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DEFORMATION MAPS OF QUASI-TWILLED LIE ALGEBRAS

JUN JIANG, YUNHE SHENG, AND RONG TANG

Abstract. In this paper, we provide a unified approach to study the cohomology theories and de-

formation theories of various types of operators in the category of Lie algebras, including modified

r-matrices, crossed homomorphisms, derivations, homomorphisms, relative Rota-Baxter opera-

tors, twisted Rota-Baxter operators, Reynolds operators and deformation maps of matched pairs

of Lie algebras. The main ingredients are quasi-twilled Lie algebras. We introduce two types of

deformation maps of a quasi-twilled Lie algebra. Deformation maps of type I unify modified r-

matrices, crossed homomorphisms, derivations and homomorphisms between Lie algebras, while

deformation maps of type II unify relative Rota-Baxter operators, twisted Rota-Baxter operators,

Reynolds operators and deformation maps of matched pairs of Lie algebras. We further give the

controlling algebras and cohomologies of these two types of deformation maps, which not only

recover the existing results for crossed homomorphisms, derivations, homomorphisms, relative

Rota-Baxter operators, twisted Rota-Baxter operators and Reynolds operators, but also leads to

some new results which are unable to solve before, e.g. the controlling algebras and cohomologies

of modified r-matrices and deformation maps of matched pairs of Lie algebras.
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1. Introduction

A classical approach to study a mathematical structure is to associate to it invariants. Among

these, cohomology theories occupy a central position as they enable for example to control de-

formation or extension problems. The concept of a formal deformation of an algebraic structure

began with the seminal work of Gerstenhaber [21, 22] for associative algebras. Nijenhuis and
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Richardson extended this study to Lie algebras [41, 43]. Deformations of other algebraic struc-

tures such as pre-Lie algebras have also been developed [8]. More generally, deformation theory

for algebras over quadratic operads was developed by Balavoine [3]. For more general operads

we refer the reader to [28, 35, 39], and the references therein. There is a well known slogan, often

attributed to Deligne, Drinfeld and Kontsevich: every reasonable deformation theory is controlled

by a differential graded (dg) Lie algebra, determined up to quasi-isomorphism. This slogan has

been made into a rigorous theorem by Lurie and Pridham, cf. [37, 45].

It is also meaningful to deform maps compatible with given algebraic structures. Recently, the

cohomology and deformation theories of various operators were established with fruitful appli-

cations, e.g morphisms [5, 7, 14, 18, 19, 20], derivations [53], O-operators (also called relative

Rota-Baxter operators) [9, 15, 50, 54], crossed homomorphisms [12, 25, 44], twisted Rota-Baxter

operators and Reynolds operators [10, 11]. The key step in most of the above studies is to con-

struct the controlling algebra, namely an algebra whose Maurer-Cartan elements are the given

structures, using the method of derived brackets [30, 38, 55]. Then twisting the controlling al-

gebra by a Maurer-Cartan element, one can obtain the algebra that governs deformations of the

given operator, as well as the coboundary operator in the deformation complex.

Modified r-matrices, namely solutions of the modified Yang-Baxter equation, are important

operators that have deep applications in mathematical physics, e.g. the Lax equation and the

factorization problem [46, 48, 49]. Even though there are very fruitful results for various kinds

of operators as aforementioned, but the controlling algebra for modified r-matrices is still un-

known. On the other hand, the notion of deformation maps of matched pairs of Lie algebras

was introduced in [1, 2] in the study of classifying compliments. It is also useful to develop the

cohomology and deformation theories for deformation maps of matched pairs of Lie algebras.

We propose a unified approach to study all aforementioned operators. On the one hand, we

recover all the existing theories. On the other hand, we obtain some new results. We give the

controlling algebra of modified r-matrices, which is a curved L∞-algebra, and establish the co-

homology and deformation theories for deformation maps of matched pairs of Lie algebras. We

study all the operators under the general framework of quasi-twilled Lie algebras, which are gen-

eralization of quasi-Lie bialgebras [29, 31], and include direct sum of Lie algebras, semidirect

products, action Lie algebras and matched pairs of Lie algebras as particular cases. We intro-

duce two types of deformation maps of a quasi-twilled Lie algebra. Deformation maps of type

I unify modified r-matrices, crossed homomorphisms, derivations and homomorphisms between

Lie algebras, and deformation maps of type II unify relative Rota-Baxter operators, twisted Rota-

Baxter operators, Reynolds operators and deformation maps of matched pairs of Lie algebras. We

further give the controlling algebras and cohomologies of these two types of deformation maps,

and realize the above purposes.

Note that simultaneous deformations of parts of aforementioned operators and algebras were

studied in [5, 13, 19, 33, 58], and it would be helpful to develop a unified approach to study

simultaneous deformations, which will be considered in the future.

The paper is organized as follows. In Section 2, we introduce the notion of a quasi-twilled

Lie algebra and give various examples. In Section 3, we introduce the notion of a deformation

map of type I of a quasi-twilled Lie algebra, and give its controlling algebra and cohomology.

In particular, we obtain the curved L∞-algebra, whose Maurer-Cartan elements are modified r-

matrices. In Section 4, we introduce the notion of a deformation map of type II of a quasi-

twilled Lie algebra, and give its controlling algebra and cohomology. As a byproduct, we give

the controlling algebra and cohomology of a deformation map of a matched pair of Lie algebras.
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2. Quasi-twilled Lie algebras

In this section, we introduce the notion of a quasi-twilled Lie algebra, and give various exam-

ples.

Let g be a vector space. Define the graded vector space ⊕+∞
n=0Hom(∧n+1g, g) with the degree of

elements in Hom(∧ng, g) being n − 1. For f ∈ Hom(∧mg, g), g ∈ Hom(∧ng, g), the Nijenhuis-

Richardson bracket [·, ·]NR is defined by

[ f , g]NR := f ◦ g − (−1)(m−1)(n−1)g ◦ f ,

with f ◦ g ∈ Hom(∧m+n−1g, g) being defined by

(1) ( f ◦ g)(x1, · · · , xm+n−1) :=
∑

σ∈S (n,m−1)

(−1)σ f (g(xσ(1), · · · , xσ(n)), xσ(n+1), · · · , xσ(m+n−1)),

where the sum is over (n,m − 1)-shuffles. Recall that a permutation τ ∈ S n is called an (i, n − i)-

shuffle if τ(1) < · · · < τ(i) and τ(i + 1) < · · · < τ(n). Then
(

⊕+∞
n=0 Hom(∧n+1g, g), [·, ·]NR

)

is a

graded Lie algebra [41, 43]. With this setup, a Lie algebra structure on g is precisely a solution

π ∈ Hom(∧2g, g) of the Maurer-Cartan equation

[π, π]NR = 0.

Let g and h be vector spaces. The elements in g are denoted by x and the elements in h are

denoted by u. For a multilinear map κ : ∧kg ⊗ ∧lh → g, we define κ̂ ∈ Hom(∧k+l(g ⊕ h), g ⊕ h) by

κ̂
(

(x1, u1), · · · , (xk+l, uk+l)
)

=
∑

τ∈S (k,l)

(−1)τ
(

κ(xτ(1), · · · , xτ(k), uτ(k+1), · · · , uτ(k+l)), 0
)

.

Similarly, for a multilinear map κ : ∧kg ⊗ ∧lh → h, we define κ̂ ∈ Hom(∧k+l(g ⊕ h), g ⊕ h) by

κ̂
(

(x1, u1), · · · , (xk+l, uk+l)
)

=
∑

τ∈S (k,l)

(−1)τ
(

0, κ(xτ(1), · · · , xτ(k), uτ(k+1), · · · , uτ(k+l))
)

.

The linear map κ̂ is called a lift of κ. We define gk,l = ∧kg ⊗ ∧lh. Then ∧n(g ⊕ h) � ⊕k+l=ng
k,l

and Hom(∧n(g⊕ h), g⊕ h) � (⊕k+l=nHom(gk,l, g))⊕ (⊕k+l=nHom(gk,l, h)), where the isomorphism is

given by the lift. See [33, 54] for more details. In the sequel, we will omit the notation ·̂.

Definition 2.1. Let (G, [·, ·]G) be a Lie algebra with a decomposition into two subspacesG = g⊕h.

The triple (G, g, h) is called a quasi-twilled Lie algebra if h is a Lie subalgebra of (G, [·, ·]G).

Let (G, g, h) be a quasi-twilled Lie algebra. Denote the Lie bracket ofG byΩ. Then there exists

π ∈ Hom(∧2g, g), ρ ∈ Hom(g ⊗ h, h), µ ∈ Hom(∧2h, h), η ∈ Hom(g ⊗ h, g) and θ ∈ Hom(∧2g, h),

such that

(2) Ω = π + ρ + µ + η + θ.

More precisely, for all x, y ∈ g, u, v ∈ h, we have

Ω((x, u), (y, v)) =
(

π(x, y) + η(x, v) − η(y, u), µ(u, v) + ρ(x, v) − ρ(y, u) + θ(x, y)
)

.
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In fact, [Ω,Ω]NR = 0 if and only if the following equations hold





[µ, µ]NR = 0,

[π, π]NR + 2η ◦ θ = 0,

2[µ, η]NR + [η, η]NR = 0,

[ρ, µ]NR + ρ ◦ η = 0,

[ρ, θ]NR + [π, θ]NR = 0,

[π, η]NR + η ◦ ρ = 0,

[µ, θ]NR + [π, ρ]NR + θ ◦ η +
1
2
[ρ, ρ]NR = 0.

(3)

Proposition 2.2. With the above notations, σ : h → gl(g) is a representation of the Lie algebra

(h, µ) on the vector space g, where

σ(v)x = −η(x, v), ∀x ∈ g, v ∈ h.

Proof. By (3), we have 2[µ, η]NR + [η, η]NR = 0 which implies that σ(v)x = −η(x, v) is a represen-

tation of the Lie algebra (h, µ) on the vector space g. �

Quasi-twilled Lie algebras can be viewed as natural generalizations of quasi-Lie bialgebras.

Let g be a vector space and π ∈ ∧2g∗ ⊗ g, µ ∈ g∗ ⊗ ∧2g and θ ∈ ∧3g∗. Recall that the quadruple

(g, π, µ, θ) is called a quasi-Lie bialgebra [6, 29, 31] if

1

2
{π, π} + {µ, θ} = 0, {π, µ} = 0, {µ, µ} = 0, {π, θ} = 0,

where {·, ·} is the big bracket, which is the canonical Poisson bracket on T ∗[2]g[1]. For conve-

nience and to be consistence with the notations for quasi-twilled Lie algebras, we will also view

π ∈ ∧2g∗⊗ g, µ ∈ g∗⊗∧2g and θ ∈ ∧3g∗ as maps in Hom(∧2g, g),Hom(∧2g∗, g∗) and Hom(∧2g, g∗)

respectively. Then it is well known that the double g ⊕ g∗ is a Lie algebra and it follows that

(g ⊕ g∗, g, g∗) is a quasi-twilled Lie algebra.

In the sequel, we give various examples of quasi-twilled Lie algebras.

Let (g, [·, ·]g) be a Lie algebra. For λ ∈ K, define a bracket operation [·, ·]M on g ⊕ g by

[(x, u), (y, v)]M = ([x, v]g − [y, u]g, λ[x, y]g + [u, v]g), ∀x, y, u, v ∈ g.

That is π = ρ = 0, η = µ = [·, ·]g and θ = λ[·, ·]g in (2). Then we have that [·, ·]M is a Lie algebra

structure on g ⊕ g. Denote this Lie algebra by g ⊕M g.

Example 2.3. Let (g, [·, ·]g) be a Lie algebra. Then (g ⊕M g, g, g) is a quasi-twilled Lie algebra.

Let ρ : g → Der(h) be an action of a Lie algebra g on a Lie algebra h. For any λ ∈ K, then

(g ⊕ h, [·, ·]ρ) is a Lie algebra, where the Lie bracket [·, ·]ρ is given by

(4) [(x, u), (y, v)]ρ = ([x, y]g, ρ(x)v − ρ(y)u + λ[u, v]h), ∀x, y ∈ g, u, v ∈ h.

This Lie algebra is denoted by g ⋉ρ h and called the action Lie algebra.

Example 2.4. Let ρ : g → Der(h) be an action of a Lie algebra g on a Lie algebra h. Then

(g ⋉ρ h, g, h) is a quasi-twilled Lie algebra.

Example 2.5. Let ρ : g→ gl(V) be a representation of a Lie algebra g on a vector space V . Then

(g ⋉ρ V, g,V) is a quasi-twilled Lie algebra, where g ⋉ρ V is the semidirect product Lie algebra

with the Lie bracket

[(x, u), (y, v)]ρ = ([x, y]g, ρ(x)v − ρ(y)u), ∀u, v ∈ V, x, y ∈ g.
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Let (g, [·, ·]g) and (h, [·, ·]h) be Lie algebras. Then there is the direct product Lie algebra (g ⊕

h, [·, ·]⊕), where

[(x, u), (y, v)]⊕ = ([x, y]g, [u, v]h), ∀x, y ∈ g, u, v ∈ h.

Example 2.6. The direct product Lie algebra (g ⊕ h, g, h) is a quasi-twilled Lie algebra.

Example 2.7. Let ρ : g → gl(V) be a representation of a Lie algebra g on a vector space V and

ω ∈ Hom(∧2g,V) be a 2-cocycle. Then (g ⊕ V, [·, ·]ρ,ω) is a Lie algebra, where the Lie bracket

[·, ·]ρ,ω is given by

(5) [(x, u), (y, v)]ρ,ω = ([x, y]g, ρ(x)v − ρ(y)u + ω(x, y)), ∀x, y ∈ g, u, v ∈ V.

Denote this Lie algebra by g ⋉ρ,ω V . Moreover, (g ⋉ρ,ω V, g,V) is a quasi-twilled Lie algebra.

Example 2.8. As a special case of Example 2.7, consider V = g, ρ = ad and ω(x, y) = [x, y]g.

Then we obtain a quasi-twilled Lie algebra (g ⋉ad,ω g, g, g).

Remark 2.9. In fact, the above examples can be unified via extensions of Lie algebras. Recall

that a Lie algebra G is an extension of a Lie algebra g by a Lie algebra h if we have the following

exact sequence:

(6) 0 −→ h
i
−→ G

π
−→ g −→ 0.

By choosing a section s : g → G of the extension (6), G is equal to s(g) ⊕ i(h), and i(h) is a

subalgebra. Thus, (G, s(g), i(h)) is a quasi-twilled Lie algebra.

A matched pair of Lie algebras consists of a pair of Lie algebras (g, h), a representation

ρ : g→ gl(h) of g on h and a representation η : h→ gl(g) of h on g such that

ρ(x)[u, v]h = [ρ(x)u, v]h + [u, ρ(x)v]h + ρ
(

(η(v)x
)

u − ρ
(

η(u)x
)

v,(7)

η(u)[x, y]g = [η(u)x, y]g + [x, η(u)y]g + η
(

ρ(y)u
)

x − η
(

ρ(x)u
)

y,(8)

for all x, y ∈ g and u, v ∈ h. We will denote a matched pair of Lie algebras by (g, h; ρ, η), or simply

by (g, h). Let (g, h; ρ, η) be a matched pair of Lie algebras. Then there is a Lie algebra structure

on the direct sum space g ⊕ h with the Lie bracket [·, ·]⊲⊳ given by

[(x, u), (y, v)]⊲⊳ =
(

[x, y]g + η(u)y − η(v)x, [u, v]h + ρ(x)v − ρ(y)u
)

.

Denote this Lie algebra by g ⊲⊳ h.

Example 2.10. Let (g, h; ρ, η) be a matched pair of Lie algebras. Then (g ⊲⊳ h, g, h) is a quasi-

twilled Lie algebra. Note that the representation η in the definition of a matched pair and the η in

(2) are related as follows: ρ(x)v = ρ(x, v), η(u)(y) = −η(y, u).

Remark 2.11. In Section 3, we will introduce the notion of a deformation map of type I of

a quasi-twilled Lie algebra, and will see that deformation maps of type I of quasi-twilled Lie

algebras given in Examples 2.3, 2.4, 2.5 and 2.6 are exactly modified r-matrices (solutions of the

modified classical Yang-Baxter equation), crossed homomorphisms, derivations and Lie algebra

homomorphisms.

Remark 2.12. In Section 4, we will introduce the notion of a deformation map of type II of

a quasi-twilled Lie algebra, and will see that deformation maps of type II of quasi-twilled Lie

algebras given in Examples 2.4, 2.5, 2.7 2.8 and 2.10 are exactly relative Rota-Baxter operators

of weight λ, relative Rota-Baxter operators of weight 0, twisted Rota-Baxter operators, Reynolds

operators and deformation maps of a matched pair of Lie algebras. So deformation maps of type
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II of quasi-twilled Lie algebras provide a unified approach to study relative Rota-Baxter operators,

twisted Rota-Baxter operators, Reynolds operators and deformation maps of a matched pair of

Lie algebras.

3. The controlling algebras and cohomologies of deformation maps of type I

In this section, (G, g, h) is always a quasi-twilled Lie algebra, and the Lie bracket on G is

denoted by

Ω = π + ρ + µ + η + θ,

where π ∈ Hom(∧2g, g), ρ ∈ Hom(g ⊗ h, h), µ ∈ Hom(∧2h, h), η ∈ Hom(g ⊗ h, g) and θ ∈

Hom(∧2g, h).

3.1. Deformation maps of type I of a quasi-twilled Lie algebra. In this subsection, we intro-

duce the notion of deformation maps of type I of a quasi-twilled Lie algebra, which unify modified

r-matrices, crossed homomorphisms, derivations and homomorphisms between Lie algebras

Definition 3.1. Let (G, g, h) be a quasi-twilled Lie algebra. A deformation map of type I (D-map

for short) of (G, g, h) is a linear map D : g → h such that

D
(

η(x,D(y)) − η(y,D(x)) + π(x, y)
)

= µ(D(x),D(y)) + ρ(x,D(y)) − ρ(y,D(x)) + θ(x, y).

Remark 3.2. D-maps may not exists. Consider the quasi-twilled Lie algebra (g⋉ρ,ωV, g,V) given

in Example 2.7 obtained from a representation ρ of g on V and a 2-cocycle ω. A linear map

D : g → h is a D-map if and only if

ω(x, y) = −
(

ρ(x)D(y) − ρ(y)D(x) − D([x, y]g)
)

= dCE(−D)(x, y), ∀x, y ∈ g,

where dCE is the corresponding Chevalley-Eilenberg coboundary operator of the Lie algebra g

with coefficients in the representation (V; ρ). Thus, the quasi-twilled Lie algebra (g ⋉ρ,ω V, g,V)

given in Example 2.7 admits a D-map if and only if ω is an exact 2-cocycle.

Let D : g → h be a linear map. Denote the graph of D by

Gr(D) = {(x,D(x))|x ∈ g}.

Proposition 3.3. A linear map D : g → h is a D-map if and only if Gr(D) is a subalgebra. In

this case (h,Gr(D)) is also a matched pair of Lie algebras.

Proof. For all (x,D(x)), (y,D(y)) ∈ Gr(D), we have

Ω
(

(x,D(x)), (y,D(y))
)

=
(

π(x, y) + η(x,D(y)) − η(y,D(x)), µ(D(x),D(y)) + ρ(x,D(y)) − ρ(y,D(x)) + θ(x, y)
)

.

Thus, Gr(D) is a Lie subalgebra of G, i.e. Ω
(

(x,D(x)), (y,D(y))
)

∈ Gr(D), if and only if

µ(D(x),D(y)) + ρ(x,D(y)) − ρ(y,D(x)) + θ(x, y) = D
(

π(x, y) + η(x,D(y)) − η(y,D(x))
)

,

namely D is a D-map of the quasi-twilled Lie algebra (G, g, h).

Since G = Gr(D) ⊕ h, it follows that (h,Gr(D)) is a matched pair of Lie algebras. �

Remark 3.4. Let (G, g, h) be a quasi-twilled Lie algebra. Then we have G = g ⊕ h. Since any

compliment of h in G is isomorphic to a graph of a linear map D from g to h. Then by Proposition

3.3, to find a space V which is a compliment of h in G such that (h,V) is a matched pair of Lie

algebras is equivalent to find a D-map of the quasi-twilled Lie algebra (G, g, h).
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Example 3.5. Consider the quasi-twilled Lie algebra (g ⊕M g, g, g) given in Example 2.3. In this

case, a D-map of (g ⊕M g, g, g) is a linear map D : g → g such that

[D(x),D(y)]g − D([D(x), y]g + [x,D(y)]g) = −λ[x, y]g.

Note that this equation is called the modified Yang-Baxter equation by Semenov-Tian-Shansky

in the seminal work [48], whose solutions are called modified r-matrices on the Lie algebra

(g, [·, ·]g).

Remark 3.6. Modified r-matrices play an important role in studying solutions of Lax equations

[46, 48, 49]. Furthermore, modified r-matrices are intimately related to particular factorization

problems in the corresponding Lie algebras and Lie groups. This factorization problem was con-

sidered by Reshetikhin and Semenov-Tian-Shansky in the framework of the enveloping algebra

of a Lie algebra with a modified r-matrix to study quantum integrable systems [47]. Moreover,

any modified r-matrix induces a post-Lie algebra [4].

Example 3.7. Consider the quasi-twilled Lie algebra (g ⋉ρ h, g, h) given in Example 2.4 obtained

from the action Lie algebra g⋉ρ h. In this case, aD-map of (g⋉ρ h, g, h) is a linear map D : g → h

such that

D([x, y]g) = ρ(x)D(y) − ρ(y)D(x) + λ[D(x),D(y)]h,

which is exactly a crossed homomorphism of weight λ from the Lie algebra g to the Lie algebra

h [36].

Remark 3.8. Note that crossed homomorphisms of weight −1 are ε-derivations on the Lie al-

gebras, which play crucial roles in the Jacobian conjecture [57] and the Mathieu-Zhao subspace

theory [56]. On the other hand, crossed homomorphisms of weight 1 are deeply related to the

representation theory of Cartan type Lie algebras [44] and post-Lie algebras [40].

Example 3.9. Consider the quasi-twilled Lie algebra (g⋉ρ V, g,V) given in Example 2.5 obtained

from the semidirect product Lie algebra g ⋉ρ V . In this case, a D-map is a linear map D : g → V

such that

D([x, y]g) = ρ(x)D(y) − ρ(y)D(x),

which implies that D is a derivation from (g, [·, ·]g) to V . In particular, if ρ is the adjoint repre-

sentation of g on itself, then we obtain the usual derivation.

Example 3.10. Consider the quasi-twilled Lie algebra (g⊕ h, g, h) given in Example 2.6 obtained

from the direct product Lie algebra. In this case, aD-map of (g⊕h, g, h) is a linear map D : g → h

such that

D([x, y]g) = [D(x),D(y)]h,

which is exactly a Lie algebra homomorphism from (g, [·, ·]g) to (h, [·, ·]h).

At the end of this subsection, we illustrate the roles that D-maps play in the twisting theory.

Let D : g → h be a linear map. It follows that D2 = 0 and [·,D]NR is a derivation of the graded

Lie algebra
(

⊕+∞
n=0 Hom(∧n+1(g ⊕ h), g ⊕ h), [·, ·]NR

)

. Then we gain that e[·,D]NR is an automorphism

of the graded Lie algebra
(

⊕+∞
n=0

Hom(∧n+1(g ⊕ h), g ⊕ h), [·, ·]NR

)

.

Definition 3.11. Let D : g → h be a linear map. The transformation ΩD
, e[·,D]NRΩ is called the

twisting of Ω by D.
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Proposition 3.12. With the above notations, we gain that

ΩD = e−D ◦ Ω ◦ (eD ⊗ eD)(9)

is a Lie algebra structure on g ⊕ h and eD : (G,ΩD) → (G,Ω) is an isomorphism between Lie

algebras.

Proof. Since e[·,D]NR is an automorphism of the graded Lie algebra
(

⊕+∞
n=0 Hom(∧n+1(h ⊕ g), h ⊕

g), [·, ·]NR

)

, we deduce that ΩD is a Lie algebra structure on g ⊕ h. Moreover, by the similar

computation in [52, 54], we obtain that ΩD = e−D ◦ Ω ◦ (eD ⊗ eD) and eD : (G,ΩD) → (G,Ω) is

an isomorphism between Lie algebras. �

Theorem 3.13. Let (G, h, g) be a quasi-twilled Lie algebra and D : g → h a linear map. Then

((G,ΩD), g, h) is a quasi-twilled Lie algebra. Moreover, write ΩD = πD + ρD + µD + ηD + θD, πD ∈

Hom(∧2g, g), ρD ∈ Hom(g⊗ h, h), µD ∈ Hom(∧2h, h), ηD ∈ Hom(g⊗ h, g) and θD ∈ Hom(∧2g, h).

We have

πD(x, y) = π(x, y) + η(x,D(y)) − η(y,D(x)),

ρD(x, v) = ρ(x, v) + µ(D(x), v) − D(η(x, v)),

µD(u, v) = µ(u, v),

ηD(x, v) = η(x, v),

θD(x, y) = θ(x, y) + ρ(x,D(y)) − ρ(y,D(x)) − D(π(x, y))

+µ(D(x),D(y)) − D(η(x,D(y))) + D(η(y,D(x))),

for all x, y ∈ g, u, v ∈ h.

Consequently, D : g → h is a D-map if and only if the Lie algebras (g, πD) and (h, µ) form a

matched pair of Lie algebras.

Proof. By (9), we have

ΩD((0, u), (0, v)) = e−DΩ(eD(0, u), eD(0, v)) = Ω((0, u), (0, v)) ∈ h.

Thus h is a Lie subalgebra of (G,ΩD), which implies that ((G,ΩD), g, h) is a quasi-twilled Lie

algebra.

For all x, y ∈ g, u, v ∈ h, by (9), we have

(πD(x, y), θD(x, y)) = ΩD
(

(x, 0), (y, 0)
)

=
(

π(x, y) + η(x,D(y)) − η(y,D(x)), θ(x, y) + ρ(x,D(y)) − ρ(y,D(x)) − D(π(x, y))

+µ(D(x),D(y)) − D(η(x,D(y))) + D(η(y,D(x)))
)

,

and

(ηD(x, v), ρD(x, v)) = ΩD
(

(x, 0), (0, v)
)

= (η(x, v), ρ(x, v) + µ(D(x), v) − D(η(x, v))),

which completes the proof. �

Apply the above result to the quasi-Lie bialgebra (g, π, µ, θ), a D-map gives rise to a Lie bial-

gebra.

Proposition 3.14. Let D : g → g∗ be a D-map of the quasi-twilled Lie algebra (g ⊕ g∗, g, g∗)

obtained from the quasi-Lie bialgebra (g, π, µ, θ) such that D = −D∗. Then ((g, πD), (g∗, µD)) is a

Lie bialgebra.
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Proof. By Theorem 3.13, θD = 0. Thus ((g, πD), (g∗, µD)) is a matched pair of Lie algebras.

Moreover, by D = −D∗, we can deduce that ((g, πD), (g∗, µD)) is a Lie bialgebra. �

3.2. The controlling algebra of D-maps. In this subsection, we give the controlling algebra

of deformation maps of type I, which is a curved L∞-algebra. An important byproduct is the

controlling algebra of modified r-matrices, which is totally unknown before.

Definition 3.15. ([27]) Let g = ⊕k∈Zg
k be a Z-graded vector space. A curved L∞-algebra is a

Z-graded vector space g equipped with a collection (k ≥ 0) of linear maps lk : ⊗kg → g of degree

1 with the property that, for any homogeneous elements x1, · · · , xn ∈ g, we have

(i) (graded symmetry) for every σ ∈ S n,

ln(xσ(1), · · · , xσ(n)) = ε(σ)ln(x1, · · · , xn),

(ii) (generalized Jacobi identity) for all n ≥ 0,
n∑

i=0

∑

σ∈S (i,n−i)

ε(σ)ln−i+1(li(xσ(1), · · · , xσ(i)), xσ(i+1), · · · , xσ(n)) = 0,

where ε(σ) = ε(σ; x1, · · · , xn) is the Koszul sign for a permutation σ ∈ S n and x1, · · · , xn ∈ g.

We denote a curved L∞-algebra by (g, {lk}
+∞
k=0

). A curved L∞-algebra (g, {lk}
+∞
k=0

) with l0 = 0 is

exactly an L∞-algebra [34].

Definition 3.16. Let (g, {lk}
+∞
k=0

) be a curved L∞-algebra. A Maurer-Cartan element is a degree

0 element x satisfying

l0 +

+∞∑

k=1

1

k!
lk(x, · · · , x) = 0.

Let x be a Maurer-Cartan element of a curved L∞-algebra (g, {lk}
+∞
k=0

). Define lx
k

: ⊗kg → g (k ≥

1) by

lx
k(x1, · · · , xk) =

+∞∑

n=0

1

n!
lk+n(x, · · · , x
︸   ︷︷   ︸

n

, x1, · · · , xk).

Theorem 3.17. ([17, 23]) With the above notation, (g, {lx
k
}+∞
k=1

) is an L∞-algebra which is called

the twisted L∞-algebra by x.

Remark 3.18. To ensure the convergence of the series appearing in the definition of Maurer-

Cartan elements and Maurer-Cartan twistings above, one need the L∞-algebra being filtered given

by Dolgushev and Rogers in [16], or weakly filtered given in [33]. Since all the L∞-algebras under

consideration in the sequel satisfy the weakly filtered condition, so we will not mention this point

anymore.

We recall Voronov’s derived bracket construction [55], which is a powerful method for con-

structing a curved L∞-algebra.

Definition 3.19. ([55]) A curved V-data consists of a quadruple (L, F, P,∆), where

• (L = ⊕Li, [·, ·]) is a graded Lie algebra,

• F is an abelian graded Lie subalgebra of (L, [·, ·]),

• P : L → L is a projection, that is P ◦ P = P, whose image is F and kernel is a graded Lie

subalgebra of (L, [·, ·]),

• ∆ is an element in L1 such that [∆,∆] = 0.
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When ∆ ∈ ker(P)1 such that [∆,∆] = 0, we refer to (L, F, P,∆) as a V-data.

Theorem 3.20. ([55]) Let (L, F, P,∆) be a curved V-data. Then (F, {lk}
+∞
k=0

) is a curved L∞-algebra,

where lk are given by

l0 = P(∆), lk(x1, · · · , xn) = P([· · · [[∆, x1], x2], · · · , xn]).

Now we are ready to give the controlling algebra of D-maps of a quasi-twilled Lie algebra.

Theorem 3.21. Let (G, g, h) be a quasi-twilled Lie algebra. Then there is a curved V-data

(L, F, P,∆) as follows:

• the graded Lie algebra (L, [·, ·]) is given by (⊕+∞
n=0Hom(∧n+1g ⊕ h, g ⊕ h), [·, ·]NR),

• the abelian graded Lie subalgebra F is given by ⊕+∞
n=0

Hom(∧n+1g, h),

• P : L → L is the projection onto the subspace F,

• ∆ = π + ρ + µ + η + θ.

Consequently, we obtain a curved L∞-algebra (⊕+∞
n=0

Hom(∧n+1g, h), l0, l1, l2), where l0, l1, l2 are

given by

l0 = θ

l1( f ) = [π + ρ, f ]NR

l2( f , g) = [[µ + η, f ]NR, g]NR.

Furthermore, a linear map D : g → h is a D-map of (G, g, h) if and only if D is a Maurer-

Cartan element of the above curved L∞-algebra.

Proof. It is obvious that F is an abelian graded Lie subalgebra of L. Since P is the projection

onto F, it is obvious that P2 = P. Moreover, the kernel of P is a graded Lie subalgebra of L.

Thus (L, F, P,∆) is a curved V-data. By Theorem 3.20, we obtain a curved L∞-algebra (F, {lk}
+∞
k=1

),

where lk are given by

lk( f1, · · · , fn) = P([· · · [[∆, f1]NR, f2]NR, · · · , fn]NR).

By Theorem 3.20, we have l0 = P(∆) = θ and

l1( f ) = P([π + ρ + µ + η + θ, f ]NR) = [π + ρ, f ]NR,

l2( f , g) = P([[π + ρ + µ + η + θ, f ]NR, g]NR) = [[µ + η, f ]NR, g]NR,

where f ∈ Hom(∧ng, h), g ∈ Hom(∧mg, h). Since F is abelian and

[[π + ρ + µ + η + θ, f ]NR, g]NR ∈ Hom(∧n+mg, h),

we have lk = 0 for all k ≥ 3. Moreover, we have

l0(x, y) + l1(D)(x, y) +
1

2
l2(D,D)(x, y)

= θ(x, y) + [π + ρ,D]NR(x, y) + [[µ + η,D]NR,D]NR(x, y)

= θ(x, y) + ρ(x,D(y)) − ρ(y,D(x)) − D(π(x, y)) + µ(D(x),D(y)) − D(η(x,D(y))) + D(η(y,D(x))).

Thus, D is a Maurer-Cartan element of the curved L∞-algebra (⊕+∞
n=0Hom(∧n+1g, h), l0, l1, l2) if and

only if D is a D-map of (G, g, h). The proof is finished. �

As an immediate application of the above theorem, we obtain the controlling algebra of mod-

ified r-matrices, namely a curved L∞-algebra whose Maurer-Cartan elements are modified r-

matrices.
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Corollary 3.22. Consider the quasi-twilled Lie algebra (g ⊕M g, g, g) given in Example 2.3.

Then (⊕+∞
n=0

Hom(∧n+1g, g), l0, l1, l2) is a curved L∞-algebra, where l0, l1 and l2 are given by l0 =

λ[·, ·]g, l1 = 0, and

l2( f , g)(x1, · · · , xp+q)

=
∑

σ∈S (q,1,p−1)

(−1)p(−1)σ f ([xσ(q+1), g(xσ(1), · · · , xσ(q))]g, xσ(q+2), · · · , xσ(p+q))

−
∑

σ∈S (p,1,q−1)

(−1)p(q+1)(−1)σg([xσ(p+1), f (xσ(1), · · · , xσ(p))]g, xσ(p+2), · · · , xσ(p+q)))

+
∑

σ∈S (p,q)

(−1)p(q+1)(−1)σ[ f (xσ(1), · · · , xσ(p)), g(xσ(p+1), · · · , xσ(p+q))]g

for all f ∈ Hom(∧pg, g), g ∈ Hom(∧qg, g).

Moreover, Maurer-Cartan elements of this curved L∞-algebra are exactly modified r-matrices

on the Lie algebra (g, [·, ·]g).

Through Theorem 3.21, one can also recover the controlling algebras for crossed homomor-

phisms, derivations and Lie algebra homomorphisms after the suspension.

Corollary 3.23. Consider the quasi-twilled Lie algebra (g⋉ρh, g, h) given in Example 2.4 obtained

from the action Lie algebra g ⋉ρ h. Then (⊕+∞
n=1Hom(∧ng, h), d, ~·, ·�) is a differential graded Lie

algebra, where the differential d is given by

d( f )(x1, · · · , xn+1) =

n+1∑

i=1

(−1)n+iρ(xi) f (x1, · · · , x̂i, · · · , xn+1)(10)

+
∑

i< j

(−1)n+i+ j−1 f ([xi, x j]g, x1 · · · , x̂i, · · · , x̂ j, · · · , xn+1),

for all f ∈ Hom(∧ng, h), and the graded Lie bracket ~·, ·� is given by

�

f , g
�

(x1, · · · , xp+q) =
∑

σ∈S (p,q)

(−1)pq+1(−1)σλ[ f (xσ(1), · · · , xσ(p)), g(xσ(p+1), · · · , xσ(p+q))]h,(11)

for all f ∈ Hom(∧pg, h), g ∈ Hom(∧qg, h). This differential graded Lie algebra is exactly the

controlling algebra for crossed homomorphisms of weight λ given in [44].

Corollary 3.24. Consider the quasi-twilled Lie algebra (g ⋉ρ V, g,V) given in Example 2.5 ob-

tained from the semidirect product Lie algebra g ⋉ρ V. Then (⊕+∞
n=1Hom(∧ng,V), d) is a cochain

complex, where d is given by (10). A linear map D ∈ Hom(g,V) is a derivation if and only if

d(D) = 0. Therefore, the cochain complex (⊕+∞
n=1

Hom(∧ng,V), d) can be viewed as the control-

ling algebra for derivations from the Lie algebra (g, [·, ·]g) to V. See [53] for more details.

Corollary 3.25. Consider the quasi-twilled Lie algebra (g⊕h, g, h) given in Example 2.6 obtained

from the direct product Lie algebra g⊕h. Then (⊕+∞
n=1

Hom(∧ng, h), d, ~·, ·�) is a differential graded

Lie algebra, where the graded Lie bracket ~·, ·� is given by (11) and the differential d is given by

d( f )(x1, · · · , xp+1) =
∑

i< j

(−1)p+i+ j−1 f ([xi, x j]g, x1 · · · , x̂i, · · · , x̂ j, · · · , xp+1),

for all f ∈ Hom(∧pg, h). This differential graded Lie algebra is exactly the controlling algebra

for Lie algebra homomorphisms. See [14, 18, 20, 42] for more details.
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Let D : g → h is a D-map of (G, g, h). By Theorem 3.21, we obtain that D is a Maurer-Cartan

element of the curved L∞-algebra (⊕+∞
n=0

Hom(∧n+1g, h), l0, l1, l2). By Theorem 3.17, we have the

twisted L∞-algebra structure on ⊕+∞
n=0

Hom(∧n+1g, h) as following:

lD
1 ( f ) = l1( f ) + l2(D, f ),(12)

lD
2 ( f , g) = l2( f , g),(13)

lD
k = 0, k ≥ 3,(14)

where f ∈ Hom(∧pg, h), g ∈ Hom(∧qg, h). Now we are ready to give the L∞-algebra that controls

deformations of the D-map D.

Theorem 3.26. Let D : g → h be a D-map of (G, g, h). Then for a linear map D′ : g → h,

D + D′ is a D-map if and only if D′ is a Maurer-Cartan element of the twisted L∞-algebra

(⊕+∞
n=0Hom(∧n+1g, h), lD

1 , l
D
2 ), that is D′ satisfies the Maurer-Cartan equation:

lD
1 (D′) +

1

2
lD
2 (D′,D′) = 0.

Proof. By Theorem 3.21, D + D′ is a D-map if and only if

l0 + l1(D + D′) +
1

2
l2(D + D′,D + D′) = 0.

Since D is a Maurer-Cartan element of the curved L∞-algebra (⊕+∞
n=0Hom(∧n+1g, h), l0, l1, l2), we

deduce that the above condition is equivalent to

l1(D′) + l2(D,D′) +
1

2
l2(D′,D′) = 0.

That is, lD
1 (D′)+ 1

2
lD
2 (D′,D′) = 0, which implies that D′ is a Maurer-Cartan element of the twisted

L∞-algebra (⊕+∞
n=0

Hom(∧n+1g, h), lD
1
, lD

2
). �

Remark 3.27. Apply Theorem 3.26 to Corollary 3.22, one obtains the differential graded Lie

algebra governing deformations of a modified r-matrix. Note that this differential graded Lie

algebra was first given in [24] via a different approach. Apply Theorem 3.26 to Corollaries

3.23-3.25, one can also obtain the algebras governing deformations of crossed homomorphisms,

derivations and Lie algebra homomorphisms.

3.3. Cohomology of D-maps. In this subsection, we introduce a cohomology theory of D-

maps which will unify the cohomologies of various operators.

Lemma 3.28. Let (G, g, h) be a quasi-twilled Lie algebra and D : g → h be a D-map of (G, g, h).

Then

πD(x, y) = π(x, y) + η(x,D(y)) − η(y,D(x))

is a Lie algebra structure on g and

ρD(x)v = ρ(x, v) + µ(D(x), v) − D(η(x, v))

is a representation of (g, πD) on h.

Proof. Since
(

(g, πD), (h, µ); ρD, η
)

is a matched pair of Lie algebras, we gain that (g, πD) is a Lie

algebra and (h; ρD) is a representation of (g, πD). �
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Let dD
CE

: Hom(∧kg, h) → Hom(∧k+1g, h) be the corresponding Chevalley-Eilenberg cobound-

ary operator of the Lie algebra (g, πD) with coefficients in the representation (h, ρD). More pre-

cisely, for all f ∈ Hom(∧kg, h) and x1, · · · , xk+1 ∈ g, we have

dD
CE

f (x1, · · · , xk+1)(15)

=

k+1∑

i=1

(−1)i+1ρD(xi) f (x1, · · · , x̂i, · · · , xk+1)

+
∑

i< j

(−1)i+ j f (πD(xi, x j), x1, · · · , x̂i, · · · , x̂ j, · · · , xk+1)

=

k+1∑

i=1

(−1)i+1µ(D(xi), f (x1, · · · , x̂i, · · · , xk+1)) +

k+1∑

i=1

(−1)i+1ρ(xi, f (x1, · · · , x̂i, · · · , xk+1))

−

k+1∑

i=1

(−1)i+1D(η(xi, f (x1, · · · , x̂i, · · · , xk+1)))

+
∑

i< j

(−1)i+ j f (π(xi, x j), x1, · · · , x̂i, · · · , x̂ j, · · · , xk+1)

+
∑

i< j

(−1)i+ j f (η(xi,D(x j)) − η(x j,D(xi)), x1, · · · , x̂i, · · · , x̂ j, · · · , xk+1).

Now, we define the cohomology of aD-map D : g → h. Define the space of 0-cochains C0(D)

to be 0 and define the space of 1-cochains C1(D) to be h. For n ≥ 2, define the space of n-cochains

Cn(D) by Cn(D) = Hom(∧n−1g, h).

Definition 3.29. Let D : g → h be aD-map of a quasi-twilled Lie algebra (G, g, h). The cohomol-

ogy of the cochain complex (⊕+∞
i=0Ci(D), dD

CE
) is defined to be the cohomology for the D-map D.

Denote the set of n-cocycles by Zn(D), the set of n-coboundaries by Bn(D) and the n-th coho-

mology group by

Hn(D) = Zn(D)/Bn(D), n ≥ 0.

It is obvious that u ∈ h is closed if and only if

µ(D(x), u) + ρ(x, u) − D(η(x, u)) = 0, ∀x ∈ g,

and f ∈ Hom(g, h) is closed if and only if

µ(D(x), f (y)) − µ(D(y), f (x)) + ρ(x, f (y)) − ρ(y, f (x)) + D(η(y, f (x))) − D(η(x, f (y)))

= f (π(x, y)) + f (η(x,D(y)) − η(y,D(x))), ∀x, y ∈ g.

Here we provide another intrinsic interpretation of the above coboundary operator.

Let D be a D-map of a quasi-twilled Lie algebra (G, g, h). Recall the twisted L∞-algebra

(⊕+∞
n=0Hom(∧n+1g, h), lD

1 , l
D
2 ) from Theorem 3.26, we have

Proposition 3.30. With the above notations, for any f ∈ Hom(∧kg, h), one has

lD
1 ( f ) = (−1)k−1dD

CE
f .

Proof. For f ∈ Hom(∧kg, h), by (12) and Theorem 3.21, we have

lD
1 = l1( f ) + l2(D, f )

= [π + ρ, f ]NR + [[µ + η,D]NR, f ]NR
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= [πD + ρD, f ]NR

= (−1)k−1dD
CE

( f ),

which finishes the proof. �

Example 3.31. Consider the quasi-twilled Lie algebra (g ⊕M g, g, g) given in Example 2.3. Let

D : g → g be a modified r-matrix. Then (g, [·, ·]D) is a Lie algebra, where the Lie bracket [·, ·]D

is given by

[x, y]D = [x,D(y)]g − [y,D(x)]g.

Moreover, the Lie algebra (g, [·, ·]D) represents on the vector space g via ρD : g→ gl(g) given by

ρD(x)u = [D(x), u]h − D([x, u]g), ∀u ∈ h, x ∈ g.

The corresponding Chevalley-Eilenberg cohomology is taken to be the cohomology for a modi-

fied r-matrix [24].

Example 3.32. Consider the quasi-twilled Lie algebra (g⋉ρ h, g, h) given in Example 2.4 obtained

from the action Lie algebra g⋉ρ h. Let D : g → h be a crossed homomorphism of weight λ. Then

the Lie algebra (g, [·, ·]g) represents on the vector space h via ρD : g→ gl(h) given by

ρD(x)u = ρ(x)u + λ[D(x), u]h, ∀u ∈ h, x ∈ g.

The corresponding Chevalley-Eilenberg cohomology is taken to be the cohomology for a crossed

homomorphism of weight λ [25, 44].

Example 3.33. Consider the quasi-twilled Lie algebra (g⋉ρV, g,V) given in Example 2.5 obtained

from the action Lie algebra g ⋉ρ V . Let D : g → V be a derivation from Lie algebra (g, [·, ·]g)

to the g-module V . Then the Chevalley-Eilenberg cohomology of the Lie algebra (g, [·, ·]g) with

coefficients in the representation (V; ρ) is taken to be the cohomology for a derivation from the

Lie algebra (g, [·, ·]g) to the g-module V [53].

Example 3.34. Consider the quasi-twilled Lie algebra (g⊕ h, g, h) given in Example 2.6 obtained

from the direct product Lie algebra g ⊕ h. Let D : g → h be a Lie algebra homomorphism. Then

the Lie algebra (g, [·, ·]g) represents on the vector space h via ρD : g→ gl(h) given by

ρD(x)u = [D(x), u]h, ∀u ∈ h, x ∈ g.

The corresponding Chevalley-Eilenberg cohomology is taken to be the cohomology for a Lie

algebra homomorphism. See [14, 18, 20, 42] for more details.

4. The controlling algebras and cohomologies of deformation maps of type II

In this section, (G, g, h) is always a quasi-twilled Lie algebra, and the Lie bracket on G is

denoted by

Ω = π + ρ + µ + η + θ,

where π ∈ Hom(∧2g, g), ρ ∈ Hom(g ⊗ h, h), µ ∈ Hom(∧2h, h), η ∈ Hom(g ⊗ h, g) and θ ∈

Hom(∧2g, h).
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4.1. Deformation maps of type II of a quasi-twilled Lie algebra. In this subsection, we intro-

duce the notion of deformation maps of type II of a quasi-twilled Lie algebra, which unify relative

Rota-Baxter operators, twisted Rota-Baxter operators, Reynolds operators and deformation maps

of matched pairs of Lie algebras.

Definition 4.1. Let (G, g, h) be a quasi-twilled Lie algebra. A deformation map of type II (D-

map for short) of (G, g, h) is a linear map B : h → g such that

π(B(u), B(v)) + η(B(u), v) − η(B(v), u) = B
(

µ(u, v) + ρ(B(u), v) − ρ(B(v), u) + θ(B(u), B(v))
)

.

These two types of deformation maps are related as follows.

Proposition 4.2. Let D : g→ h be an invertible linear map. Then D is a D-map of (G, g, h) if and

only if D−1 : h→ g is aD-map of (G, g, h).

Proof. It is straightforward. �

Example 4.3. Consider the quasi-twilled Lie algebra (g ⋉ρ h, g, h) given in Example 2.4 obtained

from the action Lie algebra g⋉ρ h. In this case, aD-map of (g⋉ρ h, g, h) is a linear map B : h → g

such that

[B(u), B(v)]g = B(ρ(B(u))v − ρ(B(v))u + λ[u, v]h), ∀u, v ∈ h,

which is exactly is a relative Rota-Baxter operator of weight λ on g with respect to the action

(h; ρ) [4].

Example 4.4. Consider the quasi-twilled Lie algebra (g⋉ρ V, g,V) given in Example 2.5 obtained

from the semidirect product Lie algebra g ⋉ρ V . In this case, aD-map is a linear map B : V → g

such that

[B(u), B(v)]g = B(ρ(B(u))v − ρ(B(v))u), ∀u, v ∈ V,

which is exactly is a relative Rota-Baxter operator of weight 0 (also called an O-operator) on g

with respect to the representation (V; ρ) [32, 48].

Example 4.5. Consider the quasi-twilled Lie algebra (g⋉ρ,ωV, g,V) given in Example 2.7 obtained

from a representation ρ of g on V and a 2-cocycle ω. In this case, a D-map of (g ⋉ρ,ω V, g,V) is a

linear map B : V → g such that

[B(u), B(v)]g = B(ρ(B(u))v − ρ(B(v))u + ω(B(u), B(v))), ∀u, v ∈ V,

which implies that B is a twisted Rota-Baxter operator [10].

Example 4.6. Consider the quasi-twilled Lie algebra (g⋉ad,ω g, g, g) given in Example 2.8. In this

case, aD-map of (g ⋉ad,ω g, g, g) is a linear map B : g → g such that

[B(u), B(v)]g = B
(

[B(u), v]g − [B(v), u]g + [B(u), B(v)]g
)

, ∀u, v ∈ g,

which implies that B is a Reynolds operator [10].

Example 4.7. Consider the quasi-twilled Lie algebra (g ⊲⊳ h, g, h) given in Example 2.10 obtained

from a matched pair of Lie algebras. In this case, a D-map of (g ⊲⊳ h, g, h) is a linear map

B : h → g such that

[B(u), B(v)]g − η(v)B(u) + η(u)B(v) = B
(

[u, v]h + ρ(B(u))v − ρ(B(v))u
)

, ∀u, v ∈ h,

which is exactly a deformation map of a matched pair of Lie algebras introduced in [1].
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At the end of this subsection, we illustrate the roles thatD-maps play in the twisting theory.

Let B : h → g be a linear map. It follows that B2 = 0 and [·, B]NR is a derivation of the graded

Lie algebra
(

⊕+∞
n=0

Hom(∧n+1(g ⊕ h), g ⊕ h), [·, ·]NR

)

. Then we gain that e[·,B]NR is an automorphism

of the graded Lie algebra
(

⊕+∞
n=0 Hom(∧n+1(g ⊕ h), g ⊕ h), [·, ·]NR

)

.

Definition 4.8. The transformation ΩB
, e[·,B]NRΩ is called the twisting of Ω by B.

Parallel to Lemma 3.12, we have the following lemma.

Lemma 4.9. With the above notations, ΩB = e−B ◦ Ω ◦ (eB ⊗ eB) is a Lie algebra structure on G.

Obviously, ΩB is decomposed into the unique six substructures πB ∈ Hom(∧2g, g), ρB ∈

Hom(g⊗ h, h), µB ∈ Hom(∧2h, h), ηB ∈ Hom(g⊗ h, g), θB ∈ Hom(∧2g, h), ξB ∈ Hom(∧2h, g). We

have the following result.

Theorem 4.10. Write Ω = π+ ρ+ µ+ η+ θ and ΩB = πB + ρB + µB + ηB + θB + ξB. Then we have

πB(x, y) = π(x, y) − B(θ(x, y)),

ρB(x, v) = ρ(x, v) − θ(B(v), x),

µB(u, v) = µ(u, v) + ρ(B(u), v) − ρ(B(v), u) + θ(B(u), B(v)),

ηB(x, v) = η(x, v) − π(B(v), x) − B(ρ(x, v)) + B(θ(B(v), x)),

θB(x, y) = θ(x, y),

ξB(u, v) = η(B(u), v) − η(B(v), u) + π(B(u), B(v))

−B(µ(u, v)) − B(ρ(B(u), v) + B(ρ(B(v), u)) + B(θ(B(v), B(u))),

for all x, y ∈ g, u, v ∈ h.

Consequently, B : h → g is aD-map if and only if ((G,ΩB), g, h) is a quasi-twilled Lie algebra.

Proof. It follows from a direct but tedious computation. We omit details. �

4.2. The controlling algebra ofD-maps. In this subsection, we give the controlling algebra of

deformation maps of type II, which is an L∞-algebra. An important byproduct is the controlling

algebra of deformation maps of matched pairs of Lie algebras introduced in [1].

Theorem 4.11. Let (G, g, h) be a quasi-twilled Lie algebra. Then there is a V-data (L, F, P,∆) as

following:

• the graded Lie algebra (L, [·, ·]) is given by (⊕+∞
n=0

Hom(∧n+1g ⊕ h, g ⊕ h), [·, ·]NR),

• the abelian graded Lie subalgebra F is given by ⊕+∞
n=0Hom(∧n+1h, g),

• P : L → L is the projection onto the subspace F,

• ∆ = π + ρ + µ + η + θ.

Consequently, we obtain an L∞-algebra (⊕+∞
n=0Hom(∧n+1h, g), l1, l2, l3), where l1, l2, l3 are given by

l1( f ) = [µ + η, f ]NR,

l2( f1, f2) = [[π + ρ, f1]NR, f2]NR,

l3( f1, f2, f3) = [[[θ, f1]NR, f2]NR, f3]NR,

lk = 0, k ≥ 4.

Furthermore, a linear map B : h → g is a D-map of (G, g, h) if and only if B is a Maurer-

Cartan element of the above L∞-algebra.
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Proof. It is obvious that F is an abelian graded Lie subalgebra of L and [∆,∆]NR = 0,∆ ∈ ker(P)1.

Since P is the projection onto F, it is obvious that P2 = P. Thus (L, F, P,∆) is a V-data.

By Theorem 3.20, we obtain an L∞-algebra (⊕+∞
n=0

Hom(∧n+1h, g), {lk}
+∞
k=1

), where lk are given by

lk( f1, · · · , fn) = P([· · · [[∆, f1]NR, f2]NR, · · · , fn]NR).

For f ∈ Hom(∧kh, g), we have

l1( f ) = P([π + ρ + µ + η + θ, f ]NR) = [µ + η, f ]NR.

Moreover, for f1 ∈ Hom(∧ph, g), f2 ∈ Hom(∧qh, g) and f3 ∈ Hom(∧rh, g), we obtain

l2( f1, f2) = P([[π + ρ + µ + η + θ, f1]NR, f2]NR) = [[π + ρ, f1]NR, f2]NR

and

l3( f1, f2, f3) = P([[[π + ρ + µ + η + θ, f1]NR, f2]NR, f3]NR) = [[[θ, f1]NR, f2]NR, f3]NR.

Since F is abelian and [[[π+ ρ+µ+ η+ θ, f1]NR, f2]NR, f3]NR ∈ Hom(∧p+q+r−1h, g), we have lk = 0

for all k ≥ 4.

It is straightforward to obtain

l1(B)(u, v) +
1

2
l2(B, B)(u, v) +

1

6
l3(B, B, B)(u, v)

= [µ + η, B]NR(u, v) +
1

2
[[π + ρ, B]NR, B]NR(u, v) +

1

6
[[[θ, B]NR, B]NR, B]NR(u, v)

= −B(µ(u, v)) + η(B(u), v) − η(B(v), u) + π(B(u), B(v)) + B(ρ(B(v), u) − ρ(B(u), v))

+B(θ(B(v), B(u))).

Thus, B ∈ Hom(h, g) is a Maurer-Cartan element of (⊕+∞
n=0Hom(∧n+1h, g), l1, l2, l3) if and only if

B : h → g is aD-map of (G, g, h). The proof is finished. �

Corollary 4.12. Consider the quasi-twilled Lie algebra (g⋉ρh, g, h) given in Example 2.4 obtained

from the action Lie algebra g ⋉ρ h. Then (⊕+∞
n=1

Hom(∧nh, g), d, ~·, ·�) is a differential graded Lie

algebra, where the differential d : Hom(∧ph, g)→ Hom(∧p+1h, g) is given by

d f (u1, · · · , up+1) =
∑

i< j

(−1)p+i+ j−1λ f ([ui, u j]h, u1, · · · , ûi, · · · , û j, · · · , up+1),

and ~·, ·� is given by

�

f1, f2

�

(u1, · · · , up+q)(16)

= −
∑

σ∈S (q,1,p−1)

(−1)σ f1(ρ( f2(uσ(1), · · · , uσ(q)))(uσ(q+1)), uσ(q+2), · · · , uσ(q+p))

+
∑

σ∈S (p,1,q−1)

(−1)pq(−1)σ f2(ρ( f1(uσ(1), · · · , uσ(p)))(uσ(p+1)), uσ(p+2), · · · , uσ(q+p))

−
∑

σ∈S (p,q)

(−1)pq(−1)σ[ f1(uσ(1), · · · , uσ(p)), f2(uσ(p+1), · · · , uσ(p+q))]g,

for all f1 ∈ Hom(∧ph, g), f2 ∈ Hom(∧qh, g). This differential graded Lie algebra is exactly the

controlling algebra for relative Rota-Baxter operators of weight λ initially given in [51, Corol-

lary 2.17].
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Corollary 4.13. Consider the quasi-twilled Lie algebra (g ⋉ρ V, g,V) given in Example 2.5 ob-

tained from the semidirect product Lie algebra g ⋉ρ V. Then (⊕+∞
n=1

Hom(∧nV, g), ~·, ·�) is a graded

Lie algebra, where the graded Lie bracket ~·, ·� is given by (16). This graded Lie algebra is ex-

actly the controlling algebra forO-operators on g with respect to the representation (V; ρ) given

in [50, Proposition 2.3].

Corollary 4.14. Consider the quasi-twilled Lie algebra (g ⋉ρ,ω V, g,V) given in Example 2.7

obtained from a representation ρ of g on V and a 2-cocycle ω. Then (⊕+∞
n=0

Hom(∧n+1V, g), l2, l3) is

an L∞-algebra, where l2 and l3 are given by

l2( f1, f2)(u1, · · · , up+q)

=
∑

σ∈S (q,1,p−1)

(−1)p(−1)σ f1(ρ( f2(uσ(1), · · · , uσ(q)))(uσ(q+1)), uσ(q+2), · · · , uσ(q+p))

−(−1)p(q+1)
∑

σ∈S (p,1,q−1)

(−1)σ f2(ρ( f1(uσ(1), · · · , uσ(p)))(uσ(p+1)), uσ(p+2), · · · , uσ(q+p))

+(−1)p(q+1)
∑

σ∈S (p,q)

(−1)σ[ f1(uσ(1), · · · , uσ(p)), f2(uσ(p+1), · · · , uσ(p+q))]g,

and

l3( f1, f2, f3)(u1, · · · , up+q+r−1)

=
∑

σ∈S (q,r,p−1)

(−1)p+q+qr(−1)σ f1(Φ( f2(uσ(1), · · · , uσ(q)), f3(uσ(q+1), · · · , uσ(q+r))),

uσ(q+r+1), · · · , uσ(p+q+r−1))

−
∑

σ∈S (p,r,q−1)

(−1)pq+pr(−1)σ f2(Φ( f1(uσ(1), · · · , uσ(p)), f3(uσ(p+1), · · · , uσ(p+r))),

uσ(p+r+1), · · · , uσ(p+q+r−1))

+
∑

σ∈S (p,q,r−1)

(−1)pq+pr+qr+q+r(−1)σ f3(Φ( f1(uσ(1), · · · , uσ(p)), f2(uσ(p+1), · · · , uσ(p+q))),

uσ(p+q+1), · · · , uσ(p+q+r−1)).

for all f1 ∈ Hom(∧ph, g), f2 ∈ Hom(∧qh, g) and f3 ∈ Hom(∧rh, g). This L∞-algebra is exactly

the controlling algebra for twisted Rota-Baxter operators given in [10, Theorem 3.2].

Corollary 4.15. Consider the quasi-twilled Lie algebra (g⋉ad,Φ g, g, g) given in Example 2.8. Par-

allel to Corollary 4.14, (⊕+∞
n=0

Hom(∧n+1g, g), l2, l3) is an L∞-algebra. This L∞-algebra is exactly

the controlling algebra for Reynolds operators. See [10] for more details.

Theorem 4.11 can not only recover some known results, but also gives rise to some new results,

e.g. it gives rise to the controlling algebra for deformation maps of a matched pair of Lie

algebras.

Corollary 4.16. Consider the quasi-twilled Lie algebra (g ⊲⊳ h, g, h) given in Example 2.10 ob-

tained from a matched pair of Lie algebras. Then (⊕+∞
n=1

Hom(∧nh, g), d, ~·, ·�) is a differential

graded Lie algebra, where d : Hom(∧ph, g)→ Hom(∧p+1h, g) is given by

d f (u1, · · · , up+1) =

p+1∑

i=1

(−1)p+iη(ui) f (u1, · · · , ûi, · · · , up+1))
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+
∑

i< j

(−1)p+i+ j−1 f ([ui, u j]h, u1, · · · , ûi, · · · , û j, · · · , up+1)

and the graded Lie bracket ~·, ·� is given by (16). Maurer-Cartan elements of this differential

graded Lie algebra are exactly deformation maps of a matched pair of Lie algebras.

At the end of this subsection, we give the L∞-algebra governing deformations of D-maps of a

quasi-twilled Lie algebra.

Let B be a D-map of the quasi-twilled Lie algebra (G, g, h). By Theorem 3.17, we have the

twisted L∞-algebra structure on ⊕+∞
n=0

Hom(∧n+1h, g) as following:

lB
1 ( f ) = l1( f ) + l2(B, f ) +

1

2
l3(B, B, f ),(17)

lB
2 ( f1, f2) = l2( f1, f2) + l3(B, f1, f2),(18)

lB
3 ( f1, f2, f3) = l3( f1, f2, f3),(19)

lB
k = 0, k ≥ 4,(20)

Theorem 4.17. Let B be a D-map of the quasi-twilled Lie algebra (G, g, h). Then for a linear

map B′ : h → g, B + B′ : h → g is aD-map of the quasi-twilled Lie algebra (G, g, h) if and only

if B′ is a Maurer-Cartan element of the twisted L∞-algebra (⊕+∞
n=0

Hom(∧n+1h, g), lB
1
, lB

2
, lB

3
).

Proof. By Theorem 4.11, the linear map B + B′ is aD-map if and only if

l1(B + B′) +
1

2!
l2(B + B′, B + B′) +

1

3!
l3(B + B′, B + B′, B + B′) = 0.

Moreover, by the fact B is aD-map, we gain that the above condition is equivalent to

l1(B′) + l2(B, B′) +
1

2
l3(B, B, B′) +

1

2
l2(B′, B′) +

1

2
l3(B, B′, B′) +

1

3!
l3(B′, B′, B′) = 0.

Thus B + B′ : h → g is a D-map of the quasi-twilled Lie algebra (G, g, h) if and only if B′ is a

Maurer-Cartan element of the twisted L∞-algebra (⊕+∞
n=0

Hom(∧n+1h, g), lB
1
, lB

2
, lB

3
). �

Apply the above theorem to Corollary 4.16, we obtain the differential graded Lie algebra gov-

erning deformations of deformation maps of a matched pair of Lie algebras.

Corollary 4.18. Let B : h→ g be a deformation map of a matched pair (g, h; ρ, η) of Lie algebras.

Then
(

s
(

⊕+∞
n=1

Hom(∧nh, g)
)

, dB, ~·, ·�
)

is a differential graded Lie algebra, where ~·, ·� is given by

(16), and dB is given by

dB f (u1, · · · , up+1)

=

p+1∑

i=1

(−1)p+iη(ui) f (u1, · · · , ûi, · · · , up+1) −
∑

i< j

(−1)p+i+ j f ([ui, u j]h, u1, · · · , ûi, · · · , û j, · · · , up+1)

+

p+1∑

i=1

(−1)p+iB(ρ( f (u1, · · · , ûp, · · · , up+1))ui) −

p+1∑

i=1

(−1)i+p f (ρ(B(ui)), u1, · · · , ûi, · · · , up+1)

+

p+1∑

i=1

(−1)i+p[B(ui), f (u1, · · · , ûi, · · · , up+1)]g.

Moreover, for a linear map B′ : h → g, B + B′ is a deformation map if and only if B′ is a

Maurer-Cartan element of the differential graded Lie algebra
(

⊕+∞
n=1

Hom(∧nh, g), dB, ~·, ·�
)

.
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Remark 4.19. Apply Theorem 4.17 to Corollaries 4.12-4.15, one can also obtain the algebras

governing deformations of relative Rota-Baxter operators, twisted Rota-Baxter operators and

Reynolds operators. See [10, 15, 50] for more details.

4.3. Cohomologies of D-maps. In this subsection, we introduce a cohomology theory of a D-

map using the Chevalley-Eilenberg cohomology of a Lie algebra, and illustrate that it unifies

the cohomologies of relative Rota-Baxter operators, twisted Rota-Baxter operators and Reynolds

operators. It also helps us to define a cohomology theory of a deformation map of a matched pair

of Lie algebras.

Lemma 4.20. Let B : h → g be aD-map of a quasi-twilled Lie algebra (G, g, h). Then

µB(u, v) = µ(u, v) + ρ(B(u), v) − ρ(B(v), u) + θ(B(u), B(v))

is a Lie algebra structure on h and

σ(v)x = −ηB(x, v) = −η(x, v) + π(B(v), x) + B(ρ(x, v)) − B(θ(B(v), x))

is a representation of the Lie algebra (h, µB) on the vector space g.

Proof. It follows from Theorem 4.10 and Proposition 2.2 directly. �

Let dB
CE

: Hom(∧kh, g) → Hom(∧k+1h, g) be the corresponding Chevalley-Eilenberg cobound-

ary operator of the Lie algebra (h, µB) with coefficients in the representation (g, σ). More pre-

cisely, for all f ∈ Hom(∧kh, g) and u1, · · · , uk+1 ∈ h, we have

dB
CE

f (u1, · · · , uk+1)(21)

=

k+1∑

i=1

(−1)i+1σ(ui) f (u1, · · · , ûi, · · · , uk+1) +
∑

i< j

(−1)i+ j f (µB(ui, u j), u1, · · · , ûi, · · · , û j, · · · , uk+1)

=

k+1∑

i=1

(−1)iη( f (u1, · · · , ûi, · · · , uk+1), ui) +

k+1∑

i=1

(−1)i+1π(B(ui), f (u1, · · · , ûi, · · · , uk+1))

+

k+1∑

i=1

(−1)i+1B(ρ( f (u1, · · · , ûi, · · · , uk+1)), ui) −

k+1∑

i=1

(−1)i+1B(θ(B(ui), f (u1, · · · , ûi, · · · , uk+1)))

+
∑

i< j

(−1)i+ j f (µ(ui, u j), u1, · · · , ûi, · · · , û j, · · · , uk+1)

+
∑

i< j

(−1)i+ j f (θ(B(ui), B(u j)), u1, · · · , ûi, · · · , û j, · · · , uk+1)

+
∑

i< j

(−1)i+ j f (ρ(B(ui), u j) − ρ(B(u j), ui), u1, · · · , ûi, · · · , û j, · · · , uk+1).

Now, we define the cohomology of aD-map B : h → g. Define the space of 0-cochains C0(B)

to be 0 and define the space of 1-cochains C1(B) to be g. For n ≥ 2, define the space of n-cochains

Cn(B) by Cn(B) = Hom(∧n−1h, g).

Definition 4.21. Let (G, h, g) be a quasi-twilled Lie algebra and B : h → g be a D-map of

(G, h, g). The cohomology of the cochain complex (⊕+∞
i=0

Ci(B), dB
CE

) is defined to be the cohomol-

ogy for the D-map B.



DEFORMATION MAPS OF QUASI-TWILLED LIE ALGEBRAS 21

Denote the set of n-cocycles by Zn(B), the set of n-coboundaries by Bn(B) and the n-th coho-

mology group by

Hn(B) = Zn(B)/Bn(B), n ≥ 0.

It is obvious that x ∈ g is closed if and only if

−η(x, u) + π(B(u), x) + B(ρ(x, u)) − B(θ(B(u), x)) = 0, ∀u ∈ h,

and f ∈ Hom(h, g) is closed if and only if

−η( f (v), u) + η( f (u), v) + π(B(u), f (v)) − π(B(v), f (u)) + B(ρ( f (v), u)) − B(ρ( f (u), v))

= B(θ(B(u), f (v))) − B(θ(B(v), f (u))) + f (µ(u, v) + θ(B(u), B(v))) + f (ρ(B(u), v) − ρ(B(v), u)),

for all u, v ∈ h.

Here we provide an intrinsic interpretation of the above coboundary operator.

Let B : h → g be a D-map of a quasi-twilled Lie algebra (G, g, h). The twisted L∞-algebra

(⊕+∞
n=0

Hom(∧n+1h, g), lB
1
, lB

2
, lB

3
) controls deformations of theD-map B. Parallel to Proposition 3.30,

we have the following proposition.

Proposition 4.22. With the above notations, for any f ∈ Hom(∧kh, g), one has

lB
1 ( f ) = (−1)k−1dB

CE
f .

Definition 4.21 also recover the existing cohomology theories of relative Rota-Baxter opera-

tors, twisted Rota-Baxter operators and Reynolds operators.

Example 4.23. Consider the quasi-twilled Lie algebra (g⋉ρ h, g, h) given in Example 2.4 obtained

from the action Lie algebra g ⋉ρ h. Let B : h → g be a relative Rota-Baxter operator of weight λ

on g with respect to the action (h; ρ). Then (h, [·, ·]B) is a Lie algebra, where the Lie bracket [·, ·]B

is given by

[u, v]B = λ[u, v]h + ρ(B(u))v − ρ(B(v))u, ∀u, v ∈ h.

Moreover, the Lie algebra (h, [·, ·]B) represents on the vector space g via σ : h→ gl(g) given by

σ(v)x = [B(v), x]g + B(ρ(x)v), ∀v ∈ h, x ∈ g.

The corresponding Chevalley-Eilenberg cohomology is taken to be the cohomology for the rel-

ative Rota-Baxter operator of weight λ. See [15, 26] for more details.

Example 4.24. Consider the quasi-twilled Lie algebra (g⋉ρV, g,V) given in Example 2.5 obtained

from the semidirect product Lie algebra g⋉ρV . Let B : V → g be a relative Rota-Baxter operator

of weight 0 or an O-operator on g with respect to the representation (V; ρ). Then (V, [·, ·]B) is a

Lie algebra, where the Lie bracket [·, ·]B is given by

[u, v]B = ρ(B(u))v − ρ(B(v))u, ∀u, v ∈ V.

Moreover, the Lie algebra (V, [·, ·]B) represents on the vector space g via σ : V → gl(g) given by

σ(u)x = [B(u), x]g + B(ρ(x)u), ∀u ∈ V, x ∈ g.

The corresponding Chevalley-Eilenberg cohomology is taken to be the cohomology for the O-

operator B. See [50] for more details.

Example 4.25. Consider the quasi-twilled Lie algebra (g ⋉ρ,ω V, g,V) given in Example 2.7 ob-

tained from a representation ρ of g on V and a 2-cocycle ω. Let B : h → g be a twisted Rota

Baxter operator. Then (V, [·, ·]B) is a Lie algebra, where the Lie bracket [·, ·]B is given by

[u, v]B = ρ(B(u))v − ρ(B(v))u + ω(B(u), B(v)), ∀u, v ∈ V.
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Moreover, the Lie algebra (V, [·, ·]B) represents on the vector space g via σ : V → gl(g) given by

σ(v)x = [B(v), x]g + B(ρ(x)v) − B(ω(B(v), x)), ∀v ∈ V, x ∈ g.

The corresponding Chevalley-Eilenberg cohomology is taken to be the cohomology for the

twisted Rota-Baxter operator B. See [10] for more details.

Example 4.26. Consider the quasi-twilled Lie algebra (g⋉ad,[·,·]g g, g, g) given in Example 2.8. Let

B : g → g be a Reynolds operator. Then (g, [·, ·]B) is a Lie algebra, where the Lie bracket [·, ·]B

is given by

[x, y]B = [B(x), y]g − [B(y), x]g + [B(x), B(y)]g, ∀x, y ∈ g.

Moreover, the Lie algebra (g, [·, ·]B) represents on the vector space g via σ : g→ gl(g) given by

σ(x)y = [B(x), y]g + B([y, x]g) − B([B(x), y]g), ∀x, y ∈ g.

The corresponding Chevalley-Eilenberg cohomology is taken to be the cohomology for the

Reynolds operator B. See [10] for more details.

Definition 4.21 leads the following definition of cohomologies of deformation maps of a matched

pair of Lie algebras.

Consider the quasi-twilled Lie algebra (g ⊲⊳ h, g, h) given in Example 2.10 obtained from a

matched pair of Lie algebras. Let B : h → g be a deformation map of a matched pair of Lie

algebras. Then (h, [·, ·]B) is a Lie algebra, where the Lie bracket [·, ·]B is given by

[u, v]B = [u, v]h + ρ(B(u))v − ρ(B(v))u, ∀u, v ∈ h.

Moreover, the Lie algebra (h, [·, ·]B) represents on the vector space g via σ : h→ gl(g) given by

σ(v)x = η(v)x + [B(v), x]g + B(ρ(x)v), ∀v ∈ h, x ∈ g.

Definition 4.27. The corresponding Chevalley-Eilenberg cohomology of the Lie algebra (h, [·, ·]B)

with coefficients in the representation (g, σ) is taken to be the cohomology for the deformation

map B of a matched pair (g, h) of Lie algebras.

Remark 4.28. In [1], authors constructed the Lie algebra structure [·, ·]B on h via another ap-

proach, namely transfer the Lie algebra structure on Gr(B) to h.

Remark 4.29. In [10, 15, 26, 50], it was showed that one can use the established cohomology the-

ory to classify infinitesimal deformations of relative Rota-Baxter operators, twisted Rota-Baxter

operators and Reynolds operators. Similarly, one can also study infinitesimal deformations of a

deformation map of a matched pair and show that they are classified by the second cohomology

group of a deformation map of a matched pair given in Definition 4.27. We leave the details to

readers.
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