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Abstract

Testing differences in mean vectors is a fundamental task in the analysis of high-

dimensional compositional data. Existing methods may suffer from low power if the

underlying signal pattern is in a situation that does not favor the deployed test. In

this work, we develop two-sample power-enhanced mean tests for high-dimensional

compositional data based on the combination of p-values, which integrates strengths

from two popular types of tests: the maximum-type test and the quadratic-type test.

We provide rigorous theoretical guarantees on the proposed tests, showing accurate

Type-I error rate control and enhanced testing power. Our method boosts the testing

power towards a broader alternative space, which yields robust performance across a

wide range of signal pattern settings. Our theory also contributes to the literature

on power enhancement and Gaussian approximation for high-dimensional hypothesis

testing. We demonstrate the performance of our method on both simulated data and

∗The preliminary result of this paper was included in the National Institutes of Health (NIH) grant
proposal (1R01GM152812). Lingzhou Xue and Xiufan Yu’s research has been supported in part by the NSF
grant DMS-1811552 and NIH grant 1R01GM152812.
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real-world microbiome data, showing that our proposed approach improves the testing

power substantially compared to existing methods.

Key Words: High-dimensional hypothesis testing, Cauchy combination test, Fisher’s method,

Microbiome compositional data, Power enhancement.

1 Introduction

Compositional data analysis has been receiving increasing attention in several research

fields such as business analytics, ecology, and microbiome over the past few years. Especially,

high-dimensional compositional data are becoming increasingly available in microbiome re-

search, ecology, and business analytics. One common problem of interest in analyzing high-

dimensional compositional data is to test for differences in composition between different

samples or experimental groups. It naturally formulates a hypothesis test on the mean of

compositional data.

Over the past decades, researchers have devoted significant efforts to the development of

testing procedures for high-dimensional mean vectors (Bai and Saranadasa, 1996; Chen and Qin,

2010; Cai et al., 2014; Wang et al., 2015; Xu et al., 2016; Liu et al., 2022, 2024; Yu et al.,

2023). These methods cannot be directly applied to compositional data due to the com-

positional nature of the data. Compositional data are characterized by the fact that the

components of the data represent proportions that sum to one. The sum-to-unity constraint

implies that the covariance matrix of the data is singular, which violates the eigenvalue as-

sumptions required by most existing high-dimensional mean tests. Directly applying methods

designed for unconstrained data to compositional data can lead to inaccurate or misleading

conclusions (Aitchison, 1982; Li, 2015).

A variety of mean tests on compositional data have emerged since Aitchison (1982), such

as Srivastava et al. (2007); Cuesta-Albertos et al. (2009); Tsagris et al. (2017); Cao et al.

(2018) and others. In particular, Cao et al. (2018) extended the maximum-type tests in

Cai et al. (2014) for high-dimensional compositional data. In recent years, it has been ac-

knowledged that the testing power of many high-dimensional testing methods often de-

pends on the sparsity level of the signal (Fan et al., 2015; Li and Xue, 2015; Xu et al., 2016;

He et al., 2021; Chen et al., 2023a,b; Yu et al., 2023, 2024a,b), which is the difference be-
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tween two mean vectors in the problem of mean tests. In specific, the tests based on the

L∞-norm of the signal (called the maximum-type tests) tend to be powerful under sparse al-

ternatives (Cai et al., 2014; Cao et al., 2018) when only a small proportion of the covariates

drive differentiation between the two mean vectors, while the tests based on the (squared)

L2-norm of the signal (called the quadratic-type tests) appears to exhibit strong performance

under dense alternatives (Chen and Qin, 2010; Chen et al., 2019) when the signal resides in

a large number of covariates though weak within each covariate. In practical data analysis,

the pattern of the underlying signal is unknown in advance and misspecification can limit

discovery power. It is of great importance to develop robust testing procedures that remain

powerful under a variety of signal patterns.

In this work, we propose a new power-enhanced two-sample mean test for high-dimensional

compositional data. After extending the quadratic-type tests in Chen and Qin (2010) for

high-dimensional compositional data, we prove that the quadratic-type tests and themaximum-

type tests in Cao et al. (2018) are asymptotically independent when the dimension can be on

the nearly exponential order of the sample size. Due to this important result, we propose the

use of Fisher’s method (Fisher, 1925) or the Cauchy combination test (Liu and Xie, 2020)

to relax the assumptions on the signal density and improve testing power. We further show

that the proposed power-enhanced tests asymptotically achieve the target size and have

consistent asymptotic power under mild theoretical conditions. Moreover, we examine the

finite-sample performance through numerical studies and a real-world application to a hu-

man microbiome study examining changes in the host-microbiome community in individuals

with inflammatory bowel disease (IBD).

Our theory also contributes to the literature on power enhancement and Gaussian ap-

proximation for high-dimensional hypothesis testing. Specifically, we relax the Gaussian

or sub-Gaussian assumption and do not need the pseudo-independence structure used in

Chen and Qin (2010); Xu et al. (2014); Li and Xue (2015); Yu et al. (2023) and many oth-

ers. We use the high-dimensional Gaussian approximation theory, instead of the martingale

limit theory as in Chen and Qin (2010); Li and Xue (2015); Yu et al. (2023), to prove the

asymptotic null distribution of the proposed power-enhanced tests. Also, our theory can

deal with the challenges caused by the singular variance of high-dimensional compositional
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data. Moreover, although the quadratic-type and maximum-type tests do not satisfy the

bivariate normality assumption, we provide some insights on the non-asymptotic Cauchy

approximation for the tail of the null distribution (see Remark 4 in Section 3), which may

have its independent significance for future research.

The rest of this paper is organized as follows. Section 2 introduces our proposed power-

enhanced mean tests for high-dimensional compositional data. Section 3 presents the asymp-

totic independence of maximum and quadratic-type tests and the asymptotic properties of

the proposed tests. Section 4 carries out simulations to validate the finite-sample properties,

and Section 5 applies the test to real-world microbiome datasets. Section 6 concludes the

paper with a brief discussion. The proofs are presented in the supplement.

2 Methodology

2.1 Mean Tests for High-Dimensional Compositional Data

Let ξ(k) = (ξ
(k)
1 , . . . , ξ

(k)
nk )

⊤ ∈ Rnk×p denote the individual compositional data matrices for

each group k ∈ {1, 2}. By the compositional nature of the observations, each row of ξ(k)

sums to one. Therefore, each row ξ
(k)
i lie in the Aitchison simplex (Aitchison, 1982):

Sp−1 = {(ξi1, .., ξip) : ξij > 0 for j ∈ {1, ..., p},
p∑

j=1

ξij = 1}.

Assume ξ
(k)
i

iid∼ F
(k)
ξ , where F

(k)
ξ is a distribution with mean µ

(k)
ξ ∈ Rp and covariance

Σ
(k)
ξ ∈ Rp×p. A natural question of interest is to test for differences in microbial community

compositions between different groups. The compositional constraint imposes dependencies

between the multiple components of the data, which makes classical statistical tests inap-

plicable. To be specific, traditional testing strategies place restrictions on the covariance

structure of the test samples. For example, most tests require the covariance matrix to be

positive definite, which is violated in the compositional space due to the singularity in the

covariance matrix of compositional data. The complex composition of the data presents a

significant challenge.

To assuage this issue, we exploit the framework of compositional data analysis to shift
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the assumption burden off of the observed compositional data and into a latent variable

space. As a common practice in compositional data analysis, we assume the compositional

variables are driven by a set of latent variables, which are known as the basis, denoted by

η(k) = (η
(k)
ij ) ∈ Rnk×p with η

(k)
ij > 0 for k = 1, 2. Given the basis, we can reconstruct the

associated compositional data via normalization as follows:

ξ
(k)
ij =

η
(k)
ij∑p

j=1 η
(k)
ij

for i = 1, . . . , nk; j = 1, . . . , p; k = 1, 2. (2.1)

Let ∆(k) = (δ
(k)
ij ) ∈ Rnk×p in which δ

(k)
ij = log η

(k)
ij denote the log-basis variables. We assume

that δ
(k)
i

iid∼ F
(k)
δ , where F

(k)
δ is distribution with associated mean vector ν(k) = {ν(k)

1 , .., ν
(k)
p }

and covariance Ω(k). A natural test in this log-basis space is to simply test the equality of ν(1)

and ν(2); however, different basis vectors η(k) can lead to identical compositional ξ(k). By the

compositional relationship (2.1), given ξ, one is only able to recover η up to a multiplicative

constant. In Aitchison (1982), this indicates all the bases arising from a given compositional

vector can be enumerated as B(ξ) = {tξ; t > 0}. Alternatively, this yields an additive

many-to-one relationship in the log-basis space A(ξ) = {log ξ + c1p; c ∈ R}. Thus, the

natural testing scheme must be adapted slightly to account for this additive relationship.

Two log-basis vectors δ1 and δ2 are compositionally equivalent if their components only

differ by a constant c ∈ R. That is both log-bases lie within the same equivalence class A(ξ)

(Cao et al., 2018). Let 1p ∈ Rp denote a vector of only 1s. This yields the compositional

testing framework:

H0 : ν
(1) = ν(2) + c1p vs H1 : ν

(1) 6= ν(2) + c1p. (2.2)

To construct a test on (2.2), we need to transform the compositional data into an easy-

to-operate form. As discussed above, operating on raw compositional variables is challenging

in practice. The downstream effects of the compositional constraint are often very restrictive

as individual components are bounded between (0, 1]. As such, a common practice is to first

transform the compositional data via a log-ratio transformation to relax the range constraint

on individual components. One of the most commonly used log-ratio transformations is the
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centered log-ratio (clr) transformation. For the observed compositional vectors ξ
(1)
i and

ξ
(2)
i , the associated clr-transformed variables are Xi = clr(ξ

(1)
i ) = log

(
ξ
(1)
i1

g(ξ
(1)
i )

, ...,
ξ
(1)
ip

g(ξ
(1)
i )

)
, for

i = 1, . . . , n1, and Yi = clr(ξ
(2)
i ) = log

(
ξ
(2)
i1

g(ξ
(2)
i

)
, ...,

ξ
(2)
ip

g(ξ
(2)
i

)

)
, for i = 1, . . . , n2, where g(ξ

(k)
i ) =

(
∏p

j=1 ξ
(k)
ij )

1
p denotes the geometric mean of ξ

(k)
i . The centered log-ratio transformation

is appealing for several reasons. The individual components of X and Y are no longer

constrained within (0, 1] and are instead Xij and Yij ∈ R allowing us to employ traditional

statistical machinery. Further, the unit constraint on ξ is now a sum-to-zero constraint on

the components of X and Y . However, most useful for testing purposes is the distributional

relationship between X or Y and the log-basis δ. The centered log-ratio transformation is

scale-invariant, allowing us to substitute (ξ
(1)
i , ξ

(2)
i ) for (Xi, Yi) and yielding the following

relationship:

Xi = Gδ
(1)
i , Yi = Gδ

(2)
i (2.3)

where G = Ip − 1
p
1p1

T
p with Ip denoting the p × p identity matrix and 1p ∈ Rp denoting a

vector of only 1s. Thus the distributions of Xi and Yi can be completely characterized by the

distributions of δ
(1)
i and δ

(2)
i via linear transformations. Suppose Xi

iid∼ H(1) and Yi
iid∼ H(2),

where H(k) characterizes a distribution with the centered log-ratio mean vector and centered

log-ratio covariance matrix such that:

µ(k) = Gν(k), Σ(k) = GΩ(k)G⊤. (2.4)

By construction, G is a rank p−1 matrix with associated null space N (G) = {x ∈ Rp : Gx =

0} = {c1p : c ∈ R}. Using this relationship, the test on (2.2) is equivalent to a two-sample

test of means as follows (Cao et al., 2018):

H0 : µ
(1) = µ(2) versus H1 : µ

(1) 6= µ(2). (2.5)

Cao et al. (2018) proposed the maximum compositional equivalence test assuming that

Σ(1) = Σ(2) and proved its asymptotic null distribution as a Gumbel distribution as n1, n2, p →
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∞.

2.2 The Proposed Power-Enhanced Mean Tests

The next step is to construct a more powerful test for the problem of interest (2.5)

against a broader alternative space. It has been well-studied that the performance of var-

ious tests fundamentally relies on the underlying signal sparsity pattern (Fan et al., 2015;

Li and Xue, 2015; Xu et al., 2016; He et al., 2021; Yu et al., 2023, 2024a,b). When the sig-

nal pattern in µ(1) − µ(2) varies, different tests may yield distinct performance. Broadly

speaking, two types of test statistics are prevalent in high-dimensional hypothesis tests: the

maximum-type tests and the quadratic-type tests. The maximum-type mean tests construct

the test statistics based on estimates of the L∞-norm of the difference in mean vectors, i.e.,

‖µ(1)−µ(2)‖∞. The quadratic-type mean tests design the test statistics by utilizing estimates

of the squared L2-norm of the mean difference, i.e., ‖µ(1) −µ(2)‖22. The maximum-type tests

tend to be more powerful than quadratic-type tests under the sparse alternatives (Cai et al.,

2014; Cao et al., 2018) when µ(1) − µ(2) have only a few non-zero components that distin-

guish between groups, whereas the quadratic-type tests are more powerful under the dense

alternatives (Chen and Qin, 2010; Chen et al., 2019, 2023a) which assume the differentia-

tion between groups is caused by several components. When the sparsity of the alternative

hypothesis is well-suited to the choice of the test statistic, there is a gain in discovery power.

However, mismatches between sparsity assumptions and test statistic choice can negatively

impact power substantially.

We propose combining maximum-type and quadratic-type test statistics to develop a

testing framework that is more robust to improper sparsity assumptions on alternative hy-

potheses. Thus, our proposed strategy is more flexible in practical scenarios where there

may not be strong evidence to assume a given sparsity level apriori. To begin with, we first

detail the maximum-type and quadratic-type test statistics of interest.

To encompass scenarios of sparse alternatives, we follow the philosophy of Cao et al.

(2018) to employ the following maximum-type statistic, where we do not need to assume
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Σ(1) = Σ(2):

Mn1,n2 = n1max
1≤j≤p

(Xj − Y j)
2

γ̂j
. (2.6)

Here, Xj = 1
n1

∑n1

i=1Xij and Y j =
1
n2

∑n2

i=1 Yij are the sample mean of the clr transformed

samples. Define γ̂j =
∑n1

i=1(Xij−Xj)2

(n1−1)
+

∑n2
k=1(Ykj−Y j)

2

n2(n2−1)/n1
as the corresponding sample variance after

the centered log-ratio transformation, which is an estimate of γj = σ
(1)
jj + n1

n2
σ
(2)
jj . Similar to

Cao et al. (2018), it can be proved that under the null hypothesis, Mn1,n2 −2 log p+log log p

converges to a Gumbel distribution as n1, n2, p → ∞. The associated α-level test is defined

as

ΦM
α = I(Mn1,n2 ≥ qMα + 2 log p− log log p), (2.7)

where I(·) denotes the indicator function and qMα is the upper α-quantile of the Gumbel

distribution. Therefore, the null hypothesis in (2.5) is rejected by the maximum-type test

when ΦM
α = 1. As noted previously, the statistic Mn1,n2 possesses high power in the sparse

alternative setting but as explored in Section 4, this gain in power rapidly disappears as the

signal becomes denser.

To account for the dense setting, we consider the quadratic-type statistic Qn1,n2 developed

by Chen and Qin (2010) to the clr transformed samples {Xi}n1
i=1 and {Yi}n2

i=1. Let

Tn1,n2 =

∑n1

i 6=j X
T
i Xj

n1(n1 − 1)
+

∑n2

i 6=j Y
T
i Yj

n2(n2 − 1)
− 2

∑n1

i=1

∑n2

j=1X
T
i Yj

n1n2
,

σ̂2
n1,n2

=
2

n1(n1 − 1)
̂tr((Σ(1))2) +

2

n2(n2 − 1)
̂tr((Σ(2))2) +

4

n1n2

̂tr(Σ(1)Σ(2)),

where the form of σ̂2
n1,n2

is presented in the supplement. It can be verified that Tn1,n2

and σ̂2
n1,n2

are unbiased estimates of ‖µ(1) − µ(2)‖22 and the variance of Tn1,n2 (i.e., σ2
n1,n2

=

2
n1(n1−1)

tr((Σ(1))2) + 2
n2(n2−1)

tr((Σ(2))2) + 4
n1n2

tr(Σ(1)Σ(2))). The test statistic is defined as

Qn1,n2 =
Tn1,n2

σ̂n1,n2

. (2.8)
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The associated α-level test is, therefore, defined as

ΦQ
α = I(Qn1,n2 ≥ qQα ), (2.9)

where qQα denotes the upper α-quantile of the standard Gaussian distribution. As such, the

null hypothesis in (2.5) is rejected by the quadratic-type test when ΦQ
α = 1. As shown in

Section 4, the quadratic-type test statistic Qn2,n2 achieves satisfactory power when the un-

derlying signal density is dense and the associated performance suffers as the signal becomes

more sparse.

In what follows, we leverage the power of both test statistics without placing stringent

assumptions on signal sparsity. To this end, we construct our power-enhanced tests by

employing p-value combination approaches, including Fisher’s combination method (Fisher,

1925) and the Cauchy combination method (Liu and Xie, 2020). These combination methods

aggregate information from the maximum-type test and the quadratic-type test to combine

their respective strengths.

Let pM be the p-value of Mn1,n2 and pQ the p-value of Qn2,n2. Fisher combination test

statistic, denoted by Fn1,n2, combines both p-values as

Fn1,n2 = −2(log pM + log pQ). (2.10)

Theorem 1 of Section 3 proves the maximum-type statistic Mn1,n2 and the quadratic-type

statistic Qn1,n2 are asymptotically independent. Thus, under the null hypothesis, Fn1,n2

converges to the χ2
4 distribution as n1, n2, p → ∞. The associated α-level test is, therefore,

defined as

ΦF
α = I(Fn1,n2 ≥ qFα ), (2.11)

where qFα is the upper α-quantile of the χ2
4 distribution. Fisher combination test rejects the

null hypothesis in (2.5) when ΦF
α = 1.
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We denote the Cauchy combination test statistic as Cn1,n2 and define it as follows

Cn1,n2 = ωM tan{(0.5− pM)π}+ ωQ tan{(0.5− pQ)π}, (2.12)

where ωM and ωQ are non-negative weights for the maximum-type and quadratic-type test

statistics respectively, and ωM + ωQ = 1. Under the null distribution, pM and pQ follow

a Unif(0, 1) distribution, thus tan{(0.5 − pM)π} and tan{(0.5 − pQ)π} follow a standard

Cauchy distribution. Together with the asymptotic independence shown in Theorem 1, Cn1,n2

converges to a standard Cauchy distribution as n1, n2, p → ∞. Therefore, the associated α-

level test is

ΦC
α = I(Cn1,n2 ≥ qCα ), (2.13)

where qCα is the upper α-quantile of a standard Cauchy distribution. The Cauchy combination

test rejects the null hypothesis (2.5) when ΦC
α = 1.

As we will study theoretical properties in Section 3 and numerical properties in Section

4, both power-enhanced tests retain the appropriate α-level type I error rate, and achieve

improved power than the maximum and quadratic tests while agnostic to the underlying

signal density.

3 Theoretical Properties

In this section, we first introduce four assumptions and then present the theoretical

properties.

Assumption 1. For k ∈ {1, 2}, let δ(k) = (δ
(k)
1 , . . . , δ

(k)
p ) be a p-dimensional random vector

with mean ν(k) and covariance Ω(k) and satisfy the following conditions:

(i) there is a constant K4 such that, for any α ∈ Rp,

{E|α′(δ(k) − ν(k))|4}1/4 ≤ K4{E|α′(δ(k) − ν(k))|2}1/2.

(ii) E(maxj |δ(k)j |3) ≤ M3(log p)
3
2 with (log p)10M6 = o(n1 + n2).
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Remark 3.1. Assumption 1(i) on the fourth moment was used in Giessing and Fan (2020),

and Assumption 1(ii) was used in Chernozhukov et al. (2017). Assumption 1 relaxes the

Gaussian or sub-Gaussian assumption, and it also relaxes the linear multivariate model

assumption widely used in the theoretical analysis of quadratic-type statistics including

Chen and Qin (2010); Xu et al. (2014); Yu et al. (2023) and so on. Note that the pseudo-

independence structure in (3.2) of Chen and Qin (2010) or (4.1) of Xu et al. (2014) does not

allow for an elliptical model. Assumption 1 includes the elliptical model with a finite fourth

moment as a special example, where M equals to a constant C (or C
√
log p) when δ

(k)
j ’s

follow sub-Gaussian (or sub-exponential) distributions (Chernozhukov et al., 2017).

Assumption 2. For k ∈ {1, 2}, the covariance matrix of δ(k) satisfy the following conditions:

(i) there is a constant C such that 1/C ≤ ω
(k)
jj ≤ C for 1 ≤ i ≤ p.

(ii) λ1(Ω
(k))/

√
tr{(Ω(k))2} = o((log p)−1−α0) for a constant α0 > 0 and λp−q(Ω

(k)) > 0 with

q = o(p), where λp(Ω
(k)) ≤ . . . ≤ λ1(Ω

(k)) are the eigenvalues of Ω(k).

Remark 3.2. Assumption 2(i) was used in Cao et al. (2018) to bound the variances away

from zero and infinity. The condition λ1(Ω
(k))/

√
tr{(Ω(k))2} → 0 is sufficient for establishing

the central limit theorem for quadratic-type test statistics, which was used in Chen and Qin

(2010). By requiring Assumption 2(ii), we can derive the asymptotic independence between

maximum-type and quadratic-type test statistics without Gaussian assumption.

Assumption 3. As min{n1, n2} → ∞, n1/ (n1 + n2) → c, for some constant c ∈ (0, 1).

This is a common assumption for the theoretical analyses of high-dimensional two-sample

tests, see Chen and Qin (2010); Cao et al. (2018); Chen et al. (2019); Yu et al. (2024a, 2023).

Before proceeding to the next assumption, we define some useful notations. Denote the

correlation matrices of δ(k) by (τ
(k)
ij )p×p. For any set A, card(A) denotes the cardinality of

A. For 0 < r < 1, let Vi(τ, r) =
{
1 ≤ j ≤ p : |τ (1)ij | ≥ r or |τ (2)ij | ≥ r

}
be the set of indices j

such that δ
(k)
j is highly correlated (whose correlation > r) with δ

(k)
i for a given i ∈ {1, . . . , p}.

And for any α > 0, let si(τ, α) = card(Vi(τ, (log p)
−1−α)), i = 1, . . . , p be the number of

indices j in the set Vi(τ, (log p)
−1−α). Moreover, define W(τ, r) = {1 ≤ i ≤ p : Vi(τ, r) 6= ∅}

such that, ∀i ∈ W(τ, r), δ
(k)
i is highly correlated with some other variables of δ(k).
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Assumption 4. The correlation matrix of δ(k) satisfies the following conditions.

(i) For α0 given in above and all κ > 0, max
1≤i≤p,i 6∈Υ

si(τ, α0) = o(pκ).

(ii) There exist a constant 0 < r0 < 1, card(W(τ, r0)) = 0(p).

Remark 3.3. Cao et al. (2018) obtained the limiting distribution of the maximum test

statistic under the assumptions maxi
∑p

j=1 |τ
(k)
ij |2 ≤ r2 and maxi,j |τ (k)ij | ≤ r1 < 1 (see their

Conditions 2 and 3). Note that Assumption 4 includes them as the special example when

si(τ, 1) = C(log p)2.

After introducing these assumptions, we can present the main results in Theorem 1.

Theorem 1. Given Assumptions 1- 4, under the null hypothesis H0, we have

P (Qn1,n2 ≤ x, Mn1,n2 − 2 log p+ log log p ≤ y)
d−→ Φ(x) · F (y) (3.1)

for any x, y ∈ R, as n1, n2, p → ∞. F (y) = exp
(
− 1√

π
exp

(
−y

2

))
is the cdf of a Gumbel

distribution, Φ(x) is the cdf of standard normal distribution.

To the best of our knowledge, this is the first proof of the asymptotic independence

result of the quadratic form statistic of Chen and Qin (2010) and the maximum statistic

of Cao et al. (2018) for testing two-sample mean vectors of high-dimensional compositional

data. It is worth pointing out that our results allow the dimension to be on the nearly

exponential order of the sample size and do not require the Gaussian or pseudo-independence

assumption. Also, our theory can deal with the challenges caused by the singular variance

of high-dimensional compositional data.

Given the explicit joint distribution of Qn1,n2 and Mn1,n2, we proceed to present the

asymptotic properties of our proposed Fisher’s test and the Cauchy combination test.

On top of the asymptotic independence established above and by simple probability

transformation, it’s easy to obtain the null distribution of Fn1,n2 and Cn1,n2, and therefore,

the asymptotic size of the test. Specifically, Theorem 2 proved the correct asymptotic size

for Fisher’s method (Fisher, 1925) and the Cauchy combination test (Liu and Xie, 2020).
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Theorem 2 (Asymptotic Size). Under the same assumptions as in Theorem 1, the Fisher’s

combined probability test and the Cauchy combination test for high-dimensional composi-

tional data achieve the accurate asymptotic size, that is, under the null hypothesis,

P
(
Fn1,n2 > qFα

)
→ α and P

(
Cn1,n2 > qCα

)
→ α as n1, n2, p → ∞.

Remark 3.4. In the literature, Pillai and Meng (2016) proved a surprising result that the

ratio of dependent Gaussian random variables follows a standard Cauchy distribution under

an arbitrary covariance matrix, and Liu and Xie (2020) studied the non-asymptotic approxi-

mation for the tail of the null distribution of the Cauchy combination test under the bivariate

normality assumption with arbitrary correlation structures. Although Qn1,n2 and Mn1,n2 do

not satisfy the bivariate normality assumption, we want to provide some insights on the

non-asymptotic Cauchy approximation for the tail of the null distribution of Cn1,n2 using

the results in Theorems 1 and 2. Given the asymptotic independence result in Theorem 1,

when n1, n2, p are large enough, we have

P (pQ ≤ α, pM ≤ α)

P (pQ ≤ α) + P (pM ≤ α)
≈ P (pQ ≤ α)P (pM ≤ α)

P (pQ ≤ α) + P (pM ≤ α)
≈ α

2
. (3.2)

Thus, when n1, n2, p are large enough and α tends to 0, we have

P (pQ ≤ α, pM ≤ α) ≈ o(P (pQ ≤ α) + P (pM ≤ α)),

which provides a key result in the proof of Theorem 1 in Liu and Xie (2020) (see Step 2 in

the supplemental file of Liu and Xie (2020)). This result indicates that the probability of

Qn1,n2 and Mn1,n2 simultaneously reaching extreme values is dominated by the probability

of one of them doing so when n1, n2, p are large enough. As a result, when n1, n2, p are large

enough and t tends to ∞, we can follow the proof of Liu and Xie (2020) to show that

P (Cn1,n2 > t)

P (W0 > t)
≈ 1,

whereW0 is a standard Cauchy random variable. This result implies that Cn1,n2 can still have
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an approximately Cauchy tail under the null hypothesis in the non-asymptotic setting. Such

insights are supported by the numerical properties that we will explore in Section 4, where

the Cauchy combination test more closely achieves the desired size than Fisher’s method.

Next, we will study the asymptotic power. Let Ω = Ω(1) + n1Ω(2)

n2
. For any fixed ǫ0 > 0,

define the dense alternative Gd and the sparse alternative Gs respectively in the following:

Gd(ǫ0) =

{
(ν(1), ν(2)) :

n2
1‖G(ν(1) − ν(2))‖4

n1(ν(1) − ν(2))′GΩG(ν(1) − ν(2)) + tr{(GΩG)2}) ≥ ǫ0 logn

}
; (3.3)

Gs(ǫ0) =



(ν(1), ν(2)) : max

j

|(G(ν(1) − ν(2)))j |
{(GΩG)jj}1/2

≥
√

(2 + ǫ0) log p

n1



 (3.4)

with (G(ν(1) − ν(2)))j and (GΩG)jj denote the j-th element of the vector G(ν(1) − ν(2)) and

the j-th diagonal element of the matrix GΩG.

In what follows, we provide a new Gaussian approximation result for the quadratic-type

statistics Tn1,n2 and Qn1,n2, which will be pivotal to prove the consistent asymptotic power

without assuming the pseudo-independence structure of Chen and Qin (2010).

Proposition 1. Given Assumptions 1(i), 2 and 3, when K4 is bounded, we have

P

(
Tn1,n2 − ‖µ(1) − µ(2)‖2

σn,a
≤ x

)
→ Φ(x) as n1, n2, p → ∞ (3.5)

with σ2
n,a = σ2

n1,n2
+ 4µ′Σµ

n1
, and Σ = Σ(1) + n1Σ(2)

n2
. If n2‖µ‖4

max(nµ′Σµ,tr(Σ2))
→ ∞, then

P (Qn1,n2 > zα) → 1 as n1, n2, p → ∞, (3.6)

with zα be the upper α-quantile of the standard normal distribution.

Remark 3.5. Xu et al. (2014) and Giessing and Fan (2020, 2023) studied the Gaussian

approximation for the ℓ2-statistics in the one-sample mean test for high-dimensional data.

However, as pointed by Chen and Qin (2010), the ℓ2-statistics is in fact a biased estimator for

‖µ(1) − µ(2)‖2. As a result, Xu et al. (2014) and Giessing and Fan (2020, 2023) all required

either p/n to be bounded or much stronger moment conditions to handle the bias term.

For example, Xu et al. (2014) used the pseudo-independence structure in the linear process
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to justify their moment conditions, Giessing and Fan (2020) assumed a low-rank structure

within their models, and Giessing and Fan (2023) required that p = o(n
1
3 ) with an identity

covariance matrix. Our new result in Proposition 1 provides an enhanced flexibility and

applicability in the high-dimensional setting where the dimension is on the nearly exponential

order of the sample size.

Now, using this new Gaussian approximation result, we show that Fisher’s combined

probability test Fn1,n2 can successfully boost the power against either dense or sparse alter-

natives. It is known that Fisher’s method enjoys the Bahadur efficiency when combining

independent tests. Thus, we only focus on the asymptotic power of Fisher’s method in the

following theorem.

Theorem 3 (Asymptotic Power). Under the same assumptions as in Proposition 1, Fisher’s

method achieves consistent asymptotic power, that is, for any ǫ0 > 0,

inf
(ν(1),ν(2))∈Gd(ǫ0)∪Gs(ǫ0)

P
(
Fn1,n2 ≥ qFα

)
→ 1 as n1, n2, p → ∞.

4 Numerical Properties

In this section, we evaluate the empirical power and size under several different testing

settings. There are two types of covariance structures, under three various (n, p) combina-

tions, with two different data-generating methods. Aside from our proposed Fisher-based

(F) test (2.11) and Cauchy-based (C) test (2.13), we compare these methods to the Maxi-

mum (M) test (2.7) and Quadratic (Q) test (2.9). Finally, the Bonferroni (BF) method is

a commonly used method for combining multiple tests and we include it as an additional

benchmark.

We consider two different data-generating frameworks: Gaussian distributions and Gamma

distributions. Under the Gaussian framework, we generate the log-basis vectors from

δ
(1)
i ∼ Np(ν

(1),Ω) (for i = 1, . . . , n1), δ
(2)
i ∼ Np(ν

(2),Ω) (for i = 1, . . . , n2).
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Under the Gamma framework, we generate the log-basis vectors from

δ
(1)
i = ν(1) + FU

(1)
i /

√
10 (for i = 1, . . . , n1), δ

(2)
i = ν(2) + FU

(2)
i /

√
10 (for i = 1, . . . , n2),

where U
(k)
i are independent standard gamma with shape parameter ten, F = QS

1
2 in which

Q and S are determined by Ω = QSQT via singular value decomposition. Given the log-basis

vectors δ
(k)
i , the centered log-ratio transformed data is obtained as described in Section 2.

That is, Xi = Gδ
(1)
i , Yi = Gδ

(2)
i with G = Ip − 1

p
1p1

T
p .

The above Ω are set to mimic two different dependent structures. The first is an AR(1)

matrix, ΩAR = (ΩAR
ij )1≤i,j≤p with ΩAR

ij = 0.5|i−j|. The AR(1) matrix yields a dense co-

variance structure, though ensures that the magnitude of the covariances rapidly decays

(Bickel and Levina, 2008; Cai and Liu, 2011). The second is a random sparse block covari-

ance matrix ΩBS = (A1, A2), where A1 = B+ εIq in which B is a symmetric matrix with the

lower-triangular entries drawn from [−1,−0.5] ∪ [0.5, 1] uniformly with probability 0.5, and

A2 = Ip−q where q = ⌊3√p⌋. We let ε be max{−λmin(B), 0} + 0.05 to ensure the positive

definiteness of the covariance matrix. The random block matrix allows for sparsity to be

embedded within the covariance structure and mimics the standard structure in Cao et al.

(2019); Li et al. (2023b,a).

We aim to design the mean vectors (ν(1), ν(2)) in such a way that the signals are compa-

rable across all configurations of sample size and dimensionality. To accomplish this, we set

ν(1) = 0p and choose the non-zero entries of ν(2) to be equal and generated to satisfy: ||ν(1)−
ν(2)||2/

√
tr(Ω2) = 0.1. We evaluate sparsity levels across (0.01p, 0.05p, 0.2p, and 0.5p). To

select the non-zero entries of ν(2), we randomly select entries of ν(2) depending on the spar-

sity level of interest. As ν(2) becomes denser, the individual signal strength of each element

decreases. To evaluate the testing size, we include a case where ν(1) = ν(2) = 0p for the null

setting.

We set n1 = n2 = n. We generate the samples under three (n, p)-configurations: (n, p) ∈
(100, 200), (100, 500), (100, 1000). We evaluate each test at the significance levels of α =

0.05 and α = 0.01. The empirical percentages of rejections are reported in Tables 1–2,

respectively.
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Table 1: The empirical percentages of rejection at the significance level of α = 0.05.

Ω (n, p) Sparsity
Gaussian Gamma

M Q F C BF M Q F C BF

ΩAR

(100, 200)

0.00 0.058 0.061 0.078 0.068 0.005 0.059 0.059 0.096 0.077 0.002
0.01 1.000 0.944 1.000 1.000 0.912 1.000 0.938 1.000 1.000 0.911
0.05 0.916 0.920 0.980 0.963 0.761 0.935 0.954 0.993 0.982 0.796
0.20 0.296 0.850 0.823 0.799 0.175 0.327 0.856 0.845 0.816 0.185
0.50 0.133 0.502 0.488 0.440 0.050 0.153 0.562 0.542 0.506 0.060

(100, 500)

0.00 0.075 0.062 0.096 0.080 0.004 0.056 0.049 0.067 0.062 0.002
0.01 1.000 0.950 1.000 1.000 0.911 1.000 0.944 1.000 1.000 0.907
0.05 0.795 0.937 0.976 0.957 0.610 0.780 0.940 0.978 0.956 0.629
0.20 0.241 0.860 0.835 0.823 0.133 0.233 0.859 0.835 0.809 0.122
0.50 0.147 0.516 0.484 0.454 0.066 0.143 0.517 0.495 0.461 0.045

(100, 1000)

0.00 0.067 0.049 0.073 0.064 0.001 0.063 0.054 0.072 0.057 0.001
0.01 1.000 0.948 1.000 1.000 0.912 1.000 0.959 1.000 1.000 0.930
0.05 0.635 0.943 0.973 0.947 0.448 0.619 0.937 0.954 0.939 0.439
0.20 0.167 0.858 0.812 0.801 0.086 0.183 0.865 0.840 0.820 0.092
0.50 0.124 0.545 0.515 0.488 0.040 0.113 0.537 0.505 0.464 0.036

ΩBS

(100, 200)

0.00 0.060 0.055 0.066 0.066 0.001 0.078 0.060 0.086 0.076 0.003
0.01 0.999 0.960 0.999 0.999 0.919 0.999 0.950 0.998 0.999 0.907
0.05 1.000 0.944 1.000 1.000 0.894 1.000 0.946 1.000 1.000 0.904
0.20 0.808 0.860 0.963 0.931 0.539 0.826 0.853 0.969 0.925 0.560
0.50 0.345 0.495 0.636 0.544 0.097 0.290 0.507 0.614 0.522 0.081

(100, 500)

0.00 0.070 0.061 0.079 0.074 0.004 0.054 0.061 0.073 0.066 0.002
0.01 1.000 0.958 1.000 1.000 0.920 1.000 0.963 1.000 1.000 0.937
0.05 1.000 0.947 1.000 1.000 0.895 1.000 0.951 1.000 1.000 0.900
0.20 0.670 0.870 0.956 0.919 0.415 0.713 0.856 0.956 0.916 0.443
0.50 0.294 0.529 0.628 0.560 0.079 0.271 0.514 0.614 0.535 0.066

(100, 1000)

0.00 0.089 0.043 0.072 0.071 0.004 0.067 0.066 0.080 0.075 0.003
0.01 1.000 0.972 1.000 1.000 0.924 1.000 0.958 1.000 1.000 0.906
0.05 1.000 0.955 1.000 1.000 0.914 1.000 0.946 1.000 1.000 0.909
0.20 0.582 0.870 0.944 0.909 0.343 0.580 0.868 0.953 0.908 0.320
0.50 0.217 0.539 0.602 0.532 0.069 0.217 0.533 0.620 0.536 0.043

Across all covariance and data-generating setups, our proposed method is robust to the

true underlying sparsity of the signal. As noted previously, the Maximum test has increased

power when the signal is extremely sparse while the Quadratic test has improved power in

the dense signal setting. This can be seen as the Maximum test tends to have improved

power to the Quadratic test when the sparsity level is at the 1% and 5% level. However, at

the 20% and 50% the Maximum test drastically loses power as expected. The inverse holds

for the Quadratic test which has a substantial power increase at the denser signal settings but

sacrifices a modicum of power in the sparse setting. However, the power loss of the quadratic

test in the sparse setting is much smaller than the power loss of the maximum-type test in

the dense settings.
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Table 2: The empirical percentages of rejection at the significance level of α = 0.01.

Ω (n, p) Sparsity
Gaussian Gamma

M Q F C BF M Q F C BF

ΩAR

(100, 200)

0.00 0.010 0.021 0.032 0.021 0.000 0.013 0.019 0.034 0.024 0.000
0.01 1.000 0.849 1.000 1.000 0.784 1.000 0.833 1.000 1.000 0.761
0.05 0.713 0.780 0.932 0.861 0.503 0.716 0.828 0.954 0.871 0.519
0.20 0.103 0.642 0.642 0.576 0.058 0.099 0.646 0.667 0.585 0.059
0.50 0.025 0.279 0.280 0.232 0.006 0.043 0.316 0.322 0.263 0.016

(100, 500)

0.00 0.010 0.019 0.027 0.013 0.001 0.016 0.010 0.026 0.011 0.001
0.01 1.000 0.854 1.000 1.000 0.792 1.000 0.835 1.000 1.000 0.779
0.05 0.465 0.814 0.912 0.806 0.317 0.509 0.813 0.911 0.822 0.343
0.20 0.070 0.666 0.655 0.609 0.026 0.065 0.650 0.648 0.580 0.034
0.50 0.035 0.287 0.294 0.245 0.013 0.034 0.285 0.288 0.234 0.005

(100, 1000)

0.00 0.016 0.013 0.021 0.009 0.000 0.014 0.007 0.016 0.012 0.000
0.01 1.000 0.850 1.000 1.000 0.797 1.000 0.872 1.000 1.000 0.815
0.05 0.318 0.819 0.895 0.815 0.186 0.309 0.823 0.881 0.805 0.196
0.20 0.045 0.665 0.618 0.582 0.023 0.057 0.682 0.630 0.600 0.029
0.50 0.033 0.292 0.278 0.242 0.009 0.030 0.282 0.277 0.231 0.006

ΩBS

(100, 200)

0.00 0.008 0.017 0.012 0.014 0.001 0.015 0.016 0.020 0.017 0.000
0.01 0.995 0.848 0.998 0.996 0.776 0.995 0.841 0.997 0.996 0.776
0.05 1.000 0.824 1.000 1.000 0.739 1.000 0.816 1.000 1.000 0.727
0.20 0.468 0.641 0.869 0.722 0.227 0.490 0.659 0.879 0.730 0.235
0.50 0.106 0.269 0.376 0.272 0.020 0.087 0.289 0.365 0.263 0.016

(100, 500)

0.00 0.019 0.019 0.031 0.025 0.001 0.009 0.014 0.018 0.014 0.000
0.01 1.000 0.849 1.000 1.000 0.779 1.000 0.866 1.000 1.000 0.805
0.05 1.000 0.812 0.999 0.999 0.731 1.000 0.807 1.000 1.000 0.734
0.20 0.336 0.674 0.840 0.705 0.149 0.324 0.642 0.827 0.675 0.133
0.50 0.087 0.280 0.367 0.256 0.013 0.072 0.268 0.340 0.245 0.014

(100, 1000)

0.00 0.023 0.010 0.023 0.018 0.001 0.016 0.018 0.026 0.021 0.000
0.01 1.000 0.852 1.000 1.000 0.784 1.000 0.834 1.000 1.000 0.774
0.05 0.997 0.822 1.000 0.999 0.745 0.999 0.842 0.999 0.996 0.751
0.20 0.221 0.658 0.799 0.651 0.081 0.219 0.668 0.806 0.652 0.081
0.50 0.059 0.294 0.351 0.255 0.014 0.060 0.270 0.331 0.230 0.007

Combination tests afford means of protection against improperly assumed sparsity. In

the most sparse setting, where the Maximum test is the most effective, we note that Fisher

and Cauchy combination tests have improved power over the Quadratic test and are as

powerful as the maximum-type test. While the Maximum test drastically reduces in power

as the signal becomes denser, in these cases, the combination tests do not suffer due to the

improved performance of the Quadratic tests. Thus, in the densest setting, we observe that

the power of these methods is extremely comparable to the Maximum test and even has a

higher power to the Quadratic test in sparse covariance settings. The Cauchy combination

test appears to be slightly more conservative than the Fisher combination test; though, also

boasts a somewhat tighter control over the type I error. The power differential between the

18



two methods is small and the Cauchy combination method is still greatly more powerful

than the maximum-type test in a dense signal setting. As expected, the Bonferroni method

has the lowest power as it is the most conservative with the most stringent control over the

type I error.

5 Real Data Analysis

We demonstrate the effectiveness of the combination testing framework through applica-

tion to a gut microbiome study carried out by Morgan et al. (2015). This study investigates

changes in host gene response linked to the development of inflammatory bowel disease based

on alterations in an individual’s gut microbiome composition. In this study, 16S rRNA is

sequenced and the resulting reads are clustered at a 97% similarity level to form the resulting

operational taxonomic units (OTUs), which are proxies for the underlying microbial taxa.

These OTU counts are inferred by sequencing 16S RNA and clustering the resulting reads

to serve as proxies for the underlying taxa. This procedure identified over 7,000 unique

bacterial taxa, though many were at extremely low abundance levels. As if common in mi-

crobiome analysis, these OTUs were then aggregated at the genera level to form 303 genera

counts. We focus on taxa of interest that had at least 10 total counts. Due to the heavy zero

inflation common in microbiome data, many potential taxa of interest have zero observed

counts, which need to be first omitted. This preliminary cleaning step yields p = 226 genera

of interest. From this, we are able to construct a series of binary tests of means from the

following set of associated metadata.

Below, we summarize the three metadata values of interest:

1. Antibiotic (A): Did the individuals take antibiotics (YES/NO)

2. Location (L): Location of Pouch vs Pre-pouch ileum (Pouch/PPI)

3. Class (C): Classification of familial adenomatous polyposis(FAP) vs non-FAP (FAP/nFAP)

Given these metadata values, we construct twelve different two-way interaction tests.

Note that we omit the tests for main effects as the signals for these main effects were relatively

strong, and therefore, all tests indicate a relevant signal. Instead, it is more interesting
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to compare situations where the Max test and Quadratic test disagree. The results are

summarized in Table 3.

Table 3: Comparisons of testing two-way interactions of metadata using various methods.

Two-way Interaction Tests
Test Name n1 n2 M Q BF F C

Fixing C at: nFAP, Testing: L 122 28 0 0 0 0 0
Fixing C at: nFAP, Testing: A 96 54 1 1 1 1 1
Fixing C at: FAP, Testing: L 74 31 0 0 0 0 0
Fixing C at: FAP, Testing: A 93 12 1 1 1 1 1
Fixing L at: PPI, Testing: C 122 74 1 1 1 1 1
Fixing L at: PPI, Testing: A 144 52 1 1 1 1 1

Fixing L at: Pouch, Testing: C 28 31 1 1 1 1 1
Fixing L at: Pouch, Testing: A 45 14 1 1 1 1 1

Fixing A at: NO, Testing: C 96 93 1 1 1 1 1
Fixing A at: NO, Testing: L 144 45 1 0 0 1 1

Fixing A at: YES, Testing: C 54 12 0 1 0 1 1
Fixing A at: YES, Testing: L 52 14 0 0 0 0 0

Note: The tests are constructed by fixing one metadata variable at a specific level, testing
a second, while averaging over the third metadata value. A value of 0 indicates that the

test fails to reject the null, while a value of 1 indicates the test rejects the null.

Of note is that in all cases where either the Max or the Quadratic test detects a signal,

both Cauchy and Fisher tests also detect a signal. There are two settings where they disagree.

The first is when the antibiotic status (A) is fixed to NO antibiotic regimen and the

location (L) is tested. The Maximum test identifies a signal while the Quadratic test does

not. This suggests that the underlying signal may be sparse as the Maximum test tends to

have higher power than the Quadratic test in a sparse setting. As noted by Morgan et al.

(2015), only a few microbial clades are differentially expressed when comparing the Pouch

location to PPI. While the authors note that the transcriptome may be greatly shifted

between locations, the difference between the microbiome in each location is small; thus, the

Maximum test is well capable of capturing this sparse signal. In this setting, both Fisher and

Cauchy’s methods agree with the Maximum test in capturing this sparse underlying signal.

The second is when the antibiotic status (A) is fixed to YES and the class status (C) is

tested. The Maximum test is significant while the Quadratic test is not. Morgan et al. (2015)

noted that after accounting for antibiotic use, FAP and non-FAP classification is driven by
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the Escherichia, Actinobacteria, and Sutterella abundance. However, the paper also notes

that generally higher levels of the Bacteroidetes phylum are linked to differences between the

classes. The Bacteroidetes phylum constitutes a large portion of the gut microbiome (Wexler,

2007), and Morgan et al. (2015) notes that broad changes in this phylum are linked to

developing the FAP class instead of the non-FAP class. Further, while antibiotics are known

to decrease microbial diversity (Dudek-Wicher et al., 2018), members of the Bacteroidetes

phylum are known to commonly carry some measure of antibiotic resistance. Therefore, it

is likely that many members of the Bacteroidetes phylum will remain active, continuing to

drive the distinction between FAP and non-FAP individuals. This larger range of microbiota

driving the FAP vs non-FAP classification suggests a dense underlying signal, thus showing

the higher power of the Quadratic test. By using the Fisher or Cauchy combination test, we

have the increased discovery power of the Quadratic test in capturing the dense underlying

signal. Improperly assuming the signal is sparse and applying the Maximum test would miss

this outcome.

6 Conclusion

We proposed a power-enhanced two-sample mean test for high-dimensional compositional

data. Fisher’s method (Fisher, 1925) and the Cauchy method (Liu and Xie, 2020) provide

a useful tool to drop restrictive signal assumptions. In doing so, we can leverage the power

of maximum-type tests under sparse signals and quadratic-type tests for dense signals to

improve the power in the compositional data analysis. Through novel theoretical derivation,

we have shown that the maximum-type equivalence test introduced by Cao et al. (2018) and

the quadratic-type hypothesis test introduced by Chen and Qin (2010) are asymptotically

independent, where the dimension can be on the nearly exponential order of the sample

size. We further develop a new Gaussian assumption result to prove the correct asymptotic

size and consistent asymptotic power of the proposed power-enhanced tests without requiring

the pseudo-independence structure. We validate the numerical properties through simulation

studies and demonstrate its real application to study the effects of microbiome dysbiosis on

host gene expression.
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