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The impact of the local chemical environment on the Gilbert damping in the binary alloy
Fe100−xCox is investigated, using computations based on density functional theory. By varying
the alloy composition x as well as Fe/Co atom positions we reveal that the effective damping of
the alloy is highly sensitive to the nearest neighbor environment, especially to the amount of Co
and the average distance between Co-Co atoms at nearest neighbor sites. Both lead to a significant
local increase (up to an order of magnitude) of the effective Gilbert damping, originating mainly
from variations of the density of states at the Fermi energy. In a global perspective (i.e., making
a configuration average for a real material), those differences in damping are masked by statistical
averages. When low-temperature explicit atomistic dynamics simulations are performed, the impact
of short-range disorder on local dynamics is observed to also alter the overall relaxation rate. Our
results illustrate the possibility of local chemical engineering of the Gilbert damping, which may
stimulate the study of new ways to tune and control materials aiming for spintronics applications.

I. INTRODUCTION

Magnetic damping, also known as Gilbert damping
(α) in the context of the Landau-Lifshitz-Gilbert (LLG)
equation [1], plays a crucial role in determining the rate
at which energy and angular momentum dissipate in a
magnetic system. It thus generally dictates the timescale
of processes involving a magnetic transition from an ex-
cited state to an equilibrium state, magnetic domain wall
motion, and spin-wave propagation. These are the fun-
damental processes that govern the performance of spin-
tronics [2] and magnonics [3] devices. Reduced magnetic
damping can lead to higher efficiency and faster opera-
tions in these devices by minimizing energy dissipation
during their operation. Hence, a detailed investigation
into the fundamental physics involved in the mechanism
of damping is of great interest [2, 4–6]. Previous theoret-
ical and experimental research has established that α is
not a simple scalar quantity (as is usually assumed), but
instead a tensorial quantity [7–12] that is temperature-
dependent [13–15], non-local in real-space [7, 8, 16–22],
and presents an anisotropic behavior – as outlined in var-
ious studies [17, 23–26]. Therefore, fundamental under-
standing and materials engineering at the local (atom-
istic) scale compose, in principle, a possible route to op-
timum properties with desired damping magnitude.

Apart from their exceptional properties, including high
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Curie temperature, high saturation magnetization and
high permeability [27], Fe-Co alloys constitute also a
suitable platform to the fundamental investigation of the
magnetic damping. It was experimentally demonstrated
that the Fe100−xCox alloys (up to x = 60%) can hold
an ultra-low intrinsic damping, of the order of 10−4,
at x ∼ 25% [4], despite being metallic. This surpris-
ing result, comparable to the values found in ferrimag-
netic insulators (such as yttrium iron garnet [28]), was
explained by the existence, at this particular value of
x, of a sharp minimum density of states at the Fermi
level, and corroborated by different methods and levels
of theory [10, 14, 19, 29–31]. In addition, Fe-Co has re-
cently attracted attention with the observation of a giant
anisotropy effect in α [24] in Fe50Co50 thin films, initially
attributed to the variation of spin-orbit coupling due to
local distortions in the alloy. This was also experimen-
tally verified for other similar alloys involving Fe and Co
[32, 33], but the exact mechanisms responsible for this
effect is still an open question [23, 32, 34, 35]. Addition-
ally, at the theoretical level, Lu et al. [19] suggested that
for x ∈ {30%, 50%} the explicit treatment of damping as
a nonlocal parameter in spin-dynamics have the effect of
increased magnon lifetime predictions (for specific wave
vectors q). Together, those observations clearly consoli-
date FeCo as a benchmark for Gilbert damping investi-
gations, encompassing many hidden features across the
alloy series.

Despite the progress in studying these interesting phe-
nomena in FeCo, other potential sources of hidden fea-
tures are still not quite well-explored in the scope of
Gilbert damping. Some have been recently highlighted
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as effects that are or might be relevant, also account-
ing for site-nonlocal damping [23, 36]. They are often
related to changes in the local environment: reduced di-
mensionality, chemical disorder, and thermal fluctuations
in the lattice (atomic displacements) and in the magnetic
state. Although the former remains as the least discussed
among the known effects [36], the other two, which con-
stitute causes for electron scattering processes, are gen-
erally addressed by effective alloy analogy models (see,
e.g., Refs. [29, 37]). In particular, an explicit atomistic
picture is still missing, and here we choose to address this
knowledge gap in the context of the chemical disorder.

In this sense, the alloy models generally used – the vir-
tual crystal approximation [38] or the coherent potential
(CPA) approximation [39] – were originally developed to
describe chemical disorder in materials [40] via an effec-
tive medium. The effective medium is a result of locally
averaging possible clusters with different configurations
and compositions within the alloy, and the CPA is de-
signed to give the scattering properties of electron states
that correspond to a proper configuration average of the
alloy. This theoretical description works reasonably well
to reproduce experimentally measured electronic struc-
ture properties of many alloys [41–44] and related materi-
als properties, including Gilbert damping [14, 19, 31, 45].
Nevertheless, they frequently overlook the impacts of the
local environment, including atom clustering, among oth-
ers – precisely the conditions under which phenomena
like damping anisotropy were originally suggested to arise
[24].

The local chemical environment has been shown to
modify the magnetic properties of a given material, such
as the atomic magnetic moment, magnetic exchange in-
teractions [46–49], as well as magnetic anisotropy [50].
For instance, the presence of heterogeneous easy-axis ori-
entations in clusters leads to a vanishing low magnetic
anisotropy in permalloy (Ni80Fe20), although the favored
easy-axis orientations at each site, dependent on the lo-
cal atomic arrangement and the cluster’s composition,
can be several times larger than that of elemental Fe or
Ni [50]. As a result, the spin Hamiltonian and, thus, the
energy landscape is modified, impacting the dynamics of
the local magnetic moments in a system described by the
LLG equation [51]. In the context of FeCo, early calcu-
lations of ordered bcc Fe50Co50 structures have demon-
strated that the magnetic anisotropy can change by some
two orders of magnitude when particular Fe/Co config-
urations are considered [52]. Also, experimental studies
have shown that the magnetic properties are influenced
by various local environment factors, including compo-
sition, morphology [53–55], as well as the size of Fe-Co
alloy nanoclusters.

In this study, we utilize Fe-Co alloys as a platform to
investigate the impact of local compositions and atom
arrangements on α via ab-initio calculations. Here, we
suggest the existence of hidden features (e.g., enhanced
or decreased damping values) when an explicit atomistic
picture is considered. As a consequence, local chemical

engineering may be considered as a possible route to ma-
nipulate the Gilbert damping of such materials.
The paper is organized as follows. In Sec. II, we pro-

vide details on the density functional theory (DFT) cal-
culations, the embedded cluster virtual crystal approx-
imation model, along with the considered atomic con-
figurations with different Co concentrations. Section III
presents the results of the local environment effects on
the Gilbert damping. In Sec. IV, we give a summary
and an outlook.

II. METHOD

A. Computational details

The electronic structure and, from it, the magnetic
properties of the Fe-Co alloys were obtained using the
fully self-consistent real-space linear muffin-tin orbital
in the atomic sphere approximation (RS-LMTO-ASA)
[56, 57]. In this first-principles scheme, the eigenvalue
problem is solved directly in the real-space by employ-
ing Haydock recursion method [58] (for LL recursion
steps) together with Beer-Pettifor terminator [59], suit-
able for metallic systems. Here, the local spin density ap-
proximation (LSDA), with parametrization by von Barth
and Hedin [60], was used for the exchange-correlation
functional (XC). To evaluate the Gilbert damping in
the torque-correlation method, the spin-orbit coupling
(SOC) term, ξL̂ · Ŝ, was included self-consistently at each
variational step [61]. The LMTO-ASA [62] is a linear
method that gives precise results around a given energy
E = Eν , often chosen as the center of gravity of the
s, p and d bands. Thus, as in the previous study [19],
we consider an expression accurate to (E − Eν)

2 start-
ing from the orthogonal representation of LMTO-ASA –
given that nonlocal damping parameters are fine quanti-
ties. For all cases investigated, we considered LL = 31,
which produces reliable results for the damping of Fe-
Co alloys when compared to available experimental and
theoretical results in the literature [19].
In order to simulate alloys, we designed the following

simulation protocol: we performed ab-initio calculations
on a virtual-crystal-approximation (VCA) medium of bcc
FeCo alloys to account for the chemical disorder. In gen-
eral, this approximation is well-known to be reasonable
for systems where the energy bands behave more or less
rigidly with changes in the alloy concentration – which is
exactly the case of FeCo, neighboring elements in the pe-
riodic table (for a more detailed discussion on the VCA
for FeCo, see Appendix D). Here, the medium matrix
contains ∼ 55000 atoms. The Fe-Co alloys still maintain
a body-centred-cubic (bcc) phase for the range of Co con-
centration from 0% to 60% [4] and the lattice parameter
a0 = 2.87Å was used for all values of x. Although the
FeCo alloys present a slight variation of ∼ 1% in a0 for
x ∈ [0%, 60%] [63, 64], we keep a0 fixed to concentrate
on the effect coming solely from the chemical disorder. It
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also should be noticed that the composition of x = 60%
Co is at the edge of the transition to body-centred tetrag-
onal (bct) phase [65], but for simplicity, we remain here
in the bcc phase. As for the VCA approach we replace
the nuclear charge (Z) and the number of valence elec-
trons (nv) by the alloy average based on the concentra-
tion, e.g., in the case of Fe60Co40 we consider nv = 8.4
and Z = 26.4.

FIG. 1. (Color online) Schematic representation of the EC-
VCA model in the bcc structure. The Fe and Co atoms are
depicted by yellow and blue spheres, respectively, forming an
explicit Fe53Co47 embedded cluster with radius R. In turn,
the gray spheres symbolize the VCA medium mimicking the
same alloy concentration, that extends significantly beyond
the depicted limits (the full VCA matrix has ∼ 55000 atoms).
Image produced with the VESTA software [66].

After the self-consistent procedure on the pure VCA
structure, 15-atom clusters composed of different Fe and
Co compositions as well as atomic arrangements were
embedded into the center of the corresponding VCA
medium as local impurities (see Figure 1 for a schematic
representation).

The impurity region was self-consistently treated while
the potential parameters and Fermi energy of the pure
VCA matrix host were kept fixed. This is a particularly
suitable approach and certainly an improvement with
respect to the simple VCA approximation, because the
short-range disorder (which pure VCA neglects) is made
explicit, while the more distant sites are replaced by the
virtual atoms with long-range disorder properties. Nat-
urally, this model tends to become more accurate when-
ever the radius R of the explicit region increases, but
with two main limitations: (i) R cannot be too close
from the full medium matrix radius, to avoid any surface
effects in real space; and (ii) R should be maximum to
still be considered as a local perturbation, in which no
appreciable change in the Fermi level of the crystalline
host can be observed. As our intention here is to analyze
the implications of very short range chemical disorder in
the torque-correlation theory for the Gilbert damping (in
its nonlocal formulation), the 15-atom cluster (R = a0)
is a simple and useful model. From now on, this model

will be referred to as embedded cluster VCA (or, in short,
EC-VCA).
From the electronic structure of this spatially disor-

dered alloy, we determine both the onsite (for i = j)
and the non-local (for i ̸= j) contributions of the Gilbert
damping αij from the following expression,

αµν
ij =

g

miπ

∫ ∞

−∞
η(ϵ)Tr

(
T̂µ
i Âij(ϵ+)(T̂

ν
j )

†Âji(ϵ+)
)
dϵ,

(1)

where ϵ+ = ϵ + iδ for some small positive value δ
(in energy units), Tr denotes the trace, the hat nota-

tion (e.g., Â) is used for operators (or tensors), and

Âij(ϵ+) = 1
2i (Ĝij(ϵ+) − Ĝ†

ji(ϵ+)) is the ij block of the
spectral function at the energy ϵ. The imaginary part
δ describes the electron band broadening and, thus, is
related to the electron lifetime associated with the relax-
ation from an excited state to the ground state due to
intrinsic scattering events. This involves electro-magnon
and electron-phonon scattering as well as electron corre-
lation.
Typically δ serves as the input, as seen in Ref. [67]

or is calculated as a self-energy by dedicated methods,
such as the alloy analogy model used in [29]. However,
in our approach, it is determined from the terminated
continued fractions in the Haydock recursion method. It
has been shown previously that this procedure results
in a good agreement of the Gilbert damping for several
materials to experimental measurements [19]. The term

T̂µ
i =

[
σ̂µ
i , Ĥso

]
is the so-called torque operator [17] at

site i, µ, ν ∈ {x, y, z} represent the Cartesian coordi-

nates, and η(ϵ) = −∂f(ϵ)
∂ϵ is the derivative of the Fermi-

Dirac distribution f(ϵ) with respect to the energy ϵ. In all
our simulations, the electron temperature is here taken
to be zero, so the energy integral is only performed at
the Fermi level. The total magnetic moment at a site i,
which is equal to the sum of orbital moment morb

i and

spin moment mspin
i , is represented by mi. The g-factor

is given by g = 2
(
1 + morb

mspin

)
and σ̂µ

i is the µ-component

of the Pauli matrices vector (at site i).
Altogether, Eq. 1 implies that the non-local Gilbert

damping is generally non-symmetric with respect to the
ij pairs, as also pointed out by Ref. [36]:

αµν
ij =

(
mspin

j

mspin
i

)
ανµ
ji , (2)

which should hold because of the trace properties applied
to Eq. 1. Naturally, Eq. 1 results in a 3 × 3 damping
tensor αµν

ij . From having the spin quantization axis along

the z ([001]) direction, we then can define a scalar damp-
ing value αij as the average αij = 1

2 (α
xx
ij + αyy

ij ) (for a
discussion about the validity of this definition in a chem-
ical disorder environment, please see Section IIIA).
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From the non-local Gilbert damping, we define the ef-
fective damping of atomic site i, αi, as

αi =
∑
j

αij . (3)

In practice, αi is the cumulative non-local damping
summation inside a given cutoff radius rc from the ref-
erence (i-th) site: αi =

∑
rij≤rc

αij . Since αij is typi-

cally long-range and scales asymptotically (i.e., for large
rij) as 1/r2ij [17, 19, 36], we consider the sum not only
over the 15 atoms in the embedded impurity cluster, but
also into the VCA medium in the EC-VCA model. For
rc = 6a0, αi is approximately converged, involving 1836
neighboring atoms in the damping calculations plus the
onsite term.

Experiments often measure damping as a single param-
eter from ferromagnetic resonance (FMR) techniques [68,
69], in which the magnetic moments are excited in a co-
herent mode (q = 0). As demonstrated in Appendix E,
the measured value (effective damping, αeff) can be re-
lated to the site-resolved effective damping αi (Eq. 3)
as

αeff =
1∑
i mi

∑
i

αimi, (4)

where the index i runs over all atoms in the unit cell. For
the general case, however, the relation is unfortunately
not so straightforward; a correspondent αeff should be
possible to be extracted by comparing how the magne-
tization behaves dynamically in the non-local damping
environment and in a local, single-parameter α candi-
date. We note that previous investigations have engaged
with the aspect of an averaged α from element- or site-
specific dampings, albeit without using the moments mi

as weights (e.g., Ref. [70]). For an alloy, several config-
urations can be constructed for a given concentration of
elements. In that case, the average of all obtained αeff

values (for that concentration and chosen δ) is the best
theoretical estimation for a measured intrinsic α. This
quantitative analysis for all concentrations of the FeCo
system is not the primary aim here, although we inves-
tigate the full scenario for an Fe-rich (Fe87Co13) alloy in
III B. Instead, our emphasis is directed towards the im-
pact of the chemical environment on the αi, aiming for
the report of locally hidden features of that quantity.

B. Atomistic spin dynamics with an explicit
embedded cluster

The generalized LLG equation [17, 19, 36, 71], which
incorporates the nonlocal damping, is solved by using an
implicit midpoint solver as implemented in the UppASD
code [72], with a time step of dt = 10−17 s; for more de-
tails on the solver and the spin Hamiltonian used see Ref.

[19]. In each simulation, a 40× 40× 40 spin lattice with
perfect bcc crystal symmetry is modelled with periodic
boundary conditions. To isolate the effects of distinct
magnetic interactions and damping parameters, all cal-
culations start from the same random (noncollinear) spin
state. The spin-spin exchange interactions and the non-
local damping parameters are considered up to a cutoff
radius of rc = 6a0, in compliance with the convergence
criteria established in Section IIA. As in Ref. [19], the
fluctuation-dissipation relation in the presence of non-
local damping is considered up to the approximation
αµν
ij → 1

3Tr(α̂ij)δijδµν , which is strictly reasonable in

the low-temperature limit (T → 0), i.e., for vanishing
stochastic fields. To break the rotational invariance of
the Heisenberg exchange interaction term, a small cubic
magnetic anisotropy was also added to the spin Hamil-
tonian. This term is characterized by an experimental
constant K1 of the order of ∼ 3 µeV/atom and easy axis
[100], approximately correspondent to the Fe87Co13 com-
position [73]. As all calculations include such anisotropy
value, it thus does not contribute to the final differences
observed.
When an embedded cluster is incorporated (i.e., be-

yond just VCA-type interactions), its 15-atom center co-
incides with the spin lattice center. Both Jij and αij

parameters correspondent to each explicit Fe or Co sites
(up to a distance of 6a0) are included in the Hamiltonian,
considering the symmetry rules Jij = Jji and the one de-
fined in Eq. 2. Of course, when short-range disorder is
explicitly considered, the inversion symmetry is also bro-
ken, and Dzyaloshinskii-Moriya interactions can emerge
as a consequence. As Fe and Co are elements with rela-
tively weak spin-orbit coupling (which is also a cause of
the ∼ 10−3 intrinsic damping values), we choose to dis-
regard that term in the Hamiltonian and concentrate on
the effects of the inhomogeneous nonlocal damping field.

C. Selected clusters and notation

In our study, the embedded nano-clusters within the
EC-VCA model are tailored to match the composition of
the surrounding VCA medium. It is important to real-
ize, however, that in a real sample this boundary is less
sharp, and local configurations of solely Fe or Co (al-
loy clustering) are possible, albeit being less likely; this
scenario is deliberately avoided here. Due to the vast
number of possible configurations, our study specifically
investigates a total of 64 unique configurations across all
the compositions. The study is particularly concentrated
on investigating the influence of neighboring Co atoms’
positions on the effective damping of the central atom
within each cluster configuration. For simplicity, the αi

refers to the effective damping of the central (reference)
atom i in each cluster in the following discussion.
As we deal with several configurations, an appropriate

notation system is imperative. Figure 2 illustrates the
set of investigated Co-centered clusters in the Fe53Co47
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composition, in which the horizontal axis depicts, from
left to right, the embedded clusters with increasing num-
ber of Co atoms at the first neighboring shell (1st NN)
of the reference atom i. Whenever possible, the nota-
tion will be exemplified with that particular composi-
tion, even though it is transferable to other Fe100−xCox
alloys. Therefore, we adopt the following definitions and
conventions:

• n denotes the number of Co atoms positioned at the
first neighboring shell of the reference (central) site.
For Fe53Co47, n = {0, 1, . . . , 6}. However, it may
exceed these values for Co-enhanced compositions
(e.g., Fe40Co60);

• d symbolizes the average interatomic distance
among the Co atoms in the first neighboring shell
(normalized by lattice constant a0), calculated as

d =
1

n(n− 1)

∑
ij

|rij |
a0

, (5)

where rij is the distance vector between Co atoms
at sites i and j;

• m = {1, 2, 3} groups the clusters based on the value
of their averages distances d. Thus, m = 1 and
m = 3 correspond to the clusters with the smallest
and largest d, respectively, whereasm = 2 identifies
clusters that fall in between;

• Cn labels the cluster with n Co atoms in the first
neighboring shell, for a given alloy composition;

• Cn-m categorizes the cluster Cn, identifying it with
the proper Co average distance group m (not used
for the cases C0, C1, C7, and C8 by construction).

It should be noted that the possible number of average
distances groups m is larger than the 3 shown here. We
have confined the number of clusters due to considera-
tions of computational efficiency. Despite this constraint,
the selected cases can adequately demonstrate the un-
derlying physics. The investigated clusters can have the
same 1st NN Co arrangement but a different 2nd NN
environment in different compositions, attributed to the
varying Co amounts. The total number of Co atoms and
the maximum/minimum n of each composition are shown
in Table II in Appendix A.

III. RESULTS

A. Investigation of off-diagonal elements

Before proceeding to the analysis of local chemical dis-
order effects on the magnetic damping, a natural ques-
tion that arises – linked to the tensorial character of α
– is about the practical contribution coming from the
off-diagonal elements in a heterogeneus environment. In

pure bcc or fcc 3d ferromagnets, when the spin quantiza-
tion axis (SQA) aligns with a fourfold or threefold sym-
metry axis (e.g., in z direction), only diagonal elements
are expected to be non-zero in the Gilbert damping ten-
sor, as discussed in Refs. [1, 7, 17] and corroborated
by [19]. This situation becomes ideal to extract a scalar
αij , which can be defined as αij = 1

2

(
αxx
ij + αyy

ij

)
, and

to directly compare to what is typically measured in ex-
periments [19]. However, when considering an alloy with
explicit chemical disorder, the intrinsic symmetry is bro-
ken, rendering non-zero off-diagonal elements plausible,
even with SQA∥ z.
To address this problem, we considered the effective

off-diagonal terms αeff
xy and αeff

yx (see Eq. E7) from a
bcc special quasirandom structure containing 16 atoms
(SQS-16) [74], obtained for a particularly simple FeCo
concentration (Fe50Co50). The SQS-16 cell was created
using the MCSQS algorithm within the framework of the
Alloy Theoretic Automated Toolkit (ATAT) [75]; more
details on the method inputs to create the cell can be
found in Ref. [19].
Clearly, the off-diagonal terms do not vanish (see Fig.

10 in the Appendix C), but they represent a very small
fraction of the diagonal terms (∼ 4−5%). Also, the asym-
metry is reduced between the diagonal terms (∼ 2%),
which indicates that at large scales the chemical disorder
plays a smaller role on the format of the α̂eff tensor than
the symmetry of the bcc structure in connection with
the SQA itself. In other words, it is a decent approxima-
tion to consider αeff → 1

2 (α
eff
xx + αeff

yy) ∼ αeff
xx. Therefore,

although locally off-diagonal elements maybe not negligi-
ble, we can consider in our investigation only the average
αij = 1

2

(
αxx
ij + αyy

ij

)
, that will effectively contribute to

αeff in the bulk scale.

B. Local effects: the Fe87Co13 case

Contrary to the Heisenberg exchange, which shows an
isotropic nature in the collinear state (i.e., dependent on
the atomic pair distance, and without the SQA as a sym-
metry reducer), the Gilbert damping is anisotropic with
respect to the SQA – even within the same neighbor-
ing shell. Formally, while the former is explained by
a simultaneous conservation of the trace of the block
Green’s functions Ĝij (and, consequently, also Âij) and ℓ-
dependent diagonal exchange-splitting matrices (see, e.g.,
[76, 77]), the later is explained by the non-diagonal char-

acter of the torque operators T̂µ
i (Eq. 1). In other words,

not only the distance and chemical classification of the ij-
pair is important for the composition of αij values, but
also their position with respect to the SQA (through-
out the text we consider SQA ∥ z – unless otherwise
noted). Physically, this can be understood by two con-
nected facts: (i) for small rotations of the spin about the
SQA (z), if it is a high symmetry axis, the change in the
magnetization will stay confined in the other two inde-
pendent reference orientations (x-y plane in this case, so



6

Amount on nearest-neighbor cobalt 

d

d≈1

d≈1.41

d≈1.14

d≈1.73

d≈1.14

d≈1.38

d≈1.41

d≈1.24

d≈1.31

d≈1.32

d≈1.26

d≈ 1.31

C0 C1 C2-1

C2-2

C2-3

C3-1

C3-2

d≈1.38

C3-3

d≈1.41

C4-1

C4-2

C4-3

C5-1

C5-2

C5-3

C6-1

C6-2

d≈1.29

C6-3

FIG. 2. Schematic representation of some possible embedded Fe53Co47 clusters in the VCA medium. Within this composition,
there are 8 Fe atoms (yellow spheres) and 7 Co atoms (blue spheres) in total. The horizontal line organizes, from left to right,
the embedded clusters with increasing amount on nearest-neighbor cobalt n (see text). Within each column, the clusters have
the same n but an increasing average Co interatomic distance d defined in Eq. 5(in units of a0) from the bottom to the top
side.

µ ∈ {x, y}), and (ii) the spin-orbit torques will recruit
different contributions from the orbitals in the inter-site
electronic spectral functions (i.e., through Âij) to partici-
pate in the dissipation process, obeying their symmetries
in real-space. This anisotropic behavior of αij has been
observed and reported in Refs. [17, 19, 23], where some-
times more than a single value of non-local damping is
found for the same inter-site distance rij , even for single-
element materials. As an example, we can analyze the
second neighboring shell of (pure) bcc Fe, which presents
two distinct αij values [19]. In this case, the orbital sym-
metry of the sites localized at positions (±a0, 0, 0) and
(0,±a0, 0) ensure a swap between αxx

ij and αyy
ij in the

respective α̂ij tensors, resulting in the same αij parame-
ters according to the definition in Section II. However, the
sites localized at positions (0, 0,±a0) are characterized by

inter-site propagators Ĝij with completely different (di-
agonal and non-diagonal) orbital contributions, resulting
also in distinct α̂ij tensors when compared to the previ-
ous 4 sites. Unfortunately, the non-diagonal character of
the T̂µ

i operators prevents us from discretizing the diag-
onal αµν=µ

ij elements in orbital contributions in a simple
and analogous way as for the Heisenberg exchange inter-
actions (Jij ’s, see Refs. [78, 79]).

Given the complexity associated with the set of degrees
of freedom that potentially influence the real-space αij ’s
(chemical classification, distance, and position around
a SQA), the best possible scenario to investigate local
effects is to consider all configurations for the particu-
lar alloy concentration of interest. In this context, as
a bonus, not only local effects can be studied, but also
explicit alloying disorder (short-range disorder) can be

indirectly considered as one source of electronic finite
lifetime in these materials [14] – generally treated by
effective medium approaches, such as the simple VCA
[19] or the more accurate CPA [14, 30, 31, 80]. In a 15-
atom cluster, with p number of Co atoms inside the clus-
ter, this means a total number of configurations equal
to C15

p =
(
15
p

)
= 15!

p!(15−p)! for a given concentration

Fe100− 20p
3
Co 20p

3
.

As this result scales quickly to thousands of possible
configurations, we can choose an Fe-rich alloy to be our
proof-of-concept, i.e., we choose p = 2 (or Fe87Co13).
In this case, the 105 total configurations can be reduced
to 16 nonequivalent situations, following the symmetry
of the Gilbert damping parameters in the bcc structure.
However, before we analyze the average on this alloy, we
discuss in detail a single case among the 16 nonequivalent
situations.

As an example, consider the cluster displayed in Fig-
ure 3. In principle, due to the cubic environment, each
of the {x,y, z} axes present a 4-fold (C4) symmetry with
respect to the αij values, representing a total of 24 non-
equivalent configurations (from the initial 105). However,
in view of the reasons discussed above, when a Co atom
occupies any site within the SQA (z-axis), the αFe-Co

value is distinct, reducing the multiplicity of this example
to 16. In that case, the variation of the nearest-neighbor
Co position w.r.t. the central Fe atom do not change
the αµν

ij components, but the second nearest-neighbors

(NNN), even when occupied by Co atoms, follow the
same symmetry rules as the pure bcc Fe (swap αxx

ij ↔ αyy
ij

for NNN in the xy-plane, different components for NNN
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FIG. 3. (Color online) Schematic representation of a 15-atom
embeddedcluster with alloy concentration Fe87Co13. Within
the EC-VCA model, this figure depicts only the explicit part,
which in the calculations is surrounded by the corresponding
VCA medium. The color scheme of the spheres is consistent
with Fig. 1. Bonds are drawn to guide the eye. Image pro-
duced with the VESTA software [66].

in z).
We can quantify the difference for this example. Tak-

ing into account the multiplicity, the variation in αi (Eq.
3, rc = 6a0) of having Co in the z-axis or in the xy-plane
amounts to ∼ 1% – similarly to other quasi-equivalent
cases among the 16 configurations. That is not a purely
non-local effect, as the onsite contribution also varies
with about the same intensity. Although small for Fe-
Co alloys, given their relatively weak spin-orbit strength,
we anticipate that the variation in αi is larger for envi-
ronments with higher spin-orbit coupling, ξ, in the limit
where the adiabatic and mean-field approximations (as-
sumed for torque-correlation formalism used here) are
still reasonable [81].

It is instructive to analyze the damping that can be
calculated from all possible nonequivalent configurations
of Fe87Co13. The results of both individual cumulative
damping summations (Eq. 3), and comparison between
the effective damping of Fe87Co13 and previous liter-
ature results are shown in Figure 4. We first notice
from Fig. 4(a) that generally, the values of αi for Co-
centered clusters in the explicit alloy region are higher
(scaling with 1

mi
) than the Fe-centered ones, and also

subject to more oscillations, especially throughout the
VCA medium. More importantly, even within each set
of Fe- or Co-centered configurations, we note the presence
of distinct curves, which is a direct consequence of the dif-
ferent spatial distributions of Fe/Co inside the embedded
cluster region – or, in other words, a direct influence of
the local environment. Although the onsite contribution
(αii) drives the majority of the effect, essentially due to
changes in the local density of states around EF because
of the charge transfer between species, the non-local con-
tribution cannot be disregarded. This is partially in line
with the importance of site-resolved non-local damping
suggested in Ref. [36], although the authors indicate it in
the context of reduced dimensionality – and here we ar-

gue its relevance in the presence of short-range chemical
disorder. Explicitly, the largest variation of the αii values
among the Fe- and Co-centered clusters are ∼ 4.7×10−4

and ∼ 3.4 × 10−4, respectively, while the (pure) nonlo-
cal contributions vary ∼ 0.9 × 10−4 (∼ 1.3 × 10−4) and
∼ 0.6×10−4 (∼ 0.9×10−4) for rc = a0 (rc = 6a0), where
rc = a0 represents the limit of the embedded cluster re-
gion.

With the definition given by Eq. 4, the effective
Gilbert damping can be obtained. The comparison of
αeff for Fe87Co13 with other literature results is shown in
Fig. 4(b). The error bar, here identified as the precision
of αeff, is calculated by the standard deviation and eval-
uated as ∼ 11%. This percentage will be used in a later
stage as the approximate error of other Co concentra-
tions averages. The final result of the EC-VCA model,
αeff = (1.52 ± 0.17) × 10−3, can then be compared to
the pure VCA calculation, αeff = 1.27 × 10−3. Despite
the consideration of almost the same chosen broaden-
ing parameter, δ, the effective damping for the EC-VCA
model is enhanced in comparison with the pure VCA
value. This is partially related to the fact that the con-
figuration average indirectly introduces the chemical dis-
order as a cause for change in δ (electronic lifetime), and
the randomly arranged atoms as centers for electronic
scattering. Another obvious reason associated with this
difference, that cannot be neglected, is the relative small
size of the embedded cluster. However, as Fig. 4(b)
shows, both the VCA and EC-VCA calculatons capture
most experimental results fairly well.

1. Spin dynamics: remagnetization

The calculation of explicit αij parameters in the EC-
VCA model allows for the inspection of the local environ-
ment effects on dynamical processes, in a fully atomistic
picture. Although the impact of a 15-atom explicit re-
gion on the overall energy dissipation rate is expected
to be small, the spin dynamics within this region can
significantly differ from that obtained considering an ar-
ray consisting solely of VCA sites. In this sense, the
remagnetization stands as a suitable process to inves-
tigate; its relevance becomes evident in the context of,
e.g., ultrafast pump-probe experiments and magnetiza-
tion switching [82–84], even though care should be taken
in the direct comparison to those experimental results as
variations in the spin moment length are not accounted
for in the generalized LLG equation [17, 19, 36, 71].

With this aim, we assume minimal influence from off-
diagonal elements (see Section IIIA) and employ the
method outlined in Ref. [19]. As a test case, we examine
the remagnetization dynamics with an embedded cluster
as shown in Fig. 3, starting from a random noncollinear
state (same for all simulations). This dynamics with an
explicit cluster can then be compared to the Fe87Co13
fully VCA model to account for the impact of the locally
distinct nonlocal Gilbert dampings. In this context, the
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FIG. 4. (a)
∑

rij≤rc
αij up to a given cutoff radius (rc) of all nonequivalent configurations of Fe87Co13 in the EC-VCA model.

The different curves shown in colors with different shades of blue represent different Fe-centered clusters, while the curves
shown with different shades of red show different Co-centered ones. (b) Comparison of the effective damping obtained from
all Fe87Co13 configurations in the EC-VCA model (blue point) with theoretical values obtained by the use of effective medium
approaches (VCA [19], and CPA [10, 14, 31]) and with the experimental values of intrinsic damping [69]. In (a), the yellow
and green areas represent the explicit alloy and VCA medium regions of the EC-VCA model, respectively.

Jij set also differs. Thus, a third model in which all
exchange interactions are artificially replaced by the cor-
responding VCA values is considered, to isolate the effect
of αij ’s. All sets of computed Jij parameters, correspon-
dent to both the pure VCA calculation and the EC-VCA
model, are depicted in Appendix B.

Figure 5(a) shows the obtained average magnetic mo-
ments, considering both nonlocal and site-resolved ef-
fective damping descriptions, for all three models (pure
VCA, EC-VCA, and EC-VCA with the VCA Jij set).
The first point to be noted is the global decrease of the
energy dissipation rate by the nonlocal damping formula-
tion of the equation of motion (αij , full lines) compared
to the effective damping (αi, dashed lines). Moreover,
all three models show distinct remagnetization times, as
highlighted by the Insets. For example, among the three
models, we obtain maximum differences of ∼ 600 fs and
∼ 200 fs to reach ∼ 77% of the fully saturated magne-
tization in the αi and αij simulations, respectively; as
these differences occur between the pure VCA and the
EC-VCA with the same exchanged Jij set, they can be
ascribed solely to the αij ’s. Interestingly, here the con-
trast between the nonlocal and effective descriptions is
also evident: the dissipation rate of the pure VCA model
is the highest in the former and the lowest in the latter.

Altogether, those results clearly demonstrate how the
short-range disorder influence on the local dynamics can
modify the overall relaxation rate. However, here the
impact is reduced due to two main factors: (i) the previ-
ously mentioned small replaced region in the VCA matrix
(15-atom cluster in a 40 × 40 × 40 lattice); and (ii) the
choice of a cluster whose effective damping (central atom

αi = 1.32×10−3) does not considerably deviate from the
VCA value (αi = 1.27× 10−3). This suggests promising
prospects for enhanced effects in larger embedded regions
or in scenarios where damping varies significantly (up to
an order of magnitude), as explored in the next section.
It also corroborates with the assertion from Ref. [36] that
considering inhomogeneous damping can improve the ac-
curacy of spin dynamics simulations.
To better illustrate the influence of chemical disorder

on the local dynamics, in Fig. 5(b) we show the trajec-
tories of both the central spin, which coincides with the
center of the embedded cluster, and a peripheral spin lo-
cated more than 6a0 from the center, encompassing only
VCA-type interactions. Concerning the former, it is pos-
sible to see that the trajectories largely deviate in all
three models from the beginning. In turn, for the latter,
the dynamics only start to differ after a time interval of
∆t ∼ 0.13 ps, by the perturbation of spin waves coming
from the cluster region.

C. Short-range disorder impact on damping: a
view throughout distinct alloy concentrations

Having previously demonstrated and quantified the
impact of short-range disorder on the effective Gilbert
damping and spin dynamics by fully analyzing a partic-
ular FeCo concentration (Fe87Co13), in this section we
extend our investigation to include all concentrations of
Co (up to 60%), with a focus on the damping behaviour
with respect to average Co interatomic distances, d.
The interatomic separation within clusters has a con-
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FIG. 5. (a) Remagnetization process for Fe87Co13 simulated with atomistic spin dynamics, considering both the fully nonlocal
Gilbert damping (αij , solid lines) and the site-resolved effective damping (αi, Eq. 3, dashed lines). Green, orange and blue
lines symbolize the simulations performed with purely VCA, EC-VCA, and EC-VCA parameters considering the VCA Jij

set, respectively. Insets: a zoom-in of the normalized magnetization curves. (b) Spin trajectories lying on the unit sphere at
∆t ≤ 0.13 ps for (b.1) a peripheral and (b.2) the central spin, which coincides with the center of the embedded cluster. The
red dot in (b.1) and (b.2) marks the initial position of the spin (at t = 0), equivalent for the three models considered.

siderable influence on magnetic properties, such as mag-
netic exchange and magnetic moment, as already iden-
tified in previous studies [85–87], but its impact on the
effective damping is still poorly understood. To further
explore the impact of Co interatomic distances on αi,
we keep a constant number of Co atoms at the 1st NN
sites(n) along with a consistent 2nd NN atomic environ-
ment across each cluster group. We then vary the ar-
rangement of the Co atoms at the nearest neighborhood
around the central (or reference) atom, thereby alter-
ing the average distance d defined in Section IIC. It is
important to note that multiple cluster configurations,
not necessarily equivalent in terms of damping values,
can share the same n and d values. For instance, fixing
the 2nd NN environment for C2-1 results in 12 possi-
ble clusters per composition. However, a single cluster is
randomly selected from these as a representative to an-
alyze its damping. Consequently, our analysis is limited
to these selected clusters. It should be further noted that
as the cluster groups C0, C1, C7, and C8 are comprised
of a single cluster each (i.e., no variation in d), our in-

vestigation predominantly employs the C2 to C6 cluster
groups as a platform.
To analyze the effective damping variation among clus-

ters, we introduce two quantities: ∆αeff, defined, for
each concentration x, by the clusters within the same
Cn group with the smallest (m = 1) and largest (m = 3)
d, set as

∆αeff =
(αm=3

i − αm=1
i )

αm=1
i

× 100% , (6)

and ∆αmax, which represents the highest variation
among all clusters investigated within each alloy concen-
tration (not necessarily with same n or m indexes).
Figure 6 shows αi as a function of d, in different clus-

ter groups Cn and alloy concentrations x. From those
results, two observations can be made: first, ∆αeff is in
all cases positive and can reach values up to 161% in C4
cluster group of Fe40Co60. Consequently, damping tends
to increase with d (see Table I).
Second, the damping parameter depends on n, indicat-

ing a shift towards higher damping magnitudes as more
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the VCA model.

Co atoms occupy 1st NN sites. Comparing the lowest
and highest damping value among n and m for a fixed
composition x, we observe a variation of up to 1122% (or
one order of magnitude) for x = 47 between the configu-
rations C2-1 and C6-3 (see Table I, bottom row, and Fig.
2 for an illustration of the referred clusters). This corrob-
orates with the significance of the 1st NN Co atoms on
the effective Gilbert damping in the central (or reference)
site of the embedded cluster.

To delve deeper into damping’s dependence on d, and
to understand the relevant enhancement of damping in
terms of the number of 1st NN Co atoms, we analyze
the on-site αonsite (see Fig. 7, left column) and the non-

TABLE I. Effective Gilbert damping variation ∆αeff as a
function of n and composition x of Fe100−xCox. ∆αmax(%),
∆n(Ef )

max(%) represent the maximum variation of damping
as well as density of states at the Fermi level between clusters
within each Co composition, respectively.

n x (%)

20 26 40 47 60

2 8 14 34 58 46
3 – 15 30 41 50
4 – – 68 83 161
5 – – 27 24 24
6 – – – 25 39

∆αmax 8 47 387 1122 685
∆n(Ef )

max 3 22 115 195 150

local αnonlocal contributions. We obtain these two pa-
rameters from decomposing Eq. 3 into αonsite = αii and
αnonlocal =

∑
i ̸=j αij . In agreement with previous investi-

gations [17, 19, 23], αonsite is positive and typically larger
than αnonlocal for all clusters; for 3d materials such as
FeCo, each αij is one order of magnitude lower than αii,
or more. Analogously to the effective damping, αonsite

tends to increase with d as well as n and with similar
variations. Surprisingly, αnonlocal changes sign and starts
to be negative at x > 40% for all n and m. Different to
the damping from pure VCA, where αnonlocal turns nega-
tive only at x = 60%, the nearest neighbor αij ’s drive the
most significant contribution to the negative αnonlocal at
x > 40% (data not shown). Furthermore, αonsite seems
to be more sensitive (by a factor of ∼ 10) in variations
of n, d, and x compared to αnonlocal and, thus, serves as
the dominant component in the effective damping trends.
The only exception to this general observation is the C2
cluster group, where onsite and nonlocal dampings are
equally sensitive in variations of d and for all Co concen-
trations x.
To further identify the electronic structure origin of the

results in the effective, onsite, and nonlocal dampings,
we link the first principles determined dampings to the
approximate (or simplified) Kambersky’s formula for the
relaxation of spin-dependent electronic populations [88],

α =
γ

4Ms
n(Ef )ξ

2(δg)2τ, (7)

where γ is the gyromagnetic ratio, Ms denotes the satu-
ration magnetization, n(Ef ) represents the total density
of states at the Fermi level, ξ is the strength of spin-orbit
coupling (SOC), δg is the deviation of the g-factor from
the free-electron value, and τ is the electron lifetime re-
lated to intrinsic scattering events with other degrees of
freedom.
The variation of the damping with respect to possible

changes in ξ is negligible across all cluster groups, with
the largest difference of less than 1% found for the 3d
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states contribution to the SOC constant. Regarding τ ,
its relation to the terminator and recursion levels of the
Haydock method shows minor differences among clus-
ters [23], although the precise calculation of τ is beyond
the scope of this study. In turn, the damping of differ-
ent ferromagnetic materials have been associated with

(δg)2 before [89], but the morb

mspin relation, within Kittel’s
first-order perturbation picture [90], only changes subtly
in each concentration x (and specially within each Cn
group). Explicitly, in all considered clusters, the cen-
tral Co exhibits a spin moment of around 1.7 µB and
an orbital moment of about 0.1 µB , being in agreement
with FeCo alloys and nanoclusters from previous works
[47, 91, 92]. No clear trend is observed in spin and or-
bital moments with the average interatomic distance d.
Nevertheless, an increase is noted with n, featuring the
largest spin moment variation at ∼ 1.8% and the largest
orbital moment variations at ∼ 30 − 38% for x ≥ 40%,
to be compared with ∆αmax — i.e., giving somewhat a
contribution but still not sufficient to explain the values
shown in Table I.

Therefore, in the scope of Eq. 7, the only quantity

that remains to be analyzed is the total density of states
(DOS) at the Fermi level. Significant correlation between
αi and n(Ef ) has been noted in this study and already in
literature [45]. It is shown in the second column of Fig. 7
that n(Ef ) exhibits a consistent enhancement trend with
d and n. The largest ∆n(Ef ) found in each composi-
tion is shown in the bottom row of Table I, with qualita-
tive agreement to the trends we observed for the effective
damping. In detail, the local environment has a negligi-
ble impact on the spin-up channel’s local DOS (LDOS),
while it induces a shift in the spin-down channel towards
lower energies, thus enhancing the corresponding LDOS
at the Fermi level (data not shown).
Lastly, our findings reveal that the αi is comparatively

less sensitive on changes of n for the Fe-centered clus-
ters as well as on the local environment variation of the
second nearest neighboring sites. Although the damping
values of these clusters differ when compared to the pure
VCA values, they are substantially lower than those ob-
served in Co-centered cases and the cases varying in d
and n, respectively. For instance, when replacing the
central Co atom with an Fe atom in Fe53Co47, and com-
paring the damping of clusters with different n, the maxi-
mum observed variation in damping – between the lowest
and highest values – is 27% (far less than in Co-centered
cases). Additionally, our tests on several clusters with
different second nearest neighbor environments show that
the damping variations are negligible (less than ∼ 5%).
Furthermore, neither of these cases exhibit a clear trend
in damping variation. The underlying reason of this be-
havior is that the local environment impacts on n(Ef ) of
Fe center clusters are negligible.

D. Effective damping: towards the global frame

After analyzing the impact of specific Fe/Co configu-
rations on Gilbert damping within a localized frame, we
now discuss the EC-VCA results from a broader, more
global perspective – towards a random alloy model with
short-range structure resolution. To this end, we proceed
to calculate the average damping for each Co concentra-
tion. Obviously, as detailed in Section III B, as we move
away from Co-poor alloys approaching Fe50Co50, the
number of possible nonequivalent configurations greatly
increases, which prevents a brute-force calculation of the
precise average values for all x. As an illustration, we can
briefly analyze the cases of Fe53Co47 and Fe40Co60. By
utilizing a cluster expansion approach similar to that de-
scribed in Refs. [93–95], 197 and 159 non-equivalent clus-
ters are found for these compositions, respectively, with-
out considering magnetic symmetry operations (SQA ef-
fect). Thus, a limited set has to be selected. We
here choose to investigate one Fe-centered and one Co-
centered cluster for each Cn-m group, including C0 and
C1, for 0% < x ≤ 40%; an example of this, applied to Co-
centered clusters was already depicted in Fig. 2. This ap-
proach yields a simplified and unbalanced average, which
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we argue is sufficiently representative to replicate the ex-
perimental trend.

Figure 8 shows the average effective damping, obtained
by using Eq. 4, considering both the Co-centered and
Fe-centered clusters among the different concentrations.
On one hand, quantitatively we observe that the average
damping shown in Fig. 8 is enhanced in comparison with
the experimental results and even with VCA calculations.
This, however, is expected from the unbalanced average
model we choose and has two simple explanations: (i) the
averages are taken from incomplete sets of clusters; and
(ii) the high-αi clusters are included. This can be clearly
seen by incorporating the complete set value obtained
in Section III B for Fe87Co13, denoted by a green star
in Figure 8, and comparing it with the average value
obtained by our established selection criteria. As Figure
8 shows, the average represented by the green star is
rather close to the experimentally observed value.

On the other hand, qualitatively we note that the ex-
perimental trend (with a minimum around x ∼ 20%)
and order of magnitude are well reproduced by the calcu-
lated values shown by black dots, despite the limited set
and high-αi clusters included. The error bars follow the
percentage (∼ 11%) found in Section III B, although we
expect increased standard deviations as x → 50%, spe-
cially because outliers with considerable ∆αeff become
more common in those alloy concentrations. Therefore,
although unusually high αi clusters can emerge as a re-
sult of chemical disorder, those cases are hidden in real
intrinsic damping measurements by statistical averages.
This makes the local scenario described in Section III C
consistent with FMR experiments again.
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FIG. 8. The effective intrinsic damping as a function of Co
concentration. The averages (black dots) are performed over
all considered Fe-centered and Co-centered clusters within
each Cn-m group, and calculated in the FMR regime by Eq.
E6. The blue and red dots show, respectively, the damping
obtained from pure VCA calculations and experimental re-
sults from Ref. [69]. The average value for Fe87Co13 obtained
in Section III B is depicted by the green star. Error bars are
calculated as ∼ 11% of each value, as a result of the standard
deviation obtained in the Fe87Co13 case (see text). Lines are
guides for the eyes.

IV. CONCLUSIONS AND OUTLOOK

In this study, we theoretically explored the role of lo-
cal environments (or the short-range chemical disorder),
specifically atomic configurations and compositions, on
the intrinsic Gilbert damping. Our investigation is fo-
cused on various bcc FeCo alloys, namely Fe100−xCox,
with x ∈ [0%, 60%]. With that perspective, a hybrid
explicit/effective medium model (EC-VCA) was intro-
duced. From the analysis of the complete set of configura-
tions in the Fe87Co13 concentration, it was demonstrated
that different spatial distributions of Fe/Co within the
embedded cluster region can markedly affect the damp-
ing. Unlike other quantities such as the Heisenberg ex-
change interactions, damping is anisotropic with respect
to the spin quantization axis, which further contributes
(albeit slightly in FeCo) to the effects of chemical dis-
order. The computed average damping aligns well with
both experiments and the pure VCA calculation. When
low-temperature explicit atomistic spin dynamics simula-
tions are performed, the influence of short-range disorder
on local dynamics is observed to alter the overall relax-
ation rate in both nonlocal and effective damping formu-
lations of the generalized Landau-Lifshitz-Gilbert (LLG)
equation, even when such a small (15-atom) embedded
region is considered.

Transitioning to configurations with higher Co content
across the FeCo alloy series, for which inevitably only
representative sets can be analyzed, the effective damp-
ing is found to be notably influenced by the atomic con-
figuration at the nearest neighborhood. In the most ex-
treme cases, a variation of about one order of magnitude
is found. A direct correlation between effective damping
and average the Co interatomic distance (d), as well as
the quantity of Co atoms occupying the first neighbor-
hood (n) were found. This local environment-dependent
damping behavior was explained in light of the simplified
Kambersky’s formula (Eq. 7), demonstrating a consis-
tent correlation between damping and the local density
of states at the Fermi level. In a global perspective (i.e.,
performing a configuration average), those differences in
damping are masked by statistical averages, reconciling
the local picture to what is typically observed in FMR
experiments for FeCo.

Considering damping as a nonlocal (and inhomoge-
neous) quantity reveals several interesting characteris-
tics, such as a pronounced dependence on the local envi-
ronment, which are overlooked by effective medium the-
ories. Such local environment-dependent damping may
have implications, in real materials, on phenomena like
the damping anisotropy observed in Fe50Co50, which was
originally attributed to short-range configurational ef-
fects [24]. Moreover, our results naturally encourage fur-
ther exploration of the potential for local engeneering of
damping, and the investigation into how defects affect
both damping and the magnetization dynamics at local
and global scales.
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Appendix A: Number of Co atoms in each
composition

In Table II we enumerate the total number of Co atoms
in the 15-atom cluster that corresponds to each alloy
concentration (NCo), as well as the maximum/minimum
number of Co atoms that can be placed within the near-
est neighboring shell (nmax and nmin in their Co-centered
configurations, respectively – see Section IIC for defini-
tions).

Appendix B: ASD simulations Jij parameters

Figure 9 depicts the Jij parameters used to obtain the
atomistic spin dynamics (ASD) results of Section III B 1.
The plots correspond to the computed Jij values for each
of the Fe and Co atoms of the embedded cluster of Fig.
3 taken as the reference site, as well as for the Fe87Co13
VCA (Inset, in gray).
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FIG. 9. Calculated Heisenberg exchange interaction parame-
ters for each Fe (shades of blue) or Co (shades of red) atom
within the embedded cluster illustrated in Fig. 3, with each
atom taken as a reference site. The Inset highlights, in gray,
the Jij parameters computed for the VCA Fe87Co13. Lines
are guides for the eyes.

Appendix C: Convergence of off-diagonal damping
terms

Figure 10 shows the comparison of αeff
xy and αeff

yx with

the diagonal terms, as well as their asymmetry
(

αeff
xx

αeff
yy

)
.

Appendix D: VCA approach in FeCo systems

In the proposed EC-VCA model, the VCA was used
to describe the external (non-explicit) medium. Despite
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FIG. 10. Relative values of the off-diagonal terms αeff
xy (blue

dots) and αeff
yx (orange dots) in the damping tensor α̂eff for a

SQS-16 cell of bcc Fe50Co50. The values were obtained using
the formulation of Eq. E7. Inset : asymmetry between the

diagonal terms αeff
xx and αeff

yy, defined as
αeff
xx

αeff
yy

. The lines are

guides for the eyes.

its simple nature, the VCA approach has been demon-
strated to be a reasonably valid method for investigating
the properties of FexCo1−x alloys. This has been dis-
cussed in the context of: (i) magnetic moments (both
spin and orbital) as corroborated by the replication of the
well-known Slater-Pauling curve (see Fig. 11) [38, 96];
(ii) transport properties [97]; (iii) a qualitatively correct
behavior of the magnetic anisotropy energy, as discussed
in Refs. [63, 98–100]; and (iv) a qualitatively accurate
trend of the total intrinsic Gilbert damping, as shown
in Ref. [19], for which VCA is able to capture the re-
markable low value at ∼ 20 − 30% of Co concentration,
physically attributed to a pronounced minimum in the
density of states at the Fermi level [69]. Although a non-
negligible disorder is present in the spin-minority channel
of bcc FeCo alloys [100, 101], in an effective picture (in
the context of Eq. 7), the average density of states of an
explicit supercell is well reproduced by VCA [19]. This
trend, initially obtained via CPA analysis [14, 29, 31],
was later confirmed by experiments [69].

To give a more comprehensive relation between VCA,
CPA and experimental results, we present a comparison
of the Curie temperature (TC), spin wave stiffness (Dex)
and Gilbert damping of Fe and Fe1−xCox alloys in Ta-
bles III-V. We found that the TC , Dex and dampings
obtained from VCA and CPA show a good agreement,
with acceptable discrepancies comparing to experiments.
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TABLE II. The total number of Co atoms (NCo) and the maximum (minimum) amount of Co in the nearest-neighborhood
nmax (nmin) within the cluster and in each composition. All these clusters refer to Co-centered configurations.

Composition NCo nmax nmin

Fe 0 0 0
Fe87Co13 2 1 0
Fe80Co20 3 2 0
Fe74Co26 4 3 0
Fe60Co40 6 5 0
Fe53Co47 7 6 0
Fe40Co60 9 8 2
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FIG. 11. Total magnetic moments (spin + orbital) as a func-
tion of the Co concentration, obtained for the FeCo alloys,
exhibiting the well-known Slater-Pauling behavior. The cal-
culations in this work are performed using 3 different models:
VCA (green circles), SQS-16 (black star), and ordered B2
structure (black triangle). The blue dots represent the data
obtained by using the CPA-LMTO method (extracted from
Ref. [102]). Experimental data from Ref. [103] are depicted
by the red and purple circles, representing the measurements
for disordered and ordered FeCo alloys, respectively. Lines
are guides for the eyes.

TABLE III. The Curie temperature (TC) of the pure bcc
Fe and Fe1−xCox alloys. In this work, whenever x > 0, the
electronic structure (and derived magnetic parameters) are
calculated considering the VCA approach. The Curie tem-
perature is evaluated from mean-field approximation (TMFA

C ),
random phase approximation (TRPA

C ), and Monte Carlo sim-
ulations (TMC

C ). For comparison, the theoretical and experi-
mental value of TC is shown. In other theoretical works, the
CPA approach is adopted.

This work Other works

TMFA
C (K) TRPA

C (K) TMC
C (K) Expt. Theory

bcc Fe 1274 919 960 1044[104] 900−1238[91, 105–108]
bcc Fe90Co10 1712 1086 1300 1164[109] 1069[110]
bcc Fe80Co20 2064 1426 1570 1225[109] 1369[110]
bcc Fe70Co30 2256 1667 1740 ∼ 1260[109, 111] 1490−1656[91, 108, 110]
bcc Fe60Co40 2304 1790 1800 1268[109] 1547[110]
bcc Fe50Co50 2230 1782 1780 1253–1370[109, 112] 1568−1634[91, 108, 110]
bcc Fe40Co60 2067 1670 960 1211[111] −

TABLE IV. The comparison of exchange stiffness (Dex) in
this work and other works for the pure bcc Fe and Fe1−xCox
alloys.

This work Other works

Dex (meV·Å2) Expt. Theory

bcc Fe 290 266−314[113–115] 247−410[106, 110]
bcc Fe90Co10 330 ∼ 345 [116] 405[110]
bcc Fe80Co20 411 ∼ 360 [116] 477[110]
bcc Fe70Co30 493 ∼ 410−470[116, 117] 567[110]
bcc Fe60Co40 561 ∼ 445−530[116, 117] 624[110]
bcc Fe50Co50 592 800[117] 526−677[108, 110]
bcc Fe40Co60 578 ∼ 480 [116] 466[108]

TABLE V. The comparison of damping (α) in this work and
other works for the pure bcc Fe and Fe1−xCox alloys.

This work Other works
α (×10−3) Expt. Theory

bcc Fe 2.1 1.9−7.2[14, 69, 89, 118–122] 1.3−3.2[14, 15, 67]
bcc Fe90Co10 1.4 1.2[69] 0.5−0.8[10, 14, 31]
bcc Fe80Co20 1.0 0.8[69] 0.4−0.6[10, 14, 31]
bcc Fe70Co30 0.9 0.5−1.7[69, 89, 123] 0.5−0.8[14, 31]
bcc Fe60Co40 1.1 ∼ 1.1a 0.8−1.1[10, 14, 31]
bcc Fe50Co50 1.6 2.0−3.2[24, 69, 89] 1.0−1.3[10, 14, 31]
bcc Fe40Co60 1.6 1.3−2.5[69] 1.6[14, 31]

a bcc Fe65Co35 [122]

Appendix E: Effective damping

As mentioned in Section II, in the FMR experiments
the magnetic moments are excited in a coherent mode.
Thus, a macrospin description with the summed total
effective magnetization M eff

i reads

M eff
i =

∑
i

Mi. (E1)

The dynamics of this macrospin is well described by
the Landau-Lifshitz-Gilbert equation

∂M eff

∂t
= M eff ×

(
−γB +

αeff

|M eff|
∂M eff

∂t

)
, (E2)

where γ is the gyromagnetic ratio, B is the effective
field acting on the macrospin and

∣∣M eff
∣∣ = |

∑
i mi| ≤∑

i |mi|. Since we aim to describe a coherent motion of
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the individual spins, i.e., a ferromagnetic collinear state
at all times t, by construction we have

∣∣M eff
∣∣ =∑i |mi|

and B isotropic with respect to all atomic sites i (Bi =
B). A general form of LLG equation incorporating the
non-local damping (first assuming it to be a scalar pa-
rameter) is:

∂mi

∂t
= mi ×

−γ [Bi + bi(t)] +
∑
j

αij

mj

∂mj

∂t

 . (E3)

Working with Eq. E2 we have:

∂M eff

∂t
=
∑
i

∂mi

∂t

=
∑
i

mi × (−γBi +
∑
j

αij

mj

∂mj

∂t
)


= −γ

[∑
i

mi

]
×B +

[∑
i

mi

]
×

∑
j

αij

mj

∂mj

∂t

 .

(E4)

Therefore, in the FMR regime, one can compare Eqs.
E2 and E4, resulting in

M eff × αeff

|M eff|
∂M eff

∂t
=
∑
i

mi ×
∑
j

αij

mj

∂mj

∂t
. (E5)

Let us write M eff =
∣∣M eff

∣∣ eeff and mi = |mi| ei,
where eeff and ei are the spin moment orientation of the
macrospin and the atomic spin at site i, respectively, at
a given time t. Since we describe a coherent precession,

then it is straightforward that ∂ei

∂t = ∂eeff

∂t and ei = eeff.
Hence, by Eq. E5, we obtain

αeff =
1

M eff

∑
ij

|mi|αij

=
1∑

i |mi|
∑
ij

|mi|αij =
1∑

i |mi|
∑
i

|mi|αi.

(E6)

Here, we define the effective damping of spin moment
i as αi =

∑
j αij [19]. For the general case where the

Gilbert damping is expressed as a tensor αij , it becomes
harder to disentangle a closed form for αeff, and the ef-
fective damping parameter should be extracted directly
from simulations containing the explicit αij expression.
However, if we assume that the macrospin is also sub-
jected to an effective damping in the tensor form, as sug-
gested by previous works (e.g., Ref. [7, 124]), so that the

term αeff

|Meff|
∂Meff

∂t is replaced by αeff

|Meff| ·
∂Meff

∂t , then for

each element of αeff we have

αeff
µν =

1

M eff

∑
ij

|mi|αµν
ij , (E7)

where µ, ν ∈ {x, y, z}. This result can be derived by ap-
plying the same reasoning of Eqs. E4-E6, however con-
sidering that both effective and atomistic LLG equations
assume the general form of a tensorial Gilbert damping
(αeff and αij).


