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ABSTRACT. This is the continuation of the article [Z23]. In this article we will give a de-
tailed analysis of the quantum difference equation of the equivariant K-theory of the affine
type A quiver varieties. We will give a good representation of the quantum difference op-
erator ML(z) such that the monodromy operator Bm(z)in the formula can be written in
the Uq(sl2)-form or in the Uq(ĝl1)-form. We also give the detailed analysis of the connec-
tion matrix for the quantum difference equation in the nodal limit p → 0. Using these
two results, we prove that the degeneration limit of the quantum difference equation is
the Dubrovin connection for the quantum cohomology of the affine type A quiver vari-
eties, and the monodromy representation for the Dubrovin connection is generated by the
monodromy operators Bm.
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1. INTRODUCTION

This paper is a continuation of the paper [Z23]. We do the explicit calculation for the
quantum difference equation for the affine type A quiver varieties M(v, w) with stability
condition θ = (1, 1, · · · , 1).

Quantum difference equation is the difference equation analog of the quantum differ-
ential equation in [MO12]. It is the difference equation of the capping operator J(u, z) ∈
KT(X×X)loc[[qL]]L∈Pic(X) described in [OS22] and [O15]. Geometrically speaking, cap-
ping operator is the operator giving the K-theoretic counting of the stable quasi-map
from P1 to the fixed Nakajima quiver varieties M(v, w). The difference equation can be
written as:

Ψ(qLz) = ML(z)Ψ(z) ∈ KT(X)loc ⊗C((Pic(X)))(1.1)

The fundamental solution around z = 0 gives strong connection to the capping op-
erator J(u, z). The solution Ψ(z) around different region also gives rise to the analytic
continuation of J(u, z) over the Picard torus Pic(X)⊗C×, which relates the capping op-
erator of quiver varieties of different stability conditions.

To solve the quantum difference equation, we need to first figure out the expression
of the quantum difference operator ML(z). Generally it is conjectured that ML(z) can
be expressed in terms of the generators of the corresponding quantum affine algebra
Uq(gQ). The first systematic construction is given by Okounkov and Smirnov [OS22].
They use the quantum algebra defined by the RTT formalism of the K-theoretic stable
envelope to express the quantum difference operator ML(z), and the formula can be
written as the product of the monodromy operators Bw(z):

ML(z) = L ∏
w∈Walls

Bw(z)(1.2)

Each monodromy operator Bw(z) ∈ Ûq(gw) lies in the completion of the slope subal-

gebra Ûq(gw) and can be solved via the ABRR equation in [OS22] and [ABRR97].

It is conjectured that the quantum algebra Uq(ĝQ) constructed via the K-theoretic sta-
ble envelope is isomorphic to the quantum affine algebra of the corresponding quiver
type Uq(ĝQ). The conjecture implies that the quantum difference operator has the ex-
plicit expression in terms of the generators of the quantum affine algebra Uq(ĝQ).

On the algebraic side, one can construct the analog of the quantum difference equation
on the quantum affine algebra Uq(ĝQ) [Z23]. For the affine type A case, the construction

is based on the slope factorization of the quantum toroidal algebra Uq,t(
ˆ̂sln) given by

[N15]. The formula for the slope subalgebra gives the explicit form of the quantum dif-
ference operator and the monodormy operator. The algebraic construction of the quan-
tum difference equation is equivalent to the original quantum difference equation once
the conjecture about the quantum algebra and K-theoretic stable envelope is true.
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1.1. Quantum difference equation for M(v, w). In this paper we study the quantum
difference equation of the equivariant K-theory of the affine type A quiver varieties
M(v, w) from the algebraic construction given in [Z23]. The first main result is that
the quantum difference operator ML(z) can have a good representation:

Theorem 1.1. (See Theorem 6.3) For the generic path [−s−L,−s) between −s−L and −s
of the quantum difference operator:

ML(z) = L
→
∏

m∈Walls
Bm(1.3)

with s being generic. Then each Bm can be written either in one of the following form:

• Uq(sl2) type:

(1.4)

→∞
∏
k=0

expq2(−(q− q−1)zk(vγ)pkm·(vγ)q−k(vγ)T(( n2r−1
2 )θ+e1)−2−2δ1γ fγe′γ))

=
∞
∑

n=0

(q− q−1)n

[n]q2 !
(−1)n

∏
n
ν=1(1− zvγ pm·vγq−ν(vγ)T(( n2r−1

2 )θ+e1)−2−2δ1γ)
f n
γ e′nγ

• Uq(ĝl1) type.

(1.5) m(
g

∏
h=1

(exp(−
∞
∑
k=1

nkq−
k|δh|

2

1− z−k|δh|pkm·δh q−
k|δh|

2

αm,h
−k ⊗α

m,h
k )

Roughly speaking, the theorem implies that for the generic slope points m ∈ Qn,
the corresponding monodromy operator Bm(z) can be totally written in either Uq(sl2)

type or Uq(ĝl1) type. This explains the philosophy that the slope subalgebra Bm can be
thought of as being generated by the wall subalgebra Uq(gw) such that the wall w ⊂ Qn

contains the slope point m.

If we do the comparison with the quantum difference operators given by Okounkov-
Smirnov in [OS22], the first thing we can check is the comparison between the wall set
Wall(M(v, w)) defined in [Z23] and the set of points on the walls of K-theoretic stable
envelope for M(v, w). As expected, these are sets are actually the same:

Proposition 1.2. (Prop 5.4, Prop 5.5) The wall set Wall(M(v, w)) coincides with the set of
points WallStab(M(v, w)) in the wall given by the K-theoretic stable envelope of KT(M(v, w))

1.2. Connection matrix of the quantum difference equation. One important aspects
about the quantum difference equation is the connection matrix between the solution
expanding from z = 0θ1 to z = 0θ2 . It is defined as:

Monθ1 ,θ2(z) := Ψθ1(z)−1Ψθ2(z)(1.6)
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Here θi ∈ (Z − {0})n such that 0θ = 0 if θ > 0, 0θ = ∞ if θ < 0. Ψθ(z) is the
fundamental solution around z = 0θ.

In the settings of the Fuchsian q-difference equation, the connection matrix plays the
role as the monodromy operator in the settings of the differential equations with regular
singularities.

For simplicity, in this paper we only give the explicit calculation of the connection
matrix for θ1 = θ = (1, 1, · · · , 1), θ2 = −θ = (−1,−1, · · · ,−1). Part of the reason
is that this connection matrix Monθ1 ,θ2(z) can be thought of as the "largest" connection
matrix with the factorization:

Monθ,−θ(z) = Monθ,θ1(z)Monθ1 ,θ2(z) · · ·Monθn ,−θ(z)(1.7)

If we know the fundamental solutions, the connection matrix can be computed out
via the terms in the fundamental solutions. The main result for the computation is the
p→ 0 limit of the regular part of the connection matrix Monreg(zps):

Theorem 1.3. (Theorem 6.6) For generic s ∈ Qn such that si ≥ 0, si < 0 the connection matrix
as the following asymptotic at p→ 0:

lim
p→0

Monreg(psz) =

{
∏
←
0≤m<s(B

∗
m)−1 · T, s ≥ 0

∏s<m<0 B∗m · T, s < 0
(1.8)

Here 0 ≤ m < s means the slope points m in one generic path from 0 to the point s without
intersecting s.

Here Bm = m((1 ⊗ Sm)(R−m)−1). In the case of finite A type, the operator Bm was
identified as the generators of the monodromy representation of the trigonometric Casimir
connection [GL11].

1.3. Degeneration of the quantum difference equation. One important feature about
the quiver variety M(v, w) is the Dubrovin connection over its quantum cohomology
H∗T(M(v, w))[[qd]]d∈H2(M(v,w))e f f

.

For the Dubrovin connection for the affine type A quiver varieties M(v, w), it can be
written as:

∇λ = dλ −Q(λ), λ ∈ H2(M(v, w),Z)(1.9)

Here Q(λ) = c1(λ) ∪ (−) + · · · is the quantum multiplication operator. It has been
proved by Maulik-Okounkov [MO12] that the quantum multiplication operator can be
written as:

Q(λ) = c1(λ) + ∑
α>0

(α, λ)
1− q−α

eαe−α + constant(1.10)
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where e±α ∈ gMO are the generators of the Maulik-Okounkov Lie algebra of the affine
type A, and constant stands for some scaling operators. It has been proved in [BD23]
that the Lie algebra gMO is isomorphic to the affine Lie algebra ŝln, which means that the
quantum multiplication operator can be written as:

Q(λ) = c1(λ) ∪−+ ∑
i< j

(λ · [i, j))
1− q−[i, j)

E[i, j)E−[i, j) + const(1.11)

where E±[i, j) ∈ ŝln are the generators of the affine Lie algebra ŝln.

The important feature of the Dubrovin connection is that the solution and the mon-
odromy has played the vital role in the Gromov-Witten theory of the quiver varieties,
while it can also be expressed in terms of the representation theory of the quantum
groups. It is also conjectured that the monodromy representation of the Dubrovin con-
nection for M(v, w) should be generated by Bw := m((1 ⊗ Sw)(R−w )−1) with w ⊂
Pic(M(v, w)) ⊗ Q the wall hyperplane in the rational Picard group. R−w is the lower
triangular R-matrix for the wall subalgebra Uq(gw).

The second main result of the paper is that we can prove the algebraic version of the
conjecture:

Theorem 1.4. (Theorem 7.7) The monodromy representation:

π1(Pr\Sing)→ End(HT(M(v, w)))(1.12)

of the Dubrovin connection is generated by Bm = m((1⊗ Sm)(R−m)−1).

The proof of the theorem relies on two facts: We take suitable degeneration limit of
the quantum difference equation for M(v, w) , the quantum difference equation would
degenerate to the Dubrovin connection of the quantum cohomology of H∗T(M(v, w)).
This can be stated as the following theorem:

Theorem 1.5. (Theorem 7.2) The degeneration limit of the quantum difference operator ML(z)
coincides with the quantum multiplication operator Q(L) up to a constant operator.

This theorem tells us that one could describe the monodromy representation of the
Dubrovin connection can be described in terms of the degeneration limit of the connec-
tion matrix in 7.32:

Trans(s) = lim
τ→0

Mon(z = e2π is, t1 = e2π ih̄1τ , t2 = e2π ih̄2τ , q = e−2π iτ)(1.13)

It turns out that we could identify Trans(s) with the p→ 0 limit of the regular part of
the connection matrix:

Proposition 1.6. (Proposition 7.4) Trans(s) = limp→0 Monreg(ps, e2π ih̄1 , e2π ih̄2 , p) for s ∈
Rn\Walls
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The monodromy representation is generated by Trans(s′)−1Trans(s) for different generic
s′, s. For s′, s close enough, Trans(s′)−1Trans(s) is equal to Bm. Thus in this way we have
finished the proof of Theorem 7.7.

The proof of the degeneration of the connection matrix to the monodromy represen-
tation heavily uses the fact on the modular duality for the Riemann theta function. For
completeness we will review the Riemann theta function on the abelian variety in the
appendix.

It is worth noting that the construction of the quantum difference equations in [Z23]
can be generalized to arbitrary quivers and arbitrary weighted modules of the corre-
sponding shuffle algebras S. We will give the construction in [Z24]. For the quiver
of finite ADE type, the consturction will be just the copy of the construction given by
Etingof and Varchenko in [EV02], and the degeneration to the corresponding trigono-
metric Casimir connection is given in [BM15].

1.4. Structure of the paper. The structure of the paper goes in the following way. In
section 2 and section 3, we will introduce some basic ingredients about the quantum
toroidal algebra Uq,t(

ˆ̂sln), affine Yangians Yh̄1 ,h̄2(ŝln) and their action on the equivariant
K-theory KT(M(w)) and on the equivariant cohomology H∗T(M(w)) of the affine type
A quiver varieties. We will connect them by the degeneration limit in section 4. Also we
will introduce the slope factorization of the quantum toroidal algebra in section 5.

In section 6 we will review the construction of the quantum difference equation for the
affine type A quiver varieties, and we show that the wall set of the affine type A quiver
varieties coincides with the wall set given by the K-theoretic stable envelopes.

In section 7 we will give the detailed analysis of the quantum difference equation, we
will show that the quantum difference operator admits good representation, which is
Theorem 6.3 and use this result to prove that the degenration limit of the quantum dif-
ference equation is equivalent to the Dubrovin connection (Theorem 7.2) and the mon-
odromy representation is generated by the monodromy operators (Theorem 7.7).

In section 9, we will show some computation for the examples of the equivariant
Hilbert scheme Hilbn([C2/Zr]).

Acknowledgments. The author would like to thank Andrei Negut, Andrei Okounkov,
Andrey Smirnov and Hunter Dinkins for their helpful discussions on quantum groups
and stable envelopes. The author is supported by the international collaboration grant
BMSTC and ACZSP grant. Part of this work was done while the author was visiting
Department of Mathematics at Columbia University and Mathematics Department of
University of North Carolina at Chapel Hill. The author thanks for their hospitality and
provisio of excellent working environment.
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2. QUANTUM TOROIDAL ALGEBRA AND QUIVER VARIETIES

2.1. Quantum toroidal algebra Uq,t(
ˆ̂sln). The quantum toroidal algebra Uq,t(

ˆ̂sln) is a
Q(q, t)-algebra defined as:

Uq,t(
ˆ̂sln) = Q(q, t)⟨{e±i,d}

d∈Z
1≤i≤n, {ϕ±i,d}

d∈N0
1≤i≤n⟩/( )(2.1)

The relation between the generators can be described in the generating functions:

(2.2) e±i (z) = ∑
d∈Z

e±i,dz−d ϕ±i (z) =
∞
∑
d=0
ϕ±i,dz∓d

withϕ±i,d commute among themselves and:

(2.3)

e±i (z)ϕ±
′

j (w) ·ζ
(

w±1

z±1

)
=ϕ±

′
j (w)e±i (z) ·ζ

(
z±1

w±1

)
e±i (z)e±j (w) ·ζ

(
w±1

z±1

)
= e±j (w)e±i (z) ·ζ

(
z±1

w±1

)
[
e+i (z), e−j (w)

]
= δ

j
iδ

( z
w

)
·
ϕ+

i (z)−ϕ−i (w)

q− q−1

Here i, j ∈ {1, · · · , n} and z,w are variables of color i and j. Here:

(2.4) ζ

(
xi

x j

)
=

[
x j

qtxi

]δi
j−1

[
tx j
qxi

]δi
j+1

[
x j
xi

]δi
j
[

x j
q2xi

]δi
j

with the Serre relation:
(2.5)
e±i (z1) e±i (z2) e±i±′1(w) +

(
q + q−1

)
e±i (z1) e±i±′1(w)e±i (z2) + e±i±′1(w)e±i (z1) e±i (z2) +

+ e±i (z2) e±i (z1) e±i±′1(w) +
(

q + q−1
)

e±i (z2) e±i±′1(w)e±i (z1) + e±i±′1(w)e±i (z2) e±i (z1) = 0

The standard coproduct structure is imposed as:

(2.6) ∆ : Uq,t(
ˆ̂sln) −→ Uq,t(

ˆ̂sln)⊗̂Uq,t(
ˆ̂sln)

(2.7) ∆
(
e+i (z)

)
=ϕ+

i (z)⊗ e+i (z) + e+i (z)⊗ 1 ∆
(
ϕ+

i (z)
)
=ϕ+

i (z)⊗ϕ+
i (z)

∆
(
e−i (z)

)
= 1⊗ e−i (z) + e−i (z)⊗ϕ−i (z) ∆

(
ϕ−i (z)

)
=ϕ−i (z)⊗ϕ−i (z)
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2.2. Quantum affine algebra Uq(ĝln). The quantum affine algebra Uq(ĝln) is a Q(q)-
algebra generated by:

Q(q)⟨e±[i; j],ψ
±1
s , c±1⟩s∈{1,··· ,n}

(i< j)∈Z2/(n,n)Z(2.8)

The generators e±[i; j) satisfy the well-known RTT relation:

R(
z
w
)T+

1 (z)T+
2 (w) = T+

2 (w)T+
1 (z)R(

z
w
)(2.9)

R(
z
w
)T−1 (z)T−2 (w) = T−2 (w)T−1 (z)R(

z
w
)(2.10)

R(
z

wc
)T−2 (w)T+

1 (z) = T+
1 (z)T−2 (w)R(

zc
w
)(2.11)

Here T±(z) are the generating function for e±[i; j):

(2.12)

T+(z) =
i≤ j

∑
1≤i≤n

e[i; j)ψi · E j mod n,iz
⌈

j
n

⌉
−1

T−(z) =
i≤ j

∑
1≤i≤n

e−[i; j)ψ
−1
i · Ei, j mod nz−

⌈
j
n

⌉
+1

And R(z/w) is the standard R-matrix for gln:

(2.13) R
( z

w

)
= ∑

1≤i, j≤n
Eii ⊗ E j j

(
zq− wq−1

w− z

)δi
j

+
(

q− q−1
)

∑
1≤i ̸= j≤n

Ei j ⊗ E ji
wδi> j zδi< j

w− z

In addition, we have the relations:

(2.14) ψk · e±[i; j) = q±
(
δi

k−δ
j
k

)
e±[i; j) ·ψk ∀ arcs[i; j) and k ∈ Z

The algebra Uq(ĝln) has the coproduct structure given by:

∆(T+(z)) = T+(z)⊗ T+(zc1), ∆(T−(z)) = T−(zc2)⊗ T−(z)(2.15)

and the antipode map:

S(T±(z)) = (T±(z))−1(2.16)

The corresponding antipode map elements can be written as:

(2.17)

S+(z) =
i≤ j

∑
1≤i≤n

(−1) j−i f[i; j)ψ j · E j mod n,iz
⌈

j
n

⌉
−1

S−(z) =
i≤ j

∑
1≤i≤n

(−1) j−i f−[i; j)ψ
−1
j · Ei, j mod nz−

⌈
j
n

]
+1
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Unwinding the relation we have that:

e±[a,c)e±[b,d)

qδ
b
a−δd

b+δ
d
a
−

e±[b,d)e±[a,c)

qδ
b
c−δd

b+δ
d
c

= (q− q−1)[
x≡d

∑
a≤x<c

e±[b,c+d−x)e±[a,x) −
x≡b

∑
a<x≤c

e±[x,c)e±[a+b−x,d)]

(2.18)

[e[a,c), e−[b,d)] = (q− q−1)[
x≡b

∑
a≤x<c

e[c+b−x,d)e[a,x)

qδ
b
c+δ

a
c−δa

b

ψx

ψc
−

x≡d

∑
a<x≤c

e[x,c)e−[b,a+d−x)

q−δ
b
a+δ

d
b−δ

d
a

ψx

ψa
](2.19)

The isomorphism Uq(ĝln)
∼= Uq(ŝln)⊗Uq(ĝl1) is given by the following:

e[i;i+1) = x+i (q− q−1)(2.20)

e−[i;i+1) = x−i (q
−2 − 1)(2.21)

For the generators {pk}k∈Z of the Heisenberg algebra Uq(ĝl1) ⊂ Uq(ĝln), they satisfy
the following commutation relations:

[pk, p−k] =
cnk − c−nk

nk
, nk =

qk − q−k

k
(2.22)

It can be packaged into the following proposition proved by Negut in [N19]:

Proposition 2.1. There exists constantsα1,α2, · · · ∈ Q(q) such that:

(2.23) f±[i; j) =

⌊
j−i
n

⌋
∑
k=0

e±[i; j−nk)g±k

Here ∑
∞
k=0 g±kxk = exp(∑∞

k=1αk p±kxk)

This formula allows us to obtain the expression for p±k iteratively.

2.3. Shuffle algebra realization of Uq,t(
ˆ̂sln). Here we review the reconstruction of the

quantum toroidal algebra via the shuffle algebra and the induced slope factorization of
the quantum toroidal algebra. For details see [N15].

Fix a fractional field F = Q(q, t) and consider the space of symmetric rational func-
tions:

Ŝym(V) :=
⊕

k=(k1 ,··· ,kn)∈Nn

F(· · · , zi1, · · · , ziki , · · · )
Sym
1≤i≤n(2.24)

Here "Sym" means to symmetrize the rational function for each zi1, · · · , ziki . We endow
the vector space with the shuffle product:

F ∗ G = Sym[
F(· · · , zia, · · · )G(· · · , z jb, · · · )

k!l!

1≤i≤n

∏
1≤a≤ki

1≤ j≤n

∏
k j+1≤b≤k j+l j

ζ(
zia

z jb
)](2.25)
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We define the subspace S±k ⊂ Ŝym(V) by:

S+ := {F(· · · , zia, · · · ) = r(· · · , zia, · · · )
∏

1≤i≤n
1≤a ̸=b≤ki

(qzia − q−1zib)
}(2.26)

where r(· · · , zi1, · · · , ziki , · · · )
1≤i≤n
1≤a≤ki

is any symmetric Laurent polynomial that satis-
fies the wheel conditions:

r(· · · , q−1, t±, q, · · · ) = 0(2.27)

for any three variables of colors i, · · · , i± 1, i.

The shuffle algebraS+ has two natural bigrading given by the number of the variables
in each color k ∈ Nn and the homogeneous degree of the rational functions d ∈ Z:

S+ =
⊕

(k,d)∈Nn×Z
S+

k,d(2.28)

Similarly we can define the negative shuffle algebra S− := (S+)op which is the same
as S+ with the opposite shuffle product. Now we slightly enlarge the positive and neg-
ative shuffle algebras by the generators {ϕ±i,d}

d≥0
1≤i≤r:

S≥ = ⟨S+, {(ϕ+
i,d)

d≥0
1≤i≤r}⟩, S≤ = ⟨S−, {(ϕ−i,d)

d≥0
1≤i≤r}⟩(2.29)

And hereϕ±i,d commute with themselves and have the relation with S± as follows:

ϕ+
i (w)F = Fϕ+

i (w)
1≤ j≤n

∏
1≤a≤k j

ζ(w/z ja)

ζ(z ja/w)
(2.30)

ϕ−i (w)G = Gϕ−i (w)
1≤ j≤n

∏
1≤a≤k j

ζ(z ja/w)

ζ(w/z ja)
(2.31)

The Drinfeld pairing ⟨−,−⟩ : S≤ ⊗S≥ → Q(q, t) between the positive and negative
shuffle algebras S≥, ̸= is given by:

⟨ϕ−i (z),ϕ+
j (w)⟩ = ζ(w/z)

ζ(z/w)
(2.32)

⟨G, F⟩ = 1
k!

∫ |q|<1|p|

|zia|=1

G(· · · , zia, · · · )F(· · · , zia, · · · )
∏

1≤i, j≤n
a≤ki ,b≤k j

ζp(zia/z jb)

1≤i≤n

∏
1≤a≤ki

dzia

2π izia
|p 7→q(2.33)

for F ∈ S+, G ∈ S−. Here ζp is defined as follows:

ζp(
xi

x j
) = ζ(

xi

x j
)
[

x j
p2xi

]
δi

j

[
x j

q2xi
]
δi

j
(2.34)
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This defines the shuffle algebra S := S≤⊗̂S≥. Also the coproduct ∆ : S → S⊗̂S is
given by:

∆(ϕ±i (w)) =ϕ±i (w)⊗ϕ±i (w)

(2.35)

∆(F) = ∑
0≤l≤k

[∏
b>l j
1≤ j≤nϕ

+
j (z jb)]F(· · · , zi1, · · · , zili ⊗ zi,li+1, · · · , ziki , · · · )

∏
a≤li
1≤i≤n ∏

b>l j
1≤ j≤n ζ(z jb/zia)

, F ∈ S+

(2.36)

∆(G) = ∑
0≤l≤k

G(· · · , zi1, · · · , zili ⊗ zi,li+1, · · · , ziki , · · · )[∏
b>l j
1≤ j≤nϕ

−
j (z jb)]

∏
a≤li
1≤i≤n ∏

b>l j
1≤ j≤n ζ(zia/z jb)

, G ∈ S−

(2.37)

In human language, the above coproduct formula means the following:For the right
hand side of the formula, in the limit |zia|<< |z jb| for all a ≤ li and b > li, and then place
all monomials in {zia}a≤li to the left of the ⊗ symbol and all monomials in {z jb}b>l j to
the right of the ⊗ symbol. Also we have the antipode map S : S → S which is an
anti-homomorphism of both algebras and coalgebras:

S(ϕ+
i (z)) = (ϕ+

i (z))−1, S(F) = [
1≤i≤n

∏
1≤a≤ki

(−ϕ+
i (zia))

−1] ∗ F(2.38)

S(ϕ−i (z)) = (ϕ−i (z))−1, S(G) = G ∗ [
1≤i≤n

∏
1≤a≤ki

(−ϕ−i (zia))
−1](2.39)

The following theorem has been proved by[N15]:

Theorem 2.2. There is a bigraded isomorphism of bialgebras

Y : Uq,t(
ˆ̂sln)→ S(2.40)

given by:

Y(ϕ±i,d) =ϕ
±
i,d, Y(e±i,d) =

zd
i1

[q−2]
(2.41)

2.4. Slope subalgebra of the shuffle algebra. One of the wonderful property for the
shuffle algebra is that it admits the slope factorization.

For the definition of the slope subalgebra see section 5.2 in [N15]
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It is known that the slope subalgebra Bm for the quantum toroidal algebra Uq,t(
̂̂
sln) is

isomorphic to:

Bm ∼=
g⊗

h=1

Uq(ĝllh)(2.42)

For the proof of the above isomorphism 2.42 see [N15]. The isomorphism is con-
structed in the following way. For m ∈ Qn, it is proved in [N15] that as the shuffle
algebra, the Drinfeld double of the following:

Bm := B+
m ⊗C[ϕ±i,0]⊗B−m/(relations)(2.43)

Here B+
m and B−m is defined as (5.29) and (5.30) in [N15], and we omit the details of

the definition here. In this section we use the generators of the slope subalgebra Bm as
the definition of the slope subalgebra.

Let us define the generators of the slope algebra Bm. For m · [i; j⟩ ∈ Z, we denote the
following elements:

(2.44) P±m
±[i; j) = Sym

∏
j−1
a=i z⌊mi+...+ma⌋−⌊mi+...+ma−1⌋

a

tind dm
[i, j⟩q

i− j
∏

j−1
a=i+1

(
1− q2za

za−1

) ∏
i≤a<b< j

ζ

(
zb
za

) ∈ S±

(2.45) Q±m
∓[i; j) = Sym

∏
j−1
a=i z⌊mi+...+ma−1⌋−⌊mi+...+ma⌋

a

t−indm
[i, j) ∏

j−1
a=i+1

(
1− q1za−1

za

) ∏
i≤a<b< j

ζ

(
za

zb

) ∈ S∓

Here indm
[i; j) is defined as:

indm
[i; j) =

j−1

∑
a=i

(mi + · · ·+ ma − ⌊mi + · · ·+ ma−1⌊)(2.46)

The positive and negative part of the slope subalgebra B±m for the shuffle algebra S±

can be defined as the algebra generated by {Pm
±[i; j)}i≤ j and {Qm

±[i; j)}i≤ j. And the slope
subalgebra Bm is the similarly the Drinfeld double of B±m with the neutral elements
{ϕ±[i; j)}.

We can check that the antipode map Sm : Bm → Bm has the following relation:

Sm(Pm
[i; j)) = Qm

[i; j), Sm(Qm
−[i; j)) = Pm

−[i; j)(2.47)

(2.48) ∆m

(
Pm
[i; j)

)
=

j

∑
a=i

Pm
[a; j)ϕ[i;a) ⊗ Pm

[i;a) ∆m

(
Qm

[i; j)

)
=

j

∑
a=i

Qm
[i;a)ϕ[a; j) ⊗Qm

[a; j)
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(2.49)

∆m

(
Pm
−[i; j)

)
=

j

∑
a=i

Pm
−[a; j) ⊗ Pm

−[i;a)ϕ−[a; j) ∆m

(
Qm
−[i; j)

)
=

j

∑
a=i

Qm
−[i;a) ⊗Qm

−[a; j)ϕ−[i;a)

Here ∆m is defined as (5.27) and (5.28) in [N15]. The isomorphism 2.42 is given by:

e[i; j) = Pm
[i; j)h

, e−[i; j) = Qm
−[i; j)h

, ϕk =ϕ[k;vm(k))(2.50)

2.5. Geometric action on KT(M(w)). We first fix the notation for the Nakajima quiver
varieties.

Given a quiver Q = (I, E), consider the following quiver representation space

Rep(v, w) :=
⊕
h∈E

Hom(Vi(h), Vo(h))⊕
⊕
i∈I

Hom(Vi, Wi)(2.51)

here v = (dim(V1), · · · , dim(VI)) is the dimension vector for the vector spaces at the
vertex, w = (dim(W1), · · · , dim(WI)) is the dimension vector for the framing vector
spaces.

Denote Gv := ∏i∈I GL(Vi) and Gw := ∏i∈I GL(Wi). There is a natural action of Gv and
Gw on Rep(v, w), and thus a natural Hamiltonian action on T∗Rep(v, w) with respect to
the standard symplectic formω, now we have the moment map

µ : T∗Rep(v, w)→ g∗v(2.52)

µ(Xe, Ye, Ai, Bi) = ∑
e

Xi(e)Yi(e) −Yo(e)Xo(e) + AiBi(2.53)

One can define Nakajima variety:

Mθ,0(v, w) := µ−1(0)//θGv(2.54)

with all the θ-stable Gv-orbits in µ−1(0). Here we choose the stability condition θ =
(1, · · · , 1).

We will abbreviate M(v, w) as the Nakajima quiver variety defined in 2.54.

In this paper we only consider the affine type A quiver, i.e. the edges are given by
e = (i, i + 1) with i = imod(n). i.e. it is the quiver of the following type:
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Wk

Wk−1 Vk Wk+1

Vk−1 Vk+1

· · · · · ·

V2 Vn

W2 V1 Wn

W1

The action of C∗q ×C∗t × Gw on M(v, w) is given by:

(q, t, Ui) · (Xe, Ye, Ai, Bi)e∈E,i∈I = (qtXe, qt−1Ye, qAiUi, qU−1
i Bi)(2.55)

The fixed points set of the torus action C∗q ×C∗t on Mθ,0(v, w) is indexed by the |w|-
partitions λ = (λ1, · · · , λw). For each box □ ∈ (λ1, · · · .λw). We define the following
two character functions:

χ□ = uiqx+y+1tx−y, □ ∈ λi(2.56)

χch
□ = vi + h̄1(x + 1) + h̄2(y + 1)(2.57)

The first one is often used in the equivariant K-theory. The second one is often used in
the equivariant cohomology theory.

If we choose the cocharacter σ : C∗ → Gw such that w = u1w1 + · · ·+ ukwk, we have
that:

M(v, w)σ =
⊔

v1+···+vk=v
M(v1, w1)× · · · ×M(vk, wk)(2.58)
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We denote:

KT(M(w)) :=
⊕
w

KC∗q×C∗t×Gw(M(v, w))loc(2.59)

Thus we can choose the fixed point basis |λ⟩ of the corresponding partition λ to span
the vector space KT(M(w)).

Here we briefly review the geometric action of Uq,t(
ˆ̂sln) on KT(M(w)). The construc-

tion is based on Nakajima’s simple correspondence.

Consider a pair of vectors (v+, v−) such that v+ = v− + ei. There is a simple corre-
spondence

Z(v+, v−, w) ↪→ M(v+, w)×M(v−, w)(2.60)

parametrises pairs of quadruples (X±, Y±, A±, B±) that respect a fixed collection of quo-
tients (V+ → V−) of codimension δi

j with only the semistable and zeros part for the
moment map µ for each M(v+, w). And the variety Z(v+, v−, w) is smooth with a tau-
tological line bundle:

L|V+→V− = Ker(V+
i → V−i )(2.61)

and the natural projection maps:

(2.62)

Z(v+, v−, w)

M(v+, w) M(v−, w)

π+

π−

Using this we could consturct the operator:

e±i,d : KT(M(v∓, w))→ KT(M(v±, w)), e±i,d(α) = π±∗(Cone(dπ±)Ldπ±∓ (α))(2.63)

and take all v we have the operator e±i,d : KT(M(w)) → KT(M(w)). Also we have the
action ofϕ±i,d given by the multiplication of the tautological class, which means that:

ϕ±i (z) =
ζ( z

X )

ζ(X
z )

u j≡i

∏
1≤ j≤w

[
u j
h̄z ]

[ z
h̄u j

]
(2.64)

In particular, the elementϕi,0 acts on KT(M(v, w)) as qα
T
i (w−Cv).

The above construction gives the following well-known result:

Theorem 2.3. For all w ∈ Nr, the operator e±i,d and ϕ±i,d give rise to an action of Uq,t(
ˆ̂sln) on

KT(M(w)).
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In terms of the shuffle algebra, we can give the explicit formula of the action of the
quantum toroial algebra Uq,t(

ˆ̂sln) on KT(M(w)):

Given F ∈ S+
k , we have that

⟨λ|F|µ⟩ = F(χλ\µ) ∏
■∈λ\µ

[ ∏
□∈µ

ζ(
χ■
χ□

)
w

∏
i=1

[
ui

qχ■
]](2.65)

Similarly, for G ∈ S−−k, we have

⟨µ|G|λ⟩ = G(χλ\µ) ∏
■∈λ\µ

[ ∏
□∈λ

ζ(
χ□
χ■

)
w

∏
i=1

[
χ■
qui

]]−1(2.66)

Here F(χλ\µ) and G(χλ\µ) are the rational symmetric function evaluation at the box
χ□ with □ ∈ λ\µ.

3. AFFINE YANGIAN AND KAC-MOODY ALGEBRA

In this section we introduce the affine Yangian which is suitable in our settings.

We introduce the following color-dependent rational function:

ω(xi − x j) =
(x j − xi − h̄1)

δi
j−1(x j − xi − h̄2)

δi
j+1

(x j − xi)
δi

j(x j − xi − h̄1 − h̄2)
δi

j
(3.1)

Consider the vector space

V+ :=
⊕

n∈NI

Vn, Vn := F[zi1, · · · , zini ]
sym
i∈I(3.2)

we endow V+ with the following shuffle product:
(3.3)

R(zi1, · · · , zini)i∈I ∗ R′(zi1, · · · , zin′i
)i∈I =Sym[

R(zi1, · · · , zini)i∈I R′(zi,ni+1, · · · , zi,ni+n′i
)i∈I

n!n′!
×

× ∏
i, j∈I

ni

∏
a=1

n j+n′j

∏
b=n j+1

ζi j(zia − z jb)]

We consider the subalgebra A+ ⊂ V+ generated by:

{zd
i1}i∈I,d≥0(3.4)

In this setting, we define the positive affine Yangian Y+
h̄1 ,h̄2

(ŝln) as A+. The generators
zd

i1 is denoted as E+
i,d.
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3.1. Affine Yangians. In this subsection we define the affine Yangian Yh̄1 ,h̄2(ŝln) by means
of the additive shuffle algebra. Most of the details can be found in [BT19].

The affine Yangian Yh̄1 ,h̄2(ŝln) is defined as a vector space:

Yh̄1 ,h̄2(ŝln) := S+ ⊗Q[ξi,n]n≥0 ⊗S−(3.5)

Here S− := (S+)op. The relation here is defined as follows:

pi j(z,σ+
j )ξi(z)E+

j,s = −p ji(σ
+
j , z)E+

j,sξi(z)(3.6)

p ji(σ
−
j , z)ξi(z)E−j,s = −pi j(z,σ−j )E−j,sξi(z)(3.7)

Here pi j(z, w) is defined as follows:

pi j(z, w) =


z− w− h̄1 i = j− 1
z− w− h̄2 i = j + 1
(w− z)(w− z− h̄1 − h̄2) i = j

(3.8)

σ±i : Yh̄1 ,h̄2(ŝln)
± → Yh̄1 ,h̄2(ŝln)

± is the homomorphism via sending ξ j,r 7→ ξ j,r, E±j,r 7→
E±j,r+δi j

[E+
i (z), E−j (w)] = −h̄2δi j

ξi(z)−ξ j(w)

z− w
(3.9)

As well as the relation in S+ and S− given by the shuffle algebra structure.

3.1.1. Lie algebra. The affine Yangian Yh̄1 ,h̄2(ŝln) contains the Lie algebra ŝln such that:

ŝln = (Trace zero n× n matrices with value in C[z±1])⊕C ·γ(3.10)

with γ being central in ŝln and the Lie bracket is written as:

[Xzk, Yzl] = [X, Y]zk+l + δ0
k+lk · Tr(XY)γ(3.11)

We use the following way to express the generator of the affine Lie algebra ŝln. Intro-
duce the notation:

E[i, j) = Ei mod n, j mod n · z[
j−1
n ]−[ i−1

n ](3.12)

E−[i, j) = E j mod n,i mod n · z[
j−1
n ]−[ i−1

n ](3.13)
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3.2. Action on the equivariant cohomology of quiver varieties. The algebra action of
Yh̄1 ,h̄2(ŝln) on the equivariant cohomology of quiver varieties H∗T(M(w)) can be de-
scribed as the degeneration limit of the quantum toroidal algebra action Uq,t(

ˆ̂sln) on
the equivariant K-theory of quiver varieties K∗T(M(w)).

(3.14) ⟨λ|F|µ⟩ = F(χch
λ\µ) ∏

■∈λ\µ
[ ∏
□∈µ

ω(χ■ − χ□)
w

∏
i=1

(vi − h̄1 − h̄2 − χ■)]

Here |λ⟩ is the fixed-point basis in the localised equivariant cohomology H∗T(M(w)) :=⊕
v H∗T(M(v, w))loc of the affine type A quiver varieties. Similarly, the action of the Car-

tan current ξ(z) is given by the multiplication of the tautological class:

ξ(z) = (
ω(z− X)

ω(X− z)
)+

u j≡i

∏
1≤ j≤w

a j − h̄− z
z− h̄− a j

(3.15)

Here (ω(z−X)
ω(X−z))

+ means expanding the rational function of z in terms of the non-negative
power of z.

3.3. Generators of the affine Yangian. The affine Yangian Yh̄1 ,h̄2(ŝln) has a minimal set
of generators similar to the situation as that of the quantum toroidal algebra.

Proposition 3.1. The affine Yangian Yh̄1 ,h̄2(ŝln) is generated by

{E+
i,0, E−i,0,ξi,0,ξi,1}(3.16)

Proof. This is proved by using the formula 3.5 and 3.6.

□

From the proposition one can see that the affine Yangian Yh̄1 ,h̄2(
ˆ̂sln) contains the affine

Lie algebra ŝln.

3.3.1. Coproducts on the affine Yangians. The Drinfeld coproduct on Yh̄1 ,h̄2(
ˆ̂sln) is given by:

(3.17)
∆(Ei(z)) = Ei(z)⊗ 1 +ξi(z)⊗ Ei(z), ∆(Fi(z)) = Fi(z)⊗ξi(z) + 1⊗ Fi(z)

∆(ξ±i (z)) = ξi(z)⊗ξi(z)

The standard coproduct can be defined as follows. Set the reduced classical r-matrix
of ŝln:

r = ∑
β∈Φ+

x−β,0 ⊗ x+β,0(3.18)
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where x±β,0 ∈ g±β are root vectors in ŝln such that (x−β,0, x−β,0) = 1.

Here

Denote ti,1 = ξi,1 − 1
2ξ

2
i,0

The standard coproduct ∆ : Yh̄1 ,h̄2(ŝln) → Yh̄1 ,h̄2(ŝln) ⊗ Yh̄1 ,h̄2(ŝln) is defined via the
following:

∆(ξi,0) = ξi,0 ⊗ 1 + 1⊗ξi,0(3.19)

∆(E±i,0) = E±i,0 ⊗ 1 + 1⊗ E±i,0(3.20)

∆(ti,1) = ti,1 ⊗ 1 + 1⊗ ti,1 + ad(ξi,0 ⊗ 1)r(3.21)

4. DEGENERATION OF THE QUANTUM TOROIDAL ALGEBRA TO AFFINE YANGIANS

In this section we describe the degeneration of the quantum toroidal algebra to the
affine Yangians.

First let us explain what does it mean when we say the word "degeneration".

We first need to use the following fact:

Proposition 4.1. There is an algebra embedding:

Uq,t(
ˆ̂sln) ↪→∏

w
End(K(w))(4.1)

given by the matrix coefficients of the generators of Uq,t(
ˆ̂sln).

Proof. See [N23] and [Z23]. □

Note that K(w) is the KTw(pt)loc
∼= Q(q, t, u1, · · · , uw)-module. Using the Chern char-

acter map:

(4.2)
ch : KTw(pt)→ ĤTw(pt)

qi 7→ eκh̄i , ui 7→ eκzi

It induces the following map:

(4.3) ch : KTw(M(w))→ ̂HTw(M(w))

such that the ĤTw(pt) module ̂HTw(M(w)) is spanned by the fixed point basis with

coefficients in ĤTw(pt).

Now we turn to the definition of the asymptotic expansion of elements in ̂HTw(M(w)).
Given f ∈ Im(ch), now we do the Laurent expansion of f with respect to κ. We denote
f ch as the lowest order component of f with respect to κ if it exists.
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The following fact is easy to prove:

Lemma 4.2. For arbitrary f ∈ Im(ch), f ch exists.

Proof. Given f ∈ Im(ch), it means that f can be expressed as:

f (eκzi , eκh̄i) =
P(eκzi , eκh̄i)

Q(eκzi , eκh̄i)
(4.4)

with P(eκzi , eκh̄i) and Q(eκzi , eκh̄i) are polynomials in the variables eκzi and eκh̄i . Thus
taking the cohomological limit f ch, it truly exists. □

4.1. Degeneration of the quantum toroidal algebra to the affine Yangian. Now we
turn to the case of the degeneration of the quantum toroidal algebra Uq,t(

ˆ̂sln) to the
affine Yangian Yt1 ,t2(ŝln).

We use the following fact about the minimal generators for the algebra Uq,t(
ˆ̂sln) and

Yt1 ,t2(ŝln). The generators of Yt1 ,t2(ŝln) has been known in the Proposition 3.1. The fol-
lowing proposition can be found in many references, e.g.[N23].

Proposition 4.3. The quantum toroidal algebra Uq,t(
ˆ̂sln) is generated by

{e+i,0, e−i,0,ϕ±i,0,ϕ±i,±1}(4.5)

with the central elements.

Similarly, the affine Yangian Yt1 ,t2(ŝln) is generated by {e+i,0, e−i,0, H±i,0, Hi,±1} with the central
elements.

Also the relations with the MO quantum affine algebra and the MO affine Yangian in
[N23] and [SV17]:

Theorem 4.4. There are algebra embeddings:

Uq,t(
ˆ̂sln) ↪→ UMO

q (ĝQ), Yt1 ,t2(ŝln) ↪→ YMO
h̄ (gQ)(4.6)

which is compatible with the embedding.

The following proposition will be vital in the degeneration of the quantum difference
equation to the quantum differential equation:

Proposition 4.5. The degeneration limit of Uq,t(
ˆ̂sln) lies in Yt1 ,t2(ŝln).

Proof. This is proved by comparing the degeneration limit of the matrix coefficients of
the elements of Uq,t(

ˆ̂sln) with the matrix coefficienst of the elements of Yt1 ,t2(ŝln). □
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5. REVIEW OF THE QUANTUM DIFFERENCE EQUATION

In this subsection we give a review of the construction of the quantum difference equa-
tion in [Z23] for the quantum toroidal algebra Uq,t(

ˆ̂sln) and quiver varieties of affine type
A.

The quantum toroidal algebra Uq,t(
ˆ̂sln) admits the slope factorization:

Uq,t(
ˆ̂sln) =

→⊗
µ∈Q

Bm+µθ(5.1)

For each slope subalgebra Bm, one can associate an element J±m(λ) ∈ Bm⊗̂Bm such
that they satisfy the ABRR equation:

J+m(λ)q−λ
(1)q

ΩR+
m = q−λ

(1)q
Ω J+m(λ), qΩR−mq−λ

(1) J−m(λ) = J−m(λ)qΩq−λ
(1)(5.2)

5.1. Asymptotics of Jm(z). with R−m := (Rm)21. The operator J±m satisfy the following
relation:

Sm ⊗ Sm((J+m(λ))21) = J−m(λ)(5.3)

Lemma 5.1.

lim
z→∞ J+m(zθ) = 1, lim

z→0
J+m(zθ) = R+

m(5.4)

here θ is the parametre above in the root factorization of the quantum toroidal algebra. Here we
require that θ > 0

Proof. We shall give a proof by direct calcultation, which is useful in the following anal-
ysis of the difference equations.

We do the factorization of Jm and Rm with respect to the degree:

Jm = 1 + ∑
n>0

Jm|n, (Rm)−1 = 1 + ∑
n>0

Rm|n(5.5)

Using the ABRR equation we have the following recursion equations:

Jm|n(z) =
1

znqk − 1 ∑
n1+n2=n

n1<n

Jm|n1
(z)Rm|n2

(5.6)

Now we take (z1, · · · , zn) = (zθ1 , · · · , zθn). As z→ ∞, it is obvious that Jm|n = 0.

If z→ 0, we have the following expression for Jm|n(0θ):

Jm|n(0
θ) = ∑

k
∑

n1+···+nk=n
(−1)kRm|n1

Rm|n2
· · · Rm|nk

(5.7)
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Thus we have that:

(5.8)

Jm(0θ) =1 +∑
k

∑
n1 ,··· ,nk

(−1)kRm|n1
Rm|n2

· · · Rm|nk

=(1 + ∑
n>0

Rm)−1

=Rm

□

Now we turn to the analysis of the asymptotics of the following case:

lim
q→0

Jm(zqs), zqs = (z1qs1 , · · · znqsn)(5.9)

We can see that the lemma 5.1 corresponds to the case s > 0 and s < 0, which corre-
sponds to the bunch of hyperplanes si = 0 with i = 1, · · · , n.

The following proposition reveals that for all m ∈ Qn, limp→0 Jm(zps) is a locally
constant function on s:

Proposition 5.2. limp→0 Jm(zps) is locally constant on the variable s ∈ Rn, and it jumps as s
crosses the following hyperplanes:

(5.10) n · s + k = 0, n ∈ (Z≥0)
n − {0}

Proof. The ABRR equation now can be re-written as:

Jm|n(zqs) =
1

znqn·sqk − 1 ∑
n1+n2=n

n1<n

Jm|n1
(zqs)Rm|n2

(5.11)

So as q→ 0, if n · s > 0, limp→0 Jm|n(zps) is nonzero, and if n · s < 0, limp→0 Jm|n(zps) =
0. Thus we can see that □

Using this, the monodromy operator is defined as:

Bm(λ) = m(1⊗ Sm(J−m(λ)−1))|λ→λ+κ(5.12)

Here κ = Cv−w
2 .

Let L ∈ Pic(X) be a line bundle. Now we fix a slope s ∈ H2(X,R) and choose a path
in H2(X,R) from s to s−L. This path crosses finitely many slope points in some order
{m1, m2, · · · , mm}. And for this choice of a slope, line bundle and a path we associate
the following operator:

Bs
L(λ) = LBmm(λ) · · ·Bm1(λ)(5.13)

We define the q-difference operators:

As
L = T−1

L Bs
L(λ)(5.14)
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It has been proved in [Z23] that the q-difference operator As
L is independent of the

choice of the path from s to s−L if we choose the generic path.

The well-definedness and the rigidity of the definition of the q-difference operators
As

L lies in the following lemma:

Lemma 5.3. For arbitrary point s in Pic(M(v, w))⊗R, there exists an small arc neighborhood
Vs of s such that for every point s′ ∈ Vs:

As′
L = As

L(5.15)

Proof. Note that for arbitrary path from s to s −L, there are only finitely many slope
points {m1, · · · , mn} on the path giving the nontrivial action on KT(M(v, w)). This
means that the small change of s would not affect the q-difference operator As

L. □

In our settings, we always choose the slope points s to be generic, i.e. s not lies on the
wall. Note that this means that the q-difference operator As

L is locally constant on s, thus
we always fix s in a generic position, i.e. Bs(λ) = 1 on KT(M(v, w)). We will see that
the generic choice of the starting point s would give us a convenient way to compute the
quantum difference operator Bs

L(λ).

5.2. Wall structures over the affine type A quiver varieties. In this subsection we ana-
lyze the wall structure of the affine type A quiver varieties and compare it with the wall
structure defined via the K-theoretic stable envelope.

Recall the wall set of a quiver variety M(v, w) is defined as:

Walls(M(v, w)) = {m ∈ Qr|Reduced part of Rm acts on KT(M(v, w))⊗ KT(M(v, w)) trivially}
(5.16)

Also recall that the wall R-matrix in the K-theoretic stable envelope is defined as:

Rw := Stab−1
C,s ◦ StabC,s′(5.17)

Here the slope s, s′ ∈ Pic(X)⊗Q are separated by the wall hyperplane w ⊂ Pic(X)⊗Q.
Or equivalently, the wall w is the set of points in Pic(X)⊗Q such that the K-theoretic
stable envelope StabC,s would jump when s go across a point in the wall w. Here we
determine the wall structure over the case of affine type A quiver varieties.

There are two ways to determine the wall structure, first by the Theorem 2 in [OS22],
the wall R-matrices has the following expression:

R+
w |F2×F1 =


1 F1 = F2

O(uLw|F2−Lw|F1 ) F1 ≤ F2

0 otherwise
(5.18)

and the O(· · · ) part is nonzero if and only if Lw|F2 −Lw|F1 is integral. This means that
the wall consists of the point L ∈ Pic(X)⊗Q such that ⟨µ(Fα)−µ(Fβ),L⟩ ∈ Z. In this
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case of the affine type A quiver varieties, these walls are equivalent to the following set
of periodic hyperplane arrangements:

zi + · · ·+ z j−1 + n(z1 + · · ·+ zn) = m, n ≥ 0, m ≥ 0(5.19)

In this way we obtain the following proposition:

Proposition 5.4. The wall set of the K-theoretic stable envelope of M(v, w) coincides with the
above set of period hyperplane arranegments defined by the equation 5.19.

One of the key observation is that the wall set defined in the algebraic setting "coin-
cide" with the one in the K-theoretic stable envelope settings.

Proposition 5.5. m ∈ Walls(M(v, w)) if and only if m ∈ Hα where Hα ∈ WallsStab(M(v, w)).

Proof. If m ∈ Walls(M(v, w)), this means that m lies in the set of hyperplane arrange-
ments defined in 5.19, and vice versa.

□

In the Proposition 2.13 in [Z23] we proved the following fact of the connection be-
tween the slope subalgebra Bm and the subalgebra UMO

q (gm) generated by the matrix
coefficients of the wall R-matrix R±m,m+ϵθ, i.e. It is the algebra generated by the wall
subalgebra UMO

q (gw) such that each wall w contains the slope point m:

Proposition 5.6. There is a natural Hopf algebra embedding Bm ↪→ UMO
q (gm).

This implies that the roots of Bm has the same as those of UMO
q (gm).

6. ANALYSIS OF THE QUANTUM DIFFERENCE EQUATIONS

Fix the affine type A quiver variety M(v, w). In this section we will fix the slope s of
the quantum difference operator ML(z) := Bs

L(z) as defined in 5.13. We assume that s
will be really generic, i.e. s will not lie on the wall of M(v, w).

6.1. Possible singularities for the monodromy operators. The explicit formula for the
monodromy operators has been computed in [Z23]:
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Theorem 6.1. For the monodromy operator Bm(λ) ∈ Bm, where Bm(λ) is defined in 5.13 and
Bm is defined as 2.42, its representation in End(KT(M(v, w))) is given by:
(6.1)

Bm(λ)

=
g

∏
h=1

: (exp(−
∞
∑
k=1

nkq−
k|δh|

2

1− z−k|δh|pkm·δh q−
k|δh|

2

αm,h
−k α

m,h
k )

→∞
∏
k=0

×
←
∏

γ∈∆(A)
m≥0

(expq2(−(q− q−1)zk(−vγ+(m+1)δh)pkm·(−vγ+(m+1)δh)qk(−vγ+(m+1)δh)
T(( n2r−1

2 )θ+e1)−2−2δ1γ

f(δ−γ)+mδe
′
(δ−γ)+mδ) exp(−(q− q−1) ∑

m∈Z+

lh

∑
i, j=1

zkmδh pkmm·δh q−kmδT
h ((

n2r−1
2 )θ+e1)−2um,i j fmδ,αi e

′
mδ,αi

)

×
→
∏

γ∈∆(A)
m≥0

expq2(−(q− q−1)zk(vγ+mδh)pkm·(vγ+mδh)q−k(vγ+mδh)
T(( n2r−1

2 )θ+e1)−2−2δ1γ fγ+mδe′γ+mδ)) :

and e′v = S(ev), f ′v = S( fv) are the image of the antipode map.

Though the expression for the quantum difference operator is really complicated, we
can still extract out the possible singularity of the quantum difference operator.

Proposition 6.2. The monodromy operator Bm(λ) has possible singularities at

(6.2)

z−vγ+(m+1)δh pm·(−vγ+(m+1)δh)q(−vγ+(m+1)δh)
T(( n2r−1

2 )θ+e1)−2−2δ1γ = 1

zmδh pmm·δh q−mδT
h ((

n2r−1
2 )θ+e1)−2 = 1

z(vγ+mδh)pm·(vγ+mδh)q−(vγ+mδh)
T(( n2r−1

2 )θ+e1)−2−2δ1γ = 1

z−k|δh|pkm·δh q−
k|δh|

2 = 1

Moreover, these singularities are of the regular singularities.

Before the proof, I shall mention that we can see that the singularities of the mon-
odromy operator gives the toric arrangement in the Picard torus Pic(X) ⊗ C×. This
means that the singularity structure is more complicated than the case of the hyperplane
arrangements.



FROM QUANTUM DIFFERENCE EQUATION TO DUBRONVIN CONNECTION OF AFFINE TYPE A QUIVER VARIETIES27

Proof. For simplicity, we only prove the statement for the first formula. Doing the ex-
pansion of the formula and we have:
(6.3)

:
→∞
∏
k=0

←
∏

γ∈∆(A)
m≥0

(expq2(−(q− q−1)zk(−vγ+(m+1)δh)pkm·(−vγ+(m+1)δh)qk(−vγ+(m+1)δh)
T(( n2r−1

2 )θ+e1)−2−2δ1γ

× f(δ−γ)+mδe
′
(δ−γ)+mδ) :

=

→∞
∏
k=0

( ∑
lγ,m=0
γ∈∆(A)

m≥0

(−1)∑γ,m lγ,m(q− q−1)∑γ,m lγ,m

∏γ,m[lγ,m]q2 !
z∑γ,m lγ,mk(−vγ+(m+1)δh)p∑γ,m lγ,mkm·(−vγ+(m+1)δh)

× q∑γ,m lγ,mk(−vγ+(m+1)δh)
T(( n2r−1

2 )θ+e1)−2−2δ1γ ∏
γ,m

f lγ
(δ−γ)+mδe

′lγ,m
(δ−γ)+mδ)

=
∞
∑
k=0

( ∑
lγ,m=0
γ∈∆(A)

m≥0

(−1)∑γ,m lγ,m(q− q−1)∑γ,m lγ,m p(γ, m, n)
∏γ,m[lγ,m]q2 !

z∑γ,m lγ,mk(−vγ+(m+1)δh)p∑γ,m lγ,mkm·(−vγ+(m+1)δh)

× q∑γ,m lγ,mk(−vγ+(m+1)δh)
T(( n2r−1

2 )θ+e1)−2−2δ1γ ∏
γ,m

f lγ
(δ−γ)+mδe

′lγ,m
(δ−γ)+mδ)

p(γ, m, n) is the number of partition of n, it is easy to check that this gives the conver-
gence radius of 1, and thus we finish the proof. □

6.2. Good representation for the quantum difference operators. In this section we
shall show that for arbitrary quantum difference operators ML(z), it can be expressed
as the ordered product of the monodromy operators Bm(z) such that Bm(z) can be rep-
resented via either Uq(sl2)-type or Uq(ĝl1)-type.

Theorem 6.3. For the generic path [−s −L,−s) between −s −L and −s of the quantum
difference operator:

ML(z) = L
→
∏

m∈Walls
Bm(z)(6.4)

with s sufficiently small. Then each Bm(z) can be written either in one of the following form:

• Uq(sl2) type:

(6.5)

→∞
∏
k=0

expq2(−(q− q−1)zk(vγ)pkm·(vγ)q−k(vγ)T(( n2r−1
2 )θ+e1)−2−2δ1γ fγe′γ))

=
∞
∑

n=0

(q− q−1)n

[n]q2 !
(−1)n

∏
n
ν=1(1− zvγ pm·vγq−ν(vγ)T(( n2r−1

2 )θ+e1)−2−2δ1γ)
f n
γ e′nγ



28 TIANQING ZHU

with

fγ = Pm
[i, j), e′γ = Sm(Qm

−[i, j))(6.6)

• Uq(ĝl1) type.

(6.7) m(
g

∏
h=1

(exp(−
∞
∑
k=1

nkq−
k|δh|

2

1− z−k|δh|pkm·δh q−
k|δh|

2

αm,h
−k ⊗α

m,h
k )

with

αm,h
−k = Pm

[h,h+kδm), αm,h
k = Sm(Qm

−[h,h+kδm))(6.8)

Proof. The construction of the path can be given as follows. Fix the quiver variety M(v, w)
and the slope subalgebra Bm. Recall that the generators of Bm is given by Pm

[i;i+1)h
. All

we need to do is to find a slope mQr such that [i; i + 1)h exceeds the quiver dimension
vector v = (n, · · · , n) except for only one generators Pm

[ j; j+1)h
for some j.

To carry out the procedure, recall that m · [i; i + 1)h satisfying the above conditions can
be written as:

(n− 1)m · θ+ mi+1 + · · ·+ mk ∈ Z(6.9)

Thus we define the following set of hyperplanes in Qr:

v ∈ Qr, [i; j) · v ∈ Z(6.10)

We require that for the integer vector [i; j) = n1e1 + n2e2 + · · ·+ nrer, ni ≤ vi. Here
v = (v1, · · · , vr). The following lemma is easy to prove:

Lemma 6.4. The monodromy operator Bm(z) acts on KT(M(v, w)) nontrivially if [i, j) ·m ∈
Z for some [i, j) satisfies the condition above. Moreover, if [i, j) ·m ∈ Z, Pm

[i, j) acts on KT(M(v, w))

non-trivially.

For these hyperplanes H[i, j),n, choose m ∈ Qr such that m intersects with only one
hyperplane H[i, j),n. It is easy to see that the point m such that intersects with only one
hyperplane is dense. Therefore for each hyperplane , one can choose a generic point m
for each hyperplane and connect them together.

Then we determine the type of the monodromy operator Bm(z) at each slope points m
with the corresponding intersecting hyperplane H[i, j),n. If [i, j) = nθ, Bm ∼= Uq(ĝl1)

⊗r.
In this case the monodromy operator Bm can be written as:

Bm(z) = (Heisenberg type)(6.11)

as in 6.5. Here [i, j) is chosen such that m · [i, j) ∈ Z.



FROM QUANTUM DIFFERENCE EQUATION TO DUBRONVIN CONNECTION OF AFFINE TYPE A QUIVER VARIETIES29

Otherwise,

Bm(z) = (Uq(sl2) type)(6.12)

as in 6.7. Here δm is the minimal vector [i, j) such that δm ·m ∈ Z. □

Remark. The theorem implies that for the generic points m ∈ Qr on the wall [i, j) ·
m ∈ Z, the corresponding monodromy operator Bm(z) is independent of the choice
of the generic points m. This agrees with the monodromy operator Bw(λ) defined by
Okounkov and Smirnov in [OS22] where the monodromy operator Bw(λ) is defined
only on the wall w for the K-theoretic stable envelope.

6.3. General solution for the quantum difference equations. In this section we use the
good representation to give the fundamental solution of the quantum difference equa-
tion of the affine type A quiver varieties M(v, w).

For simplicity, we denote X = M(v, w). It is well-known that Pic(X) is generated
by its tautological line bundles Li, and we denote O(1) = L1 · · ·Ln. In this way the
quantum difference equation at direction O(1) can be written as:

Ψ(pO(1)z) = Ψ(pz1, · · · , pzn) = MO(1)(z)Ψ(z), z ∈ Pic(X)⊗C∗(6.13)

For simplicity we only concentrate on the quantum difference equation for O(1). For
the quantum difference equation at other directions, i.e. ML(z) with L other than O(1),
the analysis is similar.

6.3.1. Fundamental solution of QDE near z = 0. First note that at z = 0 ∈ Pic(X)⊗C×,
i.e. the corresponding chamber in Pic(X)⊗R corresponds to the chamber such that all
the parametres a1, · · · , an goes to −∞. Let M(0) = Mn(0)Mn−1(0) · · ·M1(0) = Ln ⊗
· · · ⊗L1 and this matrix is diagonal in KT(X) with respect to the fixed point basis. And
let P be the matrix with columns given by fixed point eigenvectors [λ]. We denote by E0
the diagonal matrix of eigenvalues, so that:

M(0)P = PE0(6.14)

And the eigenvalue diagonal matrix E0 is det(V1)|λ · · ·det(Vn)|λ ∈ KT(pt)loc. In this
way we can decompose the solution into the singular part and the regular part. There
are two choices of the solution, the first is the elliptic type solutions:

Ψell
0 (z) = Ψ

reg
0 (z)

n

∏
i=1

(Θ(E(i)
0 , zi))(6.15)

Here E(i)
0 is the diagonal matrix with the value det(Vi)|λ. And Θ(E(i)

0 , zi) is defined as:

Θ(E(i)
0 , zi) = diag(

θ(zi, p)
θ(zidet(Vi)−1|λ, p)

)λ(6.16)
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The second is the multiplicative type:

Ψ0(z) = PΨreg
0 (z) exp(∑

i

ln(E(i)
0 ) ln(zi)

ln(p)
)(6.17)

6.3.2. Computation of Ψ
reg
0 (z) via O(1). For the second procedure, we can just write

down the regular part of the solution as:

Ψ
reg
0 (z) =

←∞
∏
k=0

M∗(pkz)−1 =

←∞
∏
k=0

M∗k(z)−1(6.18)

with

M∗(z) = E−1
0 P−1MO(1)(z)P, M∗k(z) := E−k−1

0 P−1MO(1)(pkz)PEk
0(6.19)

Recall that the quantum difference operator MO(1) can be written as the product of Bm

such that Bm are either of Uq(sl2)-type or Uq(ĝl1)-type.

For example, if we take the path from s to s−O(1) as the straight interval from 0 to
−O(1), the regular part of the fundamental solution around z = 0 can also be written as:

Ψ
reg
0 (z) =

←
∏

m∈(−∞,s)
B∗m(z)−1(6.20)

Here m ∈ (−∞, 0) means that we fix the initial point s close to 0 and the end point
s− nO(1), and we require that n→ ∞.

6.3.3. Fundamental solution near z = ∞. For the solution around z = ∞, by the Lemma
3.2 in [Z23], the operator MO(1)(∞) consists of the product of the form m((1⊗ Sm)(R−m)−1).
It is a diagonalizable matrix over Q(q, t) with eigenvalues given by the rational functions
of q, t. We shall denote the corresponding matrix of eigenvectors as H, and E∞ be the
digaonal matrix of eigenvalues:

MO(1)(∞)H = HE∞(6.21)

Now we do the decomposition of E∞ in each direction zi. Note that for each direction
zi we have the difference equation:

Ψ(pLi z) = MLi(z)Ψ(z)(6.22)

So equivalently, the difference equation on O(1) = L1 · · ·Ln can be written as:

Ψ(pO(1)z) = ML1(pO(1)−L1 z)ML2(pO(1)−L1−L2 z) · · ·MLn(z)Ψ(z)(6.23)

In this way we can see that:

MO(1)(∞) = ML1(∞) · · ·MLn(∞)(6.24)
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Furthermore MLi(∞)MLj(∞) = MLj(∞)MLi(∞), and this means that MLi(∞) share

the same eigenvectors H with different eigenvalues E(i)∞ .

In this way we can first construct the elliptic solution as:

Ψell∞ = HΨ
reg∞ (z)∏

i
Θ(E(i)∞ , zi)(6.25)

the solution around z = ∞ can be written as:

Ψ∞(z) = HΨ
reg∞ (z) exp(∑

i

ln(E(i)∞ ) ln(zi)

ln(p)
)(6.26)

such that

Ψ
reg∞ (z)E∞ = H−1MO(1)(z)HΨ

reg∞ (z)(6.27)

We use the similar procedure to compute the regular part of Ψreg∞ (z), and it is easy to
see that the solution is of the form:

Ψ
reg∞ (z) =

→∞
∏
k=0

M∗−k(z)(6.28)

with

M∗−k(z) = Ek−1∞ M∗(zp−k)E−k∞(6.29)

Also we denote

B∗m(z) := H−1Bm(z)H, B∗m = H−1BmH(6.30)

Now the fundamental solution around z = ∞ can be written as:

Ψ
reg∞ (z) = lim

N→∞Ψ
reg
N (z) = lim

N→∞(
→
∏

m∈[0,N)

B∗m(z))(MO(1)(0)
∗)NE−N∞(6.31)

6.4. Regular fundmental solution of different slopes. Now given two different generic
slopes s, s′ ∈ Qn. We can connect the regular part of the fundamental solutions Ψreg,s

0 (z),

Ψ
reg,s′
0 (z) at slopes s, s′ by the monodromy operators.

Lemma 6.5. Suppose that Ψreg,s
0 (z), Ψreg,s′

0 (z) are the regular fundamental solutions at z = 0
for the quantum difference operators As

L, As′
L. Then,

Ψ
reg,s′
0 (z) = ∏

m∈(s′ ,s)
Bm(z)Ψreg,s

0 (z)(6.32)

Here (s, s′) means that we choose a path from s to s′ such that m are the slope points in the path,
which is a finite product.
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Proof. The proof is given by induction.

(6.33)

∏
m∈(s′ ,s)

Bm(zpL)Ψ
reg,s
0 (zpL)L = ∏

m∈(s,s′)
Bm(zpL)Bs

L(z)Ψreg,s
0 (z)

= ∏
m∈(s,s′)

Bm(zpL)L ∏
m∈(s−L,s)

Bm(z)Ψreg,s
0 (z)

=L ∏
m∈(s′−L,s−L)

Bm(z) ∏
m∈(s−L,s)

Bm(z)Ψreg,s
0 (z)

=L ∏
m∈(s′−L,s)

Bm(z)Ψreg,s
0 (z)

=L ∏
m∈(s′−L,s′)

Bm(z) ∏
m∈(s′ ,s)

Bm(z)Ψreg,s
0 (z)

By the uniqueness of the solution, the proof is finished. □

6.5. Connection matrix for the two solutions. The transition matrix between two fun-
damental solutions Ψ0(z) and Ψ∞(z) is defined as:

Mon(z) := Ψ0(z)−1Ψ∞(z)(6.34)

It is clear that Mon(pLz) = Mon(z), and we expect that Mon(z) is an abelian function
over the abelian variety Pic(M(v, w)) ⊗ C×/(z ∼ zpL). However, note that Mon(z)
might be a multivalued function over z, which means that Mon(ze2π i) ̸= Mon(z).

Also for the sake of the regular part of the fundamental solution, we can also define
the regular part of the transition matrix as:

Monreg(z) := exp(∑
i

ln(E(i)
0 ) ln(zi)

ln(p)
)Mon(z) exp(−∑

i

ln(E(i)∞ ) ln(zi)

ln(p)
)(6.35)

And it is easy to check that:

Monreg(pz) = E0Monreg(z)E−1∞(6.36)

The reason why we choose the singular part to be of this form is because that under the
circumstances, the elliptic solution Monell(z) is single-valued and it lives in GL(M(Er

p))
the space of invertible matrices valued in the meromorphic function over the abelian
variety M(Er

p). Using the fact that for the variety Er
p, the meromorphic function over Er

p
is generated by the linear combinations of the ratio of the theta function of the form:

∏
i1

θ(z1ai1)

θ(z1bi1)
· · ·∏

ir

θ(zrair)

θ(zrbir)
×∏

k

θ(zk1
1 zk2

2 · · · z
kr
r ak)

θ(zk1
1 zk2

2 · · · z
kr
r bk)

(6.37)
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such that ∏i1 ai1 = ∏i1 bi1 ,· · · , ∏ir air = ∏ir br, ∏k ak = ∏k bk. And now via the relation
between Monell(z) and Mon(z) we have that:

exp(−∑
i

ln(E(i)
0 ) ln(zi)

ln(p)
)Mon(z) exp(∑

i

ln(E(i)∞ ) ln(zi)

ln(p)
) = ∏

i
(Θ(E(i)

0 , zi))
−1Monell(z)∏

i
(Θ(E(i)∞ , zi))

(6.38)

By construction, we can see that Monreg(z) can be written as the linear combination
of the theta function as the following form:

r

∏
i=1

(Θ(E(i)
0 , zi))

−1
∏
i1

θ(z1ai1)

θ(z1bi1)
· · ·∏

ir

θ(zrair)

θ(zrbir)
×∏

k

θ(zk1
1 zk2

2 · · · z
kr
r ak)

θ(zk1
1 zk2

2 · · · z
kr
r bk)

r

∏
i=1

(Θ(E(i)∞ , zi))

(6.39)

6.6. p → 0 limit. In this subsection we turn to analyze the limit p → 0 for the function
of the type f (psz) with s ∈ Rr.

Now we choose our path such that Bm(z) are all of the generic point m. It remains to
analyze Bw(psz), by the result above,

lim
p→0

Bm(psz) =


m((1⊗ Sm)(R+

m)−1
21 ) s < m, m ∈ Us

Bm(z)|p=1 s = m
Bm(zI ,θJ) sI = mI , sIc ̸= mIc

1 Otherwise

(6.40)

Here s < m means the partial order that for s = (s1, · · · , sn), m = (m1, · · · , mn) s < m
if there is at least one si, mi such that si < mi. And θi = 0 if si < mi and ∞ if si > mi. Us
is a suitable small neighborhood of s.

Denote Bm := m((1⊗ Sm)(R+
m)−1

21 ).

Now we choose a generic representation of the quantum difference operator MO(1)(z) =
O(1)∏

→
m∈Walls Bm(z) such that each monodromy operator Bm(z) are either of the Uq(sl2)-

type or of the Uq(ĝl1)-type. The following theorem gives the expression for the p → 0
limit of the connection matrix:

Theorem 6.6. For generic s ∈ Qn the connection matrix as the following asymptotic at p→ 0:

lim
p→0

Monreg(psz) =

{
∏
←
0≤m<s(B

∗
m)−1 · T, s ≥ 0

∏s<m<0 B∗m · T, s < 0
(6.41)

Here T := P−1H, 0 ≤ m < s means the slope points m in one generic path from 0 to the
point s without intersecting s. Here s ≥ 0 and s < 0 stands for s = (s1, · · · , sn) such that
si ≤ 0 or si > 0 for every component si. The upper B∗m is defined as P−1BmP, and the lower B∗m
is defined as H−1BmH
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Roughly speaking, the thoerem tells us that the nodal limit of the regular part of the
connection matrix Monreg can be described as the ordered product of the monodromy
operators. The choice of the monodromy operators on the path would not affect the
expression of Monreg.

For the generic s, we can in principle write down the formula for limp→0 Monreg(psz)
in terms of the monodromy operators B∗m, but in that case the formula would be ex-
tremely complicated and chaotic. But we will see in the proof that there is an explicit
formula for limp→0 Monreg(psz).

To prove the theorem, we first analyze the p → 0 limit of the fundamental solution

ψ
reg
0 = ∏

←∞
k=0 M∗k(z)−1 around z = 0. We denote:

C(s) = {x ∈ Rr|xi ≤ si}(6.42)

and the following set:

Bk := {s ∈ Rr|∃w ∈Wall0 such that ∃I ⊂ {1, · · · , r}, sI + k ≤ wI} ⊂ Rr(6.43)

For convenience we consider the following stratification of Bk:

Bk = Bo
k ∪ ∂Bk(6.44)

with Bo
k denoting the interior points of Bk, and ∂Bk denotes the points on the boundary

of Bk.

It is easy to see that Bk ⊂ B0 and moreover Bk+1 ⊂ Bk. Using this fact we can compute
the nodal limit of ψreg

0 (psz):

Proposition 6.7. The asymptotic behavior of ψreg
0 (z) for s ∈ Bl − Bl+1 with l ≥ 0 goes in the

following way:

lim
p→0

ψ
reg
0 (psz) =

∏

←
l−1
k=0(M

∗
k)
−1 ·M∗l,asymp(s)

−1 s ∈ Bo
l

∏

←
l−1
k=0(M

∗
k)
−1 ·M∗l,asymp(z, s)−1 s ∈ ∂Bl

(6.45)

where
(6.46)
M∗l,asymp(z, s) := E−l−1

0 P−1(O(1) ∏
w∈Walls0∩C(s)c

w<s,sσ(1)

Bw · Bw1 ,sσ(1)(zI ,θJ)|p=1 · ∏
w∈Walls0∩C(s)c

w<s,sσ(2)

Bw · Bw1 ,sσ(2)(zI ,θJ)|p=1·

· · · ∏
w∈Walls0∩C(s)c

w<s,sσ(l)

Bw · Bw1 ,sσ(l)(zI ,θJ)|p=1 · ∏
w∈Walls0∩C(s)c

w<s,sσ(l+1)

Bw)PEk
0

M∗l,asymp(s) := E−l−1
0 P−1(O(1) ∏

w∈Wallsl∩C(s)c
Bw)PEk

0
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Here Wallsl stands for the set of wall slope points in a small neighborhood of [l, l + 1]×r.
(w1, sσ(l)) stands for the points (w1, · · · , sσ(l), · · · , wr) and here σσ(i) is ordered such that
sσ(1) ≤ sσ(2) ≤ · · · ≤ sσ(r).

Proof. This follows from the formula 6.18 of the fundamental solution ψreg
0 (z). The term

M∗l,asymp(s) and M∗l,asymp(z, s) comes from computing the precise limit of M∗k(zps) using
the formula 6.40. We leave the computation of the limit as the exercise. □

We use the similar procedure to compute the regular part of Ψreg∞ (z), and it is easy to
see that the solution is of the form:

Ψ
reg∞ (z) =

→∞
∏
k=0

M∗−k(z)(6.47)

with

M∗−k(z) = Ek−1∞ M∗(zp−k)E−k∞(6.48)

Also we denote

B∗m(z) := H−1Bm(z)H, B∗m = H−1BmH(6.49)

For the general case, we set

D(s) = {x ∈ Rr|xi ≥ si}(6.50)

And define Bl for l ≤ 0 in a similar way:

B−k := {s ∈ Rr|∃m ∈Wall0 such that ∃I ⊂ {1, · · · , r}, sI − k ≥ mI} ⊂ Rr(6.51)

Under this situation, doing the similar calculation above, we have that:

Proposition 6.8. The asymptotic behavior of ψreg∞ (z) for s ∈ B−l − B−l−1 with l ≥ 0 goes in
the following way:

lim
p→0

ψ
reg∞ (psz) =

M∗−l,asymp(s) ·∏
←
−1
k=−l+1(M

∗
k)
−1 s ∈ Bo

−l

M∗−l,asymp(z, s) ·∏
←
−1
k=−l+1(M

∗
k)
−1 s ∈ ∂B−l

(6.52)
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where
(6.53)
M∗l,asymp(z, s) := El−1∞ (P∗)−1(O(1) ∏

w∈Walls0∩D(s)c

w<s,sσ(1)

Bw · Bw1 ,sσ(1)(zI ,θJ)|p=1 · ∏
w∈Walls0∩D(s)c

w<s,sσ(2)

Bw · Bw1 ,sσ(2)(zI ,θJ)|p=1·

· · · ∏
w∈Walls0∩D(s)c

w<s,sσ(l)

Bw · Bw1 ,sσ(l)(zI ,θJ)|q=1 · ∏
w∈Walls0∩D(s)c

w<s,sσ(l+1)

Bw)P∗E−l∞
M∗l,asymp(s) := El−1∞ (P∗)−1(O(1) ∏

w∈Wallsl∩D(s)c
Bw)El−1∞ (P∗)−1

here Wallsl stands for the set of walls in a small neighborhood of [l, l + 1]×n. (w1, sσ(l)) stands
for the points (w1, · · · , sσ(l), · · · , wr) and hereσσ(i) is ordered such that sσ(1) ≤ sσ(2) ≤ · · · ≤
sσ(r).

Proof. The proof is similar to proposition 6 in [S21]. We consider a finite approximation
of infinite product

Ψ
reg
N (z) = M∗−1(z)M∗−2(z) · · ·M∗−N(z) = M∗(

z
p
)M∗(

z
p2 ) · · ·M

∗(
z

pN )E−N∞(6.54)

Via the translation formula, we can write down:

Ψ
reg
N (z) = (

→
∏

[0,N)θ∈Walls0+N
B∗w(z))(M(0)∗)NE−N∞(6.55)

Now for s ∈ Bo
−l, we have that:

lim
q→0

Ψ
reg
N = (

→
∏

(Walls0+N)∩[0,N)∩C(s)c
B∗w(z))(M(0)∗)NE−N∞(6.56)

Also note that by taking z = ∞, we have that:

EN∞ = (
→
∏

[0,N)θ∈Walls0+N
B∗w(z))(M(0)∗)N(6.57)

Which means that

(
→
∏

[0,Nθ)∈Walls0+N
B∗w(M(0)∗)NE−N∞ = 1(6.58)

Thus comparing the result we have the statement for s ∈ Bo
l . For the statement that

s ∈ ∂Bl, just mimick the computation as in theψreg
0 (z), which is complicated but straight-

forward computation.

□
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Though the formula above is really complicated, here we only consider the nodal limit
when s is the generic point. Using the proposition we can have the following result for
the asymptotics of Ψreg∞ (zps) and Ψ

reg
0 (zps) as p→ 0:

Proposition 6.9. The solution Ψ
reg∞ (z) and Ψ

reg
0 (zps) has the following limit for generic s:

lim
p→0

Ψ
reg∞ (zps) =

{
∏
←
m∈[0,s)(B

∗
m)−1 s ≥ 0

1 s < 0
(6.59)

lim
p→0

Ψ
reg
0 (zps) =

{
∏
←
m∈(s,0](B

∗
m) s ≤ 0

1 s ≥ 0
(6.60)

Here [0, s) ((s, 0]) stands for a path from 0 (s) to s (0) containing 0. Here s ≥ 0 and s < 0
stands for s = (s1, · · · , sn) such that si ≤ 0 or si > 0 for every component si.

Now combining the formula 6.59 and 6.60, we have obtained the Theorem 6.6.

7. DEGENERATION TO THE DUBROVIN CONNECTION

In this section we shall construct the degeneration limit of the quantum difference
equations

7.1. Dubrovin connection for quiver varieties. Fix a quiver variety Mθ(v, w), it has
been proved in [MO12] that the Dubrovin connection for the quantum equivariant co-
homology H∗T(Mθ(v, w)) is given as:

∇λ = dλ −Q(λ), λ ∈ H2(Mθ(v, w)) ∼= Pic(Mθ(v, w))(7.1)

Here:

Q(λ) = c1(λ) + h̄ ∑
θ·α>0

α(λ)

1− q−α
eαe−α + constant opeartor(7.2)

Here {eα} are the generators of the MO Lie algebra gMO
Q ⊂ Yh̄(g

MO
Q ). It has been

proved [BD23] that this MO Lie algebra gMO
Q is isomorphic to the BPS Lie algebra gQ ⊂

Yh̄(gQ). The generators e±α in gMO
Q were sent to E±[i, j) in ŝln.

There are many interesting properties for the Dubrovin connection. The Dubrovin
connection has regular singularities q−α = 1 and q = 0, ∞, and the corresponding mon-
odromy representation:

π1((C∗)n − Sing)→ Aut(H∗T(Mθ(v, w)))(7.3)

can be represented by the quantum Weyl group for the corresponding quantum group
Uq(gQ).
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In our cases, for the affine type A quiver varieties M(v, w) for θ = (1, · · · , 1). The
corresponding BPS Lie algebra gQ is isomorphic to ĝln. The corresponding Dubrovin
connection can be written as:

(7.4)

Q(λ) =c1(λ) + h̄ ∑
α>0

α(λ)

1− q−α
eαe−α + · · ·

=c1(λ) + h̄ ∑
α∈real positive roots+{0}

∑
k≥0

(α + kδ)λ
1− q−α−kδ eα+kδe−α−kδ + · · ·

For example, if we take λ = O(1), we have that:

Q(O(1)) = c1(O(1)) + h̄ ∑
α∈real positive roots+{0}

∑
k≥0

kn + |α|
1− q−α−kδ eα+kδe−α−kδ + · · ·(7.5)

Similarly, if λ = Li, we have:

Q(Li) = c1(Li) + h̄ ∑
k≥0

1 + k
1− q−α−kδ eα+kδe−α−kδ + · · ·(7.6)

Moreover, we can write down the quantum differential equation as:

Q(L) = c1(L) + h̄ ∑
[i, j)

L · [i, j)
1− z−[i, j)

E[i, j)E−[i, j) + · · ·(7.7)

7.2. Degeneration limit of the slope subalgebra. In this subsection we describe the de-
generation limit of the slope subalgebra Bm ⊂ Uq,t(

ˆ̂sln) into the subalgebra of Yh̄1 ,h̄2(ŝln).

The description we shall use is as the following: Using the algebra embedding:

Uq,t(
ˆ̂sln) ↪→∏

w
End(K(w))(7.8)

We express the generators of Bm ⊂ Uq,t(
ˆ̂sln) into the matrix coefficients in ∏w End(K(w)).

Then we proceed the degeneration limit of K(w) via the Chern character map K(w) →
Ĥ(w).

Then via the algebra embedding Uq,t(
ˆ̂sln) ↪→ Uq(ĝMO

Q ) and the fact that the degenera-
tion limit of Uq(ĝMO

Q ) lies in Yh̄(g
MO
Q ) ∼= Yh̄(gQ), we have that the degeneration limit of

Bm ⊂ Uq,t(
ˆ̂sln) lies in Yh̄(gQ).

To get the formula for the matrix element, recall the formula:

⟨λ|Pm
[i; j)|µ⟩ = Pm

[i; j)(λ\µ) ∏
■∈λ\µ

[ ∏
□∈µ

ζ(
χ■
χ□

)
w

∏
k=1

[
uk

qχ■
]], m · [i, j) ∈ Z(7.9)
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⟨µ|Qm
−[i; j)|λ⟩ = Qm

−[i; j)(λ\µ) ∏
■∈λ\µ

[ ∏
□∈λ

ζ(
χ□
χ■

)
w

∏
k=1

[
χ■
quk

]]−1, m · [i, j) ∈ Z(7.10)

Here:

(7.11) P±m
±[i; j) = Sym

∏
j−1
a=i z⌊mi+...+ma⌋−⌊mi+...+ma−1⌋

a

tind dm
[i, j⟩q

i− j
∏

j−1
a=i+1

(
1− q2za

za−1

) ∏
i≤a<b< j

ζ

(
zb
za

)

(7.12) Q±m
∓[i; j) = Sym

∏
j−1
a=i z⌊mi+...+ma−1⌋−⌊mi+...+ma⌋

a

t−indm
[i, j) ∏

j−1
a=i+1

(
1− q1za−1

za

) ∏
i≤a<b< j

ζ

(
za

zb

)
Now we shall give the asymptotic behavior of the matrix coefficients ⟨λ|Pm

[i; j)|µ⟩ in
terms of the order of h̄. In the very first order, we have that:

⟨λ|Pm
[i; j)|µ⟩

coh = Sym[
1

∏
j−1
a=i+1(t2 + χa − χa−1)

∏
i≤a<b< j

ω(χb − χa)] ∏
■∈λ\µ

[ ∏
□∈µ

ζ(
χ■
χ□

)
w

∏
k=1

[
uk

qχ■
]]coh

(7.13)

In this way one can find that ⟨λ|Pm
[i; j)|µ⟩

coh is independent of the choice of m. In this

case we choose P0
[i; j).

We want to prove the following thing:

Proposition 7.1. ⟨λ|Pm
[i; j)|µ⟩

coh coincides with ⟨λ|E[i; j)|µ⟩, and ⟨λ|Qm
−[i; j)|µ⟩

coh coincides

with ⟨λ|E−[i; j)|µ⟩. Here E[i; j) ∈ ŝln ⊂ ĝln.

Proof. Before the proof, one thing should be commented that the proof follows the spirit
that the degeneration of Uq(ĝln) to U(ĝl)n) depends on the fact that the quantum R-
matrix would degenerate to the classical r-matrix in the degenerate limit.

Here we only show the proof for ⟨λ|Pm
[i; j)|µ⟩

coh. The proof for ⟨λ|Qm
−[i; j)|µ⟩

coh is similar.

Define the following rational functions:

Pcoh
[i, j) := Sym[

1

∏
j−1
a=i+1(t2 + za − za−1)

∏
i≤a<b< j

ω(zb − za)](7.14)

It is easy to see that ⟨µ|Pm
[i; j)|λ⟩

coh = ⟨µ|Pcoh
[i, j)|λ⟩. Thus it remains to prove that Pcoh

[i; j) =

E[i; j) ∈ ŝln ⊂ ĝln.
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We use the induction on [i, j), now suppose that the equality is true for [i, k) and [k, j).
We need to prove the following equality:

Pcoh
[i, j) = [Pcoh

[i,k), Pcoh
[k, j)](7.15)

First we have that E[i,i+1) = ( 1
q−q−1 P0

[i,i+1))
coh, and we define x±i := 1

q−q−1 e±[i,i+1) so

that x±,coh
i is well-defined as E[i,i+1). Inductively, we also define x±

[i, j) := 1
q−q−1 e±[i, j), we

will prove that they have the well-defined cohomological limit.

To prove this, note that the isomorphism of the slope subalgebra of slope 0 B0 ∼=
Uq(ĝln) with the quantum affine algebra sends e[i, j) to P0

[i, j), e−[i, j) to Q0
−[i, j) satisfying the

relation 2.19. It is easy to see that for 1 ≤ i ≤ j ≤ k ≤ n:

e[i,k) = −
1

q− q−1 (e[i, j)e[ j,k) − q−1e[ j,k)e[i, j))(7.16)

which is equivalent to

x[i,k) = −(x[i, j)x[ j,k) − q−1x[ j,k)x[i, j))(7.17)

Now we take q→ 1 limit we obtain that:

ecoh
[i,k] = −E[i,k)(7.18)

Moreover:
(7.19)

1
(q− q−1)

[e±[i, j)e±[ j,k) − q−1e±[ j,k)e±[i, j)] =
x≡k

∑
i≤x< j

e±[ j, j+k−x)e±[i,x) −
x≡ j

∑
i<x≤ j

e±[x, j)e±[i+ j−x,k)

=
x≡k

∑
i≤x< j

e±[ j, j+k−x)e±[i,x) −
x≡ j

∑
i<x< j

e±[x, j)e±[i+ j−x,k) − e±[i,k)

Using the induction we have that:
(7.20)

[x±[i, j)x±[ j,k) − q−1x±[ j,k)x±[i, j)] = (q− q−1)
x≡k

∑
i≤x< j

x±[ j, j+k−x)x±[i,x) − (q− q−1)
x≡ j

∑
i<x≤ j

x±[x, j)x±[i+ j−x,k)

=(q− q−1)
x≡k

∑
i≤x< j

x±[ j, j+k−x)x±[i,x) − (q− q−1)
x≡ j

∑
i<x< j

x±[x, j)x±[i+ j−x,k) − x±[i,k)

As q→ 1, the quadratic terms on the right hand side vanishes.

Hence we have proved that:

E[i, j) = −ecoh
[i, j)(7.21)
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for arbitrary i, j.

□

Remark. The above proof is really well-known since it just reflects the fact that the q→
1 of the quantum affine algebra Uq(ĝln) degenerates to the affine Kac-moody algebra
U(ĝln). The point of the proof here is to show the matrix coefficients of U(ĝln) acting
on the equivariant cohomology H∗T(M(w)) of quiver varieties, which is useful in the
precise computation.

7.3. Main result. Having established the degeneration property between quantum affine
toroidal algebra and the affine Yangians, here we show our main result:

Theorem 7.2. The degeneration limit of the quantum difference operator ML(z) coincides with
the quantum multiplication operator Q(L) up to a constant operator.

Proof. To prove the theorem, let us first state the following useful result on the degener-
ation

Proposition 7.3. In the cohomological limit, the monodromy operator Bm(λ) reads:
(7.22)

Bcoh
m (λ) =

g

∑
h=1

(
∞
∑
k=1

1
1− z−k|δh|

α
m,h(0)
−k α

m,h(0)
k + ∑

γ∈∆(A)
m≥0

1
1− z−vr+(m+1)δh

f(δ−γ)+mδe(δ−γ)+mδ

+ ∑
m>0

lh

∑
i, j=1

1
1− zmδh

um,i j fmδ,α j emδ,αi + ∑
γ∈∆(A)

m≥0

1
1− zvγ+mδh

fγ+mδeγ+mδ)

And here um,i j = min{i, j}− i j
n , and the generators (e.g. fγ+mδeγ+mδ) ) are the cohomological

limit of the generators under the following homomorphism:

(7.23) Uq,t(
ˆ̂sln) ∏w End(K(w)) ∏w End(H(w))ch

Proof. This is from the defintion of the degeneration limit:

Bcoh
m (λ) := lim

h̄→0

1
h̄
(Bm(λ)− 1)(7.24)

Then using the Proposition 4.5 we can show that all the generators fγ+mδeγ+mδ lies in
the affine Yangian Yh̄1 ,h̄2(ŝln).

□
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Now we choose a path such that each m is at the generic points. In this case the
cohomological limit of the monodromy operator can be written as one of the following
form:

n

∑
h=1

(
∞
∑
k=1

1
1− z−k|δh|

α
m,h(0)
−k α

m,h(0)
k ),

1
1− z−α

m
i

em
−αi

em
αi

(7.25)

Now given the quantum difference operator ML(z) being written as:

ML(z) = LBwm(z) · · ·Bw0(z)(7.26)

Under the degenerate limit, the cohomological limit can be written as:

(7.27)
n

∑
h=1

( ∑
a
b∈Walls

∞
∑
k=1

1
1− z−bkθα

a/b,h
−k α

a/b,h
k ) + ∑

[i; j)∈Walls

1
1− z−[i; j)

Qm
−[i; j)P

m
[i; j)

Note that each αa/b,h
−k α

a/b,h
k has the degeneration limit as αh

−bkα
h
bk, and Qm

−[i; j)P
m
[i; j) has

the degeneration limit as e−[i, j)e[i, j). With this fact it remains to match the coefficients of
the Dubrovin connection.

For the term of the form e−[i, j)e[i, j). Note that Qm
−[i; j)P

m
[i; j) exists iff m · [i, j) ∈ Z. To

make sure that the wall m is in (0, 1]r, it remians to prove that there are L · [i, j) walls
for e−[i, j)e[i, j).

We first prove the claim for L = O(1) =: θ = (1, · · · , 1), note that it is equivalent
to count the hyperplanes m · · · [i, j) ∈ Z with fixed [i, j) such that the corresponding
hyperplane intersects the boundary of (0, 1]r. While the hyperplane satisfying the above
condition is equivalent to the hyperplane satisfying the following equation:

m · [i, j) = l, l ∈ [1, θ · [i, j)](7.28)

The reason is that if m · [i, j) = 0, it is easy to see that the hyperplane only intersects
∂[0, 1]n with 0, thus does not intersect ∂(0, 1]n. The hyperplane m · [i, j) = θ · [i, j) inter-
sects ∂(0, 1]n with θ, and the hyperplane m · [i, j) = θ · [i, j) + 1 does not intersect with
∂(0, 1]n.

For the general L ∈ Nn − 0, denote L as (k1, k2, · · · , kn). Now the hyperplane m ·
[i, j) ∈ Z would be contained in the wall of the quantum difference operator ML iff
it intersects with ∂((0, k1]× · · · × (0, kn]). So under the circumstances, the hyperplane
with fixed [i, j) satisfying the above condition has the equation written as:

m · [i, j) = a, a ∈ [1,L · [i, j)](7.29)

Which means that the coefficients of e−[i, j)e[i, j) in Mcoh
L is equal to L · [i, j). Thus finish

the proof. □
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7.4. p → 1 limit of the solution of the quantum difference equation. With the result
of the degeneration limit of the quantum difference equation. We can start to construct
the p→ 1 degeneration limit of the solution to the quantum difference equation.

Let Ψ0,∞(q1, q2, p, z) be the solution to the quantum difference equation described
above. Then we take z = e2πs, qi = e2π ih̄iτ , q = e−2π iτ . By the Theoreom 7.2, for the
degeneration limit of the solution ψ0,∞(z), which is defined as follows:

ψ0,∞(z) = lim
τ→0

Ψ0,∞(e2π ih̄1τ , e2π ih̄2τ , e−2π iτ , z) ∈ ̂HT(M(v, w))loc(7.30)

It is the solution to the corresponding Dubrovin connection. The solution lies in the
completion of HT(M(v, w))loc. Using this, we can define the transport of the solution of
the Dubrovin connection:

Trans(s) := ψ0(e2π is)−1ψ∞(e2π is) ∈ ̂HT(M(v, w))loc(7.31)

Similarly as a result of the Theorem 7.2, the transport of the solution is a limit the mon-
odromy:

Trans(s) = lim
τ→0

Mon(z = e2π is, t1 = e2π ih̄1τ , t2 = e2π ih̄2τ , q = e−2π iτ)(7.32)

in ̂HT(M(v, w))loc. Here s = (s1, · · · , sn) ∈ Rn is the generic point in Rn.

The description for the monodromy operator from the monodromy operator generally
can only be written as the infinite product of matrices. However, the help of the elliptic
stable envelope could help us make the description for the monodromy operator much
more elegant.

In this way we find that the transport matrix can be described in terms of Bm.

Proposition 7.4. Trans(s) = limp→0 Monreg(ps, e2π ih̄1 , e2π ih̄2 , p) for s ∈ Rn\Walls

Proof. Note that Mon(q, t1, t2, z) can be written as the following:

exp(−∑
i

ln(E(0)
i ) ln(zi)

ln(q)
)∑

a,b
La,b

r

∏
j=1

∏
i j ,l j

θ(z
l j
i j

ai j)

θ(z
l j
i j

bi j)
exp(∑

i

ln(E(∞)
i ) ln(zi)

ln(q)
)(7.33)

Using the formula 6.38:

exp(∑
i

ln(E(i)
0 ) ln(zi)

ln(p)
)Mon(z) exp(−∑

i

ln(E(i)∞ ) ln(zi)

ln(p)
) = ∏

i
(Θ(E(i)

0 , zi))Monell(z)∏
i
(Θ(E(i)∞ , zi))

−1

(7.34)

It is known that Monell(z) is the linear combination of the riemann theta function, and
it is also q-periodic. And since Mon(q, t1, t2, z) is q-periodic, it must be the combination
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of the product of the form exp(k ln(z) ln(a/b)
ln(q) )θ(zka)

θ(zkb) , and thus the proposition follows from
the following identity 9.20 in the appendix:

lim
τ→0

exp(2π is(ϵ1 −ϵ2))
θ(e2π i(s+τϵ1), e2π iτ)

θ(e2π i(s+τϵ2), e2π iτ)
= lim

q→0

θ(qse2π iϵ1 , q)
θ(qse2π iϵ2 , q)

(7.35)

This identity can be generalized to:

lim
τ→0

exp(2π i(k · s)λ) ∏iθ(e2π i(k·s+τai), e2π iτ)

∏ jθ(e
2π i(k·s+τb j), e2π iτ)

= lim
q→0

∏iθ(qk·se2π iai , q)

∏ jθ(qk·se2π ib j , q)
, λ = ∑

i
ai −∑

j
b j

(7.36)

Then using the formula to our setting, we have:
(7.37)

lim
τ→0

exp(∑
i

ln(E(i)
0 /E(i)∞ ) ln(zi)

ln(p)
)∏

k

θ(zk1
1 · · · z

kn
n ak)

θ(zk1
1 · · · z

kn
n bk)

= lim
τ→0

exp(∑
i

ln(E(i)
0 /E(i)∞ ) ln(zi)

ln(p)
) exp(−∑

k

ki ln(zi) ln(ak/bk)

ln(p)
) exp(∑

k

ki ln(zi) ln(ak/bk)

ln(p)
)×

×∏
k

θ(zk1
1 · · · z

kn
n ak)

θ(zk1
1 · · · z

kn
n bk)

= lim
q→0

∏
k

θ(qk·sak)

θ(qk·sbk)

Here we use the fact that E(i)
(0)/E(i)∞ = ∏k(

ak
bk
)ki . Now we have finished the proof of the

theorem. □

Proposition 7.5. The transport of the quantum connection from z = 0 to z = ∞ intersecting a
line γ intersecting |zi| = 1 at a nonsingular point z = e2π is with zi = z j are equal, and s does
not meet the wall set we have

(7.38) Trans(s) =

{
∏
←
w∈(0,s)(B

∗
w)
−1 · T s ≥ 0

∏
→
w∈(s,0) B∗w · T s < 0

Moreover, if we release the condition of (z1, · · · , zr) to the polydisk {|zi| = 1} ∈ Cn,
one could obtain the following result for the transition operator:

Theorem 7.6. The transport of the quantum connection from z = 0 to z = ∞ intersecting the
polydisk at a nonsingular point z = e2π is with |zi| = 1 for each i = 1, · · · , n, and s does not
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meet the wall set, then it equals:

Trans(s) =


∏
→
wi∈Wallsi⊂Walls∩C(s)c(B∗wi

)∏
←
wi∈Wallsi⊂Walls−∩D(s)c(B∗wi

)−1

s ∈ Bk ∩ B−l

∏
←
wi∈Wallsi⊂Walls−∩D(s)c(B∗wi

)−1, s ∈ ⋃
w∈Walls0

{s ∈ Rn|si − l ≤ wi}
∏
→
wi∈Wallsi⊂Walls∩C(s)c(B∗wi

), s ∈ ⋃
w∈Walls0

{s ∈ Rn|si + k ≥ wi}

(7.39)

Proof. Combining the nodal limit of ψreg
0 (psz) and ψreg∞ (psz) in the Proposition 6.7 and

the Proposition 6.8. Then combine them with the Proposition 7.4, we obtain the theorem.
□

Using this formula, we can see the following things.

Suppose now that given a solution ψ0(z) of the qde and extend it to ψ∞(z) via the
curve γ intersecting the unit polydisk at e2π is, s ∈ Rn, we know that the transport for-
mula is given by TransDT(s). Now we move the curve γ a little bit such that the new
curve γ′ intersect the unit polydisk with e2π is′ . Now we require that the move of s and s′
is close enough such that:

(Walls∩ C(s)c ∩ C(s′)c)c
Walls ∩ (Walls− ∩ D(s)c ∩ D(s′)c)c

Walls− has only one element
(7.40)

In human langauge, it means that the corresponding wall elements of s and s′ has only
one element difference. In this way, inversing the curve γ′ and consider the loop γ′−1γ,
this corresponds to the element TransDT(s′)−1TransDT(s), and if we denote the wall of
the difference by w, we can see that:

Trans(s′)−1Trans(s) = B∗w(7.41)

While we know that the analytic continutation via the loop γ′−1γ is unique up to
homotopy, thus now we have defined the map:

π1(Pr\Sing)→ End(HT(M(v, w)))(7.42)

with each loop γ mapped to an ordered product of ∏w B∗w.

To obtain the complete description of the monodromy representation, note that since
the other quantum difference operator T−1

L ML(z) commutes with T−1
O(1)MO(1)(z).

In conclusion, we have the following monodromy representation:

Theorem 7.7. The monodromy representation:

π1(Pr\Sing)→ End(HT(M(v, w)))(7.43)
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of the Dubrovin connection is generated by B∗m with q1 = e2π ih̄1 , q2 = e2π ih̄2 , i.e. the monodromy
operators Bm in the fixed point basis.

8. CASE STUDY: THE EQUIVARIANT HILBERT SCHEME OF Ar SINGULARITY

In this section we study in detail about the Hilbert scheme Hilbn([C2/Zr]) of Ar sur-
faces.

As a quiver variety, the corresponding quiver representation is written as:

Rep(v, w) =
⊕

i∈Z/rZ
Hom(Vi, Wi)⊕Hom(V0, W0), Vi = Cn, W0 = C(8.1)

The fixed point of the equivariant Hilbert scheme Hilbn([C2/Zr]) is denoted by the
partitions λ such that |λ| = nr such that:

#{□ ∈ λ|c□mod r = i} = n(8.2)

8.1. Wall structure of the Hilbert scheme Hilbn([C2/Zr]). Now we use the above ex-
ample to give an explicit calcultaion of the wall structure of the Hilbert scheme Hilbn([C2/Zr]).

From the definition it is easy to see that the wall hyperplane in Pic(Hilbn([C2/Zr]))⊗
Q ∼= Qr for the Hilbert scheme Hilbn([C2/Zr]) is given by:

m · [i, j) ∈ Z, 1 ≤ i ≤ j ≤ nr(8.3)

The finite hyperplane is given by:

m · [i, j) = 0(8.4)

In this case the quantum difference operator can be written as:

(8.5) ML(z) = L ∏
m∈generic points of walls

z·[i, j)=n,1≤i≤ j≤nr

Bm(z)

such that:

Bm(z) =


∑
∞
n=0

(q−q−1)n

[n]q2 !
(−1)n

∏
n
l=1(1−zn[i, j)p|m|q−lnθ·(( n2r−1

2 θ+e1)−2−2δ1l ))

(Qm
−[i, j))

n(Pm
[i, j))

n ( j− i)mod r ̸= 0

∏
r
h=1 : exp(−∑k=1

nkq−
k|δh |

2

1−z−k|δh |pkm·δh q−
k|δh |

2

αm,h
−k α

m,h
k ) : ( j− i)mod r = 0

(8.6)

Here we introduce two ways of computing the matrix coefficients of quantum differ-
ence operator in terms of stable basis and fixed point basis.
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For the stable basis case, one could write down the matrix coefficients of Bm(z) in
terms of the normalized stable basis:

Pm
[i, j) · s

m
µ =

λ\µ=C is a type [i, j)

∑
cavalcade of m-ribbons

sm
λ (1− q2)#C qht C+indm

C +N+
C(8.7)

Qm
−[i, j) · s

m
µ =

λ\µ=S is a type [i, j)

∑
stampede of m-ribbons

sm
µ (1− q2)#S qwd(S)−indm

S − j+i+N−S(8.8)

Using the formula, we have that:
(8.9)

(Qm
−[i, j))

n(Pm
[i, j))

n · sm
λ0

=
λi\λi−1=Ci is a type [i, j)

∑
cavalcade of m-ribbons

(Qm
−[i, j))

nsm
λn
(1− q2)∑

n
i=1 #Ci q∑

n
i=1(ht Ci+indm

Ci
+N+

Ci
)

=
λn+i−1\λn+i=Si is a type [i, j)

∑
stampede of m-ribbons

λi\λi−1=Ci is a type [i, j)

∑
cavalcade of m-ribbons

sm
λ2n

(1− q2)∑
n
i=1 #Ci

+#Si q∑
n
i=1(ht Ci+indm

Ci
+N+

Ci
)×

× q∑
n
i=1(wd(Si)−indm

Si
− j+i+N−Si

)

In conclusion, the matrix coefficients of the quantum difference operators ML(z) can
be written as:

(8.10)

(sm
µ , ML(z)sm

λ ) =(sm
µ ,L ∏

m∈generic points of walls
z·[i, j)=n,1≤i≤ j≤nr

Bm(z)sm
λ )

=(sm
µ ,Lsm

λo
) ∏

m,λi

(sm
λi

, Bm(z)sm
λi−1

)Rm,m′
λi+1 ,λi

Here m′ is the slope right next to the m with respect to the order of the product. Rm,m′
λi+1 ,λi

is the K-theoretic wall R-matrix of slopes m and m′ at the fixed point basis λi+1 and λi.

In the fixed point basis, recall the formula:

⟨λ|Pm
[i, j)|µ⟩ = Pm

[i, j)(λ\µ) ∏
■∈λ\µ

[ ∏
□∈µ

ζ(
χ■
χ□

)[
u1

qχ■
]](8.11)

⟨µ|Qm
−[i, j)|λ⟩ = Qm

−[i, j)(λ\µ) ∏
■∈λ\µ

[ ∏
□∈λ

ζ(
χ□
χ■

)[
χ■
qu1

]]−1(8.12)
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So we can write that:
(8.13)

(Qm
−[i, j))

n(Pm
[i, j))

n|λ0⟩ = (Qm
−[i, j))

n|λn⟩
n

∏
l=1

Pm
[i, j)(λl\λl−1) ∏

■l∈λl\λl−1

[ ∏
□l−1∈λl−1

ζ(
χ■l

χ□l−1

)[
u1

qχ■l

]]

=
n

∏
l=1

Qm
−[i, j)(λn+l−1\λn+l)Pm

[i, j)(λl\λl−1) ∏
■l∈λl\λl−1

■n+l∈λn+l\λn+l−1

[ ∏
□l−1∈λl−1

□n+l−1∈λn+l−1

ζ(
χ■l
χ□l−1

)

ζ(
χ□n+l−1
χ■n+l

)

[ u1
qχ■l

]

[
χ■n+l

qu1
]
]]|λ2n⟩

8.2. Example: Hilb3([C2/Z2]). Now we give the example of the equivariant Hilbert
scheme Hilb3([C2/Z2]). As the quiver variety, the corresponding quiver representation
is

Hom(C3,C3)⊕2 ⊕Hom(C3,C2)(8.14)

The T-fixed point of the equivariant Hilbert scheme Hilb3([C2/Z2]) is given by the
single partition λ such that |λ| = 6 and such that for the boxes □ ∈ λ such that #{□ ∈
λ|c□ mod 2 = 0} = #{□ ∈ λ|c□ mod 2 = 1}3. Here c□ = i − j with (i, j) the coordi-
nate of the box. Written in the Young diagram, the fixed point set corresponds to the
following Young diagrams:

(8.15) 0
1
0
1
0
1

0 1
1
0
1
0

0 1
1 0
0
1

0 1
1 0
0 1

0 1 0
1
0
1

0 1 0
1 0 1

(8.16) 0 1 0 1
1 0

0 1 0 1 0
1

0 1 0 1 0 1

The wall structure on Hilb3([C2/Z2]) is given by the following hyperplanes in Q2:
(8.17)
x = n1, y = n2, x + y = n3, x + 2y = n4

2x + y = n5, 2x + 2y = n6, 3x + 2y = n7, 2x + 3y = n8, 3x + 3y = n9

The following is the graphs of the wall structure for Hilb3([C2/Z2]) in the neighbor-
hood of [0, 1]× [0, 1]:
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By the computation you can see that for the generic slope point m on the wall x = n1,
y = n2, x + 2y = n4, 2x + y = n5, 3x + 2y = n7, 2x + 3y = n8, the monodromy
operator Bm is of the Uq(sl2) type. For the generic slope points m on the wall x+ y = n3,
2x + 2y = n6, 3x + 3y = n9, the monodromy operator Bm is of the Uq(ĝl1)-type.

8.2.1. Matrix Coefficients of Bm. We first write down the monodromy operators Bm ex-
plicitly for KT(Hilb3([C2/Z2]):

Bm(z) =

∑
∞
n=0

(q−q−1)n

[n]q2 !
(−1)n

∏
n
l=1(1−zn[i, j)p|m|)

(Qm
−[i, j))

n(Pm
[i, j))

n ( j− i)mod 2 ̸= 0

∏
2
h=1 : exp(−∑k=1

nk
1−z−k|δh |pkm·δh

αm,h
−k α

m,h
k ) ( j− i)mod 2 = 0

(8.18)

This means that

Bm =

∑
∞
n=0

(q−q−1)n

[n]q2 ! (Qm
−[i, j))

n(Pm
[i, j))

n ( j− i)mod 2 ̸= 0

∏
2
h=1 : exp(−∑k=1 nkα

m,h
−k α

m,h
k ) ( j− i)mod 2 = 0

(8.19)
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Now we do the classification of the monodromy operators on each wall:
(8.20)

Bm(z) =



∑
1
n=0

(q−q−1)n

[n]q2 !
(−1)n

∏
n
l=1(1−zn

2 p|m|)
(Qm
−[2,3))

n(Pm
[2,3))

n x = 1

∑
1
n=0

(q−q−1)n

[n]q2 !
(−1)n

∏
n
l=1(1−zn

1 p|m|)
(Qm
−[1,2))

n(Pm
[1,2))

n y = 1

∑
1
n=0

(q−q−1)n

[n]q2 !
(−1)n

∏
n
l=1(1−z2n

1 zn
2 p|m|)

(Qm
−[1,4))

n(Pm
[1,4))

n 2x + y = 1, 2, 3

∑
1
n=0

(q−q−1)n

[n]q2 !
(−1)n

∏
n
l=1(1−zn

1 z2n
2 p|m|)

(Qm
−[2,5))

n(Pm
[2,5))

n x + 2y = 1, 2, 3

∑
1
n=0

(q−q−1)n

[n]q2 !
(−1)n

∏
n
l=1(1−z3n

1 z2n
2 p|m|)

(Qm
−[1,7))

n(Pm
[1,7))

n 3x + 2y = 1, 2, 3

1 2x + 3y = 1, 2, 3
∏

2
h=1(1− ∑

3
k=1

nk
1−z−k

1 z−k
2 pkα

m,h
−k α

m,h
k + n1n2

(1−z−1
1 z−1

2 p)(1−z−2
1 z−2

2 p2)
×

×(αm,h
−1 α

m,h
−2 α

m,h
1 αm,h

2 )− n3
1

6(1−z−1
1 z−1

2 p)3 (α
m,h
−1 )3(αm,h

1 )3) x + y = 1, 2

∏
2
h=1(1−

n1
1−z−2

1 z−2
2 p2α

m,h
−2 α

m,h
2 ) 2x + 2y = 1, 3

∏
2
h=1(1−

n1
1−z−3

1 z−3
2 p3α

m,h
−1 α

m,h
1 ) 3x + 3y = 1, 2, 4, 5

Using the formula in the fixed point basis as in 2.65 and 2.66, we can write down
the explicit matrix coefficients of the monodromy operators. Otherwise we can use the
corresponding stable basis sm

λ to compute the matrix coefficients of the monodromy op-
erators. The transition between two stable basis sm1

λ , sm2
λ of different slopes m1 and m2 is

determined by the wall R-matrix Rm1 ,m2
C of K-theoretic stable envelope, which has been

explained in [Z23].

8.3. Connection to the Dubrovin connections of Hilbert scheme of Ar−1-singularities.
By the main theorem in this paper, the quantum difference equation on KT(Hilbn([C2/Zr]))
would degenerate to the Dubrovin connection on the quantum cohomology H∗T(Hilbn([C2/Zr])):

(8.21)

QO(1) = c1(O(1)) ∪ (−) + (h̄1 + h̄2) ∑
[i, j)

|[i, j)|
1− z−[i, j)

E[i, j)E−[i, j) + · · ·

QLl = c1(Ll) ∪ (−) + (h̄1 + h̄2) ∑
[i, j)

|[i, j)|l
1− z−[i, j)

E[i, j)E−[i, j) + · · ·

Here |[i, j)| is the sum of the coefficients of [i, j), |[i, j)|l is the sum of the coefficients
of [i, j) in the direction el.

In [MO09], Maulik and Oblomkov have proved that for the Dubrovin connection over

the quantum cohomology of the Hilbert scheme of Ar−1-singularities H∗T(Hilbn(Ĉ2/Zr)),
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the Dubrovin connection can be written as:
(8.22)

MO(1) =c1(O(1)) ∪ (−) + (h̄1 + h̄2) ∑
1≤i≤ j≤r

∑
k∈Z

: e ji(k)ei j(−k) :
k(z1 · · · zr)kzi · · · z j−1

1− (z1 · · · zr)kzi · · · z j−1

+ ∑
k≥1

[rt1t2 p−k(1)pk(1) +
r−1

∑
i=1

p−k(Ei)pk(ωi)](
k(z1 · · · zr)k

1− (z1 · · · zr)k −
z1 · · · zr

1− z1 · · · zr
)

(8.23)

MLi = c1(Li) ∪ (−)− (h̄1 + h̄2) ∑
1≤i≤l≤ j≤r

∑
k∈Z

: e ji(k)ei j(−k) :
(z1 · · · zr)kzi · · · z j−1

1− (z1 · · · zr)kzi · · · z j−1

Here we use the notations in [MO09]. The equivariant Hilbert scheme Hilbn([C2/Zr])

and the Hilbert scheme Hilbn(Ĉ2/Zr) are the cyclic quiver varieties of the same quiver

representation, but with different stability condition. By the flop isomorphism F : H∗T(Hilbn(Ĉ2/Zr)) ∼=
H∗T(Hilbn([C2/Zr])) defined in [MO12], together with commutative diagram (4.38) in
[MO12] and the Theorem 7.2.1 in [MO12], we have that the quantum multiplication by

divisors for Hilbn([C2/Zr]) and Hilbn(Ĉ2/Zr) are intertwined by the flop isomorphism
up to a scaling operator:

(8.24)

H∗T(Hilbn([C2/Zr])) H∗T(Hilbn(Ĉ2/Zr))

H∗T(Hilbn([C2/Zr])) H∗T(Hilbn(Ĉ2/Zr))

F

QLi
MLi

F

It is conjectured that the quantum difference operator MLi(z) in the eigenbasis H of
MLi(∞) has the degeneration limit as the quantum multiplication by MLi in the quan-

tum cohomology of H∗T(Hilbn(Ĉ2/Zr)).

On the viewpoint from the stable envelope, this means that the regular solution of the
quantum difference equation from z = ∞ to z = 0 has the connection matrix identified
as the elliptic geometric R-matrix defined in [AO21]. On the algebraic point of view, this

means that we need to identify MLi(z) with the line bundle Li on Hilbn(Ĉ2/Zr) up to
conjugacy. For now we still don’t know how to prove the fact in a straightway, and this
will be put into the future study.

9. APPENDIX: BASICS OF THE ABELIAN FUNCTIONS

In this appendix we shall give a brief introduction on the theory of the function field of
meromorphic functions over complex tori. The complex tori we consider is A := Cn/L
with L ⊂ Cn a periodic full-rank lattice in Cn.
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9.1. Theta Functions. Given Ω an n× n symmetric complex matrices with positive def-
inite imaginary part, we define the Jacobi theta function θ(z, Ω) associated to z ∈ (C∗)n

and Ω as:

θ(z; Ω) := ∑
n∈Zn

zn exp(
1
2

ntΩn)(9.1)

It is easy to check that:

ϑ(e2π iz; Ω) = θ(z; Ω), θ(exp(ΩL)z; Ω) = exp(−1
2
LtΩL)z−Lθ(z; Ω)(9.2)

Moreover if we take z = e2π iξ, the Jacobi theta function can be written as:

ϑ(z; Ω) := ∑
n∈Zn

exp(2π intξ) exp(
1
2

ntΩn)(9.3)

Also given a, b ∈ Rg, we define the theta function ϑ
(

a
b

)
(z; Ω) as:

ϑ

(
a
b

)
(z; Ω) = exp(

1
2

atΩa + at(ξ + b))ϑ(ξ +Ω · a + b; Ω)(9.4)

such that:

ϑ

(
a
b

)
(z +Ω ·m + n; Ω) = exp(2π i(atn− btm)) exp(−1

2
mtΩm− 2π imtz)ϑ

(
a
b

)
(z; Ω), ∀m, n ∈ Zg

(9.5)

As the special example, if we take n = 1 and Ω = τ , and set q = e2π iτ , the Jacobi theta
function can be written as:

ϑ(z; q) := ∑
n∈Z

q
n2
2 zn =

∞
∏
n=1

(1− q2n)(1 + q2n−1z)(1 + q2n−1z−1)(9.6)

It satisfies the following modular property:

ϑ(e2π iξ ; e2π iτ) =
i√
τ

e−
iπξ2
τ ϑ(e

2π iξ
τ ; e−

2π i
τ )(9.7)

In the context of [AO21], they use the odd Jacobi theta function:

θ(z|q) = (z1/2 − z−1/2) ∏
n≥1

(1− qnz)(1− qnz−1)(9.8)

The relation between the Jacobi theta function and the odd Jacobi theta function can
be written as:

ϑ(−zq1/2; q) = −z
1
2ϕ(q)θ(z), ϕ(q) =

∞
∏
n=1

(1− q2n)(9.9)
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In our settings, We will Jacobi theta function ϑ(z; Ω) and the odd Jacobi theta function
θ(z|q) depending on the situation. It does not matter too much which kind of theta
function we would use since they are only different up to a scaling transformation.

9.2. Line bundles over the abelian varieties. Fix the complex space Cn = V and a
rank 2n lattice Λ ⊂ V, and we define X = V/Λ. The line bundle L on X is uniquely
determined by the pair (H, χ). the Hermitian form H : V×V → C such that Im(Λ, Λ) ⊂
Z. χ : Λ→ S1 ⊂ C is the semicharacter for H, which is defined as:

χ(λ+µ) = χ(λ)χ(µ) exp(π iIm H(λ,µ)), ∀λ,µ ∈ Λ(9.10)

The construction is given by that given (H, χ) we can define the automorphy form
a = a(H,χ) : Λ×V → C∗ by

a(λ, v) := χ(λ) exp(πH(v, λ) +
π

2
H(λ, λ))(9.11)

which satisfies the cocycle relation:

a(λ+µ, v) = a(λ, v +µ)a(µ, v)(9.12)

In this way, we can define the line bundle L(H, χ) := V×C/Λ such that Λ acts on V×C
by λ · (v, t) = (v + λ, a(λ, v)t).

Now suppose that given a line bundle L with the automorphy form f (λ, v), the el-
ements in the global holomorphic section H0(L) of L can be thought of as the set of
holomorphic function ϑ : V → C such that

ϑ(v + λ) = f (λ, v)ϑ(v)(9.13)

It is known that the global section of the line bundle can be written as ϑ(zne2πΩ·m; Ω).
We can choose vector n ∈ Zn and m ∈ Rn such that ϑ(zne2πΩ·m; Ω) satisfy the difference
equation 9.13.

Moreover, if we consider the space of meromorphic sections Γrat(L), it is generated by
the products of the theta functions of the form:

∏
i
ϑ(zni e2πΩ·mi ; Ω)λi , λi ∈ Z(9.14)

For the specific example that we use in this paper, we consider the space of meromor-
phic sections of the structure sheaf Γrat(OX), i.e. the space of abelian functions over X.
This means that the section f (z) ∈ Γrat(OX) is meromorphic and Λ-periodic. This implies
that Γrat(OX) is generated by the theta functions of the form ∏i ϑ(zni e2πΩ·mi ; Ω)λi , λi ∈ Z
such that ∑i λini = ∑i Ω · (λimi) = 0.

More precisely, if we choose the lattice of the form ΛΩ,D = Ω · Zg ⊕ D · Zg. Given
a, b ∈ Rg, let {ak|1 ≤ k ≤ rg} be a system of representatives of (a + D−1Zg)/Zg,
and let {bl|1 ≤ l ≤ ∏

g
i=1 di} be a system of representatives of (r−1b + r−1Zg)/Zg.
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Then the family of theta functions {θ
(

ak
bl

)
(z; r−1Ω)} defines a projective embedding

Cg/ΛΩ,D ↪→ P(∏
g
i=1 di)·rg−1.

Using the projective embedding, we can show that the abelian function on Cg/ΛΩ,D
is generated by the following family of quotients of theta functions:

ϑ

(
ak1
bl1

)
(z; r−1Ω)

ϑ

(
ak2
bl2

)
(z; r−1Ω)

, 1 ≤ k1, k2 ≤ rg, 1 ≤ l1, l2 ≤
g

∏
i=1

di(9.15)

9.3. Nodal Limit of the abelian functions. In our setting we only consider the special
case that Ω = τId, D = Id with τ ∈ H. In this case:

ϑ

(
a
b

)
(z; Ω) = exp(

g

∑
i=1
π iτa2

i + 2π iai(zi + bi))
g

∏
i=1
ϑ(zi + aiτ + bi|τ)(9.16)

In this case, we can choose b = 0, and the abelian function on Cg/ΛΩ,D is generated
by:

exp(
g

∑
i=1
π ir−1τ(a2

i − b2
i ) + 2π i(ai − bi)zi)

g

∏
i=1

ϑ(zi + r−1aiτ |r−1τ)

ϑ(zi + r−1biτ |r−1τ)
(9.17)

Using the modular duality for the theta function:

ϑ(e2π iξ , e2π iτ) =
i√
τ

e−
iπξ2
τ ϑ(e

2π iξ
τ , e−

2π i
τ )(9.18)

Now we compute the limit τ → 0 of the above generators:

(9.19)

lim
τ→0

exp(
g

∑
i=1
π ir−1τ(a2

i − b2
i ) + 2π i(ai − bi)zi)

g

∏
i=1

ϑ(zi + r−1aiτ |r−1τ)

ϑ(zi + r−1biτ |r−1τ)

= lim
τ→0

g

∏
i=1

ϑ( rzi
τ + ai| − r

τ )

ϑ( rzi
τ + bi| − r

τ )
= lim

q→0

g

∏
i=1

θ(q−zi e2π iai)

θ(q−zi e2π ibi)
, q = e−

2π ir
τ

i.e. we have that in terms of the odd Jacobi theta function:
(9.20)

lim
τ→0

exp(
g

∑
i=1

2π i(ai− bi)zi)
g

∏
i=1

θ(e2π i(zi+r−1aiτ)|e2π ir−1τ
)

θ(e2π i(zi+r−1biτ)|e2π ir−1τ )
= lim

q→0

g

∏
i=1

θ(q−zi e2π iai)

θ(q−zi e2π ibi)
, q = e−

2π ir
τ

This formula also appears in the Lemma 9 of [S21], which plays an important role
in the computation of the cohomological limit of the connection matrix and the elliptic
stable envelope of the Hilbert scheme of points Hilbn(C2).
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