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ABSTRACT

The spectral content of macroscopic neural activity evolves throughout development, yet how this

maturation relates to underlying brain network formation and dynamics remains unknown. To

gain mechanistic insights into this process, we evaluate developmental EEG spectral changes via

Bayesian model inversion of the spectral graph model (SGM), a parsimonious model of whole-

brain spatiospectral activity derived from linearized neural field models coupled by the structural

connectome. Simulation-based inference was used to estimate age-varying SGM parameter posterior

distributions from EEG spectra spanning the developmental period. We found this model-fitting

approach accurately captures the developmental maturation of EEG spectra via a neurobiologically

consistent progression of key neural parameters: long-range coupling, axonal conductance speed, and

excitatory:inhibitory balance. These results suggest that spectral maturation of brain activity observed

during normal development is supported by functional adaptations, specifically age-dependent tuning

of localized neural dynamics and their long-range coupling within the macroscopic, structural

network.

Keywords Brain modeling, Development, EEG, Spectral graph model, Bayesian inference, Simulation-based inference

ar
X

iv
:2

40
5.

02
52

4v
1 

 [
q-

bi
o.

N
C

] 
 3

 M
ay

 2
02

4



A PREPRINT - MAY 7, 2024

1 Introduction

The human brain undergoes dynamic and complex maturational processes throughout childhood, which starts prena-

tally[86] and remains highly dynamic, especially from infancy to early childhood[62]. Morphological transformations

of the brain across the lifespan are well established[109] and underpin well-described structural and functional network

modifications occurring at various temporal and spatial scales during development[118]. However, the mechanisms

linking morphological and structure-function remodeling to electrophysiological developmental changes are unknown.

This gap is critical, as deviations from the typical electrophysiological maturation are associated with a spectrum

of developmental disorders, including autism and epilepsy[54, 74, 84]. Here, we apply simulation-based inference

(SBI)[93] in conjunction with the spectral graph model[97] to investigate structure-function dynamics that guide

developmental EEG maturation.

Since Berger first reported on differences between the EEG of children and adults, the emergence of canonical brain

oscillations and their expected progression has been well documented[1–3, 5, 11, 23, 31]. Principally, there is a shift

in the spectral activity of wakeful states from slower frequency activity, delta (1-4 Hz) and theta (4-7Hz) activity

during infancy, to faster frequencies, alpha (8-12 Hz) and beta (20-40 Hz) during adolescence and adulthood[7, 36].

There is also a well-established shift in periodic EEG spectral components, most notably the posterior dominant

rhythm (PDR) gradually increases from 5-6 Hz in infancy to adult values of 8-12 Hz by adolescence[7, 35]. More

recently, parameterization of aperiodic EEG spectral components has provided additional insights into age-related

electrophysiological changes, such as flattening of the spectral slope seen with development[56, 66, 91, 106, 113].

Despite the critical importance of developmental electrophysiological activity as a marker to study typically developing

brain networks as well as clinical applications in monitoring neurological conditions[40, 53, 70], the mechanisms

underlying the spectral maturation of macroscopic brain activity remain unclear.

Mirroring M/EEG developmental studies, developmental neuroimaging studies have yielded insights into brain network

development from in utero through adulthood[30, 32], and have demonstrated a tight coupling between structural and

functional networks across development[8, 25, 26, 43, 98, 104]. Thus follows the intuition that maturational changes of

structural and functional connectivity underlie changes in the developmental spectral content of brain oscillations[19,

31, 33, 40, 63]; however, a mechanistic understanding of this relationship has been elusive. In this regard, whole-brain

simulations involving modeling of macroscopic neural activity across varying spatiotemporal scales have demonstrated

promise in elucidating mechanisms of structure-function coupling[81], yet, to our knowledge, no prior studies have

aimed to model the whole-brain spectral changes seen in development. As developmental EEG changes are thought to

reflect the maturation of structural and functional brain networks[31, 63], spectral graph theory provides a principled

foundation for the modeling of longitudinal EEG oscillatory changes as proposed in this study. Thus, we were motivated

to apply the recently proposed spectral graph model (SGM), a neural mass model taking into account propagation

of local neural activity across the spectral graph of the structural connectome’s Laplacian (Fig. 1A)[97]. The SGM

predicts spatiospectral frequencies of interest in electrophysiologic maturation in a parsimonious manner with a compact

2



A PREPRINT - MAY 7, 2024

set of seven key biologically-interpretable parameters (Table 1), thus making it well-suited for the aim of modeling

mechanistic principles of electrophysiologic maturation that may emerge from developmental shifts in neural network

properties and their underlying neuronal dynamics.

In this paper, we demonstrate the Bayesian inference of SGM parameters from a developmental EEG database to

evaluate the population-based temporal evolution of SGM parameter space during the developmental period (Fig

1B-D). Estimation of brain model parameters of electrophysiological maturation from observed EEG constitutes a

classic inverse problem characterized by non-uniqueness: multiple biologically plausible brain model specifications

that generate similar EEG maturation trajectories. In this regard, the Bayesian approach provides a suitable framework

for incorporating biophysically plausible priors as constraints and subsequent inference of SGM parameter posterior

distributions[17]. We leverage recent deep learning advances in simulation-based inference that enable efficient

estimation of the posterior distribution over the SGM parameters[93], and demonstrate that age-associated changes

in the aperiodic and periodic components of EEG spectra are described by a neurobiologically-consistent, temporal

progression of SGM parameters: long-range coupling strength (α), axonal conduction speed (S), and excitatory gain

(GEI). Furthermore, we validate our approach by demonstrating the prediction of age from EEG spectra with a

regression model incorporating these parameters.

2 Results

2.1 Subjects

To evaluate the developmental spectral maturation of macroscopic brain activity we constructed a developmental EEG

database containing EEGs from subjects ranging from 1 month to 30 years of age, containing 234 subjects (median 9

yrs, IQR 0.45 to 14 yrs). Whole-brain averaged EEG spectra are shown in Supplementary Figures 1A and 1B. The

canonical emergence and increase in frequency of the posterior dominant rhythm (PDR) with advancing age is apparent

in subjects older than one year, as are changes in the spectral slope of the EEG spectra.

2.2 Varying SGM Parameters Generates Spectral Shifts and Appearance of PDR

Next, we evaluated whether the spectral graph model (SGM) recapitulates spectral changes in periodic and aperiodic

components of EEG spectra by systematically varying SGM parameter values to generate different spectral output

realizations. Specifically, we evaluate the PDR and spectral slope, which reflects the 1/f distribution of aperiodic power

across all frequencies[91]. Figure 2A demonstrates the emergence of the PDR with increasing values of α, mirroring

the monotonic increase of PDR peak frequency that is seen with typical neurodevelopment. There is also an increase

in the spectral slope with increasing values of α. Figure 2B demonstrates an increasing spectral slope in the alpha

to beta frequency range with increasing values of GEI. Figure 2C demonstrates a slight increase in the PDR with

increasing conduction speed while the slope of the power spectra remains relatively unchanged. Figure 2D demonstrates

the emergence of PDR with increasing values of GII. There is also an increasing spectral slope of the alpha to beta
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frequency range with increasing values of GII. These changes in spectral slope generated by changes to SGM input

parameters suggest that SGM is suitable for capturing changes in aperiodic 1/f activity seen with EEG maturation[56,

106, 113].

2.3 UMAP Analysis Demonstrates SGM Spectral Similarity to Empirical EEG Data and Parameter Space

Indeterminacy

Expanding on the finding that SGM parameter variation replicates key EEG developmental spectral trajectories, we next

examined the fidelity of SGM simulations to actual, empirically observed EEG spectra. Utilizing Uniform Manifold

Approximation and Projection (UMAP) for dimensionality reduction of high dimensional spectra, we juxtaposed

the low-dimensional latent representations of SGM simulated spectra and observed spectra. The resulting UMAP

embeddings are shown in Figures 2E-F and Supplementary Figure 2, with total 196,000 SGM realizations displayed.

Supplementary Figure 2 demonstrates an overlap between the simulated SGM and observed EEG spectral embeddings,

indicating that SGM parameter variation replicates real-world EEG spectral features observed across development.

Figures 2F and 2G, wherein UMAP embedding color is determined by respective spectral PDR and aperiodic exponent,

demonstrate regions with homogeneous PDR frequency or aperiodic exponent. This indicates model indeterminacy or

regimes in SGM parameter space that yield similar spectral features.

2.4 Non-specificity of Structural Connectome on Spectral Shifts and Appearance of PDR

We utilized the template HCP structural connectome[44] in these parameter variation analyses and subsequent analyses

due to the lack of age-specific structural connectomes across the broad pediatric age ranges and fine temporal resolutions

(weeks) required for our study. To assess the significance of excluding age-dependent connectomes, we contrasted

SGM realizations derived from the structural connectivity at two developmental extremes—neonatal and adult. We

evaluated the effect of different structural connectivity in the neonatal versus adult structural connectomes on SGM

spectral realizations at both strong and weak long-range coupling (α) regimes. There were subtle region-specific

spectral differences between adults and neonates, reflecting variations in anatomical structural connectivity. However,

a comparison of the neonatal and adult SGM spectral distributions with Jensen-Shannon divergence (a bounded

symmetrization of the Kullback–Leibler divergence between 0 to 1) demonstrated low divergences less than 1e-2

across all brain regions (Figure 3). Importantly, the utilization of either neonatal or adult structural connectomes

did not substantially alter aperiodic 1/f activity and PDR. In contrast, the transition from weak to strong long-range

coupling with neurodevelopment markedly influences both. This finding suggests that the specificity of structural

connectomes in 1/f activity and PDR generation is limited, corroborating recent evidence from the developing Human

Connectome Project (dHCP) indicating that core structural connectome components are established in utero and

stable postnatally[110]. Therefore, although the utilization of a static structural connectome does not encompass all

structural network changes affecting spectral maturation, it nonetheless offers a foundation to understand how spectral
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maturation may emerge from age-dependent tuning of localized neuronal dynamics and their long-range coupling

within a conserved structural network.

2.5 SBI Sensitivity Analyses, Posterior Diagnostics, and Simulation-based Calibration

To elucidate key parameters driving EEG spectral development, we utilized a Bayesian approach employing simulation-

based inference (SBI) to identify approximate posterior distributions of SGM parameters that best align with synthetic

or empirical EEG spectra. We evaluated three recent SBI methods: Neural Ratio Estimation (NRE)[95], Automatic

Posterior Transformation also known as Neural Posterior Estimation (NPE)[82], and the recently introduced truncated

sequential NPE (TSNPE), which more robustly handles posterior estimation at the boundaries of the specified prior

range[111]. In order to assess the accuracy and robustness of the SBI-SGM inference framework, we conducted

parameter recovery analyses and simulation-based calibration (SBC) with synthetic data as outlined in Supporting

Information 1.

NRE, NPE, and TSNPE demonstrated differential performance across parameter recovery and SBC, with NPE and

TSNPE generally outperforming NRE (Supplementary Figures 3-10). While NPE demonstrates robust parameter

recovery, it tends to produce poorly calibrated posterior distributions (Supplementary Figure 11) and is prone to posterior

leakage at the parameter bounds (Supplementary Figure 12). In contrast, TSNPE has well-calibrated posteriors relative

to NPE; however, its scalability is limited under conditions of extensive simulation requirements and large datasets.

We discuss potential sources of the differential performance across SBI methods further in Supporting Information 2.

Given the general preference for conservative over overconfident posterior estimates—the latter potentially leading to

erroneous scientific conclusions[117]—we utilize TSNPE in subsequent application of SBI-SGM to empirical data

given its improved calibration results compared to NPE.

2.6 SBI of SGM Parameters Recapitulates Observed EEG Spectral Features

Having assessed the robustness of the inference procedure, we next performed a posterior predictive check on empirical

data, specifically simulating spectra under the fitted SGM and then comparing these to the observed data. Figure 4

(red traces) demonstrates examples of output SGM spectra realized from mean values of the SGM parameter posterior

distribution inferred with TSNPE that resemble the input empirical EEG spectra (black traces). These examples

recapitulate periodic and aperiodic components of the empiric EEG spectra, confirming that SBI with SGM captures

relevant spectral features of observed EEG data, including periodic and aperiodic features such as PDR and spectral

slope. The corresponding posterior distributions for each respective EEG spectrum SGM model fit with TSNPE are

shown in Figure 4 (right panels), with higher probabilities assigned to SGM parameter sets that generate realizations

consistent with the observed data and lower probabilities to inconsistent parameter sets. NPE and TSNPE had similar

PDI profiles for empirical data, with both demonstrating excitatory and inhibitory time constants as having the least

dispersion and conduction speed as having highest dispersion (Supplementary Figure 11).
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2.7 Simulation-based Inference of SGM Parameters Shows Age-Related Increases in Global Coupling, Neural

Conduction Speed, and Excitatory and Inhibitory Gains

Next, we aimed to ascertain if age-dependent trajectories in the SGM parameter posterior distributions, inferred from real

EEG data, would align with established age-dependent changes in their biological counterparts. These developmental

trends include well-known increases in functional long-range connectivity and coupling strength[107, 116], acceleration

of axonal conduction speed [69], and shift towards reduced excitatory:inhibitory balance with aging[58, 75, 89]. To

achieve this, we allowed the SBI-SGM inference to operate within physiologically plausible prior bounds, but no other

enforced constraints thereby allowing model flexibility within a broad parameter space. This approach allowed us to

evaluate the natural evolution of SGM parameter posterior distributions across the developmental time frame.

We inferred multivariate SGM posteriors for each subject with TSNPE (Supplementary Figures 14 and 15), then

retrieved the posterior means from the probability density function for each respective SGM parameter posterior

distribution. Figure 5 demonstrates plots of the subsequent mean SGM parameter values versus the respective age for

each subject. Notably, there was a significant positive association between age and long-range coupling α (Pearson

correlation coefficient r = 0.615, p < 1e-3). Considering that α reflects functional long-range coupling of neural

dynamics unfolding over a seconds-scale timespan[125], the protracted increase in PDR occurring over years during

neurodevelopment suggests a gradual enhancement in the baseline tone of long-range functional coupling within the

connectome. Biologically, this may be mediated by the strengthening of long-range excitatory and GABAergic coupling

that occurs during neurodevelopment[107, 116].

In addition, our results indicate an age-related increase in axonal conduction speed S (r = 0.722, p < 1e-3), consistent

with the known maturation of white matter pathways, which also importantly impacts long-range coupling[69]. This

finding is congruent with the established maturation of white matter myelination and axon diameter, which are the

primary determinants of conduction speed[29, 51].

Furthermore, we demonstrate a reduction in E:I gain ratio (GEI: r = -0.489, p < 1e3; GII: r = 0.388, p < 1e-3), mirroring

animal model studies that have reported a developmental decrease in the E:I ratio, putatively driven by an increase in

GABAergic tone[38, 102]. Also, recent human studies have investigated TMS to measure and affect the E:I ratio[75,

89], and the finding of reduced E-I during development aligns with TMS study findings that older individuals tended

towards greater intrinsic inhibitor tone[58].

Lastly, τe and τi demonstrated negative associations with age with r = -0.363 and r = -0.641 (both with p < 0.001),

while there were no associations between age and τG (Supplementary Figure 16). These reductions in τe and τi

are potentially congruent with rodent and primate studies which have reported a general quickening of GABAergic

and glutamatergic synaptic time constants over the developmental period[6, 10, 16, 21, 50]. However, regression

diagnostics with scale-location plots (Supplementary Figure 17) for τe and τi indicated heteroskedasticity confirmed by

Breusch-Pagan tests with χ2 of 5.560 and 14.13 with corresponding p-values of 0.0179 and 1.71e-3, respectively. The
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presence of significant heteroskedasticity limits the reliability and validity of the τe and τi findings. The other SGM

parameters did not exhibit significant heteroskedasticity.

2.8 Prediction of Age and PDR with Data-Driven Inference of SGM Parameters

For further validation of the age-dependent trajectories of the inferred SGM parameter posterior distributions, we

next asked whether the inferred SGM parameters could predict subject ages from the input EEG spectra. Employing

polynomial regression, we modeled the relationship between SGM parameters that were demonstrated in the preceding

analysis to have a robust linear relationship with age (α, S, GEI, GII) with log age. We evaluated the predictive capacity

of the regression model on observed versus predicted age using a cross-validation approach and compared performance

to a polynomial regression model fit on periodic and aperiodic parameters obtained with the fitting oscillations &

one over f (FOOOF) methodology[91]. We evaluated for heteroskedasticity with the Breusch-Pagan test and the

SBI-SGM regression model did not exhibit heteroskedasticity (Supplementary Figure 18). The adjusted coefficient of

determination (R2) for observed versus predicted age was 0.534 (Figure 6a, left panel), consistent with good agreement

between SBI-SGM regression model predicted age and observed age. This demonstrates improved performance over

the FOOOF regression model, which had (R2) of 0.534 (Figure 6a, right panel). We then evaluated whether SBI of

SGM parameters would correspond with spectral changes in the PDR over time. We modeled this relationship using

polynomial regression and found an adjusted R2 of 0.217 for observed versus predicted PDR (Figure 6b), suggesting

that the evolution of SGM features during development only partially accounts for the observed variance in periodic

EEG spectral features. In comparison, the FOOOF model fit on aperiodic 1/f exponent and intercept achieved R2 of

0.55, suggesting that aperiodic 1/f features evolution during aging are predictive of PDR frequency. Prior literature

in predicting age from EEG has reported R2 values ranging up to 0.61 for datasets including pediatric subjects with

best results achieved utilizing machine learning approaches [112]. Engemann et al. reported deep learning and feature-

engineering models had R2 values of 0.61 and 0.33, respectively, on the normal subgroup of the Temple University

Hospital Abnormal (TUAB) EEG dataset (N=1385, mean age: 48.6 yrs with standard deviation 17.9 years)[112]. Given

that TUAB predominantly consists of adult subjects with 43 subjects between 10-20 yrs and only three subjects in

the 0-10 yrs, direct comparison with our findings, which focus on the developmental age demographic, is limited. In

contrast to DL approaches or feature engineering approach utilized by Engemann et al. which utilized at least 30

features, the SGM approach demonstrates comparable performance while utilizing a minimal, biophysically-principled

feature set with only 7 parameters, thus providing model interpretability and insight into the underlying brain dynamics

correlated with aging and development.

7



A PREPRINT - MAY 7, 2024

3 Discussion

3.1 Overview

In this study, we utilize simulation-based inference with the spectral graph model (SBI-SGM) to model EEG spectral

maturation and infer population-based trajectories of SGM parameters relevant to brain development, such as long-range

coupling and excitatory-to-inhibitory (E:I) gains. We demonstrate that the temporal progression of SGM parameters

coheres with their expected developmental evolution. To our knowledge, this is the first demonstration that the

maturation of brain spectra across developmental stages can be accurately modeled within an analytical framework,

guided by the neurobiologically consistent evolution of model parameters.

3.2 Neurobiologically Consistent Developmental Evolution of Inferred SGM Parameters

The maturation of long-range projection fibers, marked by myelination and axonal diameter growth, are considered

crucial in promoting structure:function coupling thereby mediating the evolution of diverse functional network con-

figurations and their underlying brain rhythms, such as the posterior dominant rhythm (PDR)[28, 31, 34, 47, 55, 87].

However, recent evidence indicates that the connectome’s structural core is already present and remarkably stable

in infancy and early childhood. This suggests the presence of additional mechanisms contributing to the postnatal

refinement of functional networks.

In exploring these mechanisms with SGM-SBI, we identified that an increase in long-range coupling (α) during

development captured the canonical age-dependent increase in the PDR. While PDR and other oscillations can be

generated via neural mass models modeling cortical columns or the thalamocortical system [9, 12, 27, 39, 46], to our

knowledge how certain brain oscillations such as PDR may emerge and evolve at expected time points in the lifespan

has not been previously specified with a mechanistic whole-brain model. Our findings suggest that PDR evolution

is partially driven by age-dependent alterations in network dynamics underpinned by the gradual strengthening of

long-range functional coupling over the structural connectome[116]. Also, our results recapitulated the known increase

in axonal conduction speed with age, which facilitates transmission efficiency and thus functional organization of

long-range neural networks[42, 69]

Finally, we demonstrated that E:I balance demonstrated a reduction with age, congruent with the established reduction

of E:I balance that occurs with development, thought to be primarily mediated by the maturation of GABAergic

circuitry[14, 15, 52]. Fine-tuning of E:I balance has been demonstrated across different brain regions and disruptions to

E:I balance have been implicated in animal models of autism and other disorders of disrupted neurodevelopment[38,

49, 54, 84]. We assumed uniform levels of excitation and inhibition, respectively, occurring at a mesoscopic level

throughout the whole brain network model of the SGM. While this is a simplified treatment of E:I balance, we recognize

that excitation and inhibition are, in fact, multidimensional entities, occurring across multiple network scales, varying

time periods, and mediated by diverse excitatory and inhibitory cell types and synaptic mechanisms[84]. Nonetheless,
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SGM provides an analytical toehold in the challenge of understanding E:I balance by relating changes to configurations

of excitatory or inhibitory gains to predicted brain spectral activity[97].

3.3 Spectral Graph Model Applied to Investigating Developmental Network Changes

Spectral graph theory, and in particular one of its central tenets the graph Laplacian operator, has broad applicability and

effectiveness across multiple domains in network science[18], thus has emerged as a powerful tool for understanding

structure-function relationships in neuroscience. Indeed, eigenmodes of the brain network Laplacian, as introduced

by Abdelnour et al. and others, have been used to predict canonical functional networks from underlying structural

networks[20, 45, 48]. These models are intimately related to walks on graphs, and higher-order walks on graphs have

also been quite successful; typically, these methods involve a series expansion of the graph adjacency or Laplacian

matrices[60, 72]. It is now known that the series expansion and eigenmode approaches yield highly similar mappings

between functional and structural network[61, 90, 100]. In the latter, eigenmodes of the adjacency or Laplacian

matrix are typically employed, and only a few eigenmodes are usually sufficient to reproduce empirical functional

connectivity[57, 61, 71, 83, 92, 101, 108]. While the above eigenmode-based models have demonstrated the ability

to capture steady-state, stationary characteristics of real brain activity, they are limited to modeling passive spread

without oscillatory behavior. Capturing the rich repertoire displayed by EEG recordings would require a full accounting

of axonal propagation delays as well as local neural population dynamics within graph models. Band-specific MEG

resting-state networks were successfully modeled with a combination of delayed neural mass models and eigenmodes

of the structural network[85], suggesting delayed interactions in a brain’s network give rise to functional patterns

constrained by structural eigenmodes. The SGM further develops this concept by demonstrating the prediction of

spatial and spectral features of neural oscillatory activity providing a parsimonious representation of the spatiospectral

distribution of brain oscillations[97]. Despite the inherent nonlinearities present in the brain, particularly at microscopic

and mesoscopic scales, a recent study comparing linear and nonlinear approaches of modeling macroscopic intracranial

EEG and fMRI neurophysiologic activity demonstrated that linear models unexpectedly performed more accurately

than nonlinear models, thus suggesting advantages to the linear modeling approach in their relative interpretability

compared to nonlinear models[123]. However, it is crucial to recognize that the inherent nonlinearities and complexities

of brain network dynamics may be more faithfully represented through nonlinear modeling[65]. Thus, the advantageous

interpretability and computational tractability of linear models such as the SGM should be seen as a complement to,

rather than a replacement for, nonlinear methods.

3.4 Comparison to Prior Works

The SGM provides a robust framework for modeling age-related changes in aperiodic and periodic spectral components,

attributing the functional maturation of brain activity to age-dependent modulation and interplay of localized and

long-range network dynamics. Here, we contrast our study to prior approaches to modeling whole brain activity.

While there have been numerous large-scale neural network or macroscopic brain models of alpha frequency rhythms
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(PDR) proposed, these have been limited to modeling alpha activity in relatively more temporally constrained brain

states, such as during anesthesia[9, 27, 37, 39]. While these approaches successfully captured oscillatory brain

activity[9, 27, 39], they did not aim to simultaneously model aperiodic brain activity. Conversely, Bedard and

Destexhe developed a framework for the genesis of aperiodic brain activity; however, this framework did not capture

periodic oscillations[24]. Notably, Hashemi et al. utilized Bayesian inference techniques, including Monte Carlo

Markov Chain methods, to effectively fit a thalamocortical neural mass model to EEG data in humans undergoing

anesthesia, demonstrating effective capture of key spectral peaks in delta and alpha frequencies, as well as aperiodic

components, in observed data[77]. Few studies have appeared to utilize a regional or whole-brain network approach

to seek to explain spectral periodic and aperiodic activity. Notably, an approach utilizing the Kuramoto model with a

whole brain connectome suggested mechanistic underpinnings of alpha and beta activities arising from cross-regional

synchronization; however, de-emphasized the accuracy of their simulation at capturing realistic brain activity[46]. Our

approach aligns with the perspective that the basis of functional brain activity arises from network synchronization, and

moreover, offers a mechanistic framework for how EEG spectral maturation is directly linked to age-dependent tuning

of this synchronization.

3.5 Stability of Findings

The stability or robustness of our findings hinge on several aspects: data characteristics and degree of model misspec-

ification; SBI components such as prior specification and posterior approximator hyperparameterization[119]; and

the stability of the SGM itself. Regarding dataset characteristics, the experimental data distribution, noise levels, and

alignment (or misalignment) of the model with the data-generating process may affect SBI robustness[126]. EEG

data demonstrates substantial variability across the developmental timeline. Thus, depending on the age group of

interest, a more targeted analysis within narrower developmental windows may yield more robust inferences due to

decreased variability and the option to use age-specific priors. Concerning stability considerations related to the SBI,

our evaluations utilizing synthetic reference data demonstrated that stability and accuracy of posterior distributions,

given a priori knowledge of the true solution, depended on NPE hyperparameterization, such as the simulation budget

utilized. In addition, one may consider approaches to improve SBI stability and reliability, including ensembling and

post-hoc calibration methods[103]. Further work involving generalization studies on larger datasets is required to

effectively evaluate the stability of the SBI-SGM framework.

Regarding numerical stability of the SGM model itself, Verma et al. applied root locus analysis to delineate the

bounds of SGM parameters that give rise to dynamical behaviors, including damped oscillations, limit cycles, or

unstable oscillations[125]. Our SBI findings for excitatory and inhibitory time constants and alpha were within ranges

that promote stable oscillatory activity. In contrast, excitatory:inhibitory gains were consequently inferred to be

above boundaries that ensure stable oscillations, suggesting a potential for instability. These parameters exhibited

increased posterior dispersion and variance in identifiability, which could reflect the unstable regime in SGM parameter

space leading to greater unpredictability in SGM output. However, our empirical data encompassed subjects wherein
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oscillatory activity demonstrated fluctuations and instability over the monitoring duration, was intermixed within

prominent 1/f activity, or was absent in the case of younger infants. The ability of the SGM to account for such diverse

neural dynamics promotes robustness in the SBI-SGM framework, particularly in accommodating the unpredictability

and instabilities of whole-brain network activity.

3.6 Limitations

In this study, a notable limitation arises from the non-utilization of age-specific structural connectomes from birth to

adulthood; rather, analysis was performed using a standardized adult connectome. This constraint is primarily due to

scarcity of available age-specific structural connectome datasets for the 0 to 24 month old age range with fine-grained

age resolution. Consequently, our analysis does not account for potential changes in the structural connectome that

may contribute to spectral maturation. Recent evidence suggests that the structural connectome forms in utero[67,

76]. Notably, in a recent study in premature neonates who received serial neuroimaging, Ciarrusta et al. demonstrated

that the core components of the structural connectome develop in utero and are relatively stable postnatally, [110]. In

addition, the functional connectome fingerprint is not only established, but also demonstrates stability during early

brain development in infants[114]. Despite the limitations arising from the use of a static structural connectome in our

analysis, maintaining a stable structural network over the developmental age range aligns with recent findings on the

stability of a core structural network and provides insight into how functional changes arise upon a consistent structural

framework.

Additionally, we acknowledge a potential limitation in our analysis arising from relatively unrestricted parameter

exploration, constrained only by bounds on SGM time constants and propagation parameters. During SBI and within the

SGM, we did not enforce neurobiological constraints, thus the inferred SGM parameter realizations may not necessarily

align with naturally observed relationships in the parameters. Notably, Hashemi et al. utilized neurobiological

constraints enforced during spectral fitting, such as differential response function characteristics for excitatory and

inhibitory synapses with excitatory response function having longer rise and decay times than inhibitory synapses[77].

Within the proposed SBI-SGM framework, we purposefully do not directly enforce neurobiological constraints with

the aim of capturing a parsimonious model of brain spectral evolution over development. Nevertheless, introducing

such constraints would enable further alignment of SBI of brain and neural models with naturally occurring observed

constraints.

Also, given that our empirical data constitutes an average EEG spectrum across channels, it may be argued that fitting

such a signal does not require a spatially resolved model like the SGM. In fact, one could fit the empirical spectrum to a

single lumped neural mass model[12]. More detailed models are also available[96]. Such models would incorporate

local dynamic properties like E:I gain and local circuit time constants. However, they would be unable to probe the

specific maturation behavior of interest seen developmentally - i.e., of axonal conductance speed and inter-regional

coupling. Another benefit of a spatially-resolved model such as the SGM is that in future studies with denser EEG

configurations or scalp MEG, it would be possible to perform reliable source reconstruction, which will in turn enable
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the interrogation of the spatial gradients of empirical electrophysiology, in addition to their spectral content. This

would, for instance, allow us to explore the ability of fitted model to reproduce the spatial dominance of alpha rhythm,

analogous to that recently demonstrated in adults[97, 108].

3.7 Implications and Future Directions

The ability of SBI capture age-dependent changes in SGM parameters from empirical EEG data suggests broader

applicability. For instance, in epileptogenesis, elucidating the time-dependent slow dynamics of long-range coupling

and excitatory:inhibitory balance may provide insights into pathologic neurophysiological shifts that engender the

development of epilepsy, whereas identifying rapid changes in these parameters could elucidate dynamics of pre-ictal

and ictal states. Similarly, deviation of these parameters from typical trajectories could be used to investigate spectral

differences that arise in autism and other neurodevelopmental disorders. Lastly, recent work by Lavanga et al. has

utilized SBI in conjunction with whole brain modeling to understand structure-function relationship underlying cognitive

decline in aging[122]. Similarly, the SGM, which has been recently used to model abnormal neural oscillations and their

cellular correlates in patients with Alzheimer’s Disease[115], in conjunction with SBI offers an analytical framework to

further investigate mechanisms underlying cognitive decline. The potential for SBI in conjunction with the SGM to

provide novel mechanistic insights into both normal neurodevelopment and conditions with disrupted neurodevelopment,

such as autism and epilepsy, will be evaluated in future work.

3.8 Conclusions

While the critical trajectories of morphological and structural connectivity remodeling during development are well-

established, the structure-function relationship remains to be clarified. Our findings suggest that the evolving structure-

function interplay influences canonical features of brain spectral maturation, including the evolution of PDR and 1/f

aperiodic activity. This interplay is inextricably linked to changes in brain morphology and structural networks, yet

understanding the precise mechanisms underlying this connection warrants additional investigation.
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4 Methods

4.1 Spectral Graph Model

The SGM is a linear model capable of simulating spatial and spectral patterns of macroscopic neural activity. In this

hierarchical model of the brain’s structure-to-function relationship, the macroscopic functional activity emerging from

mesoscopic neural activity is summarized by a minimal set of global macroscopic parameters in a closed-form Fourier

domain formulation. The simulated broadband spectrum and spatial patterns emerge from the information-rich contents

of the brain’s structural graph Laplacian. The key concepts of the macroscopic model will be highlighted here, while

the detailed derivations are illustrated in the original publications[97, 108].

4.1.1 Complex Graph Laplacian

For a brain’s white matter diffusion-derived structural network, its normalized graph Laplacian matrix characterizes

the most probable paths a signal may take in a network. Here, we define the brain’s structural connectivity matrix as

C = cj,k, consisting of connection strengths between any brain regions j and k. To incorporate the time delays caused

by white matter streamline distances between brain regions, we utilize the properties of delay-induced phases in the

Fourier domain and introduce a complex-valued connectivity matrix C∗(ω) = cj,k exp (−jωτvj,k). Where delays τvj,k

is computed from the pairwise region distances divided by a constant velocity v. This complex connectivity matrix not

only incorporates distance-induced delays between nodes (τvj,k) into our network but also allows us to estimate network

properties given a frequency of oscillation (ω). Therefore, a degree normalized complex connectivity matrix at some

frequency ω is defined as:

C(ω) = diag(
1

deg
)C∗(ω) (1)

Where the degree vector deg is defined as degk =
∑

j cj,k. The SGM propagates signals via the eigenmodes of the

network’s Laplacian matrix, and a normalized Laplacian L of C(ω) is defined as:

L(ω) = I− αC(ω) (2)

Where I is the identity matrix and α is a global coupling constant parameter that weights the network connections.

4.1.2 The Macroscopic Model

The macroscopic model relies on the assumption that signal transmission between macroscopic brain regions is linear,

and the changes in the signal’s spectral contents can be summarized by linear filters. In the SGM, this macroscopic

linear filter is a Gamma-shaped function F (ω) =
1
τ2

(jω+ 1
τ )2

. These linear filters in combination with the complex valued

network Laplacian dictates the spectral and spatial spreading of signals from mesoscopic neuron assemblies:
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X(ω) = (jωI+
1

τG
F (ω)L(ω))−1Hlocal(ω)P(ω) (3)

In steady-state conditions, we assume the brain has uncorrelated Gaussian noise, therefore the driving function

P(ω) = I, where I is a vector of ones. The network level time constant τG parameterizes the macroscopic properties

of the brain’s structural network and region wise activity Hlocal(ω) is transferred throughout the network via the

characteristic paths set by the Laplacian L(ω). The characteristic paths are computed by the eigendecomposition of

L(ω):

L(ω) = U(ω)Λ(ω)UH(ω) (4)

Where Λ(ω) = diag([λ1(ω), ..., λN (ω]) is a diagonal matrix consisting of the eigen values of L(ω). By incorporating

the eigen modes U(ω) into (3), we can show that the macroscopic frequency profile X(ω) is:

X(ω) =
∑
i

ui(ω)u
H
i (ω)

jω + 1
τG

λiF (ω)
Hlocal(ω)P(ω) (5)

An overview of the SGM is shown in Figure 1A.

4.2 UMAP of SGM simulations

To understand the SGM parameter space and evaluate the ability of the SGM to capture developmental EEG spectral

shifts we utilized UMAP (Uniform Manifold Approximation and Projection) for dimension reduction of spectra and

visualization of SGM simulated spectra and observed EEG spectra, using hyperparameters number of neighbors of 60

and minimum distance of 0.1[78]. This generates a low dimensional embedding of potential simulated SGM spectra

and observed EEG spectra on which spectra that self-similar will cluster. Similarity between SGM spectra and observed

spectra will manifest with overlapping clusters of these respective groups and conversely dissimilarity between the two

groups will manifest as clusters with minimal or no overlap. To allow a balanced input to UMAP that is representative

of the canonical EEG power bands, we provide as input to UMAP individual frequency binned power from 0.5 Hz to 12

Hz in 0.5 Hz bins, average power in the high alpha (12-20 Hz), beta (20-40 Hz), and gamma (40-55 Hz).

4.3 Subject EEG and Standardized Structural Connectome

A total of 234 subjects aged between 1 month to 30 years were included in this study. We utilized publicly available

neonatal and infant EEG datasets with age range 1 month to 1 year of age[80]. We also utilized a publicly available

database of EEGs containing ages 5 to 18 years of age[64]. Additional EEG data were used from patients with normal

EEG between the ages of 1 day to 5 years of age were retrospectively identified from the University of California San

Francisco (UCSF) Epilepsy Monitoring Unit EEG Database or the UCSF Benioff Children’s Hospital Neuro-Intensive
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Care Nursery database and selected for analyses with the following inclusion criteria: (1) Normal EEG at time of study

and (2) No known history of seizures, stroke, or other known neurological condition at the time of study. All study

procedures were approved by the institutional review board at UCSF. All EEG used were standard 10-20 system with

averaged reference montage with total 19 channels. For calculation of EEG spectra we calculate the power spectral

density (PSD) using Welch’s method in 100 frequency bins between 0 to 50 Hz, which is less than half the sampling

rate for all EEGs. This pre-processing was performed with the Python MNE package[41]. To constrain dimensionality,

we utilize the global mean across all channels for both observed and simulated spectra.

For SGM spectral realizations used in the main analysis, we utilized the adult template structural connectome obtained

from the MGH-USC Human Connectome Project (HCP) database [44]. We compared SGM realizations derived from

the adult HCP connectome to those derived from a template neonatal connectome. The template neonate connectome

was derived from 20 full-term neonates from the developing Human Connectome Project (dHCP)[68].

4.4 Simulation Based Inference of SGM Parameters

A challenge central to neural modeling is the statistical inference of simulation model parameters, with respect to

observable data, which in Bayesian inference, can arise due to computational intractability of the posterior distribution

for high dimensional systems or analytical intractability of the likelihood function[88]. In this regard, recent advances in

simulation-based inference leveraging deep learning advances to approximate the posterior distributions for respective

simulation parameters have shown promise in application to single-neuron mechanistic models[93], and more broadly

have seen increasing utility in diverse scientific fields including particle physics and astrophysics[88]. The potential of

simulation-based inference to model high-dimensional whole-brain dynamics has recently been leveraged in modeling

epilepsy and in healthy brain aging[120, 122].

Modeling neural data is hindered by the inaccessibility of the ground truth set of biophysical parameters across the

microscopic to macroscopic continuum that determine the human brain’s structural and functional state. Furthermore,

even if these parameters were available, the likelihood function becomes computationally intractable in the face of high-

dimensional complexity characteristic of neural data. Moreover, traditional MCMC methods used for Bayesian inference,

while powerful are computationally inefficient, particularly when applied to high-dimensional neural modeling and

may have convergence issues[121]. In this context, recent developments in probabilistic models in machine learning

(ML) have led to methodological advances in simulation-based inference (SBI), including deep-learning based compact

representation of high-dimensional data, active learning methods to simulate at parameters θ that have higher likelihood

of increasing knowledge the most, and amortization of probability density estimation[88]. In our approach, we evaluated

three recent SBI techniques: Neural Ratio Estimation (NRE)[95], Neural Posterior Estimation (NPE)[82], and Truncated

Sequential Neural Posterior Estimation (TSNPE)[111]. In NRE, a neural network classifer is trained to approximate

the likelihood-to-marginal ratio[95]. In NPE, which is also known as automatic posterior transformation (APT) and

sequential NPE (SNPE) when utilized in multi-round inference contexts, the generative model is run sequentially across

different sets of parameters generating model behavior on which a deep neural network can be trained to output a
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posterior distribution over the input model parameters[82]. This approach, which circumvents direct computation of the

likelihood function, has recently been effectively applied in the domain of functional to structural brain modeling in the

context of healthy brain aging[122]. We also compare standard NPE to the recently introduced truncated NPE (TSNPE),

which more robustly handles posterior estimation near the margins of the specified prior range compared to NPE[111].

While we focus on recent SBI methods here, we acknowledge that there are alternative robust methods for parameter

estimation. A prominent Bayesian inference approach is the Hamiltonian Monte Carlo (HMC) algorithm, which offers

superior convergence and robustness in handling high-dimensional spaces and models with highly correlated parameters

relative to traditional MCMC methods[4]. Whereas in SBI, neither the model nor summary statistics features are

required to be differentiable, HMC necessitates model differentiability, as it employs gradient calculations of the log

posterior with respect to the model’s parameters to compute the Hamiltonian dynamics, facilitating efficient exploration

of the posterior distribution. A compelling demonstration of these gradient-based HMC methods in combination was

demonstrated by Hashemi et al. for the inversion of a differentiable whole-brain model to model subject-specific

epileptogenicity[94]. The SGM is differentiable; however, caution and further investigation are needed to evaluate the

stability of eigendecomposition gradients due to parameter degeneracy and the use of non-Hermitian matrices in the

SGM.

Given the observed EEG spectra y, the respective SGM parameter posterior distribution p(θ | y) was determined by

NRE, NPE, or TSNPE utilizing the sbi Python package[82, 99]. In this approach, SGM is evaluated sequentially across

specified parameter value ranges generating SGM spectral output realizations on which the neural density estimator

is trained to approximate the posterior distribution over the input model parameters (Figure 1B). Prior knowledge is

parameterized in the SGM as the range of admissible values for θ based on biophysically plausible values following

Raj et al.[97]. SGM parameters and their respective bounds used for SBI are listed in Table 1. We evaluated varying

simulation budget sizes up to 1E6 simulations to train the neural density estimator for NRE and NPE. For TSNPE, we

evaluated varying budget sizes up to 2000 simulations at two or three rounds of sequential inference with proposal

truncation. We utilized summary statistics of SGM power spectral density (PSD) output, the first periodic and aperiodic

components (Supplementary Figure 1C) which succinctly parameterizes physiologically and developmentally pertinent

EEG spectral features[91, 106], and binned PSD as utilized by Rodrigues et al. for neural mass model (NMM) inversion

with Hierarchical Neural Posterior Estimation[105]. The resulting inferred posterior distributions p(θ | y) contain high

values for parameters θ that are consistent with the empirical data y and are asymptotic to zero for θ inconsistent with y

(Figure 1C, right panel). 10000 samples (i.e., consistent SGM parameter sets) per subject were drawn from the posterior

p(θ | y) to determine the multivariate posterior distribution. The distributions of p(θ | y) over y observed across different

ages were used to evaluate longitudinal changes of θ and for incorporation into subsequent regression models.

4.5 Bayesian Sensitivity Analysis

Bayesian identifiability and sensitivity analyses, which assess the Bayesian joint distribution and inference process,

are utilized to identify pathology in the inference approach and to characterize the performance of the inference

16



A PREPRINT - MAY 7, 2024

procedure[73]. The Bayesian joint distribution is determined by the model configuration space and the prior distribution:

π(y, θ) = π(y|θ)π(θ); and is conditioned upon on an observation, ỹ, to obtain the posterior distribution[73]. We

evaluate the posterior shrinkage[73], defined as s = 1− σ2
post

σ2
prior

. If the posterior closely resembles the prior without

significant shrinkage, it indicates structural non-identifiability, as the data does not inform our understanding of these

parameters. Conversely, when the posterior is influenced by the data (evidenced by shrinkage) but demonstrates a

strong statistical interdependence among parameters, this indicates either structural or practical non-identifiability,

characterized by an inability to uniquely determine individual parameters due to their interrelated nature in the model[13].

In addition, the posterior z-score may be used to assess how accurately the posterior recovers ground truth parameters.

We evaluate the posterior z-score[73], defined as: z =
∣∣∣µpost−θ̃

σpost

∣∣∣ where µpost is the posterior mean, σpost is the posterior

standard deviation, and z quantifies how accurately the posterior mean approximates the true parameter.

4.6 Simulation-based Calibration of SBI-SGM

Simulation-Based Calibration (SBC) is used to validate the precision of uncertainties within the Bayesian framework

by assessing whether the variance in the posterior distribution, which represents uncertainty in model parameters,

is accurately calibrated[79]. SBC involves generating multiple observational datasets from a range of parameters

drawn from the prior distribution, then for each dataset, a posterior distribution is computed using SBI. The subsequent

posterior calibration is deemed accurate if the ranks of the original parameters, when evaluated within their corresponding

posterior distributions, collectively exhibit a uniform distribution. The uniformity of the resulting SBC ranks is then

visually assessed by comparing their empirical cumulative density function to that of an ideal uniform distribution,

ensuring the reliability of the model’s uncertainty estimations. This uniformity of the normalized rank statistics aligns

with a necessary, though not sufficient, condition for the estimated posterior to be accurate. We utilize visualization

of ranks cumulative density function in comparison to the uniform distribution, and also utilize the one-sample

Kolmogorov–Smirnov test to check whether the ranks drawn from the estimated posterior follow the normal distribution.

In addition, we utilize Classifier 2-Sample Test (C2ST) to compare the estimated posterior to the prior distributions[59].

We utilized the python sbi package implementation of C2ST, which utilizes a binary MLP classifier to distinguish

samples from the estimated posterior θ ∼ q(θ|x) and the reference posterior θ ∼ p(θ|x). The subsequent test accuracy

of the classifier ranges from 0.5, indicating that if accuracy is not better than chance then the ensembles are drawn from

the same distribution, to 1 where the distributions are exactly distinguishable.

4.7 Evaluating Association of Temporal Evolution of SGM Parameters with Age

To evaluate the dynamics of SGM parameters over time during development, we tested for the correlation of SGM

parameters with age. For each subject, the mean value of the inferred SGM parameter posterior distribution was

selected. We then used Pearson Product-Moment Correlation to evaluate the linear association between age (log years)

and SGM parameters α, S, GEI, and GII. Next, we sought to validate our modeling approach by evaluating the ability

of SGM parameters obtained automatically via SBI to predict age, PDR, and the aperiodic exponent. We regressed
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predicted vs observed values, on the x and y axes, respectively, following Piniero et al. for prediction of age, PDR,

and aperiodic exponent[22]. The PDR and aperiodic exponent were automatically detected using the FOOOF Python

package as demonstrated in Supplementary Figure 1A[91]. We utilized a polynomial regression model (degree=2)

with k-fold cross-validation (k=10). This model selection was motivated by the presence of nonlinear changes in

different brain parameters over time. Such nonlinear dynamics in brain development have been recently modeled

using polynomial approaches [109]. Prior functional connectivity studies have also tended to model nonlinearity

with polynomial regression[124]. Age-related differences in resting-state functional connectivity from childhood to

adolescence. Cerebral Cortex 2023). SGM parameters used in the regression model included those found to correlate

with age, including α, S, and E:I gains. During each cross-validation fold, the polynomial regression model is fit to the

training set containing these SGM parameters, and their mean square error (MSE) in age prediction and coefficient of

determination is calculated on the held-out set.
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5 Data Availability

EEG data were obtained from publicly available neonatal and infant EEG datasets with an age range of one month

to one year of age[80] and publicly available database of EEGs containing ages 5 to 30 years of age[64]. The power

spectra derived from the publicly available EEG samples used for simulation-based inference are available from the

corresponding author upon reasonable request. EEG data for subjects between one and five years were obtained at the

University of California San Francisco (UCSF) and raw patient-related data are not available due to data privacy laws.

Pre-processed UCSF EEG data are available under restricted access due to ethical and privacy reasons. UCSF EEG

data can be requested by contacting the corresponding author, and data sharing is conditional to the establishment of a

specific data-sharing agreement between the applicant’s institution and UCSF.

6 Code Availability

Code for the spectral graph model (SGM) can be found on the spectrome package GitHub page (https://github.com/Raj-

Lab-UCSF/spectrome). Code for incorporation of the spectral graph model (SGM) with simulation-based inference using

the sbi Python package with examples are available on the project’s GitHub page (https://github.com/dbernardo05/sbi-

spectrome).
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7 Tables

Table 1: SGM parameters and bounds
Name Symbol Bounds
Excitatory time constant τe [0.001, 0.03]
Inhibitory time constant τi [0.001, 0.03]
Long-range coupling constant α [0.01, 1.0]
Conduction velocity S [0.5 m/s, 15

m/s]
Excitatory gain GEI [1, 20]
Inhibitory gain GII [1, 20]
Graph time constant τG [0.01, 0.3]
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8 Figures
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Figure 1: Study Overview

a) Spectral Graph Model Overview for simulation of EEG spectra from linearized neural field model modulated over eigenmodes of
the structural connectome, b) Simulation-based Bayesian inference training of neural density estimator of the prior distribution.
During training, the neural density estimator learns the association between spectral features and underlying SGM parameters. c)
Derivation of the posterior parameter distribution given a real-world EEG recording, d) Derivation of population SGM parameter
distributions from individuals at different developmental ages. Examples of infant, child, and adult spectra across different
developmental ages are shown (real-word subject spectra are shown in Supplementary Figures 1A and 1B.) Hypothetical examples
of inferred posterior distributions at infant, child, and adult ages demonstrate hypothetical developmental shifts in SGM parameters.
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Figure 2: SGM spectral changes with different SGM parameter values

Figure 2, a-f demonstrates the effect of varying SGM parameters. a) α parameter progression shows emergence and increase in the
frequency of posterior dominant rhythm as α is increased, b) Excitatory gain progression shows a change in aperiodic content of
spectral frequencies greater than 10 Hz. c) Axonal conduction speed parameter progression shows an increase in PDR frequency as
speed is increased. d) Inhibitory gain progression shows the emergence of PDR and increase in PDR frequency as well as changes in
the aperiodic content of spectral frequencies greater than 10 Hz. e) UMAP embedding showing gradients in PDR frequency evident
in different clusters. Spectra without PDR are shown in purple. There are regions with homogenous PDR frequency suggesting SGM
parameter regimes that yield similar PDR. f) UMAP embedding showing gradients in aperiodic exponent evident in different clusters.
There are regions with homogenous aperiodic exponents suggesting regions of SGM parameter space that yield similar aperiodic
exponents.
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Figure 3: Effect of Neonatal versus Adult Connectome on SGM
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Figure 3: We compared the differential effects of utilizing a neonatal versus adult connectome on SGM spectral realizations based on
strong versus weak long-range coupling (α) across different brain regions (frontal, temporal, parietal, occipital, and whole-brain).
The left column demonstrates SGM realizations with weak long-range coupling while the right column demonstrates SGM
realizations with strong long-range coupling. Each plot shows SGM realizations instantiated with either group-averaged term
neonatal connectomes (blue) and adult connectomes (orange). Qualitatively, there are appreciable slight augmentations in relative
delta power in neonatal SGM realizations compared to adults, which are more pronounced in the parietal regions. However,
quantitatively, a comparison of spectral distributions generated by the adult and neonatal connectomes within weak and strong
long-range coupling regimes demonstrated only minor differences with Jensen-Shannon divergences less than 0.01.
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Figure 4: Observed subject EEG spectra and their inferred SGM parameter posterior distributions and corresponding simulated
spectra

a

b

c

Subject (Black) and Fitted (Red) Spectra Fitted SGM Posterior Distributions

Figure 4: Examples of Simulation-based Bayesian inference (SBI) of SGM Parameter Posterior Distributions and Respective
Example Subject EEG Spectrum (black) and SGM Simulated Spectrum (red). SBI was used to infer SGM parameter posterior
likelihoods from observed subjects (three examples shown in a-c). Kernel density estimation (KDE) of the resulting posterior
probability distribution were calculated and the mean of the KDE for each SGM variable (red cross) was used to simulate the EEG
spectrum (red) with SGM for the shown example subjects.
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Figure 5: SBI of SGM parameters over the developmental period

SBI of SGM Parameters Over the Developmental Period

Figure 5: Simulation-based Bayesian Inference (SBI) derived SGM Parameters Evolution Over Time. Each blue circle represents the
peak value of the respective SGM parameter distribution (y-axis) for a respective subject, as inferred by SBI, plotted over respective
age of the subject (x-axis). The linear regression model fit is represented by the solid line and the shaded area represents 95%
confidence interval. a) α demonstrated Pearson r of 0.284 (p = 3.88e-5). b) Excitatory Gain demonstrated r of -0.430 (p = 1.40e-10).
c) Axonal conduction speed demonstrated r of 0.350 (p = 2.97e-7). d) Inhibitory Gain did not demonstrate a linear correlation with
age. The x-axis tick labels are log-scaled for visualization purposes.
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Figure 6: Prediction of Age and PDR from Inferred SGM parameters

b

a

Figure 6. a) Observed versus predicted age plots are demonstrated for predicted ages derived from linear regression models based on
SBI-SGM (left panel) and Fitting Oscillations & One Over F (FOOOF) models (right panel). Respective Adjusted R2 and mean
square error (MSE) values are shown in the gray subset boxes. The SBI-SGM and FOOOF models demonstrated similar performance
with SBI-SGM having slightly improved adjusted R2 and mean square error (MSE) scores. b) Posterior dominant rhythm observed
versus predicted with SBI-SGM versus FOOOF. FOOOF demonstrated improved prediction of the PDR compared to SBI-SGM.
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9 Supporting Information

9.1 Parameter recovery, sensitivity analyses, and simulation based calibration analyses.

In order to assess the accuracy and robustness of the SBI-SGM inference framework, we conducted parameter recovery

analyses and simulation-based calibration (SBC) with synthetic data. In the context of SBI, the efficacy of the inference

may be evaluated by parameter recovery, specifically—given known ground truth parameters θ, how well does the

inference procedure recover them? Running SBI on 100 synthetic SGM realizations within physiologically informed

prior bounds (Table 1), we more accurately recovered SGM parameters with the NPE and TSNPE, relative to NRE

(Supplementary Figure 3-6). α was the most accurately recovered parameter across all model families, whereas S and

τG had the poorest recovery. For parameter recovery across all SGM parameters, NPE had the lowest mean relative

estimated error (REE), 0.0451, compared to 0.0560 for TSNPE and 0.114 for NRE (Supplementary Figure 6). To

evaluate potential pathologies of the SBI process, we performed Bayesian sensitivity analysis evaluating posterior

z-score and posterior contraction (Supplementary Figure 7) for each parameter using NRE, NPE, and TSNPE across

various simulation budget sizes[73]. We demonstrate that relative to NPE and NRE, TSNPE provided improved posterior

contraction (Supplementary Figures 8 and 9). Systematic posterior underdispersion or overdispersion limited usefulness

of posterior z-scores in the comparison of different model families and their respective parameterizations, particularly

for NRE, whose posteriors demonstrated significantly increased posterior dispersion relative to NPE and TSNPE. We

evaluated posterior dispersion indices (PDI) quantifying the degree of posterior dispersion while standardizing for the

varied scale of different SGM parameters and demonstrate that NPE and TSNPE had reduced PDI relative to NRE

(Supplementary Figure 10).

To evaluate the calibration of the uncertainties of the estimated posteriors, we assessed the SBC of NPE and TSNPE.

NRE was excluded from SBC analysis because the NRE-based inference of SGM parameters proved computationally

prohibitive due to the utilization of MCMC sampling. We found that the TSNPE yielded posteriors with well-

calibrated uncertainties, whereas NPE yielded posteriors with left-skewed rank distribution consistent with systematic

underestimation of the posterior means (Supplementary Figure 11). To quantify SBC, we utilized the Kolmogorov-

Smirnov (KS) test to evaluate the null hypothesis that the samples from ranks are drawn from a uniform distribution.

TSNPE SBC KS testing demonstrated p-values over 0.05 for all SGM parameters, which suggests the posterior

distribution aligns with a uniform distribution, aligning with a necessary, though not sufficient, condition for the

estimated posterior to be accurately calibrated. In contrast, KS testing for NPE across all SGM parameters demonstrated

p-values < 0.001. In addition, we performed the Classifier 2-Sample Test (C2ST) to assess whether the estimated

posterior is drawn from the same distribution as the prior, and this demonstrated that the Data Averaged Posterior (DAP)

compared to the prior demonstrated C2ST values between 0.473 to 0.510, approximating 0.5, indicating statistical

similarity of the DAP distribution to the prior distribution. The performance differences between NPE and TSNPE

are characterized by superior calibration in TSNPE and lower relative estimation error in parameter recovery for NPE.
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This distinction highlights that greater accuracy in parameter estimates does not necessarily correspond to an accurate

representation of true data uncertainties.

9.2 Performance differences between NRE, NPE, and TSNPE

Here, we evaluate potential sources of the differential performance observed with NRE, NPE, and TSNPE. In evaluating

potential sources of error in parameter recovery and calibration, we observed a tendency for NPE to exhibit posterior

mass leakage beyond the defined prior boundaries leading to clustering of posterior mass at prior boundaries, as

previously reported by Deister et al[111]. NPE showed clustering of posterior mass near the boundary limits for

parameters, especially with conduction speed. In contrast, TSNPE demonstrated no such leakage (Supplementary

Figure 12). Despite the potential leakage, the estimated posterior within the prior bounds for NPE was accurate in

capturing true parameters as evidenced by its higher REE scores; consistent with prior findings by Diestler et al. that

despite leakage, the approximate posterior within the bounds of the prior may still be reflective of the true posterior[111].

However, this leakage negatively impacts the posterior distribution shape estimated by NPE, particularly impacting

parameters with complex identifiability, such as conduction speed. This issue may contribute to the poorer calibration

results observed with NPE compared to TSNPE. While transformations of parameter space and other remedies for

NPE leakage have been proposed, Diestler et al. noted that these modifications to NPE did not sufficiently rectify the

shortcomings in real-world data, whereas TSNPE effectively mitigated leakage[111]. Our findings indicate improved

posterior calibration with TSNPE, aligning with the findings of Deistler et al. that TSNPE may recover posteriors with

good calibration more effectively than NPE[111].

Next, upon inspection of posterior predictive checks (PPC) utilizing synthetic spectral realizations we observed that the

estimated posterior distributions qualitatively demonstrated interdependencies among certain SGM parameters which

varied according to SBI method utilized (Supplementary Figures 3-5). We assessed these correlations by computing

Pearson correlation coefficient matrix for the joint marginal distributions (Supplementary Figure 13). There were

strong correlations across several joint marginals of the estimated posterior distribution, indicative of model degeneracy,

wherein multiple model parameterizations yield similar spectral realizations. NPE had increased sensitivity to detect

correlations between parameters compared to TSNPE. Increasing simulation budget size with TSNPE led to increased

alignment in detected significant correlations with NPE, suggesting that increased simulation budget size for neural

density estimator training increases its ability to capture interdependencies in the multivariate posterior distribution.

However, when averaging across the entire synthetic dataset, no significant correlations were observed. This observation

suggests that while model degeneracy may explain the correlations seen in individual joint marginal distributions, it

may not manifest uniformly against the variance representative of spectral developmental trajectories.

Concerning the improved REE performance of NPE compared to TSNPE, we attribute this to the larger simulation

budgets allocated to NPE relative to TSNPE due to the computational efficiency of amortized inference of NPE

compared to the non-amortized inference of TSNPE. Larger simulation budgets generally lead to performance gains for

NPE-based methods [82]. However, for TSNPE, this comes at the expense of computational complexity that scales
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linearly with the number of subjects because a new neural density estimator is learned for each subject at each inference

round for TSNPE. In comparison, with NPE, a single trained neural density estimator is re-used across all subjects.

10 Supplementary Figures

Figure S1: Empirical Subject EEG Spectra

a: Subject Spectra Colored by Log Age
(log years)

b: Subject Spectra Colored by Log Age
(log years)

Supplementary Figure 1: a) demonstrates all subject spectra colored by age, color-mapped to log years. For visualization purposes,
all spectra are scaled to the power corresponding to 0.5 to 1 Hz frequency bin. In this 3d representation, age is mapped to the z-axis
in a plane perpendicular to the page. b) demonstrates all subject spectra colored by age, color-mapped to log years. For visualization
purposes, all spectra are scaled to the power corresponding to 0.5 to 1 Hz frequency bin.
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Figure S2: UMAP of Subjects (blue) and Simulations (grey)

Supplementary Figure 2: UMAP embedding (N=196000 simulations) demonstrating clustering of simulation spectra with
simulations colored in grey and subjects colored in blue
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Figure S3: Synthetic EEG spectra and SGM parameter posterior distributions and simulated spectra inferred with NRE

a

b

c

Fitted NRE Posterior DistributionsSynthetic (Blue) and NRE (Orange) Spectra

Supplementary Figure 3: Examples of Neural Ratio Estimation (NRE) of SGM Parameter Posterior Distributions and Respective
Example Synthetic EEG Spectrum (black) and SGM Simulated Spectrum (red). NRE with simulation budget size of 1E6 simulations
was used to infer SGM parameter posterior likelihoods from synthetic subjects (three examples shown in a-c). The left column
shows three examples (a-c) of synthetic (blue) and fitted EEG spectrum (blue). Kernel density estimation (KDE) of the resulting
estimated posterior probability distribution and the true value for each SGM parameter (red cross) are shown on the right column.
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Figure S4: Synthetic EEG spectra and SGM parameter posterior distributions and simulated spectra inferred with NPE

a

b

Synthetic (Blue) and NPE (Orange) Spectra

c

Fitted NPE Posterior Distributions

Supplementary Figure 4: Examples of Neural Posterior Estimation (NPE) of SGM Parameter Posterior Distributions and Respective
Example Synthetic EEG Spectrum (black) and SGM Simulated Spectrum (red). NPE with simulation budget of 1E6 simulations was
used to infer SGM parameter posterior likelihoods from synthetic subjects (three examples shown in a-c). The left column shows
three examples (a-c) of synthetic (blue) and fitted EEG spectrum (blue). Kernel density estimation (KDE) of the resulting estimated
posterior probability distribution and the true value for each SGM parameter (red cross) are shown on the right column.
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Figure S5: Synthetic EEG spectra and SGM parameter posterior distributions and simulated spectra inferred with TSNPE

a

b

Synthetic (Blue) and TSNPE (Orange) Spectra

c

Fitted TSNPE Posterior Distributions

Supplementary Figure 5: Examples of Truncated Sequential Neural Posterior Estimation (TSNPE) of SGM Parameter Posterior
Distributions and Respective Example Synthetic EEG Spectrum (black) and SGM Simulated Spectrum (red). TSNPE with three
rounds and simulation budget of 2000 simulations was used to infer SGM parameter posterior likelihoods from synthetic subjects
(three examples shown in a-c). The left column shows three examples (a-c) of synthetic (blue) and fitted EEG spectrum (blue).
Kernel density estimation (KDE) of the resulting estimated posterior probability distribution and the true value for each SGM
parameter (red cross) are shown on the right column.
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Figure S6: Parameter Recovery Analysis
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Supplementary Figure 6: SGM parameter recovery performance with SBI using 100 synthetic SGM realizations within
physiologically informed prior bounds (Table 1). The predicted values versus the true values of each parameter are shown,
respectively, with the gray diagonal line indicating the perfect recovery. The far left column shows parameter recovery with NRE
utilizing 1E6 simulations, the center column demonstrates NPE utilizing 1E6 simulations, and the right column shows parameter
recovery with TSNPE utilizing three rounds and 2000 simulations. α had the best R2 across all model families, while S, GEI, and τG
had the poorest recovery error. Across all SGM parameters, NPE overall had improved mean relative estimated error (REE)
compared to both TSNPE and NRE (0.0451 versus 0.0560 and 0.114, respectively).

43



A PREPRINT - MAY 7, 2024

Figure S7: Bayesian Sensitivity Analysis
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Supplementary Figure 7: Bayesian sensitivity analyses can be used to identify pathology in the SBI procedure. To assess the
inference’s reliability with synthetic data, we analyzed the relationship between posterior z-scores and posterior shrinkage. This
analysis can identify regions of poor identification, overfitting, and prior/posterior conflict[73]. z-scores were calculated as
Posterior z-score = |µn(ỹ)− θn/σn(ỹ)| and shrinkage as Posterior Shrinkage = 1− σ2

prior/σ
2
post, following Betancourt et al.[73].
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Figure S8: Bayesian Sensitivity Analysis
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Supplementary Figure 8: Bayesian sensitivity analyses were used to identify pathology in the SBI procedure. We compared NPE
across varying simulation budget sizes (100 to 1000000 simulations) to TSNPE at varying simulation budget sizes (100 to 2000) and
varying number of rounds (two or three). Mean posterior shrinkage and z-scores from each of these models are shown for inference
from 100 synthetic SGM simulations. TSNPE with three rounds and 2000 simulations overall exhibited the largest posterior
shrinkage and lowest posterior z-scores. In each subplot, we plot the posterior mean of the specified simulation run. Individual
z-scores and posterior shrinkages from all 100 synthetic SGM simulations for TSNPE with three rounds and 2000 simulations are
demonstrated in Supplementary Figure 9.
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Figure S9: Bayesian Sensitivity Analysis - TSNPE with 3 rounds and 2000 simulations
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Supplementary Figure 9: Posterior shrinkages and z-scores are shown for 100 synthetic simulations for each SGM parameter
utilizing TSNPE with 3 rounds and 2000 simulations. There was good posterior shrinkage and posterior z-scores with good behavior
for most simulations, however for each parameter there was a small tail of realizations that were overfit.
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Figure S10: Posterior dispersion indices
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Supplementary Figure 10: Posterior dispersion indices (PDI) were obtained by normalizing variance by respective parameter mean
in order to account for variation in scales across SGM parameters. NPE and TSNPE had reduced PDI relative to NRE. NPE and
TSNPE had similar PDI profiles. PDI across synthetic and observed datasets revealed highest PDI in conduction speed,
excitatory:inhibitory gains; aligning posterior predictive check findings that these values had relatively more degeneracy. Application
of NRE on empirical data was computationally prohibitive due its utilization of MCMC sampling.
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Figure S11: Simulation-based calibration
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Supplementary Figure 11: a) The cumulative distribution functions (CDF) of posterior ranks are demonstrated for every parameter
(colored lines), compared to the 95% confidence interval of the uniform distribution (gray diagonal region) for both NPE and TSNPE.
NPE demonstrated a ranks CDF below the gray region, indicative of a non-uniform distribution, whereas TSNPE ranks CDF
demonstrated lied within the gray region. b) Inspection of the ranks histograms for NPE revealed a right-skewed rank distribution
indicative of systematic underestimation of the posterior mean. Inspection of the ranks histograms for TSNPE revealed relatively
uniform distributed ranks across parameters; however, with subtle U-shaped distribution for τi and α consistent with mild
under-estimation of the posterior variance.
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Figure S12: Posterior Leakage

Histogram counts of TSNPE posterior distributions
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Supplementary Figure 12: Histogram counts of NPE and TSNPE estimated posterior distributions are shown, with log-scaled y-axis
to identify regions containing posterior mass not readily visible in Supplementary Figures 4-6. NPE exhibited clustering of posterior
mass at the prior boundary for conduction speed, indicative of posterior leakage[111]. TSNPE did not exhibit any signs of posterior
leakage.
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Figure S13: Posterior Distribution Pearson Correlation Matrices
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Supplementary Figure 13: We assessed for correlations in the estimated posterior joint marginal distributions utilizing Pearson
correlation coefficient matrices. Rows a through c correspond with synthetic data labeled a through c in Supplementary Figures 3-5.
There were significant, strong correlations (R2 > 0.8) denoted by ** and significant, moderate correlations (R2 > 0.5) across
several joint marginals of the estimated posterior distribution. All denoted significant correlations had p < 0.001, adjusted for
multiple comparisons using Bonferroni correction. These significant correlations are indicative of model degeneracy, wherein
multiple model parameterizations yield similar spectral realizations. NPE demonstrated increased sensitivity to detect correlations
between parameters when compared to TSNPE utilizing 2 rounds of sequential inference with simulation budget size of 2000.
Increasing simulation budget size to 20000 simulations with TSNPE led to increased alignment in detected significant correlations
with NPE. When averaging across the entire synthetic dataset, no significant correlations were observed.
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Figure S14: Posterior distribution for all subjects, part A

Supplementary Figure 14: The posterior distribution is shown for all subjects, ordered by age. The remainder of the subjects are
shown in Supplementary Figure 15
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Figure S15: Posterior distribution for all subjects, part B

Supplementary Figure 15: The posterior distribution is shown for all subjects, ordered by age (continuation from Supplementary
Figure 14).
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Figure S16: τG Relation with Age

Supplementary Figure 16: τG did not demonstrate time-dependent change during development.
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Figure S17: Regression Diagnostics for SGM Parameter Relation with Age
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Supplementary Figure 17: The left column demonstrates residuals vs. fitted values and the right column demonstrates scale-location
plots across the SGM parameters found to have linear correlation with age. The red line in the residuals vs. fitted plots shows the
relationship between the fitted values (predicted values) and the residuals, with the shaded regions indicating the 99.9% confidence
interval. The red lines in the scale-location plots show the relationship between the fitted values (predicted values) and the square
root of the absolute standardized residuals, with shaded regions indicating the 99.9% confidence intervals. Significant
heteroskedasticity was found for τe and τi with BP values of 5.560 and 14.13, with p-values of 0.0179 and 0.000171.
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Figure S18: Regression Diagnostics for Age Prediction Models
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Supplementary Figure 18: The left column demonstrates residuals vs. fitted values and the right column demonstrates scale-location
plots for the SGM and FOOOF regression models for Age and PDR prediction, respectively. The red line in the residuals vs. fitted
plots shows the relationship between the fitted values (predicted values) and the residuals, with the shaded regions indicating the
99.9% confidence interval. The red lines in the scale-location plots show the relationship between the fitted values (predicted values)
and the square root of the absolute standardized residuals, with shaded regions indicating the 99.9% confidence intervals. Significant
heteroskedasticity was found for the SGM PDR and FOOOF Age regression models, with χ2 of 20.52 and 57.4, respectively with
p-values both less than 1e-3.
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11 Supplementary Tables

Table S1: Computation Time for TSNPE (3 rounds)
Simulation Budget Time (min)
100 94
500 407
2000 2586
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