
PropertyGPT: LLM-driven Formal Verification of Smart Contracts
through Retrieval-Augmented Property Generation

Ye Liu
Nanyang Technological University

Singapore, Singapore
li0003ye@ntu.edu.sg

Yue Xue∗
MetaTrust Labs

Singapore, Singapore
nerbonic@gmail.com

Daoyuan Wu†
The Hong Kong University of Science

and Technology
Hong Kong SAR, China
daoyuan@cse.ust.hk

Yuqiang Sun
Nanyang Technological University

Singapore, Singapore
suny0056@e.ntu.edu.sg

Yi Li
Nanyang Technological University

Singapore, Singapore
yi_li@ntu.edu.sg

Miaolei Shi
MetaTrust Labs

Singapore, Singapore
stan@metatrust.io

Yang Liu
Nanyang Technological University

Singapore, Singapore
yangliu@ntu.edu.sg

ABSTRACT
Formal verification is a technique that can prove the correctness of
a system with respect to a certain specification or property. It is es-
pecially valuable for security-sensitive smart contracts that manage
billions in cryptocurrency assets. Although existing research has
developed various static provers for smart contracts, a key missing
component is the automated generation of comprehensive proper-
ties, including invariants, pre-/post-conditions, and rules. Hence,
industry-leading players like Certora have to rely on their own or
crowdsourced experts to manually write properties case by case.

With recent advances in large language models (LLMs), this
paper explores the potential of leveraging state-of-the-art LLMs,
such as GPT-4, to transfer existing human-written properties (e.g.,
those from Certora auditing reports) and automatically generate
customized properties for unknown code. To this end, we embed
existing properties into a vector database and retrieve a reference
property for LLM-based in-context learning to generate a new prop-
erty for a given code. While this basic process is relatively straight-
forward, ensuring that the generated properties are (i) compilable,
(ii) appropriate, and (iii) runtime-verifiable presents challenges. To
address (i), we use the compilation and static analysis feedback as an
external oracle to guide LLMs in iteratively revising the generated
properties. For (ii), we consider multiple dimensions of similarity to
rank the properties and employ a weighted algorithm to identify the
top-K properties as the final result. For (iii), we design a dedicated
prover to formally verify the correctness of the generated prop-
erties. We have implemented these strategies into a novel system
called PropertyGPT, with 623 human-written properties collected
from 23 Certora projects. Our experiments show that PropertyGPT
can generate comprehensive and high-quality properties, achieving
an 80% recall compared to the ground truth. It successfully detected

∗Ye Liu and Yue Xue are the co-first authors.
†Daoyuan Wu is the corresponding author.

26 CVEs/attack incidents out of 37 tested and also uncovered 12
zero-day vulnerabilities, resulting in $8,256 bug bounty rewards.

1 INTRODUCTION
Smart contracts are transaction-driven programs deployed and
executed on blockchain platforms, automating the execution of
digital agreements among users. Most smart contracts are written
in Turing-complete programming languages, such as Solidity [45],
and have been widely adopted on popular blockchain platforms
like Ethereum [58] and BSC [1]. Smart contracts are extensively
used in decentralized applications such as DeFi [24] and NFTs [5].
However, they are susceptible to various types of attacks, including
integer overflow [49], re-entrancy [41], front-running [48], and ac-
cess control vulnerabilities [15, 32]. These vulnerabilities primarily
arise from loopholes in smart contracts due to programming errors,
incorrect implementations, and logical bugs [62].

Formal verification is one of the most advanced approaches to
identify contract loopholes by performing a comprehensive exam-
ination with different kinds of specifications. To perform formal
verification, it is necessary to generate customized formal specifica-
tions for different smart contracts. Formal specifications for smart
contracts usually include temporal logic properties and Hoare logic
properties, as surveyed in [51]. Invariants are the most common
contract specification, stating a property that holds for any contract
execution, followed by function pre-/post-conditions for particular
functional usage, as well as rules that cover cross-function proper-
ties. Inmost cases, temporal logic properties can be transformed into
Hoare properties that could be instrumented into smart contract
code [40]. Hence, existing works typically use only Hoare-style
specifications for vulnerability detection [53, 55], inconsistency
detection [11], and correctness validation [40, 57].

1

ar
X

iv
:2

40
5.

02
58

0v
1

 [
cs

.S
E

]
 4

 M
ay

 2
02

4

Conference’17, July 2017, Washington, DC, USA Liu et al.

Despite the promise of formal verification in enhancing the se-
curity and reliability of smart contracts, one notable challenge re-
mains: the community still lacks the automated generation of com-
prehensive properties for effective formal verification of smart con-
tracts. While several works have attempted this, they have not yet
achieved the ultimate goal of automatically generating necessary
properties, including invariants, pre-/post-conditions, and rules,
for an unknown contract code. For example, InvCon [31, 34] can
dynamically infer likely contract invariants and function pre-/post-
conditions, but it requires historical transaction information. Like-
wise, Cider [30] and SmartInv [56] employed a machine-learning-
based approach to generate specifications through the training-
and-inference paradigm, but only for the invariant properties. As a
result, industry-leading players like Certora [10] have to rely on
their own or crowdsourced experts [9] to manually write proper-
ties case by case, which hinders the effective formal verification of
smart contracts on a large scale.

In this paper, we aim to explore how recent advances in large
language models (LLMs), such as the state-of-the-art GPT-4 [4],
could enable a new approach to the automated generation of smart
contract properties. Given LLMs’ strong capability for in-context
learning (see background in §2), we try to achieve effective transfer
learning from existing human-written properties to customized
properties for unknown code. More specifically, we embed existing
properties into a vector database and retrieve a reference property
for LLM-based in-context learning to generate a new property for a
given code. In this way, we can generate diverse types of properties
as long as there are existing samples for each type in the collected
vector database. Moreover, compared to the training-and-inference
paradigm mentioned above [30, 56], our approach does not require
the error-prone labeling process (we can directly use existing raw
property results, such as those from Certora auditing reports), nor
the “re-training” efforts when there is updated data.

While the basic property generation process is relatively straight-
forward, it is challenging to ensure that the retrieval-augmented
properties are (i) compilable, (ii) appropriate, and (iii) runtime-verifiable.
To address these challenges, we employ three novel designs and
implement them in an LLM-driven system called PropertyGPT. First,
we use compilation and static analysis feedback as an external ora-
cle to guide LLMs in iteratively revising the generated properties.
Second, we consider multiple dimensions of similarity to rank the
properties and find a balanced metric for all these dimensions. The
resulting weighted algorithm thus identifies the top-K properties
as the final result. Third, we design a dedicated prover to formally
verify the correctness of the generated top-K properties.

To evaluate PropertyGPT, we collected 623 human-written prop-
erties from 23 Certora projects. We first split 90 of them as a ground-
truth testing set and used the rest as reference properties. We found
that PropertyGPT can cover 80% equivalent properties in the ground
truth as judged by human experts, with a reasonable precision of
64%. Note that the additional properties (FPs) produced by Prop-
ertyGPT generally also hold, complementing the human-written
ones. We further used all 623 properties as a knowledge base to
supply PropertyGPT for detecting real-world CVEs and past attack
incidents. Our results demonstrated that PropertyGPT successfully
detected 9 out of 13 CVEs and 17 out of 24 attack incidents. Further-
more, we ran PropertyGPT on four real-world bounty projects to

demonstrate its ability to find zero-day bugs. PropertyGPT success-
fully generated 22 bug findings, out of which 12 have been both
confirmed and fixed, earning us a total of $8,256 in bounty rewards.

We summarize the following main contributions in this paper:
• We proposed an end-to-end LLM-driven formal verification
pipeline, PropertyGPT, for smart contracts, with the major
retrieval-augmented property generation described in §5.

• To facilitate PropertyGPT, we also designed a property spec-
ification language (PSL) for smart contracts (§4) and a dedi-
cated prover for property verification(§6).

• We conducted extensive experiments and ablation studies to
evaluate PropertyGPT in real-world settings; see §7 and §8.

2 PRELIMINARY
Large language models (LLMs), such as GPT-3.5 [38] and CodeL-
Lama [42], have beenwidely used inmany natural language process-
ing tasks, such as text generation, translation, and summarization.
GPT seriesmodels are trained on a large corpus of text data and have
the potential to generate human-like text, while CodeLLama is a
fine-tuned version of LLama 2 [52] on open-source code. The LLMs
are pre-trained on a large corpus of text data and then fine-tuned
on specific tasks and these datasets usually contain code from dif-
ferent programming languages. Additionally, the pre-trained LLMs
have exercised its potential to revolutionize the traditional software
tasks, e.g., code generation [8], repairing [39, 60], vulnerability
detection [48].
In-context learning (ICL). Based on the pre-trained knowledge,
LLMs could leverage existing human-written properties written
with various specification languages. Yet, due to the limitations of
the pre-training data and the efforts needed for training, LLMs may
not be able to include the real-time information. To address this
problem, in-context learning (ICL) mechanism have been proposed
by offering LLMs with the ability to learn from the latest conver-
sation or task context [44, 63]. In essence, in-context learning is
a specialized kind of few-shot learning [7], basing itself on a few
examples or a small amount of data to learn a new task.

Instead of using fine-tuning [56], in this work, we employ the
in-context learning ability from the state-of-the-art GPT-4 model
for retrieval-augmented property generation.

3 PROPERTYGPT OVERVIEW
In this section, we present the overall design of PropertyGPT, which
leverages LLMs’ ICL capability to transfer existing human-written
properties and generate customized properties for formally verify-
ing unknown code. At a high level, PropertyGPT takes a piece of
subject smart contract code as input and ultimately produces its
corresponding properties along with the verification results.

As illustrated in Figure 1, PropertyGPT consists of eight major
steps: ① PropertyGPT first creates a vector database for reference
properties by embedding their corresponding critical code. Note
that the reference properties themselves will not be embedded
because they are not the search key. ② Given a piece of subject code
under testing (typically one function), PropertyGPT queries the
vector database to ③ retrieve all similar code within the threshold
and map each code to their original reference properties. ④ All the
reference properties are then testedwith the subject code one by one

2

PropertyGPT: LLM-driven Formal Verification of Smart Contracts through Retrieval-Augmented Property Generation Conference’17, July 2017, Washington, DC, USA

Subject Code
under testing

Human-written
Properties

Corresponding
Critical Code

Vector DB

Embedded Code

Retrieved Code
and Properties

2. Query

3. Retrieve
& Map

1. Embed

7. Weighted
Algorithm

One Reference
Property

Subject Code
under testing

PropertyGPT
Generation Prompt

The Generated
Property

Compiler

Prover

6. Feedback
& Revise

4. Iterative Loop

Verification
Result

8. Output

All Compliable
Properties

The Ranked Top-K
Properties

5. Generate

PropertyGPT

Figure 1: A high-level workflow of PropertyGPT.

v ∈ 𝑆𝑡𝑎𝑡𝑒𝑉𝑎𝑟 tmp ∈ 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑉𝑎𝑟 C ∈ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

SC = 𝑣∗; 𝑓 𝑢𝑛𝑐∗
func ∈ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑝𝑎𝑟𝑎𝑚∗; 𝑠𝑡𝑚𝑡∗

expr ∈ 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 𝑡𝑚𝑝 |𝑣 |old(𝑣) |𝑝𝑎𝑟𝑎𝑚 | C |𝑒𝑥𝑝𝑟 ⊲⊳ 𝑒𝑥𝑝𝑟

Spec(SC) = 𝑖𝑛𝑣∗; {𝑝∗} 𝑓 𝑢𝑛𝑐 {𝑞∗}; 𝑟𝑢𝑙𝑒∗
inv ∈ 𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 = 𝑏𝑜𝑜𝑙_𝑒𝑥𝑝𝑟 ⇂(𝑣∗,𝐶∗)

p ∈ 𝑃𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑏𝑜𝑜𝑙_𝑒𝑥𝑝𝑟 ⇂(𝑝𝑎𝑟𝑎𝑚,old(𝑣),𝐶)

q ∈ 𝑃𝑜𝑠𝑡𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑏𝑜𝑜𝑙_𝑒𝑥𝑝𝑟 ⇂(𝑝𝑎𝑟𝑎𝑚,𝑣,𝐶)

rule ∈ 𝑅𝑢𝑙𝑒 = assume(𝑒𝑥𝑝𝑟) ∗ | 𝑓 𝑢𝑛𝑐 (𝑒𝑥𝑝𝑟∗) |assert(𝑒𝑥𝑝𝑟)∗

Figure 2: Property Specification Language (PSL).

in an iterative loop. ⑤ For each reference property, PropertyGPT
employs a generation prompt to generate a candidate property for
the subject code. ⑥ This candidate property is then checked by
the compiler for grammar, and if it is not grammatically correct, it
will be further revised according to the compiler’s feedback using
a revising prompt. ⑦ Eventually, we obtain a list of compilable
properties and rank them according to our weighted algorithm for
the top-K appropriate properties. ⑧ These properties are finally
formally verified by our prover, aiming to discover smart contract
vulnerabilities.

To explore and understand the details of PropertyGPT, we first
introduce its property specification language in §4. Following this,
we describe the main process of LLM-based property generation
and refinement in §5. Finally, we connect the generated properties
with our dedicated formal prover in §6 for property verification.

4 PROPERTY SPECIFICATION LANGUAGE
To bridge the gap between property generation in §5 and formal
verification in §6, we propose an intermediate language in this
section to specify the properties of smart contracts.

Figure 2 illustrates our property specification language (PSL),
which extends the popular smart contract programming language
Solidity. In Solidity, a smart contract (SC) consists of a group of state
variables recording persistent program state and a list of public
functions allowing user interactions. The symbol ⊲⊳ represents a set

of arithmetic, comparison, or logical operators, namely {+,−, /, >
, <,==, ! =, >=, <=,&, | |}. PSL includes three kinds of properties
with respect to different purposes. Invariants are properties that
always hold true during contract execution and are defined over
state variables; function pre-/post-conditions are properties that
can be expressed in Hoare triples {𝑝∗}𝑓 𝑢𝑛𝑐{𝑞∗}, checking whether
parameters and the modification of state variables satisfy function-
ality requirements. Scenario-based properties, defined on restricted
environments, can be implemented as different rules by enforcing
varied assumptions and customized assertions.

The proposed PSL for smart contracts offers several advantages
over existing works [10, 57]. Firstly, it is easy to write contract spec-
ifications expressed in PSL since it shares most logic structures with
contract code, without any tricky logic bindings from specifications
to code. For example, Cetora verification language (CVL) 1 intro-
duces many low-level primitives to map storage read/write, such as
hook. Additionally, each function in CVL has to explicitly insert an
additional context variable called env, and each function must also
be declared state modification free or not. This non-trivial process
may jeopardize specification integrity, thus being error-prone. Sec-
ondly, PSL specifications can be easily reused and upgraded. This
is because PSL is a customized variant of Solidity, able to extend
itself by including other contract specifications through inheritance
or modularization management. More importantly, PSL specifica-
tions are easier to automate directly from contract code, along with
efforts to ensure specification quality.

5 PROPERTY GENERATION & REFINEMENT
With the targeted PSL introduced in §4, our objective is to automat-
ically generate properties written in PSL for the given code. The
generated properties are the result of LLM-based transfer learning
from existing human-written properties, which can be written in
any specification language, not limited to PSL, such as CVL.

PropertyGPT can achieve such powerful transfer learning funda-
mentally rooted in LLMs’ capability for in-context learning (see §2).
Nevertheless, we need to design a novel pipeline to facilitate this.

1https://docs.certora.com/en/latest/docs/cvl/index.html

3

https://docs.certora.com/en/latest/docs/cvl/index.html

Conference’17, July 2017, Washington, DC, USA Liu et al.

Generation Prompt for Rule Properties

Based on the rule code ([rule code]) and the code example
([code example]), generate corresponding rule code for
[contract code to be tested].
1. Using the syntax style demonstrated in the provided
code example, generate rule code. Focus on structural and
syntactic aspects rather than replicating specific variable
or function names from the example.
2. $ is for a symbolic variable, such as $varA for symbolic
varA.
3. MUST NOT replicate specific variable or function names
from the [code example].
4. MUST focus on the structural and syntactic aspects from
the [code example].
5. When writing the rule code, closely follow the syntax
and style from the provided example, focusing on its struc-
tural and syntactic essence rather than copying specific
names.
6. The output MUST NOT contain any elements not prede-
fined in the contract or function.

[function code to be tested]: {func_code}
[contract code to be tested]: {contract_code}
[rule code]: {rule_property}
[code example]: {spec_grammar}

The Output MUST be in the form of:
rule [name of rule]() {{logic of rule}}
REMEMBER, ASSERT should not include an error message;
just use the comparison operator directly.
REMEMBER, the rule must aim to test the function, not
for another function.

Figure 3: The prompt for generating rule properties.

Our idea is to mimic the RAG (retrieval-augmented generation) pro-
cess in the NLP [27] or code [47] domain, using the reference prop-
erties retrieved to augment the generation of new properties. As
previously illustrated in Figure 1, we first detail how such retrieval-
augmented property generation is conducted in PropertyGPT in
§5.1. After that, PropertyGPT iteratively revises the LLM-generated
properties to fix their compilation errors in §5.2. Furthermore, we
design a weighted algorithm to help PropertyGPT rank all compil-
able properties and obtain only the top-K appropriate properties
for the prover’s verification in §6.

5.1 Retrieval-Augmented Property Generation
Here we focus on the basic retrieval-augmented property genera-
tion that occurs from step ② to step ⑤ in Figure 1. But the entire
property generation process also includes property ⑥ revising and
⑦ ranking, which will be introduced in §5.2 and §5.3, respectively.

Generation Prompt for Function Invariants/Conditions

Based on the following code ([condition code]), generate
the corresponding precondition and postcondition code
for [function code to be tested].
1. The basic syntax of preconditions and postconditions is
in Solidity code format.
2. You can use the ‘__old__(xxx)‘ keyword if you need to
reference the initial value of a variable.
3. You can directly use ‘xxxx==/!=/>/<‘ without ‘assert‘ or
‘require‘ to compare the value of the variable.
4. MUST NOT use ‘require‘ or ‘assert‘ for assertions; just
use operator comparison directly.
5. MUST NOT use the ternary operator in the precondition
and postcondition, but USE ‘if/else‘ expressions.
6. Exclude the event and implementation of the function
itself, only output the precondition and postcondition of
the function.
7. MUST NOT use any variables that I or the function have
not defined, such as __result__, __return__, only follow
the syntax I provide.
8. MUST NOT use ‘if/else‘ expressions in the precondition
and postcondition, but USE the ternary operator.
9. MUST NOT INVOKE other functions or other undefined
variables or non-state variables in the contract, only use
the state variables in the func_name itself.
10. Ignore and delete all conditions related to the return
value.

[function code to be tested]: {func_code}
[condition code]: {condition_property}

The Output MUST be in the form of:
function {func_name}{{

precondition{{
Insert generated code here, ensuring it follows
the syntax style of the example.

}}
postcondition{{

Insert generated code here, ensuring it follows
the syntax style of the example.

}}
}}

Figure 4: The prompt for generating invariants/conditions.

① Knowledge Preprocessing. One critical step in RAG-based
systems is to first build a knowledge base, typically a vector data-
base [47]. In PropertyGPT’s scenario, we do not aim to extract
“knowledge” from the existing human-written properties; instead,
we use them as reference properties for LLMs’ in-context learning.
Therefore, we directly use the raw information from human-written
reference properties to construct our vector database. As shown

4

PropertyGPT: LLM-driven Formal Verification of Smart Contracts through Retrieval-Augmented Property Generation Conference’17, July 2017, Washington, DC, USA

in Figure 1, we embed the corresponding critical code of existing
properties to build the search key used by RAG. Note that the ref-
erence properties themselves will not be embedded because they
cannot be queried against by the subject test code.
②-③ Similar Example Retrieval.With the vector database, we
can retrieve similar reference properties given the subject code to
enable one-shot LLM learning in subsequent steps. To do this, the
subject code is also embedded in step ② and the dot product is
calculated [23] with all the vectors in the database. The top similar
code with the highest dot products are then retrieved, and their
corresponding properties are returned as the result in step ③. Here,
we use a conservative code similarity threshold (e.g., 0.8) to limit
the number of retrieved reference properties (typically 10 to 20
properties), which is acceptable because PropertyGPT eventually
uses a weighted algorithm in §5.3 to rank only the top-K generated
properties as the final result.
④-⑤ In-context Learning. All the reference properties are then
tested with the subject code one by one in an iterative loop. For
each reference property, PropertyGPT employs a generation prompt
to generate a candidate property for the subject code, using the
reference property as a one-shot example. Specifically, there are
two types of generation prompts. One is used to generate global,
cross-function rule properties, as shown in Figure 3, and the other is
used to generate function-level pre-/post-conditions, as illustrated
in Figure 4. Note that here we omit the generation prompt template
for contract-level invariants because they are usually in a simpler
form and equivalent to the one-for-all pre-/post-conditions for
every public contract function. Both prompt templates consist of
three parts: the first part details the generation instructions, the
second part lists the code and reference property, and the third
part defines the output property format. In particular, we supply a
rule example in Figure 3 to help LLMs understand the grammar of
our rule properties, while the grammar of invariants/conditions is
directly specified using natural language instructions in Figure 4 as
it is relatively simple. Additionally, since rule properties are cross-
function, we provide not only the function code but also the entire
contract code in the prompt template shown in Figure 3.

To determine which generation prompt should be used, Prop-
ertyGPT leverages the type of the retrieved reference property. If
the reference property is a rule, PropertyGPT uses the first type
of prompt template to generate the property. Otherwise, if the ref-
erence property is classified as pre-/post-conditions, PropertyGPT
uses the second type of prompt template.

5.2 Revising Property to Fix Compilation Errors
While the basic property generation process is relatively straight-
forward, one particular challenge is how to guarantee that the
generated property is compilable. To address this challenge, we
leverage the feedback from the compiler and static checking to iter-
atively revise the property until it is compilable or until it reaches
the maximum number of attempts, as shown in step ⑥.
Leveraging Compiler Feedback. Our PSL compiler can provide
compilation error information, including detailed error locations
and reasons, if the property cannot be successfully compiled. Prop-
ertyGPT thus leverages this feedback to instruct LLMs to iteratively
revise the property. Specifically, we design and employ a common

Common Prompt for Revising (Rule) Properties

Here is the rule I provided: {spec_res}.
When this code is compiled with a solc-like program, an
error occurs: {error_info}.

Your task is to understand the rule I provided, fix the rule
code, and correct the error within the rule. Refer to the
contract code provided above.
Note, only modify the rule code; do not add other code.
If the error is due to a non-existent variable, find feasible
methods to reimplement it, or if it is not implementable,
delete this line.
Here is the function code to be tested: {func_code}
Here is the contract code to be tested: {contract_code}
Provide me with the repaired rule code. The revised rule
code must not be the same as the old rule code.
1. Using the syntax style demonstrated in the provided
code example, generate a rule code. Focus on the structural
and syntactic aspects rather than replicating specific vari-
able or function names from the example.
2. $ is for a symbolic variable, such as $varA which sym-
bolizes varA.

Rule Code Output MUST be in the form of:
rule [name of rule](){{logic of rule}}
REMEMBER, ASSERT does not include an error message,
just use the operator comparison directly.
REMEMBER, the rule must aim to test the function [{func-
tion_name}], not for other functions.

Figure 5: The common prompt for revising (rule) properties.

prompt template as shown in Figure 5 for revising rule properties;
note that the prompt for revising function pre-/post-conditions is
similar and is therefore not shown here. In this prompt, we ask
LLMs to first understand the generated property code, identify and
fix errors, maintain stylistic consistency throughout the process,
and finally ensure that the revised rule code meets specific format-
ting requirements. We set a threshold for the maximum number of
attempts to avoid an endless loop. In our experiment, as shown in
§8.3, we found that 74% of properties could be successfully compiled
with no revisions (63%) or with only one attempt, and 84% of all
properties could be succesfully revised within five attempts. This
makes the iterative process manageable.
Employing Static Checking. However, we found that even when
the compiler does not report any errors, it does not mean that
the generated property is fully correct. One notable issue is that
LLM-generated properties could fail to include the target subject
function, which renders the property meaningless. To address this,
we perform additional static checking for all compilable proper-
ties passed in the above step. If PropertyGPT identifies that the
property is missing the target subject function, it employs a special
prompt template as shown in Figure 6 (listing only the scenario for

5

Conference’17, July 2017, Washington, DC, USA Liu et al.

Special Prompt for Revising (Rule) Properties

Here is the knowledge rule you should learn from: {knowl-
edge_rule}.
Here is the rule I provided: {spec_res}.
This rule lacks core function execution for: {func-
tion_name}.
The contract code is: {contract_code}.

Your task is to understand the rule I provided, absorb the
knowledge provided, and fix the rule code by adding the
core function execution for: {function_name}.
Here is the function code that needs to be tested:
{func_code}.
Provide me with the revised rule code; the new rule code
must not be the same as the old rule code.
1. Using the syntax style demonstrated in the provided
code example, generate a rule code. Focus on the structural
and syntactic aspects rather than replicating specific vari-
able or function names from the example.
2. $ is for a symbolic variable, such as $varA for symbolic
varA.

Rule Code Output MUST be in the form of:
rule [name of rule](){{logic of rule}}
REMEMBER, ASSERT does not include an error message,
just use the operator comparison directly.
REMEMBER, the rule must aim to test the function [{func-
tion_name}], not for other functions.

Figure 6: The special prompt for revising (rule) properties.

rule properties, similar to Figure 5). It is generally similar to the
common revising prompt but explicitly addresses the rule’s lack of
testing for the core function execution. In this way, we not only
guarantee that the generated property is grammatically correct but
also functionally meaningful.

5.3 Ranking the Top-K Appropriate Properties
Another challenge is how to select the appropriate properties from
all compilable properties as the final generation result. To do so, we
propose a weighted algorithm to rank all the resulting properties,
as shown in step ⑦. Specifically, we rank the properties based on
the following four embedding-based metrics:

𝑋𝑟𝑎𝑤 (𝑓 , 𝑔): Similarity between contract code 𝑓 and 𝑔.
𝑋𝑠𝑢𝑚𝑚𝑎𝑟𝑦 (𝑓 , 𝑔): Similarity between high-level functionality sum-

maries of code 𝑓 and 𝑔.
𝑌𝑟𝑎𝑤 (𝜙1, 𝜙2): Similarity between raw properties 𝜙1 and 𝜙2.

𝑌𝑠𝑢𝑚𝑚𝑎𝑟𝑦 (𝜙1, 𝜙2): Similarity between high-level property sum-
maries for 𝜙1 and 𝜙2.

Note that we introduce 𝑋𝑠𝑢𝑚𝑚𝑎𝑟𝑦 and 𝑌𝑠𝑢𝑚𝑚𝑎𝑟𝑦 to cope with that
variety could exist for same-functionality code or same-semantic

Smart Contract

Formal Specs Modular
Verification

Bounded Model
Checking

Counter-
examples

Pass

Source code-level
symbolic execution

FailFail

Figure 7: Workflow of Property Verification.

properties, where high-level natural language summaries are made
by large language model for given code or properties.

Given an unknown code 𝑓 , let 𝜙1 be its property generated
corresponding to reference code 𝑔 having property 𝜙2, we score 𝜙1
using a weighted algorithm as below.

𝑆𝑐𝑜𝑟𝑒 (𝑓 , 𝜙1) = 𝛼 ∗ 𝑋𝑟𝑎𝑤 (𝑓 , 𝑔) + 𝛽 ∗ 𝑋𝑠𝑢𝑚𝑚𝑎𝑟𝑦 (𝑓 , 𝑔)
+𝛾 ∗ 𝑌𝑟𝑎𝑤 (𝜙1, 𝜙2) + 𝜂 ∗ 𝑌𝑠𝑢𝑚𝑚𝑎𝑟𝑦 (𝜙1, 𝜙2) (1)

where 𝛼 , 𝛽 , 𝛾 , 𝜂 are hyperparameters and 𝛼 + 𝛽 + 𝛾 + 𝜂 = 1.
To tune these hyperparameters, we train a linear regression

model by approximating actual property score ˆ𝑆𝑐𝑜𝑟𝑒 (𝑓 , 𝜙1). In this
work, for simplicity, we consider ˆ𝑆𝑐𝑜𝑟𝑒 (𝑓 , 𝜙1) = 𝑌𝑠𝑢𝑚𝑚𝑎𝑟𝑦 (𝜙1, 𝜙1),
where𝜙1 is the corresponding ground truth property of𝜙1. We have
conducted a primitive experiment on 3622 properties generated
by PropertyGPT, and the results show 𝛼 : 0.134, 𝛽 : 0.556, 𝛾 : 0.141,
and 𝜂: 0.168 are the optimal weights.

Consequently, properties with different score are ranked in de-
scending order, where we believe, properties with higher rank are
likely to be the important security properties for prover to verify.

6 PROPERTY VERIFICATION
The properties generated by PropertyGPT are not only compilable
and appropriate but also verifiable. Figure 7 illustrates the work-
flow of our property verification process. Our prover accepts smart
contracts written in Solidity, along with their corresponding PSL
specifications. We employ forward symbolic execution to conduct
strongest postcondition analysis for each contract statement. Sub-
sequently, we perform modular verification to ascertain whether
these formal specifications have been accurately implemented in
the smart contract and can produce a proof if the properties hold. In
cases where the properties are violated, we employ bounded model
checking to validate whether the violated properties genuinely
remain unfulfilled during contract execution. Upon encountering
counter-examples, we can confidently conclude that the properties
indeed fail to hold, suggesting the presence of vulnerabilities in the
smart contracts, which necessitate further manual confirmation.

We utilize source-code level symbolic execution to conduct strongest
postcondition analysis for Solidity smart contracts. Distinguishing
ourselves from existing research [29], our novel symbolic execu-
tion approach implements comprehensive small-step semantics,
enabling automated analysis for real-world, complex smart con-
tracts. Although previous work [29] has made strides in symbolic
execution for Solidity smart contracts, it lacks support for certain
critical features commonly used in smart contracts, such as the

6

PropertyGPT: LLM-driven Formal Verification of Smart Contracts through Retrieval-Augmented Property Generation Conference’17, July 2017, Washington, DC, USA

aggregated effect of intricate expressions and polymorphic han-
dling during complex inheritance relationships. We address these
limitations by meticulously adhering to the practices of the Solidity
compiler, ensuring precise semantics of complicated expressions.
For instance, expressions are evaluated from left to right as per
the compiler’s specification. Furthermore, our approach accurately
resolves polymorphism during both the compilation and execu-
tion stages of smart contract. To mimic actual contract execution,
our symbolic execution approach maintains a comprehensive list
of function signatures and meticulously revisits contract inheri-
tance chains to determine the exact function implementation for
ambiguous calls, such as "super().call()", where "super" refers to an
unknown parent contract.

We have also implemented abstraction techniques to handle
unknown or non-linear operation semantics. Firstly, the behaviors
of function calls to on-chain smart contracts remain unknown, and
we assume that all such calls succeed but make their return data
symbolic to accommodate any possible outcome. This approach
is necessary because on-chain contracts may not be open source,
and their inter-contract interaction could be overly complex, falling
beyond the scope of our current research. Secondly, non-linear
native functions, such as sha3, which computes the hash value of
a string, are challenging to model precisely. To address this issue,
we utilize uninterpreted functions [19] to capture their primary
features, such as an injective function for sha3.

We integrate modular verification and bounded model check-
ing to establish the correctness of contract specifications. Smart
contract execution relies on the initial contract state, current trans-
action environment, and the called functions. During modular veri-
fication, we lift all state constraints by making all state variables
symbolic, even if it includes unreachable contract states. Then, cor-
rectness can be safely ensured when specification properties hold
accordingly. Otherwise, we employ bounded model checking to
systematically explore all feasible states to find counterexamples
regarding the property to be verified within a given bound. The
properties violated and their counterexamples will be investigated
manually to confirm the existence of vulnerabilities. Similar to the
practice in existing works [29, 57], in our prover, we set the bound
by default to be three, and we also cap the maximum loop iterations
to be five in case of non-terminated execution.

7 IMPLEMENTATION AND SETUP
We implemented PropertyGPT in around 3K lines of Python code
for LLM-based property generation, and around 38K lines of C++
code for grammar support and verification of PSL property speci-
fications. Additionally, for applying symbolic execution to smart
contracts written in various versions of Solidity, we developed
a converter to map smart contracts written in Solidity versions
0.6.x and 0.7.x into abstract syntax trees compatible with the latest
Solidity version 0.8.x, where we have systematically investigated
their syntax and semantic differences. We use the Z3 solver, ver-
sion 4.11.2, to discharge symbolic constraints for path feasibility
checking and property satisfiability checking.

7.1 Property Knowledge Collection
To obtain high-quality human-written properties as the knowledge
base for in-context learning, we systematically analyzed 61 audit
reports from the Certora platform, for which experts have writ-
ten property specifications to facilitate formal analysis of smart
contracts. These audit reports were published from 2019 to 2023.
Through further investigation, we removed 38 projects whose con-
tract code and raw properties were not available, and eventually, we
collected 23 Certora projects, including 623 human-written proper-
ties, which will be detailed in Table 7 in Appendix A.

To study the characteristics of these properties, we employed the
affinity propagation clustering algorithm [18] from the sklearn 2

library to discern property categories, based on pairwise embed-
ding similarity across the properties. Specifically, we performed
some preliminary experiments and found that this setting Affini-
tyPropagation(damping=0.5, preference=-75, random_state=5) could
establish a good result for property clustering. Figure 8 illustrates
the distribution where six clusters are labeled with different col-
ors. However, it is clear that overlapping exists among clusters,
especially for clusters #3 and #5.

Furthermore, we investigated all the clusters and have the fol-
lowing classifications of human-written properties as shown in
Table 1. There are six property categories as follows:
• DeFi, involving the management of its essential protocol compo-
nents including reserves, collateral, and liquidity pools;

• Token, which is the cornerstone of entire DeFi ecosystems, speci-
fying standard behaviors such as token balance and critical oper-
ations like transfer and minting;

• Arithmetic, focusing on the correctness of numerical conversions
and the consistency of asset splitting;

• Usability, examining the validity of operations containing timestamp-
based constraints (Temporal Use) and operations with contract
state-based constraints (State-dependent Use);

• Governance, which plays an important role in the management
of decentralized applications, usually through a voting mecha-
nism, concerning issues such as the transfer of voting power to
a delegator and the double-voting problem;

• Security, checking for the presence of common vulnerability
types including front running and overflow.

7.2 Experimental Setup
We use the large language model GPT-4-turbo provided by Ope-
nAI through its API gpt-4-0125-preview. Regarding the model
configuration, we adhere to the default settings where the temper-
ature is 0.8, top-p is 1, frequency penalty and presence penalty are
both 0, and the maximum response length is 2000. Moreover, we
calculate all embedding similarities using the pre-trained model
text-embedding-ada-002 from OpenAI. For property generation,
we cap revising attempts at nine to limit LLM usage for better eco-
nomics. All experiments were conducted on a Docker with Ubuntu
20.04 OS, an Intel Core Xeon 2.2 GHz processor, and 2GB RAM.

Data Availability. The property dataset and raw experimental
data are available at https://sites.google.com/view/propertygpt, while
the prototype will be released once the paper is published.

2https://scikit-learn.org/

7

https://sites.google.com/view/propertygpt
https://scikit-learn.org/

Conference’17, July 2017, Washington, DC, USA Liu et al.

0.4 0.2 0.0 0.2 0.4
PCA Dimension 1

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

PC
A

Di
m

en
sio

n
2

Clusters
Cluster 0
Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5

Figure 8: The property cluster distribution after two-
dimension PCA [20] reduction.

Table 1: Characteristics of the collected Certora properties.

Category Classification Property Examples

DeFi
Reserve setReserveFactorIntegrity
Collateral integrityOfisUsingAsCollateralAny
Liquidity checkBurnAllLiquidity

Token

Balance total_supply_is_sum_of_balances
Transfer/TransferFrom transferBalanceIncreaseEffect
Mint/Burn integrityMint, additiveBurn
Approve approvedTokensAreTemporary

Arithmetic Numerical Conversion toElasticAndToBaseAreInverse1down
Asset Splitting moneyNotLostOrCreatedDuringSplit

Usability Temporal Use timestamp_constrains_fromBlock
State-dependent Use unsetPendingTransitionMethods

Governance Delegation integrityDelegationWithSig
Voting totalNonVotingGEAccountNonVoting

Security Front run cannotFrontRunSplitTwoSameUsers
Overflow integrityOfMulDivNoOverflow

8 EVALUATION
In this work, we aim to answer the following research questions:
• RQ1: (Property Generation) How accurately does PropertyGPT
generate properties for smart contracts?

• RQ2: (Vulnerability Detection) How effectively does Proper-
tyGPT discover smart contract vulnerabilities? Can PropertyGPT
achieve state-of-the-art results?

• RQ3: (Ablation Study) What factors influence the performance
of PropertyGPT?

• RQ4: (Impact) How well does PropertyGPT find zero-day vul-
nerabilities in real-world smart contract projects?

Methodology. To answer RQ1, we divide Certora properties into
a testing dataset and a “training” dataset as the knowledge base. We
instruct PropertyGPT to generate properties for smart contracts in
the testing dataset using smart contracts and their properties from
the knowledge base. We compare the resulting properties by Prop-
ertyGPT with ground-truth human-written ones to investigate its
effectiveness. Specifically, we randomly selected nine (40%) Certora
projects as our testing dataset and then picked 10 properties for

Table 2: The evaluation benchmarks.

Benchmark Research questions

23 Certora audited projects (623 properties) RQ1, RQ3
13 CVEs, curated SmartInv benchmark (24 projects) RQ2

each project. Consequently, our testing dataset includes 90 ground
truth properties from nine projects. During this experiment, Prop-
ertyGPT first extracts the subject function code where the ground
truth properties are specified, and then queries the knowledge base
to enable ICL to automate property generation.

To answer RQ2, we compare PropertyGPT with SmartInv [56],
a concurrent work with ours to be published in May 2024. We
contacted the authors to obtain a copy of their source code and
benchmark3, which includes 60 attack incident projects that have
suffered significant losses. Upon reviewing their benchmark, we
identified several issues. Among the listed cases, 2 are repeated, 9
lack public exploit transactions (e.g., sherlockYields), 2 are not open-
sourced, and 2 have incomplete code. Of the remaining cases, 11
are reentrancy attacks that could be easily remedied by adding the
widely-used nonReentrancy modifier. Furthermore, 8 cases involve
price manipulation attacks, which may be impractical to identify
using the simple invariant properties that SmartInv generated. For
example, Tolmach et al.[50] proposes a semi-automated formal com-
posite analysis for DeFi protocols that detects such problems with
fairness properties, while others use either runtime monitoring[59]
to identify attack behavior or static analysis [25] to flag vulnera-
ble code with predefined patterns. Through this deep analysis of
their benchmark, we curated 24 attack incidents from the SmartInv
benchmark for our evaluation. Additionally, we compare Proper-
tyGPT with state-of-the-art tools [2, 16, 36, 48] on well-known
smart contract CVEs. As of April 21, 2024, there are 577 smart con-
tract CVEs, predominantly integer overflows. To avoid bias, we
selected 13 representative CVEs: three are integer overflow cases,
three involve access control vulnerabilities, four are other logic
bugs, etc., details of which are provided in Table 4.

In summary, as shown in Table 2, we evaluate the property
generation process using Certora audited projects and test the
applicability of PropertyGPT in vulnerability detection using well-
known CVEs and the attack incident projects studied by SmartInv.

8.1 RQ1: Property Generation
We evaluated PropertyGPT on 90 ground-truth properties from nine
Certora projects to investigate the effectiveness of property gen-
eration. Table 3 shows PropertyGPT’s property generation results
using the rest of Certora properties as the knowledge base.

The first two columns show the project name and the num-
ber of properties written by Certora experts, i.e., #Property (Cer-
tora). The middle five columns list the number of properties gen-
erated by PropertyGPT, i.e., #Property (ours), true positives that
are equivalent to the ground-truth properties (TP), the number
of ground-truth properties hit by the properties generated (#Hit),
the number of missed ground-truth properties (FN), as well as
false positives (FP). The last three columns are recall, precision,
3https://github.com/sallywang147/attackDB

8

https://github.com/sallywang147/attackDB

PropertyGPT: LLM-driven Formal Verification of Smart Contracts through Retrieval-Augmented Property Generation Conference’17, July 2017, Washington, DC, USA

Table 3: The property generation results for 90 ground-truth properties from nine Certora projects.

Project #Property (Certora) #Property (ours) TP #Hit FN FP Recall Precision F1-score

aave_proof_of_reserve 3* 38 25 3 0 13 1.00 0.66 0.79
aave_v3 17 61 32 15 2 29 0.88 0.52 0.66
celo_governance 10 39 29 10 0 10 1.00 0.74 0.85
furucombo 10 23 11 7 3 12 0.70 0.48 0.57
openzepplin 10 2 2 1 9 0 0.10 1.00 0.18
opyn_gamma_protocol 10 30 14 8 2 16 0.80 0.47 0.59
ousd 10 100 67 10 0 33 1.00 0.67 0.80
radicle_drips 10 17 9 7 3 8 0.70 0.53 0.60
sushi_benttobox 10 70 49 10 0 21 1.00 0.70 0.82

Average 10 42 26 8 2 16 0.80 0.64 0.71

* This project contains only three human-written properties, so we picked seven more from aave_v3, both of which are developed by the same institution.

and F1-score metrics where recall = #𝐻𝑖𝑡
#𝐻𝑖𝑡+𝐹𝑁 , precision = 𝑇𝑃

𝑇𝑃+𝐹𝑃 ,
and F1-score =

2×recall×precision
recall+precision . Because Certora properties are

written in the proprietary Certora Verification Language (CVL)
that supports formal verification of smart contracts at the EVM
bytecode level, while PropertyGPT uses PSL to facilitate prop-
erty formulation and verification at the source code level, there
is currently no automated analysis tool available for equivalence
checking between properties from these two distinct specifica-
tion systems. Therefore, two authors with 5 years of research and
auditing experience independently examined the equivalence be-
tween the ground-truth properties by Certora and the properties
generated by PropertyGPT, with a third author breaking ties in
case of disagreement. We welcome other researchers to conduct
replication and verification using our released data, available at
https://sites.google.com/view/propertygpt.

Table 3 shows that PropertyGPT can generate comprehensive
properties with relatively high recall and reasonable precision. Most
properties generated (26/42) are true positives, and most ground
truth properties (8/10) can be successfully reproduced, achieving
a satisfactory recall (0.80), reasonable precision (0.64), and fairly
good F1-score (0.71). Delving into project-specific results, Proper-
tyGPT was able to reproduce all the ground-truth properties for
four projects including aave_proof_of_reserve, celo_governance,
ousd, and sushi_benttobox. In contrast, PropertyGPT reproduced
only two ground-truth properties for openzepplin, suffering the
lowest recall and F1-score, although with the highest precision. We
investigated the results and found this is largely because OpenZep-
pelin [3] is a foundational contract library that has been directly
imported by nearly all real-world applications, and client code
is unlikely to re-implement similar functionality, thus leading to
the scarcity of reliable reference properties. In terms of precision,
opyn_gamma_protocol achieves the lowest, reaching only 0.47. We
investigated all 16 false positives about it and later recognized
that 11 of these false positives are properties that hold for smart
contracts but are not documented in the ground truth by Certora.

Answer to RQ1: PropertyGPT can generate comprehensive
and high-quality properties, covering 80% equivalent proper-
ties in the ground truth as judged by human experts. Moreover,
the additional properties (FPs) produced by PropertyGPT gen-
erally also hold, complementing the human-written ones.

8.2 RQ2: Vulnerability Detection
We investigate the applicability of PropertyGPT in the vulnera-
bility detection task on well-known smart contract CVEs and the
attack incident projects studied by SmartInv. Note that to mimic
the situation of real-world deployment, we set the top-K to top-2,
as measured by §8.3, as the best configuration starting from this
section.
CVEs. Table 4 demonstrates PropertyGPT’s effectiveness in de-
tecting 13 smart contract CVEs. We compared PropertyGPT with
GPTScan [48], which employs the variable recognition ability of
LLMs to instantiate high-level detection patterns for logic bugs,
and Slither [16], a popular static analysis tool used to detect a wide
range of common vulnerability types. In particular, since the origi-
nal GPTScan covers only ten types of logic bugs, we have enhanced
it with the recent unsupervised paradigm [47] and refer to the
enhanced version as GPTScan+. Additionally, Manticore [36] and
Mythril [2] are two bytecode-level symbolic execution tools that
automate comprehensive program state exploration and exploit
generation of smart contract vulnerabilities. In Table 4, the first
two columns list CVE names and their vulnerability types, while
the remaining columns show the detection results by each tool.

The detection results presented in Table 4 illustrate that Prop-
ertyGPT outperforms all the comparison tools by detecting 9 out
of 13 CVEs, followed by GPTScan detecting five CVEs, Slither de-
tecting only one delegatecall-related CVE, Mythril detecting three
overflow-related CVEs, andManticore detecting zero CVEs.We also
investigated the remaining four CVEs that PropertyGPT failed to
detect. It is unknown what valid properties can express the expecta-
tion of proper randomness and delegatecall use. CVE-2018-17111 is
caused by the misuse of access control rather than the lack of access
control, which is quite challenging for PropertyGPT to recognize
this subtle difference during property generation.

9

https://sites.google.com/view/propertygpt

Conference’17, July 2017, Washington, DC, USA Liu et al.

Table 4: Vulnerability detection results for 13 CVEs.

CVE Description Pr
op
er
ty
G
PT

G
PT

Sc
an
+

Sl
ith

er

M
an
tic
or
e

M
yt
hr
il

CVE-2021-34273 access control ✓ ✓ × × ×
CVE-2021-33403 overflow ✓ × × × ✓
CVE-2018-18425 logic error ✓ × × × ×
CVE-2021-3004 logic error × × × × ×
CVE-2018-14085 delegatecall × × ✓ × ×
CVE-2018-14089 logic error ✓ ✓ × × ×
CVE-2018-17111 access control × × × × ×
CVE-2018-17987 bad randomness × ✓ × × ×
CVE-2019-15079 access control ✓ × × × ×
CVE-2023-26488 logic error ✓ × × × ×
CVE-2021-34272 access control ✓ ✓ × × ×
CVE-2021-34270 overflow ✓ ✓ × × ✓
CVE-2018-14087 overflow ✓ × × × ✓

Table 5: Evaluation results for 24 attack incident projects
from the curated SmartInv benchmark.

Contracts Loss (million $) Detection #Property Generation
(seconds)

Verification
(seconds)

dfxFinance 4.00 ✓ 8 235 7
AnySwap 1.40 × 11 518 7
Dodo 0.70 ✓ 17 1,182 19
Bancor 0.55 ✓ 19 1,948 9
BeautyChain 900.00 ✓ 5 104 9
Melo 0.09 ✓ 9 252 8
BGLD 0.02 × 9 229 39
GYMNetwork 2.00 ✓ 21 274 71
elasticSwap 0.85 ✓ 37 1,136 120
EulerFinance 200.00 × 23 376 43
monoSwap 31.00 ✓ 5 69 12
nimBus 0.01 ✓ 32 4,288 30
VTF 0.05 × 8 358 21
Nomad 152.00 ✓ 14 590 70
Umbrella 0.70 ✓ 14 404 25
Fortress Loan 3.00 ✓ 2 71 5
ShadowFinance 0.30 ✓ 25 551 80
Revest - ✓ 4 75 10
Cartel - ✓ 11 401 20
sushiSwap 3.30 × 10 419 20
ChainSwap 8.00 × 9 307 25
Ragnarok 0.04 ✓ 42 1,890 88
templeDao 2.30 ✓ 13 302 30
BabySwap - × 33 1,842 50

Overall 1,310.30 17 16 743 34

The ability of PropertyGPT can be enhanced by the introduction
of newly confirmed vulnerable code and properties into our knowl-
edge database. As shown in Table 1, the studied properties written
by Certora experts seem to lack support for access control, which
could limit the effectiveness of PropertyGPT in detecting other
wild access control vulnerabilities, even though we realized that
PropertyGPT has demonstrated a certain level of generalization
capability in the aforementioned CVE detection results.
Attack Incidents. Table 5 shows the evaluation results on 24 attack
incident projects from the curated SmartInv benchmark. Because
the authors of SmartInv did not share their instrumented buggy
contract code, and the ground truth and raw experimental results

0.00

0.25

0.50

0.75

1.00

Top-1 Top-2 Top-3 Top-4 Top-5 Top-6 Top-7 Top-8 Top-9

Recall Precision F1-score

Figure 9: The impact of Top-K settings on property accuracy.

about their generated invariant properties are also missing, we
perform a qualitative rather than a quantitative comparison with
SmartInv and will discuss this in Section 9. In Table 5, the first
two columns list project names and the amount of attack loss.
The remaining columns show the detection results, the number of
properties generated, the time used for property generation, and
formal verification, respectively.

PropertyGPT successfully identified vulnerabilities in 17 out of
24 real-world attack incidents, on average generating 16 properties
per project, spending around 12 minutes for property generation
and only 34 seconds for formal verification. For the remaining
seven projects that PropertyGPT failed to detect, we studied the
root causes of their reported vulnerabilities. We recognized that
PropertyGPT does not support the runtime context of smart con-
tracts, whichmay be essential for generating properties in particular
use scenarios, for example, deflationary token abuse for the BGLD
project, which we leave as future work.

Answer to RQ2: PropertyGPT can effectively detect vulnera-
bilities in both simple and complex smart contracts. Specifi-
cally, PropertyGPT has distinguished itself from the current
state-of-the-art by detecting 9 out of 13 CVEs. Additionally,
PropertyGPT achieved relatively good results in identifying
logic bugs in 17 out of 24 attack incidents.

8.3 RQ3: Ablation Study
In our ablation study, we first systematically explored the impact of
varying Top-K settings on the property selection process. Conduct-
ing different trials on the same Certora projects in RQ1, in Figure 9,
we plotted recall, precision, and F1-score for the resulting proper-
ties accordingly. It is clear that all the metrics are above 0.5. More
importantly, when moving from top-1 to top-2, all the metrics in-
crease, although precision has only a very slight increase from
top-1 (0.64) to top-2 (0.65), and afterward, precision goes down and
finally fluctuates around 0.60. Therefore, for the sake of efficiency,
we suggest selecting top-2 properties generated for use by external
community experts or other compatible program analysis tools.

In addition, we delved into our property generation process with
a focus on the success rate of property generation and property
repair times using compiler feedback information. Table 6 shows
that GPT-4.0-turbo without revising or repair achieves a 63% suc-
cess rate, which is quite lower compared to PropertyGPT (87%).

10

PropertyGPT: LLM-driven Formal Verification of Smart Contracts through Retrieval-Augmented Property Generation Conference’17, July 2017, Washington, DC, USA

Table 6: The success rate of property generation.

Method #Compilable #Failed Success Rate

GPT-4.0-turbo w/o fix 234 136 0.63
PropertyGPT w/ §5.2 321 49 0.87

Fix times

N
um

be
r

of
 r

ep
ai

re
d

pr
op

er
ti

es

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9

Figure 10: The distribution of property fix times.

Figure 10 visualizes the distribution of property repair times, where
we capped repair time at nine. We can see that most compilable
properties (84%) can be generated with no more than five fix at-
tempts. We also investigated the remaining 49 properties that could
not be fixed by PropertyGPT and discovered the main compiler
error message to be the use of undeclared variables, which may be
addressed with a pattern-based approach [26].

Answer to RQ3: PropertyGPT can effectively generate compi-
lable properties, with 84% of all properties being successfully
revised within five attempts, and the highest success rate
reaching 87%. Among them, the top-2 properties achieve the
best balance between precision and recall.

8.4 RQ4: Real-world Impact
To demonstrate PropertyGPT’s ability to identify zero-day vulnera-
bilities, we ran PropertyGPT on real-world bounty projects hosted
by popular platforms such as Secure3 [43] and Code4Rena [12].
PropertyGPT successfully generated 22 bug findings for 4 projects,
12 of which have been both confirmed and fixed. In return, we
received $8,256 in bug bounties from vendors. In this section, for
case studies, we list two zero-day bugs that have been fixed for
responsible disclosure, and we do not mention their project source
to respect the anonymity policy.

Figure 11 shows that the withdrawForwardFee function contains
a critical vulnerability allowing validators to withdraw more than
their allocated share of forwarding fees, potentially leading to un-
fair distributions and loss of funds. The vulnerability arises because
the function fails to track and limit individual validators’ with-
drawals according to their proportionate share. It calculates the
new total withdrawn fee by simply adding the requested with-
drawal amount _amount to totalValidatorForwardFeeWithdrawn
(Lines 10-13), without considering the requesting validator’s enti-
tled share. The only check performed is against the total collected
forwarding fees, ensuring that the new total withdrawn does not

1 pragma solidity ^0.8.0;
2 contract SimplifiedStandaloneZkLink {
3 address private _owner;
4 mapping(address => bool) private _validators;
5 uint256 public totalValidatorForwardFee;
6 uint256 public totalValidatorForwardFeeWithdrawn;
7

8 function withdrawForwardFee(uint256 _amount) external

nonReentrant onlyValidator {↩→

9 require(_amount > 0, "Invalid amount");
10 uint256 newWithdrawnFee =

totalValidatorForwardFeeWithdrawn + _amount;↩→

11 require(totalValidatorForwardFee >= newWithdrawnFee,

"Withdraw exceed");↩→

12

13 totalValidatorForwardFeeWithdrawn = newWithdrawnFee;
14 (bool success,) = msg.sender.call{value: _amount}("");
15 require(success, "Withdraw failed");
16 emit WithdrawForwardFee(_amount);
17 }
18 }

Figure 11: The vulnerable withdrawForwardFee function.

1 function withdrawForwardFee(uint256 _amount)
2 precondition {
3 _validators[msg.sender] == true;
4 _amount > 0;
5 old(totalValidatorForwardFee) >=

old(totalValidatorForwardFeeWithdrawn) + _amount;↩→

6 }
7 postcondition {
8 totalValidatorForwardFeeWithdrawn ==

old(totalValidatorForwardFeeWithdrawn) + _amount;↩→

9 totalValidatorForwardFee -
totalValidatorForwardFeeWithdrawn ==
old(totalValidatorForwardFee) -
old(totalValidatorForwardFeeWithdrawn) - amount;

↩→

↩→

↩→

10 }

Figure 12: The property generated for the case in Figure 11.

exceed this amount (Line 11). However, this does not prevent indi-
vidual validators from withdrawing more than their share.

PropertyGPT detected this vulnerability through the generation
and verification of function pre-/post-conditions listed in Figure 12.
The pre-conditions(Lines 3-5) hold for this contract as they precisely
capture the constraints onlyModifier and the other two require
statements. The post-conditions describe the expected functionality.
However, one of the post-conditions (Line 9), totalValidatorF ⌋
orwardFee - totalValidatorForwardFeeWithdrawn == old ⌋
(totalValidatorForwardFee) - old(totalValidatorForwar ⌋
dFeeWithdrawn) - amount, does not hold, thus identifying the
contract vulnerability in Figure 11.

Figure 13 shows a vulnerable addEnvelope function where it
does not enforce uniqueness of envelope (Line 7), where existing
storage can be overwritten arbitrarily. Figure 14 presents the prop-
erty generated by PropertyGPT to detect such issue. Interestingly,

11

Conference’17, July 2017, Washington, DC, USA Liu et al.

1 function addEnvelope(
2 string calldata envelopeID, bytes32 hashedMerkleRoot,
3 uint32 bitarraySize, address erc721ContractAddress,
4 uint256[] calldata tokenIDs
5) public {
6 require(tokenIDs.length > 0, "Trying to create an empty

envelope!");↩→

7 MerkleEnvelopeERC721 storage envelope =

idToEnvelopes[envelopeID]; // bug: overwrite storage.↩→

8 envelope.creator = msg.sender;
9 envelope.unclaimedPasswords = hashedMerkleRoot;
10 envelope.isPasswordClaimed = new uint8[](bitarraySize / 8 +

1);↩→

11 envelope.tokenAddress = erc721ContractAddress;
12 envelope.tokenIDs = tokenIDs;
13 ...
14 }

Figure 13: The vulnerable addEnvelope function.

1 rule checkAddEnvelopeCorrectSenderAndCreator() {
2 assume(msg.sender ==

0x0000000000000000000000000000000000000001);↩→

3 string memory envelopeID = "uniqueID";
4 bytes32 hashedMerkleRoot = 0x1234567890abcdef1234567890abc ⌋

def1234567890abcdef1234567890abcdef;↩→

5 uint32 bitarraySize = 128;
6 address erc721ContractAddress =

0x0000000000000000000000000000000000000002;↩→

7 uint256[] memory tokenIDs = new uint256[](1);
8 tokenIDs[0] = 12345;
9

10 MerkleEnvelopeERC721 storage $envelopeBefore =

idToEnvelopes[envelopeID];↩→

11 bool $existsBefore = ($envelopeBefore.creator !=

address(0));↩→

12

13 addEnvelope(envelopeID, hashedMerkleRoot, bitarraySize,

erc721ContractAddress, tokenIDs);↩→

14

15 MerkleEnvelopeERC721 storage $envelopeAfter =

idToEnvelopes[envelopeID];↩→

16 bool $correctlyAdded = ($envelopeAfter.creator ==

msg.sender);↩→

17 bool $notExistsBefore = ! $existsBefore;
18

19 assert($correctlyAdded && $notExistsBefore);
20 }

Figure 14: The property generated for the case in Figure 13.

PropertyGPT can skillfully construct varied input data (Line 3-8).
When the function call (Line 13) succeeds, we check the condi-
tion (Line 19) that same-id envelope does not exist before and the
envelope creator equals to the current caller. In other words, this
condition disallows calling addEnvelope function with same en-
velope id and ensures the effect of addEnvelope will set envelope

creator to be the function caller. Due to the overwrite bug in Fig-
ure 13, this assertion does not hold for this function.

8.5 Threats to Validity
Internal Validity. We evaluated the effectiveness of PropertyGPT
on an established Certora property dataset. Nevertheless, there is
lack of equivalence checking tool between Certora-style properties
and our proposed PSL-style properties generated by PropertyGPT.
To mitigate this issue, three authors independently reviewed these
properties to determine equivalence and we release all the proper-
ties generated and the according labeling results for public use.
External Validity. Our findings in vulnerability detection may
not apply to other kinds of smart contracts and other types of
contract vulnerabilities. In this work, we evaluated PropertyGPT
on 13 representative smart contract CVEs covering many kinds
of vulnerabilities and 24 real-world victim projects of different
application domains. Moreover, we generated 24 bug findings for
high-profile projects to audit and 12 have been confirmed and fixed,
with $8,256 bounty reward. Therefore, we believe PropertyGPT
develops a practical formal verification technique for the detection
of a wider range of smart contract vulnerabilities.

9 RELATEDWORK
VulnerabilityDetection.Numerous automated and semi-automated
analysis tools have been proposed to detect smart contract vulner-
abilities. On the one hand, static analysis tools analyze code se-
quences along the abstract syntax tree of contracts [16] or use a fact-
based transformation and query system [6, 54] to flag weaknesses
and vulnerabilities against expert-written patterns. In contrast, with
test oracles, fuzzers examine runtime behaviors including operation
traces [22, 37] and execution effects [33, 55] for exploit generation,
usually leading to higher precision but lower recall compared with
static analyses. On the other hand, formal verification has been
widely employed in techniques to ensure smart contract correctness.
Automated tools like Manticore [36] and Mythril [2] use symbolic
execution to explore as many program states as possible to iden-
tify vulnerable behavior with a set of predefined detection rules.
Semi-automated tools require users to provide specification prop-
erties, including invariants [53], function pre-/post-conditions [57],
temporal properties [40, 46], and other customized rules [10, 21].

PropertyGPT distinguishes itself by automating property genera-
tion using a large language model and proposing a powerful prover
based on source code-level symbolic execution of smart contracts,
supporting the detection of a wide range of contract vulnerabilities.
Property Generation. Static inference [49, 57] and dynamic infer-
ence [31, 34] have been applied in property generation for smart
contracts, and recently, machine-learning-based models have also
been used for invariant property generation [30, 56]. VeriSol [57]
applies the Houdini algorithm [17] to reason about correct invari-
ant properties from a set of hypothesized candidates. SolType [49]
discovers type invariants for Solidity smart contracts, requiring
developers to add refinement type annotations to the contracts.
However, their properties are limited to arithmetic operations to
secure smart contracts from integer overflow and underflow. In-
vCon [31] and its subsequent work [34] apply dynamic invariant
detection and static inference to produce contract invariants and

12

PropertyGPT: LLM-driven Formal Verification of Smart Contracts through Retrieval-Augmented Property Generation Conference’17, July 2017, Washington, DC, USA

function pre-/post-conditions, but they necessitate contracts having
sufficient transaction histories.

Our work aligns with previous efforts in machine-learning-based
approaches, i.e., Cider [30] and SmartInv [56]. Cider uses a deep re-
inforcement learning approach but only generates likely invariant
properties, while PropertyGPT can verify all the properties gener-
ated with a prover. Both SmartInv and PropertyGPT are powered
by large language models. PropertyGPT differs from SmartInv in
that we use in-context learning rather than fine-tuning, and our
properties generated extend beyond function pre-/post-conditions.
LLM-based Security Systems. By combining LLMs, various se-
curity tasks have been addressed more effectively. Sun et al. [48]
proposed GPTScan, and Li et al. [28] introduced methods that com-
bine LLMs with static program analysis for vulnerability detection,
coveringmore types of vulnerabilities than traditional tools. Beyond
vulnerability detection, LLMs have been used for other security
tasks. Deng et al. [13] proposed TitanFuzz, which utilizes LLMs
to guide the fuzzing of deep learning libraries such as PyTorch
and TensorFlow. They also introduced FuzzGPT [14] to synthesize
unusual programs for fuzzing vulnerabilities. ChatAFL [35] utilizes
LLMs to guide the fuzzing of protocols by interpreting the proto-
col documents. Additionally, LLMs have been applied to program
repairing tasks, such as ACFix [61] and ChatRepair [60].

10 CONCLUSION
In this paper, we proposed retrieval-augmented property gener-
ation for smart contracts by utilizing LLMs’ in-context learning
capabilities. We implemented this approach in a tool called Proper-
tyGPT and addressed challenges to ensure the generated properties
are compilable, appropriate, and runtime-verifiable. Our evaluation
results indicate that PropertyGPT can detect many real-world con-
tract vulnerabilities, especially in high-profile projects, collectively
receiving $8,256 in bounty rewards from vendors. For future work,
we plan to include more comprehensive contract context informa-
tion, such as documentation, in our approach and enhance Proper-
tyGPT with richer property knowledge from various sources.

REFERENCES
[1] 2020. Binance Smart Chain. https://docs.binance.org/smart-chain/guides/bsc-

intro.html. Introduction of Binance Smart Chain.
[2] 2024. Mythril. https://github.com/Consensys/mythril.
[3] 2024. OpenZeppelin–A library for secure smart contract development. https:

//github.com/OpenZeppelin/openzeppelin-contracts.
[4] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[5] Akash Arora, Kanisk, and Shailender Kumar. 2022. Smart contracts and NFTs:
non-fungible tokens as a core component of blockchain to be used as collectibles.
In Cyber Security and Digital Forensics: Proceedings of ICCSDF 2021. Springer,
401–422.

[6] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and Yannis Smarag-
dakis. 2020. Ethainter: a smart contract security analyzer for composite vulner-
abilities. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. 454–469.

[7] Tom B. Brown, Benjamin Mann, Nick Ryder, and Others. 2020. Language Models
are Few-Shot Learners. arXiv:2005.14165 (July 2020). https://doi.org/10.48550/
arXiv.2005.14165 arXiv:2005.14165 [cs].

[8] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: unassisted
and automatic generation of high-coverage tests for complex systems programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (San Diego, California) (OSDI’08). USENIX Association, USA,
209–224.

[9] Certora. [n.d.]. A community of hackers putting their formal verification skills to
the test and earning rewards from leading protocols. https://www.certora.com/
contests.

[10] Certora. [n.d.]. Securing Web3 with Decentralized Intelligence. https://www.
certora.com/.

[11] Ting Chen, Yufei Zhang, Zihao Li, Xiapu Luo, Ting Wang, Rong Cao, Xiuzhuo
Xiao, and Xiaosong Zhang. 2019. Tokenscope: Automatically detecting inconsis-
tent behaviors of cryptocurrency tokens in Ethereum. In Proceedings of the 2019
ACM SIGSAC conference on computer and communications security. 1503–1520.

[12] Code4rena. [n.d.]. Keeping high severity bugs out of production. https:
//code4rena.com/.

[13] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming
Zhang. 2023. Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-
Learning Libraries via Large Language Models. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis. ACM, Seattle
WA USA, 423–435. https://doi.org/10.1145/3597926.3598067

[14] Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shu-
jing Yang, and Lingming Zhang. 2023. Large Language Models are Edge-Case
Generators: Crafting Unusual Programs for Fuzzing Deep Learning Libraries.
IEEE Computer Society, 830–842.

[15] Yuzhou Fang, Daoyuan Wu, Xiao Yi, Shuai Wang, Yufan Chen, Mengjie Chen,
Yang Liu, and Lingxiao Jiang. 2023. Beyond "Protected" and "Private": An Empiri-
cal Security Analysis of Custom Function Modifiers in Smart Contracts. In Proc.
ACM ISSTA.

[16] Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: a static analysis
framework for smart contracts. In 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE, 8–15.

[17] Cormac Flanagan and K Rustan M Leino. 2001. Houdini, an annotation assistant
for ESC/Java. In International Symposium of Formal Methods Europe. Springer,
500–517.

[18] Brendan J Frey and Delbert Dueck. 2007. Clustering by passing messages between
data points. science 315, 5814 (2007), 972–976.

[19] Graeme Gange, Jorge A Navas, Peter Schachte, Harald Søndergaard, and Peter J
Stuckey. 2016. An abstract domain of uninterpreted functions. In Verification,
Model Checking, and Abstract Interpretation: 17th International Conference, VMCAI
2016, St. Petersburg, FL, USA, January 17-19, 2016. Proceedings 17. Springer, 85–103.

[20] Basna Mohammed Salih Hasan and Adnan Mohsin Abdulazeez. 2021. A review
of principal component analysis algorithm for dimensionality reduction. Journal
of Soft Computing and Data Mining 2, 1 (2021), 20–30.

[21] Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu, Philip
Daian, Dwight Guth, Brandon Moore, Daejun Park, Yi Zhang, Andrei Stefanescu,
et al. 2018. KEVM: A complete formal semantics of the Ethereum virtual machine.
In 2018 IEEE 31st Computer Security Foundations Symposium (CSF). IEEE, 204–217.

[22] Bo Jiang, Ye Liu, and WK Chan. 2018. ContractFuzzer: Fuzzing Smart Contracts
for Vulnerability Detection. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. ACM, 259–269.

[23] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

[24] Junsang Kim and Seyong Kim. 2021. A survey of decentralized finance (defi)
based on blockchain. Journal of the Korea Society of Computer and Information
26, 3 (2021), 59–67.

[25] Queping Kong, Jiachi Chen, Yanlin Wang, Zigui Jiang, and Zibin Zheng. 2023.
DeFiTainter: Detecting Price Manipulation Vulnerabilities in DeFi Protocols.
In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis. 1144–1156.

[26] Anil Koyuncu, Kui Liu, Tegawendé F Bissyandé, Dongsun Kim, Jacques Klein,
Martin Monperrus, and Yves Le Traon. 2020. Fixminer: Mining relevant fix
patterns for automated program repair. Empirical Software Engineering 25 (2020),
1980–2024.

[27] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
Sebastian Riedel, and Douwe Kiela. 2021. Retrieval-Augmented Generation
for Knowledge-Intensive NLP Tasks. arXiv:2005.11401 (April 2021). https:
//doi.org/10.48550/arXiv.2005.11401 arXiv:2005.11401 [cs].

[28] Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. 2023. Enhancing Static
Analysis For Practical Bug Detection: An LLM-Integrated Approach. In Proc.
ACM Program. Lang.

[29] Shang-Wei Lin, Palina Tolmach, Ye Liu, and Yi Li. 2022. Solsee: a source-level
symbolic execution engine for solidity. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 1687–1691.

[30] Junrui Liu, Yanju Chen, Bryan Tan, Isil Dillig, and Yu Feng. 2022. Learning
Contract Invariants Using Reinforcement Learning. In Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering. 1–11.

[31] Ye Liu and Yi Li. 2022. InvCon: A Dynamic Invariant Detector for Ethereum
Smart Contracts. In Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering. 1–4.

13

https://docs.binance.org/smart-chain/guides/bsc-intro.html
https://docs.binance.org/smart-chain/guides/bsc-intro.html
https://github.com/Consensys/mythril
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2005.14165
https://www.certora.com/contests
https://www.certora.com/contests
https://www.certora.com/
https://www.certora.com/
https://code4rena.com/
https://code4rena.com/
https://doi.org/10.1145/3597926.3598067
https://doi.org/10.48550/arXiv.2005.11401
https://doi.org/10.48550/arXiv.2005.11401

Conference’17, July 2017, Washington, DC, USA Liu et al.

[32] Ye Liu, Yi Li, Shang-Wei Lin, and Cyrille Artho. 2022. Finding permission bugs
in smart contracts with role mining. In Proc. ACM ISSTA.

[33] Ye Liu, Yi Li, Shang-Wei Lin, and Cyrille Artho. 2022. Finding Permission Bugs
in Smart Contracts with Role Mining. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA). ACM, New
York, NY, USA, 716–727.

[34] Ye Liu, Chengxuan Zhang, and Yi Li. 2024. Automated Invariant Generation for
Solidity Smart Contracts. arXiv preprint arXiv:2401.00650 (2024).

[35] Ruijie Meng, Martin Mirchev, Marcel Bohme, and Abhik Roychoudhury. [n.d.].
Large Language Model guided Protocol Fuzzing. In Proceedings of the Symposium
on Network and Distributed System Security 2024. https://doi.org/10.14722/ndss.
2024.24556

[36] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco,
Josselin Feist, Trent Brunson, and Artem Dinaburg. 2019. Manticore: A user-
friendly symbolic execution framework for binaries and smart contracts. In 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 1186–1189.

[37] Tai D Nguyen, Long H Pham, Jun Sun, Yun Lin, and Quang Tran Minh. 2020.
sfuzz: An efficient adaptive fuzzer for solidity smart contracts. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering. 778–788.

[38] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schul-
man, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell,
Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. 2022. Training
language models to follow instructions with human feedback. arXiv:2203.02155.

[39] Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Brendan
Dolan-Gavitt. 2023. Examining Zero-Shot Vulnerability Repair with Large Lan-
guage Models. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE, San
Francisco, CA, USA, 2339–2356. https://doi.org/10.1109/SP46215.2023.10179324

[40] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and
Martin Vechev. 2020. Verx: Safety verification of smart contracts. In 2020 IEEE
symposium on security and privacy (SP). IEEE, 1661–1677.

[41] Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas Davi. 2018. Sereum:
Protecting existing smart contracts against re-entrancy attacks. arXiv preprint
arXiv:1812.05934 (2018).

[42] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xi-
aoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer,
Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar,
Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Syn-
naeve. 2023. Code Llama: Open Foundation Models for Code. arXiv:2308.12950.

[43] Secure3. [n.d.]. Securing Web3 with Decentralized Intelligence. https://www.
secure3.io/.

[44] Seongjin Shin, Sang-Woo Lee, Hwijeen Ahn, Sungdong Kim, HyoungSeok Kim,
Boseop Kim, Kyunghyun Cho, Gichang Lee,Woomyoung Park, Jung-Woo Ha, and
Nako Sung. 2022. On the Effect of Pretraining Corpora on In-context Learning
by a Large-scale Language Model. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. Association for Computational Linguistics, Seattle, United
States, 5168–5186. https://doi.org/10.18653/v1/2022.naacl-main.380

[45] Solidity 2022. Solidity. https://solidity.readthedocs.io/en/v0.5.1/.
[46] Jon Stephens, Kostas Ferles, Benjamin Mariano, Shuvendu Lahiri, and Isil Dillig.

2021. Smartpulse: Automated checking of temporal properties in smart contracts.
In 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 555–571.

[47] Yuqiang Sun, DaoyuanWu, Yue Xue, Han Liu, Wei Ma, Lyuye Zhang, Miaolei Shi,
and Yang Liu. 2024. LLM4Vuln: A Unified Evaluation Framework for Decoupling
and Enhancing LLMs’ Vulnerability Reasoning. arXiv:2401.16185 (Jan. 2024).
https://doi.org/10.48550/arXiv.2401.16185 arXiv:2401.16185 [cs].

[48] Yuqiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Haijun Wang, Zhengzi Xu, Xiaofei
Xie, and Yang Liu. 2024. Gptscan: Detecting logic vulnerabilities in smart contracts
by combining gpt with program analysis. In Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering. 1–13.

[49] Bryan Tan, Benjamin Mariano, Shuvendu K Lahiri, Isil Dillig, and Yu Feng. 2022.
SolType: refinement types for arithmetic overflow in solidity. Proceedings of the
ACM on Programming Languages 6, POPL (2022), 1–29.

[50] Palina Tolmach, Yi Li, Shang-Wei Lin, and Yang Liu. 2021. Formal analysis of
composable DeFi protocols. In Financial Cryptography and Data Security. FC
2021 International Workshops: CoDecFin, DeFi, VOTING, and WTSC, Virtual Event,
March 5, 2021, Revised Selected Papers 25. Springer, 149–161.

[51] Palina Tolmach, Yi Li, Shang-Wei Lin, Yang Liu, and Zengxiang Li. 2021. A survey
of smart contract formal specification and verification. ACM Computing Surveys
(CSUR) 54, 7 (2021), 1–38.

[52] Hugo Touvron, Louis Martin, Kevin Stone, and et al. 2023. Llama 2: Open
Foundation and Fine-Tuned Chat Models. (2023). arXiv:2307.09288.

[53] Trail of Bits 2019. Echidna. Trail of Bits. https://github.com/trailofbits/echidna
[54] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian

Buenzli, and Martin Vechev. 2018. Securify: Practical security analysis of smart
contracts. In Proceedings of the 2018 ACM SIGSAC conference on computer and

communications security. 67–82.
[55] Haijun Wang, Ye Liu, Yi Li, Shang-Wei Lin, Cyrille Artho, Lei Ma, and Yang Liu.

2020. Oracle-Supported Dynamic Exploit Generation for Smart Contracts. IEEE
Transactions on Dependable and Secure Computing (2020).

[56] Sally JunsongWang, Kexin Pei, and Junfeng Yang. 2024. SMARTINV: Multimodal
Learning for Smart Contract Invariant Inference. In 2024 IEEE Symposium on
Security and Privacy (SP). IEEE Computer Society, 126–126.

[57] Yuepeng Wang, Shuvendu K Lahiri, Shuo Chen, Rong Pan, Isil Dillig, Cody Born,
and Immad Naseer. 2018. Formal specification and verification of smart contracts
for azure blockchain. arXiv preprint arXiv:1812.08829 (2018).

[58] Gavin Wood. 2014. Ethereum: A Secure Decentralised Generalised Transaction
Ledger. Ethereum project yellow paper 151 (2014), 1–32.

[59] Siwei Wu, Dabao Wang, Jianting He, Yajin Zhou, Lei Wu, Xingliang Yuan, Qin-
ming He, and Kui Ren. 2021. Defiranger: Detecting price manipulation attacks
on defi applications. arXiv preprint arXiv:2104.15068 (2021).

[60] Chunqiu Steven Xia and Lingming Zhang. 2023. Keep the Conversation Going:
Fixing 162 out of 337 bugs for $0.42 each using ChatGPT. arXiv:2304.00385 (April
2023). https://doi.org/10.48550/arXiv.2304.00385 arXiv:2304.00385 [cs].

[61] Lyuye Zhang, Kaixuan Li, Kairan Sun, Daoyuan Wu, Ye Liu, Haoye Tian, and
Yang Liu. 2024. ACFIX: Guiding LLMs with Mined Common RBAC Practices
for Context-Aware Repair of Access Control Vulnerabilities in Smart Contracts.
(2024). arXiv:2403.06838 [cs.SE]

[62] Zhuo Zhang, Brian Zhang, Wen Xu, and Zhiqiang Lin. 2023. Demystifying ex-
ploitable bugs in smart contracts. In 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). IEEE, 615–627.

[63] Yilun Zhu, Joel Ruben Antony Moniz, Shruti Bhargava, Jiarui Lu, Dhivya Pi-
raviperumal, Site Li, Yuan Zhang, Hong Yu, and Bo-Hsiang Tseng. 2024. Can
Large Language Models Understand Context? arXiv:2402.00858 (Feb. 2024).
https://doi.org/10.48550/arXiv.2402.00858 arXiv:2402.00858 [cs].

APPENDIX
A SUPPLEMENTARY MATERIAL
Table 7 lists the raw information for all the 61 Certora projects, of
which we collected 23 projects with available code and properties.

14

https://doi.org/10.14722/ndss.2024.24556
https://doi.org/10.14722/ndss.2024.24556
https://doi.org/10.1109/SP46215.2023.10179324
https://www.secure3.io/
https://www.secure3.io/
https://doi.org/10.18653/v1/2022.naacl-main.380
https://solidity.readthedocs.io/en/v0.5.1/
https://doi.org/10.48550/arXiv.2401.16185
https://github.com/trailofbits/echidna
https://doi.org/10.48550/arXiv.2304.00385
https://arxiv.org/abs/2403.06838
https://doi.org/10.48550/arXiv.2402.00858

PropertyGPT: LLM-driven Formal Verification of Smart Contracts through Retrieval-Augmented Property Generation Conference’17, July 2017, Washington, DC, USA

Table 7: The raw information for all the 61 Certora projects.

Report Name Year Month Included #Property

Aave CLSynchronicity Price Adapter 2022 December ×
Aave GHO Stablecoin 2023 March ✓ 35
Aave Governance V2 Update 2022 September ×
Aave L2 Bridge 2022 July ✓ 42
Aave Proof of Reserve 2022 November ✓ 3
Aave Protocol V2 2020 December ✓ 17
Aave Rescue Mission Phase 1 2023 January ✓ 1
Aave Staked Token v1.5 2023 February ✓ 11
Aave Static aToken 2023 April ✓ 24
AAVE Token V3 2022 September ×
Aave V2 AStETH 2022 August ×
Aave V3 2022 January ✓ 59
Aave V3 BTC.b Listing Steward 2022 September ×
Aave V3 MAI & FRAX Listing Stewards 2022 August ×
Aave V3 PR #820 2023 March ×
Aave V3 sAVAX Listing Steward 2022 July ×
Aave V3 sUSD Listing Steward 2022 August ×
Aave V3.0.1 2022 December ×
Aave Vault 2023 June ✓ 16
Aave-StarkNet L1-L2 Bridge 2022 October ✓ 10
Balancer 2022 September ×
Balancer V2 2021 April ×
Balancer V2 (Issues only) 2021 April ×
Balancer’s Timelock Authorizer Verification Report 2023 May ×
Benqi’s Liquid Staking Contracts 2022 April ×
Celo Core Contracts Release 4 2021 May ×
Celo Governance Protocol 2020 May ✓ 35
Compound V1 Price Oracle 2018 September ×
Compound V3 Comet 2022 July ×
Compound’s MoneyMarket v2 formal verification report 2019 August ✓ 41
Compound’s Open-Oracle with Uniswap Anchor 2020 August ×
Daoism 2022 October ×
dcSpark 2022 December ×
dForce Lending Protocol 2021 February ×
Euler 2021 November ×
Furucombo 2021 May ✓ 20
Kashi Lending Protocol 2021 March ×
Keep’s Fully-backed bonding contract 2020 November ✓ 13
Lido V2 2023 April ✓ 1
Lyra 2021 May ×
Master Chef V2 2021 April ×
Notional Finance V2 2021 November ✓ 30
OOPSLA’2020 2020 - ×
Open Zeppelin 2022 April ✓ 80
Open Zeppelin 2022 June ×
OpenZeppelin Governance contracts 2021 December ×
Opyn Gamma Protocol 2020 December ✓ 33
Orchid’s Smart Contracts 2019 December ×
Origin OUSD Token 2021 February ✓ 16
Popsicle V3 Optimizer 2021 November ✓ 21
Radicle Drips 2023 January ✓ 36
Rolla Finance 2021 August ×
SaaS Verification Report by Blockswap Labs 2022 July ×
SaaS Verification Report by Silo 2022 July ×
Sushi BentoBox 2021 February ✓ 22
Sushi Compound Strategy 2021 April ×
SushiSwap ConstantProductPool 2021 November ×
SushiSwap TridentRouter 2021 November ×
Synthetix Multi-Collateral Loans 2020 December ×
Trader Joe 2022 March ✓ 98
Zesty 2021 July ×

15

	Abstract
	1 Introduction
	2 Preliminary
	3 PropertyGPT Overview
	4 Property Specification Language
	5 Property Generation & Refinement
	5.1 Retrieval-Augmented Property Generation
	5.2 Revising Property to Fix Compilation Errors
	5.3 Ranking the Top-K Appropriate Properties

	6 Property Verification
	7 Implementation and Setup
	7.1 Property Knowledge Collection
	7.2 Experimental Setup

	8 Evaluation
	8.1 RQ1: Property Generation
	8.2 RQ2: Vulnerability Detection
	8.3 RQ3: Ablation Study
	8.4 RQ4: Real-world Impact
	8.5 Threats to Validity

	9 Related Work
	10 Conclusion
	References
	A Supplementary Material

