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Abstract

This paper introduces a novel multi-moment connectedness network approach for an-

alyzing the interconnectedness of green financial market. Focusing on the impact of

monetary policy shocks, our study reveals that connectedness within the green bond

and equity markets varies with different moments (returns, volatility, skewness, and

kurtosis) and changes significantly around Federal Open Market Committee (FOMC)

events. Static analysis shows a decrease in connectedness with higher moments, while

dynamic analysis highlights increased sensitivity to event-driven shocks. We find that

both tight and loose monetary policy shocks initially elevate connectedness within the

first six months. However, the effects of tight shocks gradually fade, whereas loose

shocks may reduce connectedness after one year. These results offer insight to policy-

makers in regulating sustainable economies and investment managers in strategizing

asset allocation and risk management, especially in environmentally focused markets.

Our study contributes to understanding the complex dynamics of the green financial

market in response to monetary policies, helping in decision-making for sustainable

economic development and financial stability.
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Highlights

• We propose a novel multi-moment connectedness network approach that integrates the in-

formation conveyed by the connectedness of different moments.

• We quantify the short- and long-term impacts of monetary policy shock on the multi-moment

connectedness within the green financial market.

• Static analysis shows that connectedness decreases with higher moments.

• Our dynamic analysis reveals significant variations in the projected total connectedness sur-

rounding the FOMC event.

• Higher moment connectedness might be more sensible under event-driven shocks.

• Tight and loose monetary policy shocks all increase the overall connectedness during the

first six months, the influence of tight monetary policy shock will disappear, and the loose

monetary policy shock tends to have an adverse effect.
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1 Introduction

The issue of climate warming has become a critical concern around the world (Lin and Zhao,

2023). Nations are progressively adopting measures to reduce emissions, thereby facilitating the

transition of their economies towards a low-carbon model. These initiatives aim to achieve inno-

vation, job creation, increased international influence, and the promotion of long-term sustainable

economic growth. Concurrently, environmentally-friendly financial instruments, including green

bonds and green equities, are increasingly attracting the interest of investors (Sun et al., 2019).

There is a significant interconnection between these green bonds and green assets, reflecting the

uncertainties present in the green financial market during the low-carbon transition process. Such

a connectedness provides valuable assistance in monitoring and mitigating the uncertainty or po-

tential risks associated with low carbon transformation (Su et al., 2022; Su and Lin, 2022; Lin and

Su, 2023).

Monetary policy shocks have long been a critical source of uncertainty in financial markets.

In recent years, a growing body of literature has focused and confirmed the significant impact of

monetary policy shocks on the fluctuation of the prices of financial assets (Lin and Xu, 2019; Li

et al., 2022; Sun et al., 2022). In particular, existing research has identified that monetary policy

shocks have a significant impact on connectedness within global or local financial markets (Zhou

et al., 2022; Raza et al., 2023; Chen et al., 2023). However, due to differences in investment types,

investment focus and investment objectives between the green financial market and the global or

local financial market, their responses to monetary policy shock may not necessarily be the same

(Lin and Li, 2023). Understanding the impact of monetary shocks on the green financial market

is critical for advancing environmentally sustainable investments, enhancing the effectiveness and

transparency of policies, increase investor confidence, and addressing global environmental and

economic challenges (Dafermos et al., 2018). Consequently, it is important and necessary to examine

the impact of monetary policy shocks on connectedness within the green financial market.

Existing research on connectedness within the green financial market typically estimates the

return connectedness or volatility connectedness of green bonds or green equities (Reboredo et al.,

2020; Reboredo and Ugolini, 2020; Mensi et al., 2022). Recent studies have also found that con-

nectedness of higher-order moments (skewness or kurtosis) can usually provide useful information

about the uncertainty in the green financial market (Dogan et al., 2022; Zhang et al., 2023; Hao and

Pham, 2023). However, the existing literature discusses the results of connectedness from different

moments separately, and there is no effective way to integrate the information conveyed by the con-

nectedness of different moments of green bonds or equities. To address this limitation, this paper

proposes a multi-moment connectedness network approach that aims to examine the uncertainty

in the green financial market from a broader perspective, utilizing a richer set of information.
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Moreover, as mentioned above, although the existing literature has examined the impact of

monetary policy shocks on global or local financial markets, there are few studies exploring the

effects of these shocks on the green financial market. The limited existing literature mainly employs

qualitative analysis methods and lacks adequate quantification of monetary policy shocks (Dafermos

et al., 2018; Desalegn et al., 2022). This paper employs the methodology developed by Jarociński

and Karadi (2020); Zheng et al. (2023a) to extract monetary policy shocks and examines their

impact on connectedness within the green finance market.

Building on the aforementioned discussions, the contributions of this paper are notably re-

flected in three aspects: research methodology, research perspective, and research findings. Firstly,

in terms of research methodology, this paper proposes a novel method for the construction and anal-

ysis of multi-moment connectedness networks. This method involves a general discussion of the

networks of connectedness in green bonds and green asset prices based on returns (first moment),

volatility (second moment), skewness (third moment) and kurtosis (fourth moment). Specifically,

we construct weights based on the information density of each layer of the network and then build a

projection network based on the weights and the connectedness networks of different moments. This

approach allows for the integration of information extracted from multi-moment networks, enabling

a comprehensive portrayal of the uncertainties or connectedness in the green finance market.

The second contribution of this paper lies in its unique research perspective. Specifically,

drawing on the work of Jarociński and Karadi (2020) and Zhou et al. (2022), we utilize the variations

around the Federal Reserve’s Federal Open Market Committee (FOMC) meetings in 3-month Fed

Funds Futures and the S&P 500 index to extract monetary policy shocks based on a Bayesian

Vector Autoregression (VAR) model. Further, we use local projection to explore the impact of

these monetary policy shocks on the multi-moment connectedness in the green finance market.

This approach provides both a quantitative tool and a novel research perspective to examine the

effects of monetary policy on the green finance market.

The third key contribution of this paper is the discovery of several important empirical in-

sights. In our static analysis of the multi-connectedness network, we observe a trend where the level

of connectedness decreases at higher moments. In terms of dynamic analysis, we note a substantial

shift in the projected total connectedness around the time of FOMC events. While higher moments

demonstrate lower connectedness, they appear to be more sensitive to event-driven shocks, offering

additional insights for risk identification. In our local projection analysis, we find that tight mone-

tary policy shocks lead to a significant increase in the green financial market’s interconnectedness

during the initial six months, followed by a gradual reduction in their impact. On the other hand,

loose monetary policy shocks also increase total connectedness over a similar six-month period, but

they may result in a decrease in connectedness after one year.
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Understanding the impact of monetary policy shocks on connectedness within the green finance

market is crucial for both policymakers and investment managers. For policymakers, recognizing

the short-, medium-, and long-term effects of monetary policy shocks on the connectedness of the

green finance market is vital for sustainable economic regulation. Especially in economies where

green finance is a significant component of the financial system, it is important to closely monitor

how monetary policy impacts the connectedness between green assets, as these can have wider

implications for economic stability and the transition towards a more sustainable economy. For

countries with a robust green finance market, policymakers should be particularly attentive to how

changes in monetary policy might influence these connectedness, in order to manage systemic risks

effectively. For investment managers, understanding the influence of monetary policy shocks on

green finance connectedness can aid in predicting market movements, allowing for more informed

asset allocation and risk management strategies. This knowledge can be especially valuable in

navigating the uncertainties of a market increasingly influenced by sustainability and environmental

considerations.

We organize the remaining content as follows: Section 2 provides a brief review of related

literature, Section 3 describes the data and provides some summary statistics, Section 4 introduces

the primary methodologies in this paper, Section 5 documents some interesting findings and Section

6 concludes the paper.

2 Literature review

The study of connectedness between financial assets has become a hot topic in the field of

financial market stability and risk measurement. Since the seminal paper of Diebold and Yilmaz

(2014), which introduced the concept of measuring inter-market connectedness within a vector au-

toregression model framework, a series of studies have made beneficial attempts around the topic of

financial market connectedness (Diebold and Yilmaz, 2015; Maghyereh et al., 2016; Yang and Zhou,

2017; Barigozzi and Hallin, 2017; Hale and Lopez, 2019; Baruńık et al., 2020; Ando et al., 2022;

Zheng and Ye, 2024). Among them, Diebold and Yilmaz (2015) investigate the volatility connected-

ness within and between U.S. and European financial institutions; Hale and Lopez (2019) estimate

the connectivity between banks around the world to monitor financial systemic risk; Baruńık et al.

(2020) measure the asymmetric connectedness of fears obtained from the implied variance of assets;

Ando et al. (2022) analyze the tail behavior of the connectedness between sovereign CDS spreads.

It is evident that the connectedness measurements serves as an effective tool for measuring un-

certainty in financial markets, as well as for assessing the spillover relationships between financial

assets.
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Moreover, existing research has made a series of beneficial attempts to measure and analyze

connectedness within the green finance market, particularly between green bonds or green equities.

Among these, some studies have focused on the discussion and analysis of the connectedness between

returns and volatility of green bonds or equities (Lundgren et al., 2018; Reboredo et al., 2020; Su

et al., 2022; Wang et al., 2023; Zheng et al., 2023a), while others have examined higher-moment

connectedness (Zhang et al., 2023) within the energy finance market. The findings indicate that

connectedness in the green finance market can effectively reflect the overall uncertainty of the market

and also provide insights into climate transition risks (Dai et al., 2021; Yang et al., 2023; Bouri et al.,

2023). However, the existing literature has not yet examined the characteristics of connectedness

in the green finance market from a comprehensive perspective, incorporating information from

multiple moments. In light of this, this paper employs multi-moment connectedness indices and

the construction of multi-moment connectedness networks to measure and analyze connectedness

in the green finance market from a more comprehensive, holistic, and generalized perspective.

The existing literature has examined the impact of monetary policy, especially that of the

United States, on connectedness in financial markets from various perspectives. For example, Yang

and Zhou (2017) investigate the impact of quantitative easing on the volatility connectedness of

financial assets across countries; Brunetti et al. (2019) studied the response of bank interconnect-

edness to ECB announcements and interventions; Zhou et al. (2022) examine how U.S. monetary

policy affects global financial markets’ connectedness; Chan et al. (2023) study the optimal mone-

tary policy respond to green bubbles. However, the aforementioned studies have not examined the

impact of monetary policy shocks on connectedness within the green finance market. Investigating

this issue holds important value for policy makers in devising robust low-carbon transition strate-

gies, as well as for investors in making risk assessments amid macroeconomic fluctuations. This

study supplements the existing literature with such an important empirical perspective.

3 Data and motivating evidence

3.1 Green financial market

Our main dataset consists of several indices that represent the financial performance of global

green finance markets in terms of green bonds and green equity markets. For the green bond

market, we use three sub-indices of Bloomberg MSCI Global Green Bond Index, namely, Gov-

Related (GBIG), Corporate (GBIC) and Financial (GBIF). For the green equity market, we use

S&P Kensho Cleantech Index (KCTI), S&P Kensho Clean Energy Index (KCEI) and S&P Global

1200 ESG Index (ESGI). Our analysis also includes the Bloomberg Barclays Global Treasury Bond
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Table 1. Summary statistics

Mean Std. Max Min Skew. Kurt. ADF test JB test

GBIG -0.01 0.42 2.35 -2.68 -0.18 3.64 -43.79*** 1282.2***

GBIC 0.00 0.38 2.30 -3.56 -0.54 6.78 -30.45*** 4511.21***

GBIF 0.00 0.38 2.25 -3.34 -0.39 5.99 -30.31*** 3495.9***

TBI -0.01 0.38 2.31 -2.07 0.05 3.22 -43.53*** 991.49***

CBI 0.00 0.34 2.25 -3.66 -0.98 11.19 -23.6*** 12362.17***

KCTI 0.04 2.36 13.43 -15.61 -0.21 4.60 -11.08*** 2039.32***

KCEI 0.00 1.40 9.88 -12.71 -0.81 11.93 -12.01*** 13862.03***

ESGI 0.02 0.96 8.21 -10.22 -1.05 16.69 -12.58*** 27080.43***

MEI 0.00 1.69 15.67 -21.23 -1.18 21.79 -14.25*** 45953.38***

Index (TBI) and Bloomberg Barclays Global Corporate Bond Index (CBI) to capture global bond

market performance, along with the MSCI Energy Sector Index (MEI) to monitor global energy

equity market conditions (Pham, 2021). We use the daily indicators from January 1, 2015, to

November 1, 2023, obtained from Bloomberg Terminal.

For each series, we first calculate the daily log returns by taking the log difference of its

daily closing prices ri,t = log(Pi,t−Pi,t−1)×100, then use ri,t to extract the time-varying volatility,

skewness, and kurtosis, as will be shown later. Table 1 reports the summary statistics for the return

series1. We observe that most series are stationary under ADF tests and exhibit characteristics of

left skewness and leptokurtosis. In particular, bond indices generally show lower kurtosis, while

government bond-related indices (GBIG and TBI) exhibit a weaker left skewness, with TBI showing

a slight right skewness (0.05).

Figure 1 plots the return series. As we can see, the return of all indices experienced a significant

bottom and drastic fluctuations in March 2020. Since then, the green equity returns (KCTI, KCEI,

ESGI) have been consistently highly volatile, while the green bond returns (GBIG, GBIC, GBIF)

show enhanced volatility since 2022. This may be related to the restart of quantitative easing (QE)

by the Fed in 2023 under the outbreak of COVID-19, as well as the start of interest rate hikes in

2022. Thus, it provides basic intuition for us to explore the impact of U.S. monetary policy on the

green financial markets.

3.2 Monetary Policy

To capture U.S. monetary policy, following Jarociński and Karadi (2020), we extract monetary

policy shocks using high-frequency co-movements of interest rates and stock prices around FOMC

1Appendix Table A.1 - A.3 provide summary statistics of the extracted daily variance, skewness, and
kurtosis series.
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Figure 1. Return series

announcements. This involves two high-frequency surprise variables, including three-month Fed

Funds Futures and S&P 500 Index, both sourced from Barchart.com. The procedure for data

processing is outlined as follows: Initially, compile the schedule of Federal Open Market Committee

(FOMC) announcements. Subsequently, compute the price fluctuation within a 30-minute interval,

spanning from ten minutes prior to twenty minutes following the announcement, and categorize

this as the measure of surprise. In instances where a month does not encompass an FOMC meeting,

the surprise variable should be designated as zero.

In addition, five low-frequency macroeconomic variables need to be controlled, including the

1-year treasury yield, S&P 500 index, U.S. CPI, U.S. industrial production, and the excess bond

premium (Gilchrist and Zakraǰsek, 2012; Jarociński and Karadi, 2020; Zhou et al., 2022). The ablve

data come from the U.S. Department of the Treasury website, the Federal Reserve website, and

Bloomberg Terminal. Since the available S&P 500 Index intra-day data starts from April 2009, the

sample period for measuring U.S. monetary policy spans from April 2009 to October 2023. This

ensures the effectiveness of the estimation of the SVAR model and the accuracy of the identified

monetary policy shocks.
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4 Methodology

4.1 Estimating time-varying volatility, skewness and kurtosis

Our study initially requires obtaining estimates of the conditional volatility, skewness, and

kurtosis of the daily return time series. To do this, we adopt the Gaussian dynamic adaptive

mixture models (Gaussian-DAMMs, G-DAMMs) approach proposed by Catania (2021). Let {rt}
denote the return time series of interest, Ft−1 denote a collection of past information, and θt denotes

some potentially time-varying parameters. Let p(yt|Ft−1,θt) be the conditional distribution of rt,

the G-DAMM method assumes p(·) to be a finite mixture of J real-valued conditional normal

distributions

p(yt|Ft−1,θt) =

J∑
j=1

wj,tϕj

(
yt|µj,t, σ

2
j,t

)
, j = 1, . . . , J, (1)

where wj,t ∈ (0, 1),
∑J

j=1wj,t = 1, t = 1, . . . , T are time-varying weights, ϕj(·) is univariate

normal distribution with mean uj,t and variance σ2
j,t, and is called the jth mixture component of

p(·), and θt =
(
θ′
j,t, wj,t

)′
where θj,t = (uj,t, σj,t) for j = 1, . . . , J .

Catania (2021) uses the score-driven (SD) method to specify the time evolution path of the

weight wj,ts and model parameters θj,ts. To do so, consider a (J − 1)-dimensional vector w̃t such

that Λw(w̃t) = wt. Here, wt = (w1,t, . . . , wJ,t)
′, and Λw : RJ−1 → SJ , where SJ is the standard

J-dimensional unit simplex. Similarly, let θ̃j,t ∈ Rdj be a dj-dimensional vector such that for each

time point t, Λj(θ̃j,t) = θj,t. Here, Λ
j : Rdj → Ωj , j = 1, . . . , J . Combining these, we can define:

θ̃t =
(
ω̃′, θ̃

′
j,t, j = 1, . . . , J

)′
, Λ(θ̃t) = θt,

Λ : RJ−1 × Rd1 × · · · × RdJ → SJ ×Ω1 × · · · ×ΩJ

Based on θ̃t, the SD update process is given as follows:

θ̃t+1 = κ+AΞt∇̃(yt|θ̃t) +Bθ̃t (2)

∇̃(yt|Ft−1, θ̃t) =
∂ ln p(yt|θ̃)

∂θ̃

∣∣∣∣∣
θ̃=θ̃t

= J (θ̃t)
′∇(yt|θt)

Ξt = Et−1

[
∇̃(yt|θ̃t)∇̃(yt|θ̃t)

′
]−δ

, δ ∈
{
0,

1

2
, 1

}
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Here, J (θ̃t) is the Jacobian matrix of the mapping function Λ, κ is a L-dimensional vector

of parameters to be estimated, with L = (J − 1 +
∑J

j=1 dj), and A and B are L× L dimensional

diagonal matrices of dimensions L × L of parameters to estimate. To ensure the stationarity

conditions of the SD update process, all elements of A must be greater than 0, and the absolute

values of all elements in B must be less than 1. Since the computation of Ξ requires the Fisher

information matrix of the model’s conditional log-likelihood with respect to θ̃t, which often does not

have a closed-form solution. Following the approach of Bernardi and Catania (2019), we consider

a block-diagonal structure for Ξ, and decompose equation 2 in J + 1 different SD update forms:

w̃t+1 = κw +AwΞw
t J (w̃t)

′∇(yt|wt) +Bww̃t,

θ̃j,t+1 = κj +AjΞj
tJ (θ̃j,t)

′∇(yt|θj,t) +Bj θ̃j,t, j = 1, . . . , J,
(3)

where κw ∈ RJ−1, Aw,Bw ∈ R(J−1)×(J−1), and κj ∈ Rdj , Aj ,Bj ∈ Rdj×dj , j = 1, . . . , J. By

adopting this block-diagonal structure, the estimation of the parameters in the model becomes

simpler, and the computational burden is reduced.

The DAMM method has three advantages: First, the mixed distribution can fit distributions

of various shapes, allowing us not to assume any specific distribution for the return series, making

the model robust to some extent against misspecifications in distribution. Second, the time-varying

weights wj,t and parameters θt of the mixture components allow us to estimate the time-varying

distribution at each point in time, leading to estimates of time-varying volatility, skewness, and

kurtosis. Finally, the DAMM method utilizes a score-driven process setting to update time-varying

parameters, providing the model’s likelihood with a closed-form solution. This allows us to use

maximum likelihood estimation to estimate model parameters, resulting in efficient and stable

estimation results.

According to Catania (2021), we let Ξw
t = I and

Ξj
t =

[
J j
(
θ̃j,t

)′
Ipj

(θj,t)J j
(
θ̃j,t

)]−1/2

,

then the model exhibits the most stable fitting performance.

Next, we discuss the setting of Λw and Λj . For the mixture of normal specification in this

paper, we simply let θ̃j,t = θj,t, and let

Λw :=

{
wj,t = λ[0,bj,t](w̃j,t), j = 1, . . . , J − 1

wJ,t = 1−
∑J−1

b=1 wb,t
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where bj,t = bj−1,t − wj−1,t and b1,t = 1. λ[U,L] denotes the modified logistic function, satisfying

λ[L,U ](x) = L+ (U−L)
1+exp(−x) . Based on the settings of Λw(·) and λ[L,U ](·), the (j, b)-th element of the

J × (J − 1) Jacobian matrix Jw(·) takes the following form:

Jw(w̃t)(j,b) =



bj,t exp(−w̃j,t)

(1+exp(−w̃j,t))
2 , if b = j

−
∑J−1

k=1 Jw(w̃t)(k,b)

1+exp(−w̃j,t)
, if b < j and j ̸= J

−
∑J−1

k=1 J
w(w̃t)(k,b), if j = J

0, if b > j

After implementing the maximum likelihood estimation (MLE) approach to obtain ŵj,t, ûj,t

and σ̂j,t, we can calculate the time-varying conditional variance (Vol), skewness (Skew), and kurtosis

(Kurt) by

σ̂t = V̂olt =

J∑
j=1

wj,t

(
σ̂2
j,t + µ̂2

j,t

)
, (4)

Ŝkewt =
1

σ̂2
t

J∑
j=1

wj,tµ̂j

(
3σ̂2

j,t + µ̂2
j

)
, (5)

K̂urtt =
1

σ̂4
t

J∑
j=1

wj,t

(
µ̂4
j + 6µ̂j σ̂

2
j,t + 3σ̂4

j,t

)
− 3. (6)

4.2 TVP-VAR approach and time-varying connectedness measure-

ments

Let yt = (y1,t, . . . , yN,t)
′, where yt is a N × 1 vector of observations that represents the time-

varying return, volatility, skewness, or kurtosis. We first construct a time-varying parameter vector

autoregressive (TVP-VAR) model:

yt = ct +B1tyt−1 + . . .+Bptyt−p + εt, εt ∼ N (0,Σt), (7)

where ct denotes a N×1 vector of intercept, Bk,t, k = 1, . . . , p denotes N×N matrix of time-varying

autoregressive coefficients, εt are N × 1 vector of random disturbances that follows multivariate

Gaussian distribution with mean 0 and time-varying covariance matrix Σt. Given the model in (7),

by some linear transformations and rearrangements, we can obtain the following contemporaneous-
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form state space representation:

yt = Ztβt + εt, εt ∼ N(0,Σt),

βt = βt−1 + vt, vt ∼ N(0,Qt),

where β = vec([ct,B1t, . . . ,Bpt]
′) and Zt = IN ⊗ [1′,y′

t−1, . . . ,y
′
t−p]

′. Following the specification

of Koop and Korobilis (2013), we assume that β follows a random walk process, which can not

only capture smooth structural changes, but also identify sudden jumps. Random errors vt, also

known as “state equation errors”, are assumed to follow a multivariate Gaussian distribution with

mean 0 and time-varying covariance matrix Qt. We follow Koop and Korobilis (2013) to estimate

the TVP-VAR model by introducing a forgetting factor into the Kalman filter. Detailed estimation

procedures are discussed in the appendix D. We follow the recommendation of Akyildirim et al.

(2022) and Zheng et al. (2023b) to set λ = κ = 0.99, and use BIC to determine the lag order of the

TVP-VAR model.

Given the estimates of ct and Blt for l = 1, . . . , p, we follow Koop et al. (1996) and Diebold

and Yilmaz (2014), and calculate jth variable’s attribute to ith’s H step ahead generalized forecast

error variance by:

θij,t(H) =
σ−1
jj,t

∑H−1
h=0 (e

′
iΨh,tΣtej)

2∑H−1
h=0 (e

′
iΨh,tΣtΨ

′
h,tei)

,

where σjj,t is the jth diagonal element of Σt. We set H = 12, which provides a sufficiently long

forecast horizon. Notice that the sum of θgij,t(H) given i may not be equal to one; we normalize

it and obtain dij,t(H) = θij,t(H)/
∑N

k=1 θik,t(H). The dij,t(H) represent the time-varying pairwise

directional connectedness from variable j to i. Based on dij,t(H), one can calculate the time-varying

net pairwise directional connectedness (dNet
ij,t (H)) and the time-varying total pairwise directional

connectedness (dTotal
ij,t ) by:

dNet
ij,t (H) = dij,t(H)− dji,t(H), dTotal

ij,t (H) = dij,t(H) + dij,t(H). (8)

Moreover, we can sum up individual connectedness and obtain some aggregated connectedness

measurements. The time-varying total connectedness index (Ct(H)), which measure the degree of
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connectedness of the whole system, can be calculated by:

Ct(H) =
1

N

N∑
i,j=1,i ̸=j

dij,t(H)× 100. (9)

The time-varying To others connectedness index (C•j,t(H)) that captures the directional con-

nectedness from variable j to other variables, and the time-varying From others connectedness

index (Ci•,t(H)) that captures the directional connectedness from other variables to variable i, can

be calculated by

C•j,t(H) =
1

N

N∑
i=1

dij,t(H)× 100, Ci•,t(H) =
1

N

N∑
j=1

dij,t(H)× 100 (10)

Similarly, the aggregated time-varying Net connectedness index (CNet
i,t ) and the time-varying

Total connectedness index (CTotal
i,t ) of the variable i can be calculated by:

CNet
i,t (H) = C•i,t(H)− Ci•,t(H), CTotal

i,t (H) = C•i,t(H) + Ci•,t(H) (11)

4.3 Constructing multi-moment connectedness network

As we have mentioned before. Different to the existing literature, which analyzes individ-

ual connectedness networks of return (first moment), volatility (second moment), skewness (third

moment) and kurtosis (forth moment), respectively. This section proposes a multi-moment con-

nectedness network modeling approach, which simultaneously considers the connectedness networks

of returns, volatility, skewness, and kurtosis. This allows us to examine the connectedness of the

green financial market from a global to local perspective.

In this paper, we consider four different layers of the connectedness network, including the

return layer, volatility layer, skewness layer, and kurtosis layer. Specifically, the multi-moment

connectedness network encompasses both within-layer and cross-layer relationships. The within-

layer relationships are captured by the nodes and edges of each network layer, according to the

seminar work of Diebold and Yilmaz (2014), we specify them as follows:

(1) Node name and node color.

We name the nodes in each layer based on the individual variable. For example, the node

“EGCI” in different layers denotes different moments of the S&P Global 1200 ESG Index (ESGI).

The color of the node denotes the category to which the variable belongs. The green nodes represent
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the variables belonging to the green equity market, while the red nodes indicate the variables

associated with the green bond market.

(2) Edge and edge thickness.

We consider the total pairwise connectedness index (dTotal
ij,l ) as the edges between the variables

in each layer l, l = 1, . . . , L. Note that here we ignore the subscript t because in the empirical

study we examine not only the networks at each time point, but also the average network across

all time points. As we have shown in (8), dTotal
ij,l measures the total level of uncertainty transmitted

between variables i and j in each layer. The thickness of the edge represents the degree of dTotal
ij,l ,

where a thicker edge indicates a greater dTotal
ij,l between the variables i and j.

For cross-layer relationships, we project the four layers into one artificially synthesized layer,

called the projection layer. The projection layer network effectively assimilates the information

present in the return, volatility, skewness, and kurtosis connectedness networks. This enables a

comprehensive measurement of interconnectedness within the green finance market, taking into

account the relationships between various moments of green bonds and green equities.

(3) Cross-layer projection

To extract information from each layer of the network and project it onto a new layer, it is

necessary to determine the weights of each layer. For each layer Ll, l = 1, . . . , L, we first calculate

its network density dl =
∑

i d
Total
ij,l , which reflects the degree of connectivity between nodes in the

network and serves as a measure of the information density. Based on dl, we can calculate the

weights of each layer by wl = dl/
∑

l dl. The edges in the projection layer can then be calculated

by dTotal
ij,P =

∑
l wld

Total
ij,l .

Note that based on the weight dl of each layer, we can also calculate a projected connectedness

measurement according to (8)-(11). This approach allows us to derive indices for measuring the

interconnectedness of financial markets at the multi-moment level.

(3) Visualization and layout.

We use the networkx package in Python 3.8.8 to visualize the multi-moment network. For

the layout of the network, we have adopted a spherical network layout and positioned variables of

different categories on two sides of the network. Such an arrangement allows for a clear observation

of the strength of connectedness both within the same variable category and between different

variable categories.

4.4 Evaluation of the monetary policy shock

We use the aforementioned two series, the 30 minute change in three-month fed fund future

prices and the S&P 500 index around the FOMC meeting to evaluate the Fed’s monetary policy.
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Figure 2. U.S. monetary policy and central bank information shocks

The basic idea is to extract monetary shocks from the monetary surprise based on a Bayesian vector

autoregressive model. Following Jarociński and Karadi (2020) and Zhou et al. (2022), the model

takes the form:

(
mt

yt

)
=

p∑
i=1

(
0 0

Bi
1 Bi

2

)(
mt−i

yt−i

)
+

(
0

C

)
+

(
umt

uyt

)
,

(
umt

uyt

)
∼ N (0,Σ), (12)

where mt contains the monthly aggregated changes on the fed fund future rate and S&P 500 index

over the 30 minutes before and after each FOMC meeting. yt includes 1-year government bond

yield, S&P 500 index, CPI, excess bond premium, and industrial production index.

The monetary shock and the information shock are identified by sign restrictions. The basic

belief is that the first shock (monetary policy shock) and the second shock (information shock)

generate a different direction of comovement. The sign restriction is achieved by rotating the first

2× 2 block matrix C, where C denotes the Cholesky decomposition of Σ. Then, given the scaled

structural shocks, the changes on the fed fund future rate St can be decomposed by

St = SMP
t + SIF

t ,

where SMP
t denotes the monetary policy shock. When SMP

t is positive,it signifies a tightening of

monetary policy, while a negative SMP
t indicates an easing of monetary policy. Figure 2 presents
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the estimated results. It can be seen that during March 2020, when the Fed restarted quantitative

easing, there was a significant negative monetary policy shock, which corresponds to notable changes

in connectedness within the green financial market (as shown in Figure 5(a)). These findings

potentially verify our assumption that U.S. monetary policy can increase global green financial

market connectedness.

5 Empirical results

In this section we provide a static and dynamic analysis of the multi-moment connectedness

network in the green finance market, and then examine the impact of U.S. monetary policy shocks

on the multi-moment connectedness network.

5.1 Static sample analysis

To provide a comprehensive evaluation of multi-moment connectedness within the green fi-

nancial market, Figure 3 illustrates the aggregated static multi-layer connectedness network, aver-

aged across the entire sample. This analysis specifically encompasses the first through the fourth

moments, aligning respectively with the layers of return, volatility, skewness, and kurtosis. Addi-

tionally, the density of each network layer is quantitatively assessed and assigned as weights. This

methodology enables the systematic projection of each moment’s information onto the foundational

projection layer.

Overall, across various layers of the connectedness network, including the projection layer,

we observe a stronger connectedness within the market, covering both the green bond and green

equity sectors. Figure 3 illustrates this, with nodes of similar colors being linked by thicker lines,

indicating stronger connectedness. Upon examining the heterogeneity between the layers, it is clear

that the connectedness within each layer becomes less dense as we move from the return layer to the

kurtosis layer. In the green equity market (green nodes), the level of connectedness decreases with

higher moments, showing a significant connection only between ESGI and MEI in the skewness

and kurtosis layers. Similarly, the green bond market (red nodes) displays a decreasing trend in

connectedness as the moment increases. However, it still maintains a relatively strong level of

connectedness overall, particularly among GBIG, GBIC, and GBIF.

Figure 4 illustrates the relative importance of the nodes in each layer. We examine two

measures of node importance within the multi-moment network: the weighted degree (Degree)

corresponds to the aggregated total connectedness (CTotal
i,t (H)) in (11), and the net weighted degree

(Net Degree) corresponds to the aggregated net connectedness (CNet
i,t (H)) in (11). The horizontal

15



Figure 3. Static multi-moment connectedness network
Notes: The top four layers are connectedness networks of the first four moments. The bottom layer is

the projection connectedness network. In each layer, red nodes represent bond market indices and blue
nodes represent stock market indices. Edges denote the pairwise total connectedness between the indices,
with thicker edges indicating stronger connectedness.
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(a) Return layer (b) Volatility layer

(c) Skewness layer (d) Kurtosis layer

Figure 4. Static multi-layer degree and centrality
Notes: In each layer, the vertical dashed line represents the average weighted degree of nodes. Node

size represents bridge centrality. Larger nodes indicate higher systemic importance within the layer.

axis in Figure 4 represents the weighted degree, the vertical axis represents net weighted degree,

and the vertical dashed line represents the average weighted degree of the layer. In addition, the

node size signifies bridge centrality (Valente and Fujimoto, 2010; Wu et al., 2022), which is used to

calculate the change in network cohesion caused by deleting edges to a given node.

From the within-layer perspective, as shown in Figure 4, the nodes related to green bonds

(nodes in red) exhibit relatively high “Degree”, mostly positioned to the right of the average (dashed

line). Moreover, their overall “Net Degree” is positive, placing them in the role of risk contributors

in each layer. The green equity nodes (nodes in green), in contrast, display lower “Degree” and

negative “Net Degree”, acting as risk receivers. Additionally, despite the lower “Degree” of the

green equity nodes, the relatively large node sizes of ESGI and KCEI indicate their high bridging

centrality and a relatively significant systemic importance in the network, potentially serving as
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Table 2. Static pairwise connectedness table of the projection layer

GBIG GBIC GBIF TBI CBI KCTI KCEI ESGI MEI From others

GBIG 24.66 22.17 18.46 14.29 12.42 1.97 2.32 1.93 1.79 75.34

GBIC 21.69 25.14 18.79 13.07 13.20 1.90 2.30 2.17 1.73 74.86

GBIF 19.80 20.46 27.22 12.37 10.98 2.23 2.52 2.61 1.81 72.78

TBI 16.60 16.07 12.94 32.92 12.42 2.30 2.44 2.58 1.73 67.08

CBI 14.03 15.67 11.37 13.01 36.52 2.08 2.64 2.50 2.17 63.48

KCTI 2.47 2.74 2.65 2.90 2.75 55.36 12.17 11.73 7.24 44.64

KCEI 2.88 3.03 2.70 3.11 3.60 12.02 53.93 11.19 7.56 46.07

ESGI 3.30 3.78 3.70 3.40 3.37 9.72 9.99 49.97 12.78 50.03

MEI 2.80 3.21 2.80 3.16 2.94 7.52 8.75 14.81 54.02 45.98

To others 83.57 87.12 73.40 65.31 61.67 39.73 43.12 49.52 36.81 60.03

Net 8.23 12.26 0.62 -1.77 -1.81 -4.91 -2.94 -0.51 -9.17 –

the linkages between the green equity and green bond markets. This association can be further

validated in the subsequent pairwise connectedness table (Table 2).

From the cross-layer perspective, we find that from the return layer in Figure 4(a) to the

kurtosis layer in Figure 4(d), as the moment order increases, the dashed line (the average “Degree”)

gradually shifts to the left. This suggests that the overall connectedness within layer gradually

decreases, which is consistent with the findings in Figure 3. Moreover, the distribution of nodes in

“Degree” (horizontal axis) and bridge centrality (node size) also tends to be dispersed, indicating

that risk tends to cluster towards a few nodes in high-order moment networks. For example, the

degree range of the return layer in Figure 4(a) (0.5-0.9) is narrower than that of the kurtosis layer

in Figure 4(d) (0.2-0.8), and the GBIC with the largest node size in Figure 4(a) is smaller than the

GBIF in Figure 4(d).

Table 2 shows the pairwise-directional connectedness table of the projection layer2. In the

pairwise connectedness table, the sum of columns represents the connectedness from the specific

node to others (C•j(H)). The sum of rows indicates the received connectedness from other nodes

(Ci•(H)). Additionally, the difference between “From others” and “To others” is reflected as “Net”

(CNet
i (H)) in the last row, corresponding to the Net Degree in Figure 4.

We summarize several important findings as follows: First, the total connectedness of the

projection layer reaches 60.03%, indicating the presence of interconnectedness within the multi-

moment network of the green financial market. Second, the green bonds (GBIC, GBIG and GBIF)

exhibit stronger outflows (“To others”) and act as net contributors (“Net”), contrasting with the

2The detailed connectedness table of the return, volatility, skewness, and kurtosis layers can be found in
the Appendix Table B.8 - B.11.
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green equities (KCTI, KCEI and ESGI), which act as receivers (“From others”). This aligns with

the findings of Figure 3 and Figure 4. Third, focusing on the bond market, as shown in the

upper left block of Table 2, the green bonds (GBIC, GBIG, and GBIF) remain contributors, while

the benchmark bonds (TBI and CBI) exhibit relatively weaker spillover effects. Among them, TBI

demonstrates a stronger spillover effect on GBIG, both of which consist of government bonds; while

CBI exhibits a stronger spillover effect on GBIC, both belonging to corporate bonds. Similarly,

for the within-market connectedness, as shown in the lower right block of Table 2, the benchmark

index MEI acts as a receiver, with ESGI showing the strongest spillover effect (from ESGI to MEI,

14.81%). Meanwhile, there is a strong connectedness between KCTI and KCEI. Finally, for the

cross-market connectedness, ESGI and KCEI show the strongest connection with the bond market,

as indicated by the bold elements in the lower left and upper right blocks of Table 2. Within

the bond market, the benchmark indices TBI and CBI demonstrate relatively stronger connections

with the equity market3.

5.2 Dynamic sample analysis

Now we move to the dynamic feature of the multi-moment green finance market connectedness,

with a specific focus on its relationship with the U.S. monetary policy. Figure 5(a) illustrates

the time-varying total connectedness index (Ct(H)) of the projection layer, annotated with all

dates of FOMC interest rate announcements during the sample period from January 1st, 2015 to

November 1st, 2023. The red part corresponds to an increase in the federal funds rate, the blue

part corresponds to a cut, and the gray part represents the unchanged federal funds rate.

It can be observed from Figure 5(a) that during some of the FOMC announcements, such as

Event 1 to Event 10 as labeled in the figure, the total connectedness index changes significantly.

For example, following the outbreak of the COVID-19 pandemic, the FOMC held two unscheduled

meetings on March 3rd and March 15th, 2020 (Event 5 and Event 6), and lowered the target range

for the federal funds rate to near-zero levels. At the same time, the total connectedness index

surged, reaching its peak within the sample period at 84.44% on March 16th. Since March 2022,

the Fed commenced a new round of interest rate hikes. Notably, between June 16th and November

3rd of the same year, the FOMC consecutively rtaised rates four imes, each time by 75 basis

points. Consequently, the total connectedness index exhibited a considerable increase following the

announcements of these two rate decisions (Event 8 and Event 10). Furthermore, some FOMC

meetings have decided not to alter interest rate targets, but there is still a considerable increase

in the total connectedness index, as observed in Event 1 and Event 7. This phenomenon might

3The detailed local connectedness table of the projection layer can be found in the Appendix Table B.4
- B.7.
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be associated with market expectations regarding the Fed’s monetary policy. Unchanged interest

rates could also act as a shock, impacting the interaction in green finance markets.

Moreover, Figure 5(b) shows the evolution in the total connectedness index in the returns,

volatility, skewness, and kurtosis layers, respectively. On the one hand, there is a similarity in

the trends among the total connectedness across different layers. For instance, during Event 1,

Event 2, Event 5, and Event 6, there is a noticeable increase in connectedness across all layers. On

the other hand, there are also some heterogeneous features. Overall, from the return layer to the

kurtosis layer, the total connectedness gradually decreases, consistent with the conclusions drawn

from static analysis. However, there are reversals observed after certain FOMC announcements.

For example, during Event 1, Event 6, Event 7, Event 9, and Event 10, the volatility layer surpasses

the return layer; during Event 4, the skewness layer surpasses the volatility layer; and during Event

7, the kurtosis layer surpasses the skewness layer. This suggests that although higher moments

have lower connectedness, their sensitivity might be higher under event-driven shocks, providing

additional information for risk identification.

Given the importance of event-driven shocks, we turn to nodes within the projection layer,

and identify the transmission roles played by each node in response to event shocks. Figure 6

illustrates the time-varying net connectedness index for each node (CTotal
i,t (H)) in the projection

layer, where the red color indicates a positive net connectedness, while blue represents a negative net

connectedness, with darker colors signifying larger absolute values of net connectedness. Overall,

the green bond market is the contributor or transmitter of connectedness (GBIG, GBIC, GBIF

appear in red), while the green equity is the receiver (KCTI, KCEI, ESGI appear in blue). Especially

in early 2018 (Event 1) and since mid-2021 (Event 7, Event 8, Event 9, and Event 10), the net

connectedness of the green bond has increased significantly, as shown in Figure 6 by the deepening

red color of GBIG, GBIC, and GBIF. However, during the quantitative easing policy (Event 5 and

Event 6) under the COVID-19 pandemic, there is a shift in the transmission roles. KCTI, KCEI,

and ESGI shift from blue to red, implying that the green equity market becomes a net contributor

of connectedness.

5.3 Effects of the monetary policies

The preceding analysis explored the time-varying characteristics of multi-moment connected-

ness in the green finance market across different FOMC meetings. In this section, leveraging the

extracted exogenous U.S. monetary policy shocks by the method described in Section 4.4, we apply

local projection techniques proposed by Jordà (2005) to further examine the significance and dura-

tion of the impact of monetary policy shocks on multi-moment connectedness of the green financial
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(a) Projection layer

(b) Multi-moment layers

Figure 5. Time-varying total connectedness of the projection layer
Notes: (1) The vertical dashed lines denote the dates of each Federal Open Market Committee’s

(FOMC) announcements of interest rate decisions, with red indicating rate hikes, blue indicating rate cuts,
and grey indicating that the federal funds rate remains unchanged. (2) Among them, we highlight with
bold dashed lines the dates when the total spillover index shows significant changes, namely Event 1:
2018.02.01; Event 2: 2019.08.01; Event 3: 2019.09.19; Event 4: 2019.10.31; Event 5: 2020.03.03; Event 6:
2020.03.15; Event 7: 2021.06.17; Event 8: 2022.06.16; Event 9: 2022.07.28; Event 10: 2022.11.03.
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Figure 6. Time-varying net connectedness of the projection layer
Notes: (1) Red represents net connectedness outflow, while blue represents net connectedness inflow,

the darker the color the stronger the net connectedness. (2) The green vertical dashed lines mark the
FOMC announcements date corresponding to significant changes in Figure 5.

market. At horizon h = 0, 1, 2, · · · , 18, the impulse response of the connectedness index Ct4 to the

monetary policy shock SMP
t is reflected in coefficients βh in the following regression:

Ct+h = αh
0 + αh

1Ct−1 + βh
1S

MP
t dHike + βh

2S
MP
t dUnch + βh

3S
MP
t dCut + γh1Z

CPI
t + γh2Z

IP
t + ϵht (13)

where dHike, dUnch, and dCut are three dummy variables representing Fed rate hike, Fed rate

unchanged, and Fed rate cut periods5. Therefore, the coefficient for the interaction term between

the dummy variable and the monetary policy shock βh
1 , β

h
2 , and βh

3 can respectively reflect the

impulse responses under different periods of monetary policy shocks in the U.S.. For example, if

the coefficient βh
1 is significantly greater than 0, it means that during periods of Fed rate hike, the

tight monetary policy shock increased the connectedness on the horizon h. Conversely, if βh
3 is

significantly less than 0, it indicates that during periods of Fed rate cut, the loose monetary policy

shock heightened connectedness.

Regarding Ct, we consider the total connectedness index for the projection layer and multi-

layer (return, volatility, skewness, kurtosis), as well as the directional net connectedness index of

4Here we ignore the forecast horizon H of the generalized variance decomposition for notation simplicity
and to avoid confusion with local projection’s prediction periods.

5We identify periods of Fed rate hike, Fed rate unchanged, and Fed rate cut based on FOMC target
rate announcements. In addition, if an unchanged target rate is announced at an adjacent FOMC meeting,
but we capture a monetary policy shock in the same direction as the current rate announcement, the month
of the adjacent FOMC is set to 1 in the corresponding dummy variable. This setup allows for a better
incorporation of market expectations regarding monetary policy.
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the projection layer, in line with Section 5.2. In addition, ZCPI
t and ZIP

t are control variables,

which include U.S. CPI and industrial production (IP) index6.

(a) Fed rate hike period (b) Fed rate unchange period (c) Fed rate cut period

Figure 7. Impulse response of the projection layer total connectedness
Notes: The black line is the impulse response of the the projection layer total connectedness index to

monetary policy shocks in a given period. The dark blue band represents the 68% confidence interval,
while the light blue band represents the 90% confidence interval.

Figure 7 shows the response of the total connectedness of the projection layer to different

types of monetary policy shocks across different periods, where the black solid line represents the

estimated coefficients, and the dark blue area and the light blue area represent the 68% and 90%

confidence interval , respectively. Overall, there exists significant heterogeneity in the effects of

different types of monetary policy shocks (Fed rate hike, Fed rate unchanged, and Fed rate cut)

on the total connectedness index of the projection layer. During the periods of Fed rate hikes

and rate cuts, represented in Figures 7(a) and (c), policy shocks have a significant effect on total

connectedness. However, in Figure 7(c), the effect is insignificant during periods of unchanged Fed

rates.

Specifically, during the period of Fed rate hikes (Figure 7(a)), the impact of the monetary

policy shock is positive and significant for the fifth and sixth months, then decreasing to zero. This

indicates that tight monetary policy shocks significantly elevate the overall interconnectedness of

the green financial market within the first six months, with their impact gradually fading. On the

contrary, during Fed rate cuts (Figure 7(c)), the impact of the monetary policy shock is notably

negative and lasts for 6 months, gradually turning positive and becoming significant between 12

and 16 months. Since the interest rate decline represents a negative shock, the negative coefficient

implies an increase in connectedness after the shock. This suggests that loose monetary policy

shocks also notably enhance total connectedness within approximately six months but might lead

to a decline in connectedness after a year. Such a phenomenon may be due to the fact that

negative shocks from interest rate cuts can heighten financial market uncertainty in the short run,

6We take first-order difference of the CPI and IP to transform them into stationary time series.
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but accommodating policies help improve financial conditions and alleviate market uncertainty

in the long run. Furthermore, comparing the three subfigures in Figure 7, it is evident that the

coefficient in Figure 7(c) is larger in absolute value and more significant, implying a relatively

stronger impact of loose monetary policy during the sample period.

Figure 8 presents the corresponding results for the multi-moment total connectedness indices.

We highlight some important findings. First, in general, the impact of monetary policy on the

total connectedness of different moments varies. During periods of Fed rate hikes, as depicted in

the first column of Figure 8, across the multi-moment connectedness network, monetary policy

shocks exhibit a significant positive effect only within the return layer represented in Figure 8(a)

for a forecast horizon of up to 6 months. For the volatility layer (Figure 8(d)), the overall effect

is positive but not significant. Similarly, for the skewness layer (Figure 8(g)) and kurtosis layer

(Figure 8(j)), the effects of the shocks fluctuate around zero, suggesting a limited impact.

Second, during periods of Fed rate cuts, as shown in the third column of Figure 8, the impacts

of monetary policy shocks on the return and volatility layers (Figures 8(c)(f)) are significantly

negative within 6 months. The maximum absolute value appears in the fourth month for the

volatility layer. Then, the impact turns to positive after 12 periods but remain insignificant. For

the skewness layer (Figure 8 (i)), the response to total connectedness quickly turns positive at the

second month and remains significant between 6 and 14 months. For the kurtosis layer (Figure

8(l)), the impact of monetary policy shocks is a significant negative in 4 months, then turns positive

and significant between the 8 and 14 months. These results indicate that loose monetary policy

shocks contribute significantly to the increasing total connectedness of the return, volatility, and

kurtosis layers within 4 months, while having a decreasing effect on the total connectedness of the

skewness and kurtosis layers after 8 to 14 months.

Figure 9 illustrates the direction and significance7 of the response of net connectedness to tight

and loose monetary policy shocks, respectively, where red represents positive responses and blue

represents negative responses, with darker colors representing a higher level of significance.

As shown in Figure 9(a), tightening of monetary policy shocks significantly amplified net

outflow from the bond market benchmark indices CBI and TBI within six months. Their positive

regression coefficients showcased the strongest significance, depicted by the deepest red color in

Figure 9(a). Specifically, the effect of monetary policy shocks on CBI is most significant at 4

periods of forward forecasting and on TBI at 1 period. This could be linked to the direct impact of

the increased interest rates on overall bond prices under tightening monetary policies. Moreover,

GBIG and GBIC also display a positive net connectedness response, albeit insignificant, indicated

by a lighter shade of red. Simultaneously, the deeper blue shades for GBIF, KCTI, and KCEI

7Detailed impulse response of net connectedness indicies are attached in Appendix Figure C.1 and C.2.
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(a) Return: hike (b) Return: unchange (c) Return: cut

(d) Volatility: hike (e) Volatility: unchange (f) Volatility: cut

(g) Skewness: hike (h) Skewness: unchange (i) Skewness: cut

(j) Kurtosis: hike (k) Kurtosis: unchange (l) Kurtosis: cut

Figure 8. Impluse response of multi-moment layer total connectedness
Notes: The black line is the impulse response of total connectedness index in a certain moment layer to

monetary policy shocks in a given period. The dark blue band represents the 68% confidence interval,
while the light blue band represents the 90% confidence interval.
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(a) Fed rate hike

(b) Fed rate cut

Figure 9. Impluse response of net connectedness
Notes: To illustrate the direction, significance, and heterogeneity of the impulse response succinctly

and clearly, we calculate an indicator s = d× (1− p)7 for each impulse response coefficient, where p
represents the p-value, and d denotes the direction of the impulse response. Thus, darker colors in the plot
represent stronger significance, where red marks the positive response and blue marks the negative
response. When the absolute value of s is greater than 0.48, it indicates that the impulse response
coefficient is significant at the 10% significance level.

imply significantly negative coefficients, signifying an intensified risk-absorption effect under tight

monetary policy shocks. In addition, after a forecast horizon of 12 months (one year), there’s a

change in the direction. At this point, the net outflow effect intensifies for the equity market indices

KCEI and ESGI, while the net inflow effect strengthens for the bond market indices GBIG, TBI,

and CBI.

Similarly, Figure 9(b) illustrates the corresponding results for loosing monetary policy shocks.

It reveals that within a six-month period, monetary policy shocks significantly enhance outflows

from the equity market (dark blue part), and inflows in the bond market (dark red part). This

aligns with the result after the Fed restarts quantitative easing in March 2020, as depicted in Figure
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6. Additionally, compared to the benchmark indices (TBI and CBI for bond market; MEI for

equity market), the coefficients corresponding to the green financial market indices (GBIG, GBIC,

and GBIF for green bond market; KCTI, KCEI, and MEI for green equity markets) sustained

significance for a longer duration. This suggests that, during the sample period, the impact of

loosing monetary policy shock on the interconnectedness structure of green financial markets is

noteworthy.

6 Conclusion

In this paper, we develop a novel multi-moment connectedness network approach to analyze

the unvertainty of the green financial market, particularly focusing on how monetary policy shocks

impact market interconnectedness. Our approach integrates various moments—returns, volatility,

skewness, and kurtosis—to offer a comprehensive view of the market’s response to policy changes.

This methodology provides valuable insights for policymakers and investment managers, particu-

larly in understanding the dynamics of green finance in the context of monetary policy fluctuations.

The multi-moment connectedness network constructed for the green financial market in this

paper indicates several key findings. Firstly, from the within-layer perspective, the connectedness

effect within the return layer is the strongest, gradually diminishing as moments escalate. Second,

from the cross-layer perspective, there is an aggregation effect by market category in the network,

with stronger connectedness within markets. Comparatively, the connectedness inside the green

bond market is stronger, whereas the connectedness inside the green equity market is weaker and

weakens further as the moment increases from the return layer to kurtosis layer. Additionally,

the green equity indices ESGI and KCEI, together with the benchmark bonds TBI and CBI, are

important nodes connecting the two markets.

We also find evidence that monetary policy affects green finance market connectedness: Based

on the dynamic evolution of time-varying connectedness indices, significant changes in connect-

edness and its structure occurred at specific FOMC meetings, such as the emergency rate cut on

March 3, 2020. Furthermore, upon introducing U.S. monetary policy shocks, both tight and loose

policies exhibit a significant positive impact on the total connectedness within the green financial

market, persisting for as long as six months. Tight monetary policy shocks mainly affect the re-

turn layer, transmitting risk from the bond market benchmark indices to other nodes under shock.

On the other hand, loose monetary policy shocks are more influential during the sample period,

significantly affecting the return, volatility, and kurtosis layers, transmitting risk from the equity

market to the bond market.

Our empirical evidence provides valuable information for sustainable investors. For investors
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with large holdings of green equities, it is crucial to pay close attention to the uncertainties arise

from tight monetary policy shock. Conversely, for those with large holdings of green bonds, quan-

titative easing monetary policy could bring more dramatic volatility. Hence, adjusting portfolios

promptly in anticipation of corresponding monetary policy changes becomes essential to mitigate

risks. In addition, although the total connectedness of higher moments appears to be low, it could

be reversed under the impact of monetary policy shocks. Therefore, it is crucial to consider infor-

mation on higher-order moments, such as the skewness and kurtosis of financial asset prices in risk

management.
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Baruńık, J., Bevilacqua, M., and Tunaru, R. (2020). Asymmetric network connectedness of fears. The
Review of Economics and Statistics, pages 1–41.

Bernardi, M. and Catania, L. (2019). Switching generalized autoregressive score copula models with appli-
cation to systemic risk. Journal of Applied Econometrics, 34(1):43–65.

Bouri, E., Lei, X., Xu, Y., and Zhang, H. (2023). Connectedness in implied higher-order moments of precious
metals and energy markets. Energy, 263:125588.

Brunetti, C., Harris, J. H., Mankad, S., and Michailidis, G. (2019). Interconnectedness in the interbank
market. Journal of Financial Economics, 133(2):520–538.

Catania, L. (2021). Dynamic adaptive mixture models with an application to volatility and risk. Journal of
Financial Econometrics, 19(4):531–564.

Chan, Y. T., Ji, Q., and Zhang, D. (2023). Optimal monetary policy responses to carbon and green bubbles:
A two-sector dsge analysis. Energy Economics, page 107281.

Chen, Y.-P., Chen, Y.-L., Chiang, S.-H., and Mo, W.-S. (2023). Determinants of connectedness in financial
institutions: Evidence from taiwan. Emerging Markets Review, 55:100951.

Dafermos, Y., Nikolaidi, M., and Galanis, G. (2018). Climate change, financial stability and monetary policy.
Ecological Economics, 152:219–234.

Dai, X., Xiao, L., Wang, Q., and Dhesi, G. (2021). Multiscale interplay of higher-order moments between
the carbon and energy markets during phase iii of the eu ets. Energy Policy, 156:112428.

Desalegn, G., Fekete-Farkas, M., and Tangl, A. (2022). The effect of monetary policy and private investment
on green finance: evidence from hungary. Journal of Risk and Financial Management, 15(3):117.

Diebold, F. X. and Yilmaz, K. (2014). On the network topology of variance decompositions: Measuring the
connectedness of financial firms. Journal of Econometrics, 182(1):119–134.

Diebold, F. X. and Yilmaz, K. (2015). Trans-atlantic equity volatility connectedness: Us and european
financial institutions, 2004–2014. Journal of Financial Econometrics, 14(1):81–127.

Dogan, E., Madaleno, M., Taskin, D., and Tzeremes, P. (2022). Investigating the spillovers and connectedness
between green finance and renewable energy sources. Renewable Energy, 197:709–722.
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A Additional summary statistics for the data

Table A.1. Summary statistics: volatility

Mean Std. Max Min Skew. Kurt. ADF test JB test

GBIG -1.93 0.68 0.54 -3.26 0.55 -0.16 -3.06 (0.03) 119.49 (0.00)

GBIC -2.08 0.66 1.19 -3.29 0.84 0.82 -3.51 (0.01) 334.81 (0.00)

GBIF -2.10 0.65 1.11 -3.3 1.17 1.88 -3.83 (0.00) 860.30 (0.00)

TBI -2.03 0.69 0.04 -3.37 0.28 -0.57 -3.06 (0.03) 61.02 (0.00)

CBI -2.26 0.52 -0.72 -3.11 0.86 -0.2 -2.94 (0.04) 287.01 (0.00)

KCTI 1.39 0.75 3.97 0.36 0.66 -0.31 -2.29 (0.17) 178.18 (0.00)

KCEI 0.25 0.75 4.08 -1.04 1.19 2.34 -4.64 (0.00) 1067.61 (0.00)

ESGI -0.45 0.73 3.66 -1.68 1.43 3.88 -5.00 (0.00) 2225.89 (0.00)

MEI 0.80 0.64 3.31 -0.57 0.65 0.90 -3.3 7(0.01) 240.09 (0.00)

Table A.2. Summary statistics: skewness

Mean Std. Max Min Skew. Kurt. ADF test JB test

GBIG -0.02 0.09 0.68 -0.59 -0.53 15.54 -14.55 (0.00) 23217.36 (0.00)

GBIC -0.02 0.08 0.57 -0.61 -1.08 12.02 -14.45 (0.00) 14275.14 (0.00)

GBIF 0.00 0.11 0.35 -0.48 -0.27 1.64 -5.11 (0.00) 286.34 (0.00)

TBI -0.01 0.05 0.17 -0.72 -4.78 57.49 -16.38 (0.00) 325112.12 (0.00)

CBI -0.04 0.09 0.13 -1.80 -10.48 159.67 -8.37 (0.00) 2482033.62 (0.00)

KCTI -0.14 0.18 0.31 -0.31 0.62 -1.11 -2.43 (0.13) 266.55 (0.00)

KCEI -0.11 0.11 0.09 -0.66 -0.54 0.13 -6.43 (0.00) 112.75 (0.00)

ESGI -0.33 0.39 0.36 -2.51 -0.95 1.67 -7.48 (0.00) 611.82 (0.00)

MEI -1.3 0.93 0.61 -4.67 0.08 -0.62 -2.4 (0.14) 39.52 (0.00)
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Table A.3. Summary statistics: Kurtosis

Mean Std. Max Min Skew. Kurt. ADF test JB test

GBIG 4.06 1.72 12.71 -4.34 1.01 3.38 -5.26 (0.00) 1488.88 (0.00)

GBIC 4.27 1.74 12.21 -3.27 0.82 3.13 -4.86 (0.00) 1191.78 (0.00)

GBIF 4.07 2.34 11.84 -4.26 -0.12 1.08 -4.58 (0.00) 117.54 (0.00)

TBI 2.88 1.07 8.81 -3.46 -0.48 6.51 -10.93 (0.00) 4141.78 (0.00)

CBI 10.92 6.19 33.25 1.16 0.70 0.25 -2.87 (0.05) 194.70 (0.00)

KCTI 3.45 0.46 5.34 2.86 2.08 5.01 -3.85 (0.00) 4048.54 (0.00)

KCEI 4.81 1.99 14.47 3.13 1.78 3.39 -4.05 (0.00) 2316.50 (0.00)

ESGI 5.06 2.45 16.57 -0.22 1.37 1.68 -3.66 (0.00) 987.99 (0.00)

MEI 15.23 10.68 74.70 2.67 1.70 4.42 -4.62 (0.00) 2977.63 (0.00)
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B Additional connectedness table

Table B.4. Static local connectedness table of the projection layer: inside bond market

GBIG GBIC GBIF TBI CBI From others

GBIG 24.66 22.17 18.46 14.29 12.42 67.34

GBIC 21.69 25.14 18.79 13.07 13.2 66.75

GBIF 19.8 20.46 27.22 12.37 10.98 63.61

TBI 16.6 16.07 12.94 32.92 12.42 58.03

CBI 14.03 15.67 11.37 13.01 36.52 54.08

To others 72.12 74.37 61.56 52.74 49.02 61.962

Net 4.78 7.62 -2.05 -5.29 -5.06

Table B.5. Static local connectedness table of the projection layer: inside equity market

KCTI KCEI ESGI MEI From others

KCTI 55.36 12.17 11.73 7.24 31.14

KCEI 12.02 53.93 11.19 7.56 30.77

ESGI 9.72 9.99 49.97 12.78 32.49

MEI 7.52 8.75 14.81 54.02 31.08

To others 29.26 30.91 37.73 27.58 31.37

Net -1.88 0.14 5.24 -3.5

Table B.6. Static local connectedness table of the projection layer: from bond to equity market

GBIG GBIC GBIF TBI CBI From others

KCTI 2.47 2.74 2.65 2.9 2.75 13.51

KCEI 2.88 3.03 2.7 3.11 3.6 15.32

ESGI 3.3 3.78 3.7 3.4 3.37 17.55

MEI 2.8 3.21 2.8 3.16 2.94 14.91

To others 11.45 12.76 11.85 12.57 12.66

Table B.7. Static local connectedness table of the projection layer: from equity to bond market

KCTI KCEI ESGI MEI From others

GBIG 1.97 2.32 1.93 1.79 8.01

GBIC 1.9 2.3 2.17 1.73 8.1

GBIF 2.23 2.52 2.61 1.81 9.17

TBI 2.3 2.44 2.58 1.73 9.05

CBI 2.08 2.64 2.5 2.17 9.39

To others 10.48 12.22 11.79 9.23
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Table B.8. Static connectedness table of the return layer

GBIG GBIC GBIF TBI CBI KCTI KCEI ESGI MEI From others

GBIG 21.50 20.31 19.01 16.78 16.41 1.49 1.19 1.98 1.33 78.50

GBIC 19.42 21.38 18.99 15.56 17.51 1.74 1.39 2.35 1.66 78.62

GBIF 20.20 21.06 21.03 14.79 15.40 1.76 1.42 2.59 1.75 78.97

TBI 19.02 18.51 15.61 23.81 17.84 1.36 0.89 1.59 1.36 76.19

CBI 17.02 19.13 14.83 16.34 23.92 2.21 1.75 2.67 2.12 76.08

KCTI 1.86 2.13 1.35 1.79 2.35 42.12 19.93 17.17 11.31 57.88

KCEI 2.09 2.27 1.65 1.57 2.49 19.81 41.61 17.23 11.28 58.39

ESGI 3.21 3.53 2.85 2.53 3.28 15.62 15.29 36.51 17.19 63.49

MEI 1.56 1.78 1.58 1.88 1.80 12.23 12.24 20.63 46.30 53.70

To others 84.38 88.73 75.87 71.22 77.09 56.22 54.10 66.21 47.99 69.09

Net 5.89 10.11 -3.10 -4.97 1.01 -1.65 -4.29 2.72 -5.71

Table B.9. Static connectedness table of the volatility layer

GBIG GBIC GBIF TBI CBI KCTI KCEI ESGI MEI From others

GBIG 22.65 20.31 19.06 15.36 12.03 3.07 2.87 2.97 1.67 77.35

GBIC 19.57 22.50 19.36 14.07 13.22 3.48 2.99 3.33 1.49 77.50

GBIF 19.51 20.94 23.38 13.30 11.65 3.36 2.86 3.46 1.55 76.62

TBI 16.11 15.11 13.75 28.02 12.71 4.17 3.46 4.40 2.26 71.98

CBI 14.48 16.33 14.03 15.83 27.89 3.56 3.09 3.32 1.47 72.11

KCTI 2.98 3.77 3.76 2.40 3.47 44.74 14.31 15.47 9.11 55.26

KCEI 3.10 3.49 3.24 2.54 4.31 14.13 46.08 13.64 9.47 53.92

ESGI 3.36 4.20 4.44 3.02 4.16 12.12 10.69 46.06 11.95 53.94

MEI 4.26 4.93 4.37 4.08 3.29 9.55 9.64 14.94 44.94 55.06

To others 83.37 89.08 82.01 70.59 64.84 53.44 49.91 61.52 38.96 65.97

Net 6.03 11.58 5.39 -1.39 -7.26 -1.82 -4.00 7.58 -16.10

Table B.10. Static connectedness table of the skewness layer

GBIG GBIC GBIF TBI CBI KCTI KCEI ESGI MEI From others

GBIG 25.97 24.03 17.53 12.39 13.09 0.72 2.41 1.13 2.73 74.03

GBIC 23.01 27.46 17.44 11.83 13.39 0.60 2.41 1.40 2.45 72.54

GBIF 19.15 19.35 31.58 12.60 9.13 0.90 3.05 1.93 2.30 68.42

TBI 14.70 15.53 12.24 36.86 11.67 1.09 3.54 2.76 1.62 63.14

CBI 15.48 16.85 9.13 12.11 38.49 0.42 2.78 1.54 3.21 61.51

KCTI 2.65 2.36 2.53 5.96 2.83 68.60 5.65 6.02 3.41 31.40

KCEI 4.18 4.22 3.23 5.94 5.09 4.96 65.40 4.31 2.66 34.60

ESGI 4.03 4.47 4.78 4.09 3.21 4.95 6.65 59.56 8.25 40.44

MEI 3.59 4.39 2.96 3.65 4.83 3.23 5.78 8.68 62.89 37.11

To others 86.79 91.20 69.84 68.58 63.25 16.88 32.26 27.77 26.63 53.69

Net 12.76 18.66 1.41 5.44 1.74 -14.53 -2.34 -12.67 -10.49
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Table B.11. Static connectedness table of the kurtosis layer

GBIG GBIC GBIF TBI CBI KCTI KCEI ESGI MEI From others

GBIG 30.88 25.54 17.83 11.15 6.07 2.56 3.12 1.29 1.56 69.12

GBIC 26.70 32.04 19.25 9.27 6.32 1.42 2.52 1.14 1.35 67.96

GBIF 20.39 20.13 37.15 7.04 5.39 2.89 3.07 2.22 1.72 62.85

TBI 15.89 14.38 8.47 49.42 4.54 2.45 2.02 1.22 1.62 50.58

CBI 7.05 7.96 4.83 4.85 66.19 1.68 3.20 2.16 2.07 33.81

KCTI 2.44 2.62 3.14 1.68 2.24 75.46 4.89 4.71 2.83 24.54

KCEI 2.23 2.09 2.89 2.91 2.46 5.35 70.70 6.49 4.88 29.30

ESGI 2.47 2.70 2.63 4.49 2.54 2.81 4.81 64.92 12.63 35.08

MEI 1.59 1.47 2.19 3.17 1.90 2.40 5.63 13.02 68.63 31.37

To others 78.76 76.88 61.23 44.56 31.46 21.57 29.26 32.26 28.65 44.96

Net 9.63 8.92 -1.63 -6.03 -2.35 -2.98 -0.04 -2.82 -2.72
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C Additional impluse response

(a) GBIG (b) GBIC (c) GBIF

(d) TBI (e) CBI (f) KCTI

(g) KCEI (h) ESGI (i) MEI

Figure C.1. Impluse response of nspl: Fed rate hike
Notes: The black line is the impulse response of net connectedness index in a projection layer to

monetary policy shocks during Fed rate hike. The dark blue band represents the 68% confidence interval,
while the light blue band represents the 90% confidence interval.
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(a) GBIG (b) GBIC (c) GBIF

(d) TBI (e) CBI (f) KCTI

(g) KCEI (h) ESGI (i) MEI

Figure C.2. Impluse response of nspl: Fed rate cut
Notes: The black line is the impulse response of net connectedness index in a projection layer to

monetary policy shocks during Fed rate cut. The dark blue band represents the 68% confidence interval,
while the light blue band represents the 90% confidence interval.
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D Complete Estimation Procedures for TVP-VAR

Let N × 1 vector of yt = (y1t, . . . , yNt)
′ for t = 1, . . . , T denotes the collection of log-returns,

log-volatilities, skewness, or kurtosis of the N indicators, we consider the following reduced-form
TVP-VAR(p) model:

yt = ct +B1tyt−1 + . . .+Bptyt−p + εt, εt ∼ N (0,Σt), (D.1)

where ct is an N × 1 vector of time-varying intercepts, Bit are N × N time-varying coefficient
matrices for i = 1, . . . , p, εt denotes a N ×1 vector of random disturbance that follows multivariate
Gaussian distribution with mean 0 and time-varying covariance matrix Σt.

Given the model in Eq.(D.1), by some linear transformations, we then obtain the following
contemporaneous-form state space representation:

yt = Ztβt + εt, εt ∼ N(0,Σt),

βt = βt−1 + vt, vt ∼ N(0,Qt),

where Zt = IN ⊗ [1′,y′
t−1, . . . ,y

′
t−p]

′ and β = vec([ct,B1t, . . . ,Bpt]
′). Note that here we follow

Koop and Korobilis (2013) and assume that the time-varying coefficients βt follow a random walk
process, where the N × 1 random error vt follows a zero-mean multivariate Gaussian distribution
with time-varying covariance matrix Qt.

The linear state space representation allows the immediate implementation of the Kalman
filter to estimate the conditional mean and variance of the time-varying parameters:

ỹt = yt −Ztβt|t−1, F t = ZtP tZ
′
t +Σt,

Kt = P tZ
′
tF

−1
t , Lt = I −KtZt,

βt|t = βt|t−1 +Ktỹt, P t|t = P tL
′
t,

for t = 1, . . . , T , where βt|t−1 = E(β|F t−1), P t|t−1 = Var(β|F t−1) and F t−1 = σ(yt−1,yt−2, . . . ,y1−p)
denotes the σ−field generated by past information.

Three issues need to be addressed to ensure the implementation of the Kalman filter, the
estimation of time-varying covariance matrices Σt, Qt, and the prior setting of β. Here we follow
the standard solutions provided in Koop and Korobilis (2013). For Σt, we assume it follows an
exponential weighted moving average (EWMA) process: Σt = κΣt−1 + (1− κ)ỹtỹ

′
t. For Qt, Koop

and Korobilis (2013) introduce forgetting factor by letting Qt = (λ−1 − 1)P t−1|t−1. For the prior
distribution of β0, we use a Minnesota-type prior with prior mean E(β0) = 0 and let the variance
Var(β0) = V 0 be a diagonal matrix with its ith diagonal element be

(V 0)i =

{ γ
l2
, for coefficients on lag l for l = 1, . . . p;

100, for the intercept,

We follow Akyildirim et al. (2022) and set κ = 0.99, λ = 0.99, γ = 0.01 to aviod numerical
instability.

Given the estimates of ct and Blt for l = 1, . . . , p, we first transform the TVP-VAR(p) model
into the TVP-VMA(∞) one yt =

∑∞
i=0Ψi,tεt. Then the generalized forecast error variance decom-

position (GFEVD) is calculated using the standard approach in Koop et al. (1996).
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