The fact that gradient descent can provide reasonable results with a single step has implications
for reducing computational complexity, especially in one-shot scenarios and resource-constrained
environments. Additionally, generalization error bounds were extended to least squares and least
norm regression. This work uncovered new identities involving high-order products of Gaussian
random matrices, which may have broader applications in regression tasks and beyond. All of
the derived results are verified using empirical computations on a large number of samples. It is
intriguing that in much of the literature, probabilistic bounds are often not verified using numerical
experiments (indeed, there are clear exceptions, for instance [11, 17, 26]).

Our study, while restricted in scope to well-specified models, addresses some key gaps in the lit-
erature: Despite extensive research on convergence and optimality in gradient-based methods, finite
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Figure 7: E[(?] for n = 40;m = 1 . Break down shows pure noise, interactive and systematic
components for Least Squares and one-shot gradient descent (with n = 1).

sample, non-asymptotic results that do not rely on arbitrary constants are rare in the literature, and
in the case of probabilistic bounds, this appears to be the case for linear regression as well. Closely
related to our work — though focused more on Transformers directly — Mahankali et al. [15] show
that linear self-attention layers can emulate one step of gradient descent on least-squares regression
tasks, and exhibit optimal in-context learning capabilities in synthetic linear regression scenarios.
Zhang et al [25] show that transformers emulate gradient descent by achieving global minimums
through suitable initialization, enabling competitive prediction errors on new tasks, while being
sensitive to covariate shifts. These works are focused on optimality and do not consider bounds.

Existing literature on gradient descent and both linear and non-linear regression is extensive
and rigorous, and might prompt questions about the value of a simpler setting of the present
work. Nevertheless, clean, finite sample results without arbitrary constants can yield much insight
into the behavior of more complex architectures and regression tasks. As a comparable example,
Belkin et al. [3] also consider well-specified linear regression and explain the so-called double-descent
phenomenon which challenges classical notions of the bias-variance trade-off. This finding has been
reproduced in more complex problems involving deep neural networks (e.g. [18]), and thus has led
to profound implications for the design and understanding of learning algorithms.

Overall, this study underscores the potential for a single step of gradient descent to generalize
effectively in in-context learning scenarios. Future research could extend these findings to more
complex regression tasks, including non-linear and incomplete parametrizations, i.e. considering
model form errors. Additionally, the implications of these results can be explored on transformer-
based architectures and other machine learning algorithms on practical applications.

6. Appendix.

6.1. Identities. Some of the derivations presented in the manuscript were extremely lengthy.
To aid further work, we present a compact set of identities below. A few of these can be easily

derived using the excellent Matrix reference manual [4]. Many of the below expressions, however,

require many hours of manipulations. Proofs are also provided for a few of the more complex
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identities.
All the expressions assume that z; ~ N(0,1,) ; Q = Zfil izl ; BER™™ ;he R”

1.

N gtk N

Elzzz2T] = (2 +n)I

E[Tr[BQ]] = NTr[B]

[zzTzaT22T) = (8 + 6n + n?)I

[z2T BxxT) = B + BT + Tx[B]I

[T Bz Bz] = Tr[B(B + BT)] + Tx[B]?

(THQITH{Q]] = N(2n + Nn?)

E[Tr[QQ]] = Nn(N +n +1)

The following 3 identities [20] assume invertibility of X X7 which is almost surely guaranteed
under the present settings for N > n. Switch n and N for analogous identities involving the
inverse of X7 X.

8. Tr[(XXT)™ 1 = =2

N—n—1

9. Tr[(XXT)~2] = (N=L)n

10.

11.
12.
13.
14.
15.
16.
17.
18.
19.

20.
21.
22.
23.
24.

25.
26.
27.

28.
29.

30.

— (N—n—-3)(N—n—-1)(N—n)
Tr[(XXT)~1]2 = (Nfz(fé)]zfz;:i)&?z)vfn)
[T 2bT 2z 2aTb] = bTb(n? + 6n + 8)
[(Bz +b)T (Bz +b)(Bz +b)T (Bx +b)] = 2Tr(BBT BBT) + 40" BBTb + (tr(BBT) 4+ b7b)2.
[Tr[Q]bT QQb]] = bTON (1 +n + N)(4 + nN)
[Tr[Q]bT Qb]] = bTBN (2 + nN)
[QQQI = N4 +n*+3n(1+ N)+ N3+ N))I
[
[
[

Tr[BQQ]] = Tr[B]N(N +n+1)

Tr[Q)bT Qb] = N(2 +nN)bTb

Tr[Q)bTQQb = N(1+n+ N)(4 +nN)bTb

(2T BabT z2T) = T (B + BT + Tx[B]I)

The following assume that B is symmetric

E[zT Bza® BraTz] = (n + 4)Tr[B)? + (8 + 2n)Tr[B?]

[
E|
E[Tr[BQBQQ]] = N((4 +n+ (3+n)N + N?)Tr[B? + (2 + n + 2N)Tr[B]?)
E[Tr[BRQABQQ]] = N((20 + n(11 + n) + 21N + n(7 4+ n)N + 2(3 + n)N2 + N3)Tr[B?] +
(
E[Tr[BQ|Tr[BQ]] = (NTr[B]? + 2Tr[B?)) N
E[Tr[BQ|Tr[BQQ]] = N(2(2 + n + 2N)Tr[B?] + (2 + N(1 +n + N))Tr[B]?)
E[Tr[BQQ|Tr[BQQ]] = N(2(10 + 5n + n? +5(2 4+ n)N +4N?)Tr[B?] + (n®N + 2n(3 + N +
N?%)+ (14 N)(10 + N + N?))Tr[B]?)
The following assume that ¢; and g; are n-dimensional orthonormal vectors uniformly dis-
tributed on the surface of a sphere.
E[(b"¢:)*] = [[blI3

E[(b7g:)"] = bl ey

E[(b"4:)*(5"4)%] = [1b]13 5573

6.2. Some Proofs.
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6.2.1. E[Tr

E[BQBQQ)

Tr[E[BQBQQ]

6.2.2. E[Tr

E[BQQBQQ]] = E !B @ Qi> (fj Qj) B (g: Qk) (gj @)]

[BQBQQY].
(£0)e(50) )
s ($0) )

=E

= NE

=N (E[BQ1BQ1Q1 + (N —1)BQ1BQ2Q2 + 2(N

=N ((n+4)Tx[B]* + (8 + 2n)Tr[B?] + (N —

[BRRBQAQY].

= NE

—1)BQ1BQ1Q2 + (N —
DTr[B?)(n +2) +2(N —
=N(4+n+ 3+n)N+ N)Tr[B?] + (2 +n + 2N)Tr[B)?)

15

1)(N —2)BQ1BQ2Q:

1)(2Tr[B?] 4 Tx[B)?) + (N

This requires quartic products of outer products of Gaussians. To track the permutations, we
take N=4 and represent k slices of the i,j interactions. The rows of the slices represent ); and

columns represent ();. The color coding distinguishes the eight unique interactions.

1

111

111

111 111 Vv VI VI 11T VI

Vv

11T

Vv

111 11 v v VII 111 VI VI VI v VI VIII VI v VIII VI
111 v 11 v VI VI v VIII VII VI 111 VI VI VIII v VI
11T v v 11 VI VI VIII v VI VIII VI v VII VI VI 111

Tr[E[BQQBQQ]| = NTr |E

o(e) (Zo)r(2e)e|

= NTY[E[BQ:1Q1BQ1Q1]]

+ N(N — 1)Tr[E [BQ2Q2BQ1Q1]]

+ 4N (N — 1)Tr[E [BQ1Q2BQ1Q1]]

+2N(N — 1)(N — 2)Tr[E [BQ2Q3BQ1Q1]]

+ N(N — 1)Tr[E [BQ1Q2BQ2Q1]]

+4N(N —1)(N — 2)Tx[E [BQ1Q3BQ2Q1]]

+ N(N — 1)Tr[E [BQ2Q1 BQ2Q1]]

+ N(N = 1)(N = 2)(N — 3)Tr[E [BQ4Q3BQ2Q1]]
= N((n® + 24 + 10n)Tx[B]* + (2n® + 20n + 48)Tr[B?])
+ N(N — 1)Tr[B?|(2 4 n)?

+4N(N = 1)((n + 4)Tx[B]* + (8 + 2n) Tr[B?])
+2N(N — 1)(N — 2)Te[B(2 +n)

+ N(N — 1)(4Te[B%] + Tr[B)%(4 + n))

+4AN(N — 1)(N - 2)(2Tx[B?] + Tx[B]?)
+N(N = 1)(Te[B?)(6 + n) + 2Tx[ B])

+N(N = 1)(N —2)(N - 3)Tr[B7].
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6.2.3. E[Tr[BQQ|Tr[BQ]].

= NE[(zTBQz1 + I BQzo + ... + 25 BQzy)xT Bxy]
= NE[(zI B(z12T + zo2l + ... + zyzl)z12T Bay]

+ NE[(2 B(z12T + 202 + ... + zyaX) x0T Bay]

+ ...

+ NE[(z§,B(
— NE[(TB(
+ N(N — D)E[(2 B(z12T + 292 + ... + znaX)zoz] Bay]
= NE[(zT B(z12T + 202l + ... + zyz)z12T Bay]

T T T T
x12] + X275 + ... + xNTN)TNT] By

T T T T
x12] + X275 + ... + xNTN )12 B

+ N(N — 1)E[zf Bzy2T zo2T B
N(N — VE[z] Bxyal 2oz Bay]
N(N = 1)(N — 2)E[z] Bxsal zoaT Bay)
((n 4+ 4)Tx[B)* + (8 4 2n) Tr[B?] + (N — 1)(2Tr[B?] + Tr[B]?))

N(N —1)(2Tx[B?] + Tr[B]?)
N(N —1)(2 +n)Tr[B]?
N(N —1)(N - 2)Tx[B]?

6.2.4. E['I‘r[BQQ]Tr[BQQ]]. This involves terms of the form E[x?Bxix?xjw{Bkagxl]
Term 1

ElzT Bzyat ool BayaT 1] = (n® + 24 + 10n)Tr[B]? + (202 + 20n + 48)Tr[B?]
Term II
E[zf Broat xoxt BxyaT 1] = Tr[B*(n + 2)?
Term IIT
E[zf BxyaT woxt BxyaT 2] = ElaT BxyaT BxyaTay] = (n + 4)Te[B]? + (8 + 2n)Tr[B?]
Term IV

B[zl Bzoat xsat Bxyat 2] = Elzd BxoaT Bryat zy] = Tr[B]?(2 + n)
Term V
B[z} BxiaT xoat Broxl 1] = B[zl Crga” 2021b] = E[a” (C + CT)b 4 o Tr[C]D)]
= B[z B(Bz12T + 2127 B)xy + 2T BTr[Bxat]z]
= Elz] B%x12T 21 + 227 Bayad Bay|
= Tr[B%(2 + n) + 4Tr[B?] + 2Tr[ B
Term VI

B[zl B2t w32 Baoal x1]) = Elal BxiaT w327 Bay] = B[z BayaT Bxy) = 2Tv[B?] + Tr[B)?
Term VII
E[zT Broxd x12T Beoal 2] = E[Tv[Broxl (Broal + zo2l B)] + Tr[Baoal]?]
= R[Tr[Baozl (Broxl + zoxl B)] + Tr[Baozl]?]
= 2E[zd Baoxd Bao] + B2l 2oa] B?2)
= 4Tr[B?) 4 2Tx[B]? + (2 + n) Tr[B]
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Term VIII
E[2] Bsal xyaT Baoalzi] = Elz] BayaT Bxy) = Tr[B)?

6.2.5. E[Tr[Q]b7 QQb].

N N
= NE |zTzbT ZQ]' ZQk b
k=1

j=1
=N (E [x{a:lexlx{xlmlTb + (N = Datzb woal zoxlb + 2(N — Dtz b 212t 292l b + (N — 1)(N — 2)at 2107 4
= Nb"b ((n? +6n+8) + (N —1)(n(2+n)) +2(N — 1)(2+n) + (N — 1)(N — 2)n)
=b'bN(1 +n+ N)(4 +nN)
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