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Abstract

Using a computationally inexpensive frozen phonon approach we have developed a technique

which can be used to screen large unit cell materials and systems for enhanced superconduct-

ing critical temperatures. The method requires only density functional theory (DFT) calculated

electronic band structures of phonon modes corresponding to atomic displacements for various ma-

terials. We have applied this method to well known conventional superconductors including MgB2,

H3S and other hydrides as examples.

I. INTRODUCTION

High throughput structure searches for superconductors with critical temperatures (Tc)

approaching 300K continue apace[1, 2], with huge amounts of time and computational re-

sources being dedicated to this task. Concurrently, recent developments in machine learning

techniques [3] have unlocked a new order of magnitude in the number of novel stable materi-

als that can be screened for properties, including superconductivity. However, calculations of

Tc or other material properties associated with superconductivity, like the electron-phonon

coupling constant (EPC), λ, are expensive to compute using accurate first order perturba-

tion theory such as Migdal-Eliashberg, implemented in codes like EPW [4]. These calcu-

lations become entirely unfeasible when screening potential superconducting systems with

large numbers of atoms, such as large primitive cell crystal structures, doped systems, many

layered structures or 2-dimensional thin films on substrates.

Using a computationally inexpensive frozen phonon approach we have developed a tech-

nique that can approximate the calculation of λ for individual phonon modes from DFT

(Density Functional Theory) single electron band structures that improves on previous frozen

phonon methods [5, 6]. This can be applied to the task of filtering potential high-Tc super-

conducting materials from large data sets. Sun et al. [5] calculate the contribution to the

EPC from only the zone-center (Γ-point) modes and assume that they are representative

of the EPC over the whole Brillouin zone. This method does demonstrate a relationship

between the EPC of Γ-point modes and that calculated over the whole Brillouin zone (BZ),

but a phase space or“fudge-factor” (to quote the authors) of 0.22 has to be applied to the

∗ Corresponding author. Email address: oliver.dicks@ubc.ca

2

mailto:oliver.dicks@ubc.ca


estimated EPC. In Yin et al.’s [6] work they instead use frozen-phonons to go beyond the

standard LDA (local density approximation) and GGA (general gradient approximation)

functionals to calculate the changes of the electronic structure for specific phonons of in-

terest in superconducting materials using more accurate, but expensive, hybrid functionals

and GW methods.

In this paper we outline a method using the effect of ionic displacements on the electronic

band energies near the Fermi energy to predict the strength of electron-phonon coupling. We

show that, not only is this method able to predict which specific phonon modes contribute

strongly to the EPC in a given material, but that it is also able to predict λ with sufficient

accuracy to be used to pre-screen materials. It allows the calculation of the contribution to

λ of specific phonon modes of systems with large numbers of atoms, including 2D surfaces

and interfaces, where full Eliashberg calculations are infeasible.

II. METHODOLOGY

We used PHONOPY [7, 8] to calculate phonon displacement vectors with the DFT code

Quantum ESPRESSO [9] as the calculator, and generate the corresponding frozen phonon

cells. Quantum ESPRESSO [9] was then used to calculate the electronic band structures

of these frozen phonons in a variety of materials iso as to estimate their electron-phonon

coupling strength, λ.

The GGA Perdew-Burke-Ernzerhof (PBE) functional was used for all systems, with k-

mesh densities of approximately 0.001 Å3 (e.g. a 24×24×24 k-mesh for a primitive cell of

H3S and a 12×12×12 k-mesh for a 2×2×2 supercell). The PAW (projector augmented-wave)

pseudopotentials [10] were used for all calculations in order to allow comparisons between

our systems. All input files and code are available for download [11].

A. Approximating the electron phonon coupling

In order to perform a high throughput materials’ search for high temperature supercon-

ductors we have to be able to calculate the superconducting critical temperature. A common

approach is to use the Allen-Dynes formula to calculate Tc

Tc =
ωlog

1.20
exp

(
− 1.04 (1 + λ)

λ− µ∗ (1 + 0.62λ)

)
. (1)
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where the main problem is the determination of the dimensionless electron-phonon coupling

λ, since the prefactor (ωlog is the logarithmic average of the phonon frequency) and µ∗ (the

Coulomb pseudopotential taking into account electron repulsion) can subsequently be easily

calculated or approximated.

We therefore introduce a “poor man’s” methodology to calculate an approximation of the

Migdal-Eliashberg expression for the electron-phonon coupling (as calculated by, for exam-

ple, EPW[4] in Quantum ESPRESSO), which appears in the Allen-Dynes equation. Similar

approaches have also used frozen phonons to estimate λ[5, 6], but the method described here

is an approximation which allows similar speedup whilst also including the effects of modes

outside the Γ point.

A general expression for the electron phonon coupling (EPC) strength omitting band

indices, λ, can be written as [12];

λ =
2

N(εF )Nq

∑
k,q,ν

|Mν
k,k+q|2δ(εk − εF )δ(εk+q − εF ) (2)

where N(εF ) is the density of states at the Fermi level, εF , Nq is the number of q points

sampled and εk is the energy eigenvalue of the band at wave vector k. The full expression

for the electron-phonon matrix elements is given by

Mν
k,k+q =

∑
j

(
1√

2Mjωq,ν

)
⟨k + q|δV/δuν

q,j|k⟩ (3)

where j indexes the sum over all atoms in the cell, Mj is the mass of atom j, ωq,ν is the

phonon frequency of phonon branch ν and wave vector q, uν
q,j is the displacement vector of

atom j for a given phonon and δV/δuν
q,j is the partial derivative of the total Kohn-Sham

potential energy with respect to that displacement.

Similarly to previous papers [6, 13] a frozen phonon approach can be taken to approximate〈
k + q

∣∣δV/δuν
qj

∣∣ k〉, which is calculated from the size of the energy splitting of the bands

at the Fermi surface. In fact it has been reported that this approach is able to account for

non-adiabatic effects [13] that can contribute up to 40% to the calculated values of λ. We

approximate the electron-phonon matrix element (equation 3) for a specific phonon mode

of momenta q and mode ν by the expression:

gk,n,m,q,ν =
∂Ek,n,m,q,ν

∂xq,ν

√
ℏ

2M0ωqν

, (4)
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where ∂xq,ν is the collective mass weighted phonon displacement length, M0 is the total mass

of the atoms in the cell, and ωqν is the q-mode phonon frequency of band ν. The phonon

frequency is calculated using the frozen phonon method [14] for each q-vector and mode ν.

In this method ∂Ek,n,m,q is the change in the difference between the energies of electronic

bands m and n at momenta k between the equilibrium and frozen phonon system (i.e. what

is the change in the energy splitting of the 2 bands, see Figure 1). It is evaluated at each

k-point, and for bands m and n, where the equilibrium system’s electronic states’ energies

fall within an energy cutoff either side of the Fermi energy (chosen as the maximum phonon

frequency, typically on the order of 100 meV). For single bands where m = n, ∂Ek,n,n,q is

instead defined as the shift in the band energy with respect to the Fermi energy between the

equilibrium and frozen phonon system. Given the small energy width of the cutoff only a

small number of bands typically appear within the energy window. The greatest calculated

gk,n,m,q,ν = gmax
k,q,ν within the window is taken as the approximate value for the electron-

phonon matrix element for that k, which can then be inserted into the full expression for

λ in order to compute λq,ν (the electron-phonon coupling for that specific phonon mode ν

with momenta q).

Due to band folding in the supercells required to describe phonons with a given q, only

vertical transitions between bands need to be calculated as k + q folds onto k.

The mode dependant electron-phonon coupling for a qiven q is then approximated as

λq,ν =
2

N (ϵF )

∑
k,n,m

∣∣gmax
k,q,ν

∣∣2G (Ek,n − EF )G (Ek+q,m − EF ) (5)

where n and m are electronic band indices. As this is a sum over finite k- and q- grids,

instead of using δ-functions, Gaussians centred at the Fermi energy,

G(Ek − EF ) =
1

σ
√
2π

exp

(
−(Ek − EF )

2

2σ2

)
(6)

are used to smear the electronic band energies as is commonly done [15, 16]. The Gaussian

width, σ, is a tunable parameter that has a significant effect on the value of λ and is present

in codes like EPW[4]. If σ is too small then the function becomes narrower than the average

electron energy spacing in the k-grid and so will over emphasise some contributions whilst

missing others, too broad and behaviour becomes too smeared and a poorer approximation

the δ-function.
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FIG. 1. Explanatory diagram showing how ∂Ek,n,m,q,ν is calculated form the difference in electron

energy band splittings for a phonon described by wave vector q and band ν. The blue dashed line

indicates the energy window corresponding to the maximum phonon energy of that system.

To then calculate λq the contribution from each mode is summed so that:

λq =
∑
ν

λq,ν (7)

And then we calculate

λ =
1

Nq

∑
q

λq. (8)

Normally a uniformly dense grid of q-points would be used (with symmetries taken into

consideration for calculation efficiency) in codes like EPW [4], but here only selected high

symmetry points are sampled. The main computational costs to this approach are the DFT

calculations of the supercells that correspond to the particular phonon modes, with the poor

man’s code itself executing on a single core in seconds or minutes. Significant speed up is

achieved by not having to calculate the ⟨k + q|δV/δuν
qj|k⟩ overlap integrals, and by limiting

the number of q-points required.

6



B. Fermi surface nesting

The nesting function quantifies the amount to which certain q-vectors within the BZ

connect points on a material’s Fermi surface, and although its efficacy for predicting where

charge density waves will occur is disputed [17], the nesting function can tell us something

about which q-vectors can (but not necessarily do) contribute to electron-phonon coupling

in our model. Here we define it as

χq(EF ) =
2

N (ϵF )

∑
k,n,m

G (Ek,n − EF )G (Ek+q,m − EF ) (9)

using Gaussians instead of δ-functions due to the finite k-mesh.

C. Selecting a q-mesh

Most of the systems compared to in this paper are smaller systems where larger q-meshes

are possible using full Eliashberg methods, the benefits of the “poor-man’s” method is that

it can be extended to extremely large systems. However, in order to compare and validate

the method outlined above to other calculations, as large a q-mesh as possible has been used

whilst still allowing reasonable calculation time for each system. To this end the estimated

λ of all materials has been calculated using all high symmetry phonon modes representable

within a 2×2×2 supercell. The multiplicity of each mode has also been included when

evaluating equation 8 so it becomes

λ =
1

MqNq

∑
q

Mqλq, (10)

where Mq is the multiplicity of the q-point in the BZ.

III. RESULTS AND DISCUSSION

A. Applying the “poor-man’s” approximation to MgB2

MgB2 is an ideal test system as it is a BCS phonon-mediated superconductor with a

high Tc 39 K [18] and the electron-phonon coupling has been calculated previously using

the Eliashberg equations from DFT calculated wavefunctions, with values of 0.643 [19], 0.73
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FIG. 2. Phonon band diagram of MgB2 with the Γ-modes labelled.

[20] and independently 0.73 [21]. From these calculations it is well known which phonon

modes contribute significantly to its λ, specifically at the Γ-point. This means not only can

we compare the poor-man’s predicted values of lambda, but we can determine whether the

method is able to pick up on the correct response of the electronic bands to specific phonon

modes.

In a recent paper by Sun et al. [5] a method is used to estimate the electron-phonon

coupling in MgB2, calculating only Γ-centered modes and assuming a uniform g factor over
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Gaussian

Width (meV)

λE1u λA2u λE2g λB1g

13.6 0.000 0.001 0.652 0.003

27.2 0.000 0.000 0.597 0.002

40.8 0.000 0.000 0.553 0.001

54.4 0.000 0.000 0.467 0.001

68.0 0.000 0.000 0.379 0.001

81.6 0.000 0.000 0.306 0.001

95.2 0.000 0.000 0.248 0.000

108.8 0.000 0.000 0.203 0.000

122.5 0.000 0.000 0.168 0.000

TABLE I. The contribution to λΓ (the EPC of the Γ phonon mode) of each distinct Γ phonon

mode compared to the Gaussian width (see equation 5). The only substantial contribution comes

from the E2g mode which is doubly degenerate.

the Brillouin zone (BZ), and then including a fudge factor to account for differences in

nesting over the BZ. As can be seen in Figure 2, of the 9 phonon modes, there are only

4 phonon modes distinct in energy at Γ, with some modes being degenerate. It is well

known from frozen phonon [5] and Eliashberg [19–21] calculations that the phonon mode

that contributes most strongly to EPC in MgB2 is the Γ-point E2g mode which perturbs the

B-B σ-bond [22]. Sun et al. [5] indeed show that out of those 4 modes only the E2g mode

contributes to the electron-phonon coupling, with no other modes showing perturbation to

the unscreened phonon frequencies.

As can be seen in Table I, our poor-man’s calculations of λ agrees with these previous

results [5, 19–21], in that only the E2g mode at the Γ point significantly contributes to λ,

for all values of Gaussian width (our poor man’s λ was calculated using an energy window

equal to the maximum phonon energy, 99 meV, either side of the Fermi energy, with the

DFT calculations run with a 24×24×24 k-grid). The reason for the strong response due to

this mode can be seen in the electronic band structure (see Figure 3), where the E2g phonon

mode is the only one that perturbs the electronic band structure of MgB2 near the Fermi

energy. A strong splitting in the B-B σ bonding band between Γ and A where the band

9



crosses the Fermi energy can be observed for displacements of the 2 B ions of only 0.062

Å. A similar effect of the E2g frozen phonon on this specific band has been demonstrated

previously [23], but not used to predict a value for the EPC. This behaviour demonstrates

that our proposed method to use the perturbations of electronic band states with energies

very close to the Fermi energy (of the order of the phonon energies) due to frozen phonons

can be used to predict where there will be strong electron-phonon coupling.

The issue then becomes whether this qualitative result can be used to make a quantitative

prediction of λ. The predicted value of λ is dependent on the chosen Gaussian width, but

for a width of 0.06 Ry (81.6 meV) (which in the below section gives us the best overall fit to

all the data) the predicted λ is calculated to be 0.65 after averaging over 4 high symmetry

q-points. In this case λq=Γ is approximately equal to λ over the whole BZ and would suggest

only the Γ-mode need be calculated, however this is found to not generally be the case.

B. General predictions of λ

In Fig. 4 a summary of the λ values can be seen plotted against reference values estimated

by our method for MgB2 [20], H3S [24], series of titanium hydrides [2] and sodium hydrides

[1], and a newly predicted Al4H structure [25]. The predicted values were calculated using

a Gaussian width of 0.06 Ry (81.6 meV) which was the value that provided the best linear

fit.

Comparing to a variety of literature values is complicated by the fact that they use

different implementations to calculate EPC, including the use of different pseudopotentials,

k-mesh densities, or smearing values for the approximations of the δ-functions. However,

references have been selected that are relatively consistent. All use the PBE functional,

similar k-mesh densities for electronic structure calculations and, with the exception of

H3S [24] and MgB2 [20], all use Quantum ESPRESSO DFPT or EPW to calculate the EPC.

However, this still allows for some variation between references even if were they to calculate

the same materials, and thus also with the “poor-man’s” approach.

Even with these variations, when we plot our estimates for λ against the literature values

in Fig. 4 the fit shown is sufficiently good to at least provide a pre-screening estimate

for λ. The coefficient of determination (R2) value is 0.43 for a linear fit of predicted to

reference values, when a Gaussian width of 0.06 Ry (81.6 meV) is used. The greatest outlier

10
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FIG. 3. Electronic band diagrams of the Γ frozen phonons in MgB2 compared to the band

structure of the unperturbed system. It becomes clear that only the E2g phonon strongly perturbs

the electronic bands near the Fermi energy and so will be the only band that contributes to the

EPC.

is the electron-phonon coupling constant predicted for NaH8, which significantly reduces

the goodness of fit. If this data point is removed the R2 value rises to 0.73 for a linear

fit. This is comparable to previously reported frozen-phonon methods, with Sun et al. [5]

achieving R2=0.55 only when a “fudge-factor” of 0.22 is applied, meaning the contributions
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FIG. 4. A scatter plot of λ calculated using the approximation described in this paper and a

Gaussian width of 0.06 Ry (81.6 meV) against that reported in the literature [1, 2, 20, 24, 25].

they calculated from λq=Γ underestimate the reported λ by a factor of 5. This demonstrates

the limitation with approximating a uniform contribution to λ across the whole BZ when

nesting in many superconducting materials is strongly peaked.

The under-estimation of λ calculated for NaH8 is likely due to the selected q-points of the

frozen phonons that make up the q-mesh not adequately sampling the distribution of λq over

the full BZ, with the contributions from phonon modes lying on the high symmetry points

available in a 2×2×2 supercell over-representing areas with low contributions to λ. In the
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a) b)

FIG. 5. Isosurfaces of the nesting functions of a) NaH8 and b) NaH6

reference data [1] a denser q-mesh is used and, as can be seen in Figure 5, the nesting function

calculated for NaH8 shows that the strongly nested regions of the BZ are concentrated around

Γ and along the qz axis in contrast. This is in contrast to NaH6 where the areas of strong

nesting are more evenly distributed across the BZ and at the high symmetry points at the

BZ boundary, and we correspondingly estimate a more accurate value for λ.

C. H3S

H3S at high pressure (200 GPa) is a high temperature superconductor with a Tc ex-

perimentally measured to be 203 K [26, 27]. It has an exceptionally high electron-phonon

coupling strength calculated to be 2.64 [24] in the harmonic approximation and has been

well studied using ab initio techniques [28]. These extensive studies of EPC in H3S mean

that we can compare our “poor-man’s” approximation in detail to more computationally

expensive approaches.

Using our poor man’s code we have calculated λq,ν for the 3 high symmetry q-points at

(0,0,0), (1
2
,0,1

2
) and (1

2
,1
2
,1
2
). From these λq,ν and their corresponding phonon frequencies,

ωqν , we can also obtain an estimate for the isotropic Eliashberg function

α2F (ω) =
1

2Nq

∑
qν

λqνωqνδ(ω − ωqν) (11)
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FIG. 6. The α2F (ω) function approximated from the poor man’s approach for H3S at 200 GPa

using a 2×2×2 q-mesh compared to that reported by Errea et al. [24] where a 6×6×6 q-mesh was

used. The red dashed line shows λ(ω) calculated from α2F (ω).

which we can compare against previous results [24] (see Figure 6). Here we have ap-

proximated δ-function using a Gaussian function with a width of 20 meV. We also plot

λ(ω) = 2
∫ ω

0
α2F (ω′)/ω′dω′ which gives λ(ω) = λ (the isotropic EPC) as ω → ∞. As can be

seen in Figure 6 our approximation of α2F (ω) is a good approximation of that calculated us-

ing a denser 6×6×6 q-mesh and fully calculating the electron-phonon matrix elements. Our

underestimation of λ can be explained when comparing to previous papers[24, 28] which

calculate a strong contribution to λ for phonon modes with q halfway between Γ and P,

(1
4
, 1
4
, 1
4
). This would correspond to an 8×8×8 supercell with 2,048 atoms which becomes

unfeasibly large to compute using a frozen phonon approach. However, for the purposes of

screening a much reduced q-mesh is sufficient.
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IV. CONCLUSION

We have proposed a computationally inexpensive frozen phonon method to estimate the

electron-phonon coupling, λ, of materials whilst taking into account the effects of nesting

and the electronic band structure. This approach yields sufficient accuracy that it can be

used for screening promising materials in high-throughput searches for high temperature

superconductors.

Our approach also opens up the possibility of screening large primitive cell structures or

2-dimensional films and interfaces for enhanced superconductivity. With more data it might

be possible to predict or learn a priori which phonon modes (or atomic displacements) are

most likely to contribute to strong coupling thus cutting computational cost further and

allowing testing of ever larger and more complex systems.
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E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen,
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