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Random matrix theory is a useful tool in the study of the physics of multiple scattering systems,
often striking a balance between computation speed and physical rigour. Propagation of waves
through thick disordered media, as arises in for example optical scattering or electron transport,
typically necessitates cascading of multiple random matrices drawn from an underlying ensemble for
thin media, greatly increasing computational burden. Here we propose a dual pool based bootstrap-
ping approach to speed up statistical studies of scattering in thick random media. We examine how
potential matrix reuse in a pool based approach can impact statistical estimates of population aver-
ages. Specifically, we discuss how both bias and additional variance in the sample mean estimator are
introduced through bootstrapping. In the diffusive scattering regime, the extra estimator variance is
shown to originate from samples in which cascaded transfer matrices are permuted matrix products.
Through analysis of the combinatorics and cycle structure of permutations we quantify the resulting
correlations. Proofs of several analytic formulae enumerating the frequency with which correlations
of different strengths occur are derived. Extension to the ballistic regime is briefly considered.

I. INTRODUCTION

Computational modelling of wave scattering in ran-
dom disordered media is a difficult problem that has been
researched in earnest in recent decades. Full finite ele-
ment based solution of the relevant wave equation offers
the greatest rigour, but consequently suffers from lim-
ited simulation volumes and large computational cost [1].
Alternatively, more approximate methods, such as diffu-
sion, Monte Carlo or Green’s function based approaches
balance computation time with physical rigour to vary-
ing degrees [2–5]. Random matrix approaches, in partic-
ular, typically sacrifice system-specific details in favour
of significantly reduced computation times, allowing sta-
tistical properties, such as mean transmission, spectral
distributions and phase transitions, to be numerically in-
vestigated [6, 7]. Knowledge of such general features of
random scattering media has afforded great physical in-
sights [8–12] and enabled development of a number of
useful techniques, for example, for imaging through scat-
tering media and wavefront control [13–15].

Early random matrix models such as the circular and
Gaussian ensembles proposed by Wigner and Dyson [16–
18], were relatively simplistic and were based on the
assumption of isotropic scattering which often poorly
approximates reality. More sophisticated random ma-
trix models have however been developed in an attempt
to capture additional symmetries, constraints or sys-
tem specific properties, whilst preserving numerical speed
[7, 19, 20]. For example, filtered matrix ensembles can
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more accurately simulate transmission in systems where
the input and output measurement channels are a finite
subset of all potentially available channels [21], whereas
Euclidean matrix ensembles can describe random Green’s
matrices relevant to propagation of waves in collections
of point-like scattering centers [22–24]. Wishart and
Jacobi ensembles meanwhile are also classic ensembles
useful, for instance, in the description of chaotic cav-
ities [25, 26]. Cascaded, or coupled, random matrix
models have also seen significant study in the litera-
ture finding applications in e.g., electronic transport in
wires, quantum chaos, wireless communications, study
of spin glasses [6, 14, 27, 28] and more. Such models
describe the linear scattering properties of a system, as
described by its (random) transfer matrix T, through the
correctly-ordered product of individual transfer matri-
ces, Tδ, (drawn from an appropriate underlying matrix
ensemble) of constituent scattering sites or system com-
ponents. Cascaded models can, for example, describe
universal conductance fluctuations [29] and naturally in-
troduce a notion of length to the system such that varia-
tions in total transmission and reflection with system size
can be modelled (in contrast to more traditional matrix
ensembles). Of particular significance is the Dorokhov-
Mello-Pereyra-Kumar (DMPK) cascaded matrix model
[30, 31] and its higher dimensional and electromagnetic
generalisations [32–34], which recognise that a thick scat-
tering system can be considered as a chain of thinner,
weakly scattering, media. Each successive matrix in the
associated product acts as a perturbation, enabling de-
scription of various wave transport regimes in a scattering
medium (e.g., ballistic, diffusive, localized), through cas-
cades of different lengths. In the so-called ballistic scat-
tering regime, the average number of scattering events
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of a wave propagating in the medium is ≪ 1, whereas
in the diffusive regime, corresponding to thicker media,
transmitted waves undergo many scattering events.

Although allowing a more physically accurate descrip-
tion of a large variety of scattering systems, cascaded
random matrix techniques can suffer from reduced speed
since calculation of the transfer matrix for a single real-
isation of a thick medium can necessitate generation of
a large number of thin slab matrices. Moreover, statis-
tical convergence is slower for large thicknesses due to
the greater variances typically involved thereby requir-
ing more realisations to be simulated and hence entail-
ing longer computation times. In this work, our aim is
to investigate computational gains that can be made in
cascaded random matrix models through a bootstrap-
ping approach employing pools of pre-calculated matri-
ces. Moreover, we seek to assess the extent to which use
of a pool based bootstrapping approach can degrade sta-
tistical estimates of mean scattering properties of thick
scattering media. In Section II, we first introduce and
discuss a dual pool bootstrapping method, which can re-
duce both the number of matrix generations and matrix
products required for statistical studies of system prop-
erties. In Section III, we investigate estimator bias and
variance when mean properties are derived from transfer
matrices formed from products of matrices sampled from
a matrix pool P. We show that bootstrapping can intro-
duce additional estimator fluctuations, the prevalence of
which are enumerated in Section IV (supporting proofs
based on combinatorics of permutations are presented in
Appendix A). Finally, in Section V, we briefly discuss
extending our findings to more complex scenarios.

II. DUAL POOL BOOTSTRAPPING OF
CASCADED RANDOM MATRICES

Computational gains in cascaded random matrix mod-
els can be made if a bootstrapped approach is adopted
in which individual matrices Tδ are resampled from an
existing set instead of on-the-fly generation. This sam-
ple could, for example, represent a pool of pre-generated
transfer matrices or experimental data. To illustrate
this principle, consider simulating Nr realisations of the
transfer matrix of a medium of thickness L through cas-
cading Nδ slabs of thickness δL = L/Nδ using on-the-fly
calculations. As indicated in Table I this would require
NrNδ thin-slab matrices to be generated and calcula-
tion of Nr(Nδ − 1) matrix products. Alternatively, pre-
generation of a single pool P1 of N1 such matrices, from
which Tδ are resampled as needed, can greatly reduce the
number of matrix generations required if N1 ≪ NrNδ.
With a single matrix pool, however, the required number
of matrix products is unaffected (see Table I). In scenar-
ios where the number of relevant scattering modes can
be very large, e.g., optical scattering, products of large
transfer matrices can hence still limit total computation
time and it is thus preferable to also reduce the number

Matrix generations Matrix products

On-the-fly NrNδ Nr(Nδ − 1)
Single pool N1 Nr(Nδ − 1)
Dual pool N1 N2n∆ +Nr(N∆ − 1)

TABLE I: Number of calculations required for on-the-fly, sin-
gle pool or dual pool approaches.

of matrix products. To this end, a dual pool approach
can be adopted whereby the pool P1 of N1 thin-slab ma-
trices is again pre-generated, however, additionally a sec-
ond pool P2 of N2 transfer matrices T∆ for sections of
intermediate thickness ∆L is calculated. Each matrix in
P2 is found by cascading n∆ = ∆L/δL thin-slab matri-
ces which are themselves drawn from P1. The dual pool
approach then allows the number of matrix products to
be reduced to N2n∆ +Nr(N∆ − 1) where N∆ = L/∆L.
It is also worthwhile to note that matrix pools can be
stored and reused. By way of an example of potential
gains, we note that in our earlier work [34] use of the
dual pool approach allowed the number of matrix gen-
erations and products to be reduced by approximately
three and two orders of magnitude respectively. Con-
sequently, prohibitive computation times were overcome
enabling statistical characterisation of a variety of polar-
isation scattering phenomena, such as light transmission
and optical depolarisation, in multiply scattering media
up to thicknesses of 30 mean free paths, using 104 real-
isations for each length. Physical parameters extracted
from our simulations using the bootstrapped approach
were found to be in agreement with previously reported
results.
Resampling, or bootstrapping [35–37], approaches,

such as the single or dual pool technique described, al-
though enabling computational gains, do come at the po-
tential cost of matrix reuse since, typically, matrices are
sampled with replacement. In a single pool approach, a
given transfer matrix Tδ sampled from P1 could in princi-
ple be used multiple times in calculation of T. Similarly,
for a dual pool approach a given Tδ from P1 could be
used several times when computing single, or different,
T∆ matrices. Moreover, a T∆ drawn from P2 could be
reused during generation of one or more instance of T.
Such matrix reuse is undesirable since it can introduce
residual and unphysical biases and correlations between
individual random matrices. It is therefore, important to
establish the nature and quantify the magnitude of these
detrimental effects, to assess the viability of use of the
bootstrapped approach. This task forms the focus of the
remainder of this work.

III. BOOTSTRAPPED ESTIMATION OF
POPULATION AVERAGES

We begin our analysis by first adopting a more general
and convenient notation to more easily accommodate the
different cases discussed above. Specifically, we consider
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an ensemble of random M ×M transfer matrices X gov-
erned by the probability density function pX(X). As an
attempt to avoid notational clutter in what follows, we
shall assume that transfer matrices are real, although
extension of our results to complex ensembles is straight-
forward as will be discussed below. We also construct
a pool P of NX transfer matrices X(j), where we label
each matrix in the pool with the superscript j ∈ [1, NX ].
For on-the-fly calculations we can form a single reali-
sation of a cascaded transfer matrix, Z, by generating
N individual independent X matrices according to the
true underlying ensemble probability distribution pX(X).
The Z matrices produced in this manner define a second
ensemble governed by the probability density function
pZ(Z). Alternatively, when using a pool based approach
we instead construct realisations of cascaded transfer ma-
trices, Zα(l)

, by drawing matrices X(j) from the pool P
and evaluating the ordered matrix products

Zα(l)

=

N∏
p=1

X(α(l)
p ) = X(α

(l)
1 )X(α

(l)
2 ) · · ·X(α

(l)
N ), (1)

where α
(l)
p is the pth member of a sequence α(l). The

members of this sequence correspond to the labels of N
matrices drawn from the pool, such that α(l) defines the
lth realisation of Z. Note, the order of matrix products
defined in Eq. (1) will be assumed throughout this work.
As an illustration to clarify the connection with our ear-
lier discussion, we can make the associations X = Tδ

and Z = T∆, as corresponds to a dual pool approach.
One possible sampling sequence α(1) = (2, 2, 1, 2, 1), then

means that the first realisation of T∆ = Zα(1)

is formed
from sampling the first matrix in P = P1 (X(1)) twice
and the second matrix (X(2)) thrice, and taking the ap-
propriately ordered matrix product. Generation of mul-

tiple realisations of Zα(l)

can then be collected to form
P2. Alternative associations include (X,Z) = (Tδ,T) for
the single pool approach or (T∆,T) for the dual pool ap-
proach.

A. Estimator bias

Consider now the process of estimating some mean
property, F = ⟨f(Z)⟩, of the true matrix ensemble, where
⟨. . .⟩ denotes the expectation with respect to pZ(Z) and
where f is some arbitrary function. We may, for in-
stance, wish to estimate mean transmission, channel ca-
pacity or medium depolarisation [11, 38, 39]. In prac-
tice, to estimate F we would consider the sample mean

F̂ = f̄ = NZ
−1∑NZ

l=1 f(Zα(l)

) where NZ is the number
of realisations of Z that we choose to generate (or sample

from a second pool) and where F̂ denotes the estimator of

F . The quality of F̂ can be assessed through evaluation
of the estimator bias

bias[F̂ ] = ⟨F̂ ⟩ − ⟨f⟩. (2)

As an example, consider estimating the mean transfer
matrix, F = ⟨Z⟩, i.e., f(Z) = Z, using the sample mean,

Z̄ =
1

NZ

NZ∑
l=1

Zα(l)

=
1

NZ

NZ∑
l=1

N∏
p=1

X(α(l)
p ). (3)

Notably, if all indices in each sequence α(l) are distinct
then taking the ensemble average of Eq. (3) reduces to
taking the product of the ensemble means of X, i.e.,

⟨Z̄⟩ = 1

NZ

NZ∑
l=1

N∏
p=1

⟨X(α(l)
p )⟩ = 1

NZ

NZ∑
l=1

⟨X⟩N = ⟨Z⟩ (4)

since each sample of X is drawn independently from the
underlying ensemble and is identically distributed. In
this scenario it is seen that the sample mean of the ma-

trices Zα(l)

formed from sampling the underlying pool
P is an unbiased estimator of the true ensemble mean.
It is simple to show this is true for more general func-
tions f(Z). When sampling matrices from the (finite)
pool P, however, there is a non-zero probability that the
same matrix is drawn multiple times when sampling is
performed with replacement, i.e., there may be repeated
indices in α(l). Such matrix repetitions, in general, will
destroy the unbiased nature of our estimator. Continuing
our illustrative example, we can express the sample mean
of the (j, k)th matrix element, Zjk, in terms of explicit

sums over the matrix elements of the constituent X(α(l)
p )

matrices such that

⟨Z̄jk⟩ =
1

NZ

NZ∑
l=1

∑
u1,...,uN−1

〈 N∏
p=1

X
(α(l)

p )
up−1up

〉
, (5)

where the sums over u1, . . . , uN−1 run from 1 to M
and for notational simplicity we let u0 = j, uN = k.
The average of the products appearing in Eq. (5) can
be rewritten as the product of averages as before, how-

ever, factors for which α
(l)
p are equal must be grouped

together. For instance, again considering the example
whereby α(1) = (2, 2, 1, 2, 1), we can write〈 N∏

p=1

X
(α(1)

p )
up−1up

〉
= ⟨X(2)

u0u1
X(2)

u1u2
X(2)

u3u4
⟩⟨X(1)

u2u3
X(1)

u4u5
⟩.

(6)

In general, the average of a product, is not commensu-

rate with the product of averages (e.g., ⟨X(1)
u2u3X

(1)
u4u5⟩ ̸=

⟨X(1)
u2u3⟩⟨X

(1)
u4u5⟩), and can moreover be non-zero, partic-

ularly when the indices are the same (e.g., u2 = u4,
u3 = u5). Consequently, it follows that when matrices
are sampled from P with replacement the sample mean
typically constitutes a biased estimator of the ensemble
mean. Critically, the bias originates from the finite size
of the pool from which we sample X(j) and would not
arise for on-the-fly calculations and is thus an artifact of
the bootstrapped approach. A notable exception is when
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the X matrices belong to a zero mean Gaussian ensemble
and each matrix product Zα is formed from the prod-
uct of an odd number of matrices (N is odd). Since all
odd moments of a zero mean Gaussian process are iden-
tically zero and at least one of the factors in Eq. (5) will
necessarily be the average of an odd number of terms,
it follows that Eq. (5) reduces to zero. More generally
bias can be avoided when X(j) are sampled from P with-
out replacement when generating individual realisations
of Zα as will be assumed in the remainder of this work
(although we note different Zα matrices may crucially
still have common X(j) factors). Sampling without re-
placement, also more closely matches physical reality in
the sense that the probability of any two (or more) sec-
tions of a thick random media being identical is infinitesi-
mally small, such that if this possibility arises it is, again,
purely an artifact of the sampling procedure that should
be avoided.

B. Estimator variance

Having evaluated the bias of F̂ , we now consider the
estimator variance var[F̂ ] = ⟨F̂ 2⟩ − ⟨F̂ ⟩2. Using the def-
inition of the sample mean it is simple to show

var[F̂ ] =
var[f(Z)]
NZ

+

NZ∑
l1=1

NZ∑
l2=1
l1 ̸=l2

cov[f(Zα(l1)

), f(Zα(l2)

)]

N2
Z

(7)

where cov[x, y] = ⟨xy⟩ − ⟨x⟩⟨y⟩ denotes the covariance
between x and y. The first term in Eq. (7) represents the
usual convergence in the mean as governed by the law
of large numbers [40] and hence corresponds to the vari-

ance in the sample mean, F̂ , for on-the-fly calculations.
Additional fluctuations in F̂ , however, can arise when
different samples of Zα are, to some degree, correlated,
as embodied in the second term of Eq. (7). When the size

of the pool P is finite, specific samples of X(α(l)
p ) can be

present in different realisations of Zα implying that these
correlations are indeed non-zero when the bootstrapping
approach is used.

To assess the strength of these additional fluctuations,
we again consider the simple case for which f(Z) = Z.
We therefore seek to assess the covariance matrix, C, for
two ordered matrix products Zα(1)

and Zα(2)

. Element-

wise, we therefore wish to evaluate

Cjk
mn = ⟨Zα(1)

jk Zα(2)

mn ⟩ − ⟨Zα(1)

jk ⟩⟨Zα(2)

mn ⟩. (8)

For simplicity and without loss of generality, we assume
that the first sequence of sampled matrices is α(1) =
(1, 2, . . . , N) whereas, the second sampling sequence α(2)

is arbitrary, albeit each element is unique since we have
assumed P is sampled without replacement to avoid es-
timator bias (relaxation of this assumption is discussed
in Section V). Accordingly we drop the α(1) dependence
of Eq. (8) and let α(2) = α. Expressing the matrix prod-
ucts of Eq. (1) as sums over components, we can explicitly
write the element-wise covariance in the form

Cjk
mn =

∑
u1,...,uN−1
v1,...,vN−1

[〈
N∏
q=1

X(q)
uq−1uq

X(αq)
vq−1vq

〉

−

〈
N∏

p=1

X(p)
up−1up

〉〈
N∏
q=1

X(αq)
vq−1vq

〉]
(9)

where again for notational convenience we let v0 = m
and vN = n and sums over v1, . . . , vN−1 run from 1 toM .
With the sampling assumptions given above and further
assuming that each α is equally likely, the probability
that the two samples of P contain at least one common

matrix is P ({α(1)
j } ∩ {α(2)

j } ̸= ∅) = 1 −
(
NX−N

N

)
/
(
NX

N

)
,

where (nk) denotes the binomial coefficient. Noting, as
before, then that samples of X used to generate P, are
taken independently and are by definition identically dis-
tributed, we can match any pairs of X(q) and X(αk) in
Eq. (9) for which q = αk. A matching pair will gen-

erate a factor of the form ⟨X(αq)
u(αq−1)uαq

X
(αq)
vq−1vq ⟩ in the

first term of Eq. (9) and implies that the matrix X(αk)

is common to both samples of the matrix pool P. Re-
maining unpaired matrices however decouple and reduce
to a product of their means. To facilitate notation, we
can momentarily neglect the ordering of the elements
of α and think of it as an integer set. We then intro-
duce the set function ξα associated with α defined such
that ξα({αq1 . . . αqk}) = {q1, . . . , qk}. In words, given
some collection of elements of α, ξα picks out the in-
dices corresponding to those elements. Defining now the
sets M = ξα({1, . . . , N} ∩ α), N = {1, . . . , N} \ α and
N ′ = ξα(α \ {1, . . . , N}), where \ denotes the set differ-
ence, we find that Eq. (9) can be written as

Cjk
mn =

∑
u1,...,uN−1
v1,...,vN−1

 ∏
q∈M

⟨X(αq)
u(αq−1)uαq

X(αq)
vq−1vq ⟩ −

∏
q∈M

⟨X(q)
uq−1uq

⟩⟨X(αq)
vq−1vq ⟩

 ∏
q∈N

⟨X(p)
u(p−1)up

⟩
∏
q∈N ′

⟨X(αp)
vp−1vp

⟩. (10)

Eq. (10) is valid quite generally, i.e., for arbitrary pX(X), however, to proceed further we must make same
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restrictions on the statistical properties of X. As a sim-
ple case, we assume that individual transfer matrices, X,
are defined by a maximum entropy (i.e., Gaussian) en-
semble [31], as is, for example, appropriate for scattering
in the diffusive regime. For this model, ⟨X⟩ = O and

⟨X(q)
ab X

(q)
cd ⟩ = r2δacδbd where O is the null matrix and

δjk is the Kronecker delta function, i.e., each individual
element of X has equal variance, whereas distinct ele-
ments are uncorrelated. Whilst this model neglects more
complex correlations that may exist in transfer matri-
ces, such as the memory effect, physics imposed sym-
metry constraints or reflection-transmission correlations
[41–44], it serves to sufficiently capture boot-strapping
induced correlations that may arise in cascaded models.
Moreover, in practice, constituent transfer matrices used
in matrix chained models are frequently drawn from sim-
pler matrix ensembles such as the circular or Gaussian
ensembles [27, 31, 45]. The ballistic scattering regime is
discussed further below in Section V. With these assump-
tions Cjk

mn is only non-zero when α is an N -permutation
of (1, 2, . . . , N), that is when the sets of sampled matrices
N and N ′ are empty and M = {1, . . . , N}, such that we
can again enumerate over q whereby

Cjk
mn =

∑
u1,...,uN−1
v1,...,vN−1

N∏
q=1

⟨X(αq)
u(αq−1)uαq

X(αq)
vq−1vq ⟩. (11)

The summations over v1, . . . , vN−1 appearing in Eq. (11)
can be performed analytically yielding

Cjk
mn = r2N

∑
u1,...,uN−1

δu(α1−1)v0δvNuαN

N−1∏
q=1

δu(α(q+1)−1)uαq
.

(12)

To help evaluate Cjk
mn we define the multi-

set β of all indices appearing in Eq. (12) (al-
lowing for repeated indices) such that β =
{uα1−1, v0, uα2−1, uα1

, uα3−1, uα2
, . . . , uαN

, vN}, which
has cardinality |β| = 2(N + 1), corresponding to the
N + 1 different Kronecker delta functions appearing in
Eq. (12). The elements {u0, uN , v0, vN} each have a
multiplicity of 1 in β, whereas {u1, u2, . . . , uN−1} have
multiplicities of 2. Mirroring the structure of Eq. (12)
we further define the multisets γ = {uα1−1, v0, uαN

, vN}
and ζ = {uα2−1, uα1 , uα3−1, uα2 . . .} such that β = γ ∪ ζ.
Note that u0 /∈ ζ if and only if α1 − 1 = 0. Similarly,
uN /∈ ζ if and only if αN = N . With these definitions,
consider then the form of Eq. (12) when {u0, uN} /∈ ζ
which reduces to (recalling that we previously set u0 = j
etc. for convenience)

Cjk
mn = r2Nδjmδkn

∑
u1,...,uN−1

N−1∏
q=1

δu(α(q+1)−1)uαq
. (13)

The indices appearing in the summations are those con-
tained in {u1, u2, . . . , uN−1} each with multiplicities of

two. We can thus group together indices that form dis-
joint closed cycles. For example, consider the permu-
tation (1)(2, 3, 5)(4) which we have written in standard
cycle notation [46]. The summation in this case would
take the form[∑

u1

δu1u1

][∑
u2

∑
u3

∑
u5

δu2u3δu3u5δu5u2

][∑
u4

δu4u4

]

where the indices are grouped according to the cycle
structure. Given that each index is summed from 1 to
M it is quickly seen that each disjoint set of summations
totals M such that

Cjk
mn = r2NδjmδknM

K (14)

where K is the number of disjoint cycles of indices in the
sum (which we note do not contain u0 or uN ).
Moving now to a more complex case whereby we allow

u0 ∈ ζ, but still restrict uN /∈ ζ we have

Cjk
mn = r2Nδkn

∑
u1,...,uN−1

δu0uαp
δv0uα1−1

N−1∏
q=1
q ̸=p

δu(α(q+1)−1)uαq
,

(15)

where, since u0 ∈ ζ, we note p is the index such that
αp+1 = 1 where p ̸= 0. We also have that α1 − 1 > 0.
We can once again group indices into summations over
closed disjoint cycles of indices, which requires that the
cycles do not contain u0 or v0. Each set of indices
that can be so factored, contributes a multiple of M
to Cjk

mn. We denote the remaining multiset of indices
ψ = {u0, uαp

, uα1−1, v0, uαp
, uα1−1, uf , ug, . . .} where uf

and ug denote general indices which will have multiplic-
ity of two. From the structure of the indices appearing in
Eq. (12), it however follows that indices with multiplicity
of 2 appear as different arguments to the Kronecker delta
functions, i.e., the remaining summation can be written∑
uαp

∑
uα1−1

· · ·
∑
uf

δu0uαp
δuαpuf

. . . δufuα1−1δuα1−1v0 = δjm.

We thus find that Cjk
mn is again given by Eq. (14). Analo-

gous arguments show the same to be true for the case that
u0 /∈ ζ, but uN ∈ ζ. The remaining case ({u0, uN} ∈ ζ)
can be considered in a similar manner, factoring out dis-
joint cycles of indices not containing u0, uN , v0 and vN ,
each of which contributes a factor of M . The remaining
indices reduce upon summation to factors of the form
δjkδmn or δjmδkn depending on the initial permutation,
such that Cjk

mn is given either by Eq. (14) or by

Cjk
mn = r2NδjkδmnM

K . (16)

Given these results we observe that the elements of
the correlation matrix formed from Cjk

mn are either zero
or a fixed value (= r2NMK) for any given permutation
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α (note C is not diagonal). Moreover, the number of
non-zero elements is

M∑
j,k,m,n=1

δjkδmn =

M∑
j,k,m,n=1

δjmδkn =M2 (17)

for all possible permutations. Returning to Eq. (7) for
f(Z) = Z, and, considering the total variance in our es-
timate, as shall be quantified by taking the 1-norm (de-
noted ∥ . . . ∥1), we can write

∥var[Ẑ]∥1 =
∥var[Z]∥1
NZ

+

NZ∑
l1=1

NZ∑
l2=1
l1 ̸=l2

C(K,M,N)

N2
Z

(18)

where K is a function of the specific sampled se-
quences α(l1) and α(l2) (or equivalently the sequences
(1, 2, . . . , N) and α(l) under a suitable transformation)
and

C(K,M,N) = ∥C∥1 =

M∑
j,k,m,n=1

Cjk
mn = r2NMK+2. (19)

The total covariance C(K,M,N) hence characterises the
degree to which Z(1,...,N) and Zα are correlated for a
given permutation α (note that with a slight abuse of
notation we shall use α to denote the permutation de-
scribed by the sequence α). Naturally C(K,M,N) is
largest when α is the identity (whereby K = N) i.e.,
Zα = Z(1,...,N). Observing further that ∥var[Z]∥1 =
C(N,M,N), the relative magnitude of each contribution
in the second term of Eq. (18) with respect to the first
term is ρ/NZ , where

ρ =
C(K,M,N)

C(N,M,N)
=

1

MN−K
(20)

is the Pearson’s correlation coefficient, which decreases
with matrix size M since K ≤ N . For cascaded transfer
matrix models the correlations between different matrix
products hence become less significant for systems with
large numbers of scattering modes, therefore promoting
use of bootstrapping techniques in such scenarios. Like-
wise as the number of matrices N within each cascade
increases, so the potential correlations between samples
decrease in strength.

From a practical standpoint, it may also be of inter-
est to consider the additional number of realisations of Z
that must be generated using the bootstrapping method,
as compared to the on-the-fly approach, so as to produce
the same total estimator variance ∥var[Ẑ]∥1. To answer
this we recall Eq. (18) and note that if only the first term
is considered the result corresponds to the total variance
of Ẑ for on-the-fly calculations. Therefore, denoting the
total number of realisations required to produce a given
and fixed ∥var[Ẑ]∥1 using a bootstrapped or on-the-fly
approach explicitly as Nbs

Z and Notf
Z , it follows (by equat-

ing Eq. (18) for the two cases and solving the resulting

quadratic equation in Nbs
Z ) that

Nbs
Z

Notf
Z

≈ 1 +

Nbs
Z∑

l1=1

Nbs
Z∑

l2=1
l1 ̸=l2

1

MN−K
, (21)

where we have also used Eq. (20) and assumed that∑
l1

∑
l2 ̸=l1

ρ ≪ Notf
Z . It therefore follows that the ad-

ditional number of realisations required to produce a de-
sired variance also decreases with increasing matrix size
M and number of matrices N .
Finally, we consider how the results given generalise

when the constituent matrices X are complex. No-
tably, all results pertaining to estimator bias presented
in Section IIIA are unchanged. When considering es-
timator variance, for proper complex random matrices
X with zero mean and equal variance, i.e., ⟨X⟩ = O
and ⟨X(q)

ab X
(q)∗
cd ⟩ = r2δacδbd, formally identical results to

those given in Section III B can also be derived, albeit
using complex generalisations to the correlation func-
tions (such as Eq. (8)), in which the second matrix fac-
tor is conjugated. Note that pseudo-correlation func-
tions are identically zero for proper random variables,

i.e., ⟨X(q)
ab X

(q)
cd ⟩ = 0, and var[Re(X)] = var[Im(X)] =

cov[X,X∗]/2 [47]. For improper X the pseudo-correlation
would, however, be non-zero requiring further anal-

ysis, for which specification of both ⟨X(q)
ab X

(q)
cd ⟩ and

⟨X(q)
ab X

(q)∗
cd ⟩ would be needed.

IV. ENUMERATION OF PERMUTED MATRIX
CORRELATIONS

In addition to quantifying the total correlation between
permuted matrix products for a given permutation, it is
also relevant to enumerate the frequency with which each
value of correlation occurs across the standard group SN

and thus how often each would appear in the summa-
tion of Eqs. (18) and (21). To begin to answer this we
seek a more convenient way in which to determine K.
To do so we revisit the form of Eq. (12) and define or-
dered (N + 1) tuples comprising of the indices found in
the first and second position of each Kronecker delta re-
spectively, i.e., p1 = (uα1−1, uα2−1, . . . , uαN−1, vN ) and
p2 = (v0, uα1

, uα2
, . . . , uαN−1

, uαN
). Noting that αq − 1

spans [0, N − 1] and αq spans [1, N ] for q ∈ [1, N ], it
follows that the subscripts are unique within each tuple
and we can equivalently consider the subscripts them-
selves whereby p1 = (α1 − 1, α2 − 1, . . . αN − 1, N) and
p2 = (0, α1, α2, . . . αN−1, αN ). The cycles of the (N+1)-
permutation σ that maps p2 → p1 (i.e., considering σ as
a permutation matrix pT

1 = σpT
2 ) therefore correspond

to the cycles of indices in which we are interested. Specif-
ically, K is the number of disjoint cycles of σ which do
not contain 0 or N , whereby it follows that K ≤ N − 1.
To express σ in terms of α we let p0 = (0, 1, 2, . . . , N)

and define the (N + 1) × (N + 1) permutation matrices
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N
K

0 1 2 3 4 5 6 7 8 9

1 1 - - - - - - - - -
2 1 1 - - - - - - - -
3 3 2 1 - - - - - - -
4 8 12 3 1 - - - - - -
5 40 44 31 4 1 - - - - -
6 180 324 145 65 5 1 - - - -
7 1,260 1,784 1,499 370 120 6 1 - - -
8 8,064 16,288 9,772 5,180 805 203 7 1 - -
9 72,576 120,672 113,868 39,032 14,833 1,568 322 8 1 -
10 604,800 1,327,680 958,956 570,044 126,861 37,149 2,814 486 9 1

TABLE II: Table of frequency ν(N,K) of each value of C(N,K) for all permutations αN ∈ SN .

σ1 and σ2 whereby pT
k = σkp

T
0 for k = 1, 2. We thus

immediately see that σ2 has the structure

σ2 =

[
1 0T

0 σα

]
(22)

where σα is the N × N permutation matrix associated
with α and 0 is an N element column vector of zeros. We
also note pT

1 = σ1σ
−1
2 pT

2 such that σ = σ1σ
−1
2 . Defining

the cyclic-shifting operator

σ+ =



0 0 . . . 0 0 1
1 0 . . . 0 0 0
0 1 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . 1 0 0
0 0 . . . 0 1 0

 , (23)

which shifts elements in a tuple p to the right in a cyclic
manner, and noting that shifting to the left (as performed
by σ− = σ−1

+ = σT
+) is equivalent to subtraction of unity

modulo N + 1, we can write

σ1 = σ−σ2σ+ =

[
σα 0
0T 1

]
, (24)

yielding

σ = σ−σ2σ
−1
− σ−1

2 . (25)

From Eq. (25) it follows simply that det[σ] = 1 implying
that σ is always an even permutation [46]. Furthermore,
since σ cannot map the 1st element of p2 (which is 0 by
construction) to the last element of p1 (which is N), it
follows that the (N + 1, 1)th element of σ is zero, i.e.,
σN+1,1 = 0.
With this formalism we can thus more simply nu-

merically enumerate the frequency of C(K,M,N) across
all possible permutations αN ∈ SN , which we denote
ν(K,N). Note, the argument M has been omitted since
the frequency derives purely from combinatorial aspects
of matrix products and is hence independent of matrix
size. Results are presented in Table II for small values

of N . We note the following results (which have been
numerically verified, via exhaustion, up to N = 13):

ν(N − 1, N) = 1, (26)

ν(N − 2, N) = N − 1, (27)

ν(N − 3, N) =

(
N − 1

N − 3

)
+

(
N

N − 3

)
+

(
N + 1

N − 3

)
, (28)

ν(0, N) = N !/⌊(N + 2)/2⌋, (29)

for all N . We observe Eqs. (28) and (29) correspond
to integer sequences A005718 and A107991 respectively
[48, 49]. Mathematical proofs of Eqs. (26)–(29) are pre-
sented in Appendix A in turn. Eqs. (26)-(28) we prove
through exhaustion and conjecture that the graphical ap-
proach employed in proof of Eq. (28) can be extended to
other cases. For Eq. (29) we however present an alterna-
tive approach based on establishing a bijection to known
combinatorial results.
The results of Table II and the analytic formulae for

ν(K,N) highlight a number of important trends with re-
spect to correlations between cascaded transfer matrices.
Most importantly, it is evident that the relative frequency

νrel = ν(K,N)/N ! (30)

of the higher correlation cases (i.e., smaller S = N −K)
across the standard group becomes smaller for larger N .
Consequently, the majority of thick media transfer matri-
ces found from cascading large numbers of thin-section
transfer matrices are only weakly correlated with each
other, if at all. Correlations thus decrease in both relative
magnitude and relative frequency as the number of ma-
trices in a given product increases and consequently the
additional fluctuations introduced in an estimator F̂ will
also typically be lower. The frequency function ν(K,N)
is nevertheless peaked at a non-zero correlation, showing
a non-monotonic dependence on K for a fixed N .

V. ROUTES TO GENERALISATION

In the above analysis we made a number of restrictive
assumptions. We now briefly discuss and outline how
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generalisation of our results could be sought by the in-
terested reader.

Firstly, we note that the statistical model assumed thus
far for the thin section transfer matrix X, was appropri-
ate for the diffusive scattering regime. Alternatively, we
can consider the case for which a thin slab only weakly
perturbs the field incident upon it, as is more relevant for
calculations in the ballistic regime and DMPK type mod-
els. For weakly scattering slabs the transfer matrix can
be written in the form X = I +∆X where ∆X describes
the scattering based perturbation from the identity ma-

trix I. As a simple model we can assume now ⟨∆X⟩ = O
where O is the null matrix and ⟨∆Xab∆Xcd⟩ = r2δacδbd
where δjk is the Kronecker delta function. It immedi-
ately follows that ⟨XabXcd⟩ = δabδcd+r

2δacδbd such that
each individual element of X has equal variance, whereas
distinct off-diagonal elements are uncorrelated. Note, di-
agonal elements of the transfer matrix X describing direct
transmission possess a non-zero mean in contrast to the
diffusive result.

For the case that α is an N -permutation of
(1, 2, . . . , N) we note that

Cjk
mn =

∑
u1,...,uN−1
v1,...,vN−1

[
N∏
q=1

⟨X(αq)
u(αq−1)uαq

X(αq)
vq−1vq ⟩ −

N∏
q=1

⟨X(q)
uq−1uq

⟩⟨X(αq)
vq−1vq ⟩

]
(31)

=
∑

u1,...,uN−1
v1,...,vN−1

[
N∏
q=1

(δuαq−1uαq
δvq−1vq + r2δuαq−1vq−1

δuαqvq
)−

N∏
q=1

δuq−1uq
δvq−1vq

]
. (32)

Expanding the first product term gives a power series in
r2, for which a general term can be written in the form

r2|γ|
∑

u1,...,uN−1
v1,...,vN−1

∏
q∈β

δuαq−1uαq
δvq−1vq

∏
p∈γ

δuαp−1vp−1
δuαpvp

,

(33)

where β and γ are sets of indices dependent on which
term in the series we consider and β ∪ γ = {1, 2, . . . , N}.
Following a similar logic to above, we can sum over
v1, . . . , vN−1 such that a general term in the expansion
is given by

r2|γ|
∑

u1,...,uN−1

δuτ1−1v0δuτ|γ|vN

|β|∏
j=1

δuρj−1uρj

|γ|−1∏
k=1

δuτk
uτk+1−1

(34)

where ρj = αβj
and τk = αγk

. Eq. (34) can then in turn
be evaluated by counting the cycles of the permutation
which transforms the tuple p1 to p2 for

p1 = (ρ1 − 1, . . . , ρ|γ| − 1, τ1 − 1, τ2 − 1, . . . , τ|τ | − 1, N)

p2 = (ρ1, . . . , ρ|γ|, 0, τ1, . . . , τ|τ |−1, N).

The analysis for a single term in Eq. (32) can thus pro-
ceed in an analogous manner to that given above for the
diffusive regime. Given the indices involved in each term,
as defined by the sets β and γ (cf. Eq. (34)), differ for
each term, it follows that the relevant permutation and
the resulting contribution to the total covariance also
varies term by term. Nevertheless, the route to the bal-
listic regime is apparent, if not somewhat tedious. Ulti-
mately, similar trends in the bootstrapped induced fluc-
tuations in estimates of population averages, in terms of

matrix size M and number of factors in the matrix prod-
ucts N would result.

Finally, we briefly consider the generalisation whereby
matrices X(j) are sampled from the pool P with replace-
ment. As per our earlier discussion in Section III, this
sampling strategy can introduce undesirable bias in an
estimate of the sample mean, however, is simple to im-
plement. The consequence of sampling from P with re-
placement, is that indices in both α(1) and α(2) may
be repeated (note it is now necessary to reintroduce the
more general notation since the previous assumption that
α(1) = (1, 2, . . . , N) does not adequately encompass all
possibilities). In calculation of covariance matrix ele-
ments (Eq. (9)), repeated indices in α(1) and α(2) imply
that upon grouping averages of like terms (cf. Eq. (12)),
one can obtain higher order moments. For instance,
if α(1) = (1, 2, 2) and α(2) = (4, 3, 2), the first prod-
uct appearing in Eq. (9) would include a factor of the

form ⟨X(2)
pq X

(2)
rs X

(2)
uv ⟩ (where we let the subscripts take

arbitrary values for simplicity). Use of the moments-
cumulant formula [50] (or for Gaussian random variables,
Isserlis’ theorem) would in principle allow such higher or-
der moments to be expressed in terms of lower orders. So
doing, however, requires careful attention to be paid to
the partitioning of the index sets for each individual case,
which rapidly becomes cumbersome, but is in principle
possible.

VI. CONCLUSIONS

In this article we have considered the problem of sim-
ulation of wave propagation in random media using ran-
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dom matrices. Through forming the appropriate or-
dered product of random matrices drawn from a suit-
able ensemble, waves can in principle be propagated
through thick media. Indeed, such cascaded models have
spawned a number of interesting insights into the statis-
tics of, for instance, the eigenvalues and mode spacings
of the underlying ensembles [27, 51–56]. To improve effi-
ciency of cascaded matrix models, we have here proposed
a bootstrapped dual pool approach whereby after pre-
generation of pools of random transfer matrices, many
realisations can be simulated through matrix resampling.
The proposed approach not only reduces the number of
matrix generations required, but also reduces the total
number of matrix products, which can limit computa-
tion times when there are many scattering modes avail-
able. We have however also shown, that matrix resam-
pling inherent in the proposed technique, can in principle
adversely affect the statistical properties of the resulting
ensemble. In particular, we considered how bootstrap-
ping can introduce undesirable statistical bias and ad-
ditional variance in estimates of population averages of
properties such as transmission. Whilst bias was shown
to be avoidable through an appropriate sampling strat-
egy, correlations that arise from matrix reuse, and the ad-
ditional estimator covariance that follows, remain. The
strength of this additional covariance, as characterised
by Eq. (18), was found to be dependent on the corre-
lation between different matrix permutations. An ex-
tensive study of the magnitude and frequency of such
correlations was thus also presented, including proof of a
number of closed form analytic formulae (Eqs. (26)–(29)).
An important finding of this study was that the conse-
quences of spurious correlations will typically decrease
in severity as the dimension of random matrices and the
number of matrix products increases (see Eqs. (20) and
(30)). Fortunately, bootstrapping approaches are only
required in the regime where scattering channels are nu-
merous and scattering media are many mean free paths
in length. Our results therefore show that in spite of the
detrimental statistical effects of bootstrapping, practical
application of either a single or dual pool approach is not
limited by them.
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Appendix A: Mathematical proofs of correlation
results

1. Proof of Eq. (26)

To prove Eq. (26) we begin by considering the cycle
type of σ [46]. Specifically we recall that an N + 1
permutation with ai cycles of length i has cycle type
a = (a1, a2, a3, . . . , aN , aN+1). It follows then that N +
1 =

∑
i iai and the total number of cycles Nc =

∑
i ai.

Since we are ultimately interested in the number of cy-
cles K that do not contain 0 or N , we must consider
two cases: when 0 and N are in the same cycle whereby
Nc = K + 1 (Case A) and when 0 and N are in different
cycles, whereby Nc = K + 2 (Case B). Now assuming
K = N − S we can write

K =
∑
i

ai −∆ = N − S =

(∑
i

iai

)
− 1− S, (A1)

where ∆ = 1 for Case A and ∆ = 2 for Case B. Upon
rearrangement, Eq. (A1) becomes∑

i

(i− 1)ai = a2 + 2a3 + . . .+NaN+1 = S −∆+ 1.

(A2)

For S = 1 we can see by inspection that the
possible cycle types satisfying Eq. (A2) for Case A
are aA = (N − 1, 1, 0, 0, . . .) such that the cycles
must be (0, N)(1)(2) . . . (N − 1), whereas for Case B
aB = (N + 1, 0, 0, 0, . . .) such that the cycles must
be (0)(1)(2) . . . (N − 1)(N). Noting that odd permu-
tations have an even number of even cycles [46], the
former solution, aA, is not permitted since it describes
an odd permutation. There is thus a single permu-
tation σ = (0)(1)(2) . . . (N − 1)(N), corresponding to
α = (1)(2) . . . (N), i.e., the identity, for which S = 1
therefore completing the proof of Eq. (26).

2. Proof of Eq. (27)

We can approach the proof of Eq. (27) in a similar
manner to that used to prove Eq. (26) above. Consider
then possible solutions of Eq. (A2) when S = 2, i.e.,
K = N − 2. For Case A we require

a2 + 2a3 + 3a4 + . . . = 2 (A3)

such that

aA =

{
(N − 3, 2, 0, 0, . . .)

(N − 2, 0, 1, 0, . . .)
, (A4)

corresponding to cycle structures of the form

(0, N)(1)(2) . . . (p, q) . . . (N − 1) (A5)
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Class Cycle Structure Constraints Total Cases

B1.1 (0, p)(q,N) q < p 1
2
(N − 1)(N − 2)

B1.2 (0, p)(q, r) p < r < q 1
6
(N − 1)(N − 2)(N − 3)

B1.3 (p, q)(r,N) p < r < q 1
6
(N − 1)(N − 2)(N − 3)

B1.4 (p, q)(r, s) p < s < q < r 1
24
(N − 1)(N − 2)(N − 3)(N − 4)

B2.1 (0, p, q) q < p 1
2
(N − 1)(N − 2)

B2.2 (p, q,N) q < p 1
2
(N − 1)(N − 2)

B2.3 (p, q, r) p < r < q 1
6
(N − 1)(N − 2)(N − 3)

TABLE III: Index constraints and corresponding number of allowable permutations for different classes of cycle structure.

and

(0, p,N)(1)(2) . . . (p− 1)(p+ 1) . . . (N − 1) (A6)

respectively, where p ̸= q and p, q ∈ [1, N − 1]. Cycle
structures of the form of Eq. (A5) are not permitted since
σ cannot map 0 directly to N (σN+1,1 = 0), whereas
cycle structures of the form of Eq. (A6) are permitted,
such that there are N − 1 corresponding permutations.
Inspection of the structure of the associated permutation
matrices also show that they are of the form required
by Eqs. (22)–(25) (this is discussed further in the next
section). For Case B, i.e., ∆ = 2, we require

a2 + 2a3 + 3a4 + . . . = 1 (A7)

which has the solution (a2, a3, . . .) = (1, 0, . . .) such that
aB = (N − 1, 1, 0, 0, . . .). This corresponds to an odd
permutation implying these solutions are forbidden. In
total there are hence N − 1 allowed permutations of the
form of Eq. (A6) for which K = N − 2, hence concluding
our proof of Eq. (27).

3. Proof of Eq. (28)

To prove Eq. (28) we once more consider the possible
solutions to Eq. (A2) now for S = 3, i.e., K = N − 3,
which are

aA =


(N − 5, 3, 0, 0, 0, . . .)

(N − 4, 1, 1, 0, 0, . . .)

(N − 3, 0, 0, 1, 0, . . .)

, (A8)

corresponding to odd (and hence invalid) permutations,
and

aB =

{
(N − 3, 2, 0, 0, 0, . . .)

(N − 2, 0, 1, 0, 0, . . .)
, (A9)

which correspond to even, and hence potentially accept-
able solutions. Seven distinct classes of cycle structures
for the Case B cycle types can be constructed, as are
listed in Table III (omitting one cycles for clarity), where
p, q, r, s ∈ [1, N−1] are all distinct. A naive consideration
of the combinatorics of possible values of p, q, r, s, how-
ever, does not yield Eq. (28), as some combinations are
inconsistent with the required structure of σ as dictated

by Eq. (25). To illustrate we use the two-line representa-
tion of permutations and consider the ordered action of
σ−1
2 and σ1 on the original sequence [0, 1, 2, . . . , N−1, N ],

which can hence be represented using a three-line repre-
sentation.

Consider the case when the cycle structure of σ is of
Class B1.1 as an initial illustration. Given that σ−1

2 does
not permute the ‘0’ element (as easily seen from Eq. (22))
we can immediately populate the ‘0’ element into the
first position on the second row as shown in Figure 1(a).
Further noting that the cycle structure given in Table III
means that under the action of both permutations 0 → p,
we can place p into the first element of the third row,
whilst simultaneously populating the pth element with
0. Similarly, σ1 does not affect the last element of the
sequence upon which it acts (cf. Eq. (24)), and the cycle
structure implies N → q (and vice versa), whence we can
fill additional positions in our three-line representation as
also shown in Figure 1(a). In Figure 1(a), note that we
have implicitly assumed that p < q. For cycle structures
of Class B1.1, all other cycles are one-cycles such that the
elements in the upper and lower lines must match for all
other columns in our representation (albeit, importantly
they need not match in the middle row). To allow for
sequences of general length we denote these matching
elements using ellipses (· · · ).

Blank spaces in Figure 1(a) correspond to elements
that do not follow directly from the cycle structure of σ
and are thus as yet unknown in general, however, we can
attempt to deduce them by invoking the transposition
structure imposed by Eqs. (22) and (24). To visualise
this structure, assume that σ−1

2 induces the transposi-
tion indicated in blue in Figure 1(a), which is inherited
from, and encoded in, σ−1

α = σT
α (or equivalently σα).

Crucially, σ1 also derives from σα and so it is helpful to
consider the inverse of the blue transposition, which we
have depicted in Figure 1(a) in green. Eq. (24) however
tells us that to fully describe σ1 we must also consider
the cyclic operator, which ultimately yields the shifted
transposition depicted in red. Individual transpositions
arising from the action of σ1 can thus be graphically in-
ferred from each transposition in σ−1

2 .
With these observations we can now attempt to pop-

ulate all elements of the three-line representation and
exclude any cases from our enumeration which lead to
logical contradictions. With reference to Figure 1(b) and
again considering Class B1.1 for p < q, we start by con-



11

FIG. 1: (a) Three line representation of the sequential permutations σ−1
2 and σ1. The existence of the transposition shown in

blue in σ−1
2 , which has the inverse shown in green, implies that the shifted inverse transposition shown in red exists in σ1. (b)

Example graphical proof for Class B1.1 cycle structures. Repeated application of the permutation structure shown in (a) leads
to a logical contradiction for p < q as highlighted.

sidering the transposition necessary to place q in the last
element of the second row (depicted in dark blue). As
discussed we can immediately infer that the σ1 must con-
tain the transposition shown in light blue (we henceforth
use the colour coding whereby a dark colour transpo-
sition infers the corresponding light coloured transposi-
tion). Noting the existence of the light blue transposi-
tion, we can back propagate the element in the final row
(here denoted a) to the correct position in the second
row. Since a belongs to a one-cycle, we can then con-
clude that σ−1

2 must contain the transposition shown in
dark green, which in turn implies the permutation shown
in light green. This pattern repeats (as shown in both
Figure 1(b) and Supplementary Animation 1 [57]) un-
til we reach the light red transposition. This transpo-
sition requires special attention since it contains the ‘0’
element. In particular, if we back propagate ‘0’ to the
middle row, we find that it necessarily does not origi-
nate from the first position. This is a contradiction with
the structure of σ−1

2 , which dictates that ‘0’ must ap-
pear in the first position of the middle row. Therefore,
we can conclude that any cycle structure of Class B1.1
with p < q does not admit a permutation of the cor-
rect structure. Repeating this process, however starting
from the assumption that p > q generates no such con-
tradiction, as shown in Supplementary Animation 1 [57],
such that these cases are admissible. Counting the num-
ber of different possible choices of p and q satisfying this
constraint (p > q) yields (N − 1)(N − 2)/2 acceptable
permutations. An exhaustive application of these rules
to the cycle types defined in Table III and for different
possible orderings of p, q, r, s (as applicable) is depicted in
the Supplementary Animations [57]. Ultimately we find
the index constraints listed in Table III along with the
corresponding number of possible permutations. In cal-
culation of the number of possible permutations it should
be remembered that cycles are unique only up to cyclic
permutations. The graphical proof described above, for

example, shows that r < p < q and q < p < r ad-
mit allowable Class B1.2 permutations, however, these
different orderings yield identical permutations since the
cycles (q, r) and (r, q) are equivalent. Care must hence
be taken not to count such duplicate permutations multi-
ple times. Finally, summation of all possibilities listed in
Table III and some simple algebraic manipulation yields
our desired result, in the form of Eq. (28). We conjecture
such a graphical proof by exhaustion could be extended
to other values of S, however, we leave this to the enthu-
siastic reader.

4. Proof of Eq. (29)

Finally, we turn our attention to S = N , i.e., K = 0.
We define ei to be the standard basis vector of the (N+1)
dimensional real coordinate space whose ith entry is 1
and the rest of its entries are 0. The possible solutions of
Eq. (A2) are aA = eN+1 and, for each i ∈ {1, . . . , ⌊(N +
1)/2⌋}, the vector aB = ei + eN+1−i.
In our proof of Eq. (29) we treat odd and even N sep-

arately. Consider first then the case where N = 2n is
even. The solutions for Case B and even N are immedi-
ately seen to be invalid since σ is an even permutation.
Consequently, σ must have cycle type eN+1, i.e., it is an
N + 1 cycle. Observe from Eq. (25) that σ is expressed
as the product of σ−, which by definition is an N + 1
cycle, and another permutation of cycle type eN+1, since
σ2σ

−1
− σ−1

2 is conjugate to σ−. The number of permuta-
tions π of cycle type eN+1 such that σ−π also has cycle
type eN+1 is known to be equal to (2n)!/(n+1) [58, 59].
Hence it immediately follows that

ν(0, 2n) = (2n)!/(n+ 1), (A10)

corresponding to Eq. (29) for even N .
We now consider the case for which N = 2n+1 is odd,

for which we find that Case A solutions are invalid due
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to permutation symmetry. Following the above logic, we
thus wish to count the number of permutations π of cycle
type eN+1 such that σ−π is the product of two disjoint
cycles c0 and cN with 0 ∈ c0 and N ∈ cN . We shall
let Ψk(N) denote the set of permutations π = σ2σ

−1
− σ−1

2

such that σ−π is the product of two disjoint cycles c0
and cN with 0 ∈ c0, N ∈ cN , and the cycle c0 consists
of k elements. Furthermore, we let Γ(N) denote the set
of permutations π of cycle type eN+1 such that σ−π also
has cycle type eN+1. First, we observe that there is a bi-
jection from Ψ1(N) to Γ(N−1). Indeed, it is straightfor-
ward to check that the cycle (0, α0, . . . , αN−1) ∈ Ψ1(N)
if and only if (α0 − 1, . . . , αN−1 − 1) ∈ Γ(N − 1). Using
Eq. (A10), we therefore find that the cardinality of our
sets satisfy

|Ψ1(N)| = |Γ(N − 1)| = (2n)!/(n+ 1). (A11)

Next we establish a bijection between the sets Ψk(N)
and Ψk+1(N) for k ∈ {1, . . . , N − 1}. Supposing that
the permutation π = (0, α0, . . . , αN−1) ∈ Ψk(N), we can
write

σ−π = (0, β1, . . . , βk−1)(γ1, . . . , γN−k, N). (A12)

Letting then g ∈ {0, . . . , N − 1} be the index such that
αg = γN−k + 1 and setting π′ = (0, αg, αg+1, . . . , αg+N ),
with indices reduced modulo N , it follows that

σ−π
′ = (0, γN−k, β1, . . . , βk−1)(γ1, . . . , γN−k−1, N)

(A13)

and hence π′ ∈ Ψk+1(N). This map from Ψk(N) to
Ψk+1(N) has an inverse in the following sense. For
k ≥ 1, if we suppose that the permutation π =
(0, α0, . . . , αN−1) ∈ Ψk+1(N), we have

σ−π = (0, β1, . . . , βk−1, βk)(γ1, . . . , γN−k−1, N). (A14)

Letting g ∈ {0, . . . , N − 1} be the index such that
αg = β2 + 1 if k ≥ 2 and αg = 1 if k = 1, and further-
ing setting π′ = (0, αg, αg+1, . . . , αg+N−1), with indices
reduced modulo N , it then follows that

σ−π
′ = (0, β2, . . . , βk)(γ1, . . . , γN−k−1, β1, N), (A15)

whereby π′ ∈ Ψk(N).

We have thus established that |Ψk(N)| = |Ψk+1(N)|
for all k ∈ {1, . . . , N − 1}. Next noting that we can

write ν(0, N) =
∑N

k=1 |Ψk(N)|, we can deduce upon us-
ing Eq. (A11) that

ν(0, 2n+ 1) = (2n+ 1)
(2n)!

n+ 1
=

(2n+ 1)!

n+ 1
. (A16)

Finally, upon combining Eq. (A10) and Eq. (A16) we
obtain Eq. (29).
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