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Abstract

We propose a new model to approximate the wave response of waveguides con-
taining an arbitrary number of small inclusions. The theory is developed to consider
any one-dimensional waveguide (longitudinal, flexural, shear, torsional waves or a
combination of them by mechanical coupling), containing small inclusions with dif-
ferent material and/or sectional properties. The exact problem is modelled through
the formalism of generalised functions, with the Heaviside function accounting for
the discontinuous jump in different sectional properties of the inclusions. For asymp-
totically small inclusions, the exact solution is shown to be equivalent to the Green’s
function. We hypothesize that these expressions are also valid when the size of the
inclusions are small in comparison to the wavelength, allowing us to approximate
small inhomogeneities as regular perturbations to the empty-waveguide (the homo-
geneous waveguide in the absence of scatterers) as point source terms. By approx-
imating solutions through the Green’s function, the multiple scattering problem is
considerably simplified, allowing us to develop a general methodology in which the
solution is expressed for any model for any elastic waveguide. The advantage of
our approach is that, by expressing the constitutive equations in first order form as
a matrix, the solutions can be expressed in matrix form; therefore, it is trivial to
consider models with more degrees of freedom and to arrive at solutions to multiple
scattering problems independent of the elastic model used. The theory is validated
with two numerical examples, where we perform an error analysis to demonstrate
the validity of the approximate solutions, and we propose a parameter quantifying
the expected errors in the approximation dependent upon the parameters of the
waveguide.

Keywords: elastic waveguide; material inclusion; sectional heterogeneity; multiple scattering;
transfer matrix method; regular perturbations; Green’s function
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1 Introduction

Phononic metamaterials have become particularly important in recent decades, motivated by the
possibility of controlling the propagation of low frequency waves through structured media con-
taining arrays of single-frequency [1] or multiple-frequency [2–7] resonators. The metamaterial
design paradigm is a popular approach across all areas of wave physics to create subwavelength
devices by utilising these resonances, for instance in photonics [8–10], or phononics [11–14] where
examples include energy harvesting [15–18] or seismic protection devices [19–22]. Additionally,
new configurations based on attached Rayleigh beams consider the coupling between longitudinal
and flexural components of motion to control the wave response [23–25]. In the case of flexu-
ral waves in plates, the introduction of point oscillators requires the use of multiple scattering
methods together with the plane wave expansion method [6, 26–30].

The analysis of heterogeneous materials, especially concerning their inherent resonances and
properties post perturbation, is a topic of great practical interest in the fields of experimental
modal analysis or structural health monitoring. Analytical approximations in combination with
finite element based methods have been proposed for vibrating structures with varying proper-
ties along their length [31–36], or for the evaluation of transmission and reflection due to the
introduction of multiple oscillators [37–40]. Additionally, heterogeneity models generated by in-
ternal cracks using rotational springs [41–44] or specially designed finite elements [45] have been
proposed. In the mechanics of nanomaterials, models based on material contrast have been pro-
posed to evaluate the response of structures with multiple cracks distributed along their length,
and their influence on the modal parameters - both for flexural waves (nanobeams) [46], and for
longitudinal waves (nanorods) [47].

Currently, a multitude of analytical theories exist to accurately compute the dispersion rela-
tion of elastic homogeneous waveguides. These theories [48–50] are valid for wavelengths up to
the order of magnitude of the cross section, thereby limiting their applicability to a few particular
geometries. The most popular analytical method to calculate the response of one-dimensional
waveguides with piecewise property changes is the Transfer Matrix Method (TMM) [51]. This
approach obtains the analytical solution in structures formed by sections and materials of dif-
ferent nature [3, 51–54] at the expense of introducing some practical limitations: firstly, the
properties need to be defined piece-wisely. Therefore, if sectional and/or material changes are
considered in small segments of a host material (inclusions), and the number of these is high,
then the analytical treatment can be tedious for obtaining the response. Secondly, it is known
that the presence of evanescent waves in the model (e.g. as in Euler-Bernoulli beams) produces
numerical instabilities, which are more pronounced when the propagation length is large or when
there are many scatterers.

Moreover, for higher frequencies, theories derived from Lamb and Rayleigh waves become
necessary and the analytical approach to the problem becomes increasingly complex - as more
degrees of freedom are required to appropriately model a waveguide in the high frequency lim-
its, as shown by the evolution of rod or beam theories. The complexity gained with increasing
degrees of freedom makes the analytical solutions associated with the differential equation for
time harmonic motion cumbersome, especially when considering the presence of localized dis-
turbances along the medium - such as point like attached objects or differing material and/or
cross-sectional heterogeneities. Therefore, it is advantageous to express the constitutive equa-
tions in first order form [55], as the continuity conditions for ever increasing degrees of freedom
(displacement, rotation, force, moments, . . .) are expressed simply as a matrix.
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Subsequently, the aim of this paper is to develop a general analytical framework in matrix
form to determine the wave response of one-dimensional elastic waveguides containing an arbi-
trary number of scatterers (inclusions or heterogeneities within the waveguide), and modelled
assuming an arbitrary number of degrees of freedom. The expressions developed readily account
for the higher degrees of freedom required by more complex models. The scatterers are assumed
to be homogeneous along their length, and account for any changes in mechanical and/or sec-
tional properties along the waveguide. We show how any such scatterer can be modelled using
the Heaviside function and how, when the length of the scatterer is small, the solution closely
relates to the Green’s function. The results of the approximation are checked against the ex-
act solutions derived from the TMM for two systems: a rod (classical longitudinal waves) and
a Timoshenko beam (flexural waves). The method is shown to be readily applied to consider
models with higher-order degrees of freedom, and is validated in the frequency range compatible
with the structural model under consideration. Lastly, we propose a parameter dependent upon
the material parameters of the waveguide to estimate the expected errors of the approximation
used.

2 Elastic waveguides with a distribution of multiple scat-

terers

In this section, we develop a general methodology to model one-dimensional waveguides with an
arbitrary number of degrees of freedom, formed from a homogeneous material containing an ar-
bitrary number of homogeneous inclusions with different material and/or sectional properties to
the host medium. We derive general expressions for scattering from these inclusions appropriate
for any one-dimensional elastic waveguide. We show that, when the inclusions are asymptotically
small these solutions are equivalent to the Green’s function; moreover, when the inclusions are
small in comparison to the wavelength we hypothesize that this approximation is still valid, and
can easily be used to simulate multiple scattering problems in any one-dimensional waveguide.

One-dimensional models allow us to express the displacement field of any cross-section as
function of generalized variables which only depend on the longitudinal coordinate x. Hamilton’s
principle, together with the kinematic assumptions, leads to a set of partial differential equations
in space-time variables (x, t) written in terms of m kinematic variables and m generalised forces
- denoted by v(x, t) and F (x, t) respectively. In general, all variables of the system can be
expressed by a column vector, the so-called state–vector u(x, t) of size 2m as follows

u(x, t) =

{
v(x, t)
F (x, t)

}
. (1)

Assuming that the waveguide is homogeneous and has a time harmonic response, i.e. that
u(x, t) = u(x)eiωt for radian-frequency ω, the space-time partial differential equations governing
the constitutive relations can be expressed as

du

dx
= Au+ f(x) , (2)

where the matrix A is a (2m)×(2m) matrix with frequency dependent terms containing the stiff-
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ness, mass and inertia parameters of the waveguide. The vector f(x) represents the distributed
external loads associated with any generalized forces acting over the waveguide, and hence f(x)
only has entries in the last m terms.

In Table 1 the state–vector, the external forces and the matrix A are listed for two particular
cases: a rod (longitudinal classical waves) and a Euler-Bernoulli beam. More examples of 1D
waveguides covering other models of longitudinal waves, torsional waves, flexural waves and their
coupling are shown in A.

Model u(x) f(x) Matrix A Sketch
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(classical rod)
2m = 2

{
u
Nx

} {
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0 0 −1 0
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my
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y

Table 1: The state–vector, force vector and matrix of parameters for two widely-used
elastic waveguides: longitudinal waves (classical rod), flexural waves (Euler-Bernoulli
beam). More examples of elastic waveguides have been listed in Table 3 in A.

We introduce a set of N inclusions embedded throughout the elastic waveguide, these in-
clusions are assumed to be homogeneous sections with different material/sectional properties
to the host medium. We shall denote parameters belonging to the inclusion α by subscript α,
where α takes values 1 to N to enumerate the inclusion considered, and we consider the general
case where the inclusions can have different parameters to one another as in Fig. 1. We denote
the length of each inclusions ∆xα, whose constitutive relations are completely described by the
matrix Aα inside the interval xα −∆xα/2 < x < xα +∆xα/2.

Therefore, the differential equation governing the state–vector along the waveguide is

du

dx
= A(x)u+ f(x) , (3)

where the function A(x) can be defined as the piecewise continuous function

A(x) =

{
Aα if x ∈ [xα −∆xα/2, xα +∆xα/2]

A if x /∈ [xα −∆xα/2, xα +∆xα/2]
α = 1, 2, . . . , N. (4)

This function can be expressed mathematically in one single line as

A(x) = A+

N∑

α=1

(Aα −A) ∆Hα(x− xα) , (5)
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Figure 1: A distribution of scatterers along a one-dimensional elastic waveguide. Here
we show how the matrix A in Eq. (3) behaves along the waveguide (top), an example
waveguide of consideration (middle) and the point-source approximation of the waveg-
uide (bottom).

where

∆Hα(x) = H

(
x+

∆xα

2

)
−H

(
x−

∆xα

2

)
(6)

stands for the finite step function of width ∆xα and centred at the origin, expressed in terms
of the classical Heaviside’s unit function [56], H(x), equal to 0 for x < 0 and 1 for x > 0.
Substituting Eq. (5) into Eq. (3) yields

du

dx
= Au+

N∑

α=1

(Aα −A) u(x)∆Hα(x− xα) + f(x) . (7)

Denoting and defining fr(x,u) to be the response of the inclusions, i.e.

fr(x,u) =
∑

α

(Aα −A) u(x)∆Hα(x − xα) , (8)

we consider the solution to
du

dx
= Au+ fr(x,u) + f(x) . (9)

The term fr(x,u) can be interpreted as a radiated wavefield in response to an incident wave
interacting with the scatterers within the waveguide. The radiated field is solely due to fr(x,u),
which we express as a series of outgoing sources to account for the contribution of every scatterer
and to satisfy the Sommerfeld radiation condition at infinity [57]. Eq. (3) can be solved ana-
lytically using the TMM [51] depending upon the incident field (e.g. an incoming plane wave)
or incident forcing (e.g. a point source). The TMM, despite providing the exact solution of the
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problem, has the disadvantage of expressing it in the form of a piecewise continuous function;
often, as in the case that many inclusions are considered within the waveguide, the numerical
implementation utilising piecewise continuous functions from the TMM is unnecessary and not
always straightforward.

The original Thomson Haskell [58, 59] TMM formulation experiences problems with waveg-
uides that feature evanescent modes (e.g. the Euler-Bernoulli beam or higher order rod mod-
els), as these modes create exponentially small or large terms in the underlying matrices from
which the solutions are constructed resulting in inaccurate computational results from poorly-
conditioned matrices. Methods exist, based upon the seminal work of Dunkin [60] (see the review
article [61]), to rearrange these matrices to remove the exponentially small or large contributions
and hence obtain accurate results from well conditioned matrices. However, the drawback in do-
ing so is that the straightforward solution of the original Thomson Haskell TMM formulation is
lost. Other methods to remove numerical instabilities from the problem include constructing well
behaved parts of the solution from matrices that are well conditioned, as in the scattering-matrix
approach [62], however this approach is limited to finding only reflection and transmission coef-
ficients to problems. Schemes have been proposed for the full solution based upon numerically
stable algorithms, for instance utilising the eigendecomposition of matrices [63] to design com-
putations which are not overly sensitive to numerical instabilities, and even combine these with
coordinate transformation procedures [64, 65] to remove the numerical instabilities altogether.

We propose that, instead of focusing on the exact TMM or scattering-matrix solution, it is
advantageous to express the solutions to the multiple scattering problem in a much simpler form;
we do this by approximating the exact solution through the Green’s function and, owing to the
first order matrix form [55] we expressed the constitutive equations in, as a matrix of Green’s
functions. Furthermore, by expressing our matrix of Green’s functions in canonical form (eigen-
decomposition) we can easily distinguish between left and right travelling contributions to the
solutions and exponentially oscillating/growing/decaying contributions to the solutions. There-
fore, with our proposed method we can readily implement the piecewise nature of the solution.
Moreover, since we know exactly which quantities are exponentially growing/decaying, we can
rearrange the expressions in a simple manner and use numerically stable operations [6, 60, 63] to
solve the multiple scattering problem without being hindered by potentially poorly conditioned
matrices.

The solution of Eq. (9) can be expressed as the superposition of an incident field ψ0(x) and
a scattered field us(x) as follows

u(x) = ψ0(x) + us(x) , (10)

where ψ0(x) and us(x) are solutions to the following problems

dψ0

dx
= Aψ0 + f(x) , (11)

dus

dx
= Aus + fr(x,u) . (12)

2.1 The incident field

Two types of incident field will be considered: (i) a simple plane wave associated with a propa-
gating mode of the waveguide, and (ii) a wavefield excited by a point–force f(x) = Q0 δ(x− x0)
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located at certain point x0.

For case (i), f(x) = 0 in Eq. (11), and the incident field can be written as the corresponding
mode. For instance, the pair {u0, ik0} corresponding to the eigenvector and eigenvalue of the
matrix A are associated with a certain propagating mode of the empty-waveguide. Hence, the
rightward and leftward incident fields satisfying Eq. (11) can be written as

ψ0(x) = u∗
0 e

−ik0x (rightwards) , ψ0(x) = u0 e
ik0x (leftwards) , (13)

where superscript ∗ denotes the complex–conjugate.

In case (ii), the incident wave requires the solution of the non–homogeneous Eq. (11) for an
excitation term f(x) = Q0 δ(x− x0), i.e.

ψ0(x) = eAx

{
ψ0(0) +

∫ x

0

e−Aη Q0 δ(η − x0) dη

}
=

{
eAxψ0(0) x < x0 ,

eAxψ0(0) + eA(x−x0) Q0 x > x0 .

(14)
By definition, the solution in Eq. (14) is the Green’s function of the homogeneous waveguide.
We express the Green’s function in matrix form, involving the Green’s functions of each variable
of the state–vector. Thus, the solution of the incident field can be expressed as

ψ0(x) = G(x − x0)Q0 , (15)

where the matrix G(x) is derived in Sec. 4 in terms of the eigenvalues and eigenvectors of A.

2.2 The scattered field

The scattered field us(x) is given by the solution to Eq. (12). Assuming N scatterers exist
within the waveguide, we decompose us(x) into the superposition of the effects of each scatterer
independently yielding the sum

us(x) = u(1)
s (x) + · · ·+ u(N)

s (x) , (16)

where each u
(α)
s (x) is a solution of the differential equation

du
(α)
s

dx
= Au(α)

s + (Aα −A) u(x)∆Hα(x− xα). (17)

The solution of the above expression is simply

u(α)
s (x) = eAx

[
u(α)
s (0) + I(α)(x)

]
, (18)

where

I(α)(x) =

∫ x

0

e−Aη (Aα −A) u(η)∆Hα(η − xα) dη . (19)

Therefore, the solution in Eq. (18) depends upon the total field u(x) only inside the inclusion α

(as the integrand in I(α)(x) is zero outside of the inclusion), where we assume u(x) is consistent
with the TMM and depends analytically on the state–vector at x = xα, as follows

u(x) = eAα(x−xα) u(xα) , when |x− xα| < ∆xα/2. (20)
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Denoting and defining x
(α)
− for any x ∈ [0, xα − ∆xα

2 ), it is clear that I(α)(x
(α)
− ) = 0 as the

integrand is zero. Similarly, denoting x
(α)
+ for any x ∈ (xα + ∆xα

2 ,∞], we apply the standard
properties of Heaviside’s unit function and find

I(α)(x
(α)
+ ) =

(∫ xα+∆xα/2

xα−∆xα/2

e−AηAαe
Aαη dη

)
e−Aαxαu(xα)−

−

(∫ xα+∆xα/2

xα−∆xα/2

Ae−AηeAαη dη

)
e−Aαxαu(xα) .

(21)

From Eq. (21), by integrating the first integral by parts one immediately finds

I(α)(x
(α)
+ ) =

[
e−A (xα+∆xα/2) eAα (∆xα

2 ) − e−A (xα−∆xα/2) e−Aα (∆xα
2 )
]
u(xα) , (22)

and hence that

I(α)(x) =

{
0 x < xα −∆xα/2 ,[
e−A (xα+∆xα/2) eAα (∆xα

2 ) − e−A (xα−∆xα/2) e−Aα (∆xα
2 )
]
u(xα) x > xα +∆xα/2 .

(23)
Substituting Eq. (23) into Eq. (18) one finds

u(α)
s (x) =

{
eAx u

(α)
s (0) x < xα −∆xα/2,

eAx u
(α)
s (0) + eA(x−xα) Qα x > xα +∆xα/2,

(24)

where

Qα = Kαu(xα) , (25)

Kα = e−A∆xα/2 eAα ∆xα/2 − eA∆xα/2 e−Aα ∆xα/2 . (26)

Note that when the host material and inclusion properties match Kα = 0, and as expected
no scattering occurs in this case. In section 4, we make use of the eigendecomposition of the
exponential of a matrix in terms of the eigenvalues and eigenvectors of their arguments, i.e.

eAx =
2m∑

j=1

uj v
T
j eλj x , eAαx =

2m∑

j=1

xj y
T
j eλ

(α)
j x , (27)

where superscript T denotes the transpose of a vector. The triple uj , vj and λj correspond
to the jth right and left eigenvector and eigenvalue of matrix A, which satisfy the following
eigenrelations

Auj = λj uj , vT
j A = λj v

T
j , vT

j ul = δjl 1 ≤ j, l ≤ 2m. (28)

Here, δjl is the Kronecker delta function. Similar definitions apply to xj , yj and λ
(α)
j for the

matrix Aα.

For asymptotically small inclusions, the solution can be directly expressed in terms of the
Green’s function. Indeed since, by treating ∆xα as a small parameter and considering Eq. (17)
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in the limit as ∆xα → 0, by the formal definition of the derivative we find

lim
∆xα→0

{
du

(α)
s

dx
−Au(α)

s

}
= (Aα −A) u(x)∆xα

d

dx

{
H(x−xα)

}
= (Aα −A) u(x)∆xα δ(x−xα).

(29)
Here, we have exploited the well known fact that the derivative of Heaviside’s unit function is
the Dirac delta function [56], i.e.

δ(x) = lim
∆xα→0

∆Hα(x)

∆xα
=

d

dx

{
H(x)

}
. (30)

The solution of Eq. (29) is given in Eq. (18), where now I(α)(x) is given by

I(α)(x) =

∫ x

0

e−Aη (Aα −A) u(η)∆xα δ(η − xα) dη . (31)

Therefore, the analogue of u
(α)
s in Eq. (24) for asymptotically small inclusions is

u(α)
s =

{
eAx u

(α)
s (0) x < xα

eAx u
(α)
s (0) + eA(x−xα) Q̃α x > xα

as ∆xα → 0, (32)

where

Q̃α = K̃αu(xα), (33)

K̃α = (Aα −A)∆xα. (34)

Establishing an analogy between the general solution given in Eqs. (24)-(26) and that given
for asymptotically small inclusions Eqs. (32)-(34), it is clear that the terms of the vector Qα

physically behave as source terms that radiate waves outward proportional to the excitation of
the internal degrees of freedom u(xα). These forces are distributed inside the scatterer over a
finite but small length ∆xα. We hypothesize that, even in the case that ∆xα is not asymptotically
small, such radiation will be well approximated as if it were produced by a point force placed at
xα within the empty-waveguide. We expect that this approximation will be accurate provided
that the wavelength considered is much larger than ∆xα. In section 5 and 6 we provide test cases
for the approximate solution by cross–checking against the exact TMM solution, where we define
a parameter to estimate the upper bound of the relative error introduced by this approximation.
For now, we assume that Eq. (24) will be well approximated by

u(α)
s (x) ≈

{
eAx u

(α)
s (0) x < xα ,

eAx u
(α)
s (0) + eA(x−xα)Qα x ≥ xα .

(35)

Subsequently, it is convenient to express the solutions in (32) and (35) in terms of the Green’s
function of the homogeneous waveguide, as in Eq. (15), as follows

u(α)
s (x) = G(x− xα)Kαu(xα) . (36)
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The total scattered field within the waveguide is us(x) =
∑

α u
(α)
s (x), yielding

us(x) =

N∑

α=1

G(x− xα)Kαu(xα) . (37)

Hence, small scatterers within the waveguide can be thought of as a regular perturbation to
the empty-waveguide, such a perturbation being a monopole point–force term applied to the
empty-waveguide at the centre of every approximated scatterer. This method is particularly
useful for one-dimensional waveguides, as the Green’s functions are regular and one need not
concern themselves with the difficulties associated with singular perturbation problems [6, 27, 66].
Thus, the equivalent approach proposed in this paper to determine the solution of the multiple
scattering problem is summarized in the following differential equation

du

dx
= Au+

N∑

α=1

Kαu(xα)δ(x− xα) + f(x) . (38)

In this expression, u(xα) is the state–vector evaluated at the centre of the scatterers and at this
stage it is unknown. The components of u(xα) will be determined by solving a linear system
of equations which will be introduced later. The matrix Kα is given in Eq. (26) and depends
on the scatterer size ∆xα and on the contrast between elastodynamic properties of the empty-
waveguide and of the scatterers. Therefore, Kαu(xα) approximates a scatterer of finite width
as the coefficient of a point-source term. In this regard, it is interesting to consider if this
approximation reveals anything about the physical process of scattering. For instance, consider
the simple model for longitudinal waves and the meaning of the vector Qα = Kαu(xα). As
known from Table 1, the state–vector for longitudinal waves is u(x) = {u(x), Nx(x)}, whose
components are the axial displacement and normal force. Assuming that the inclusion width is
much smaller than the wavelength, i.e. k∆xα ≪ 1, we can expand the exponential matrices of
Eq. (26) as

e±A∆xαη = I±A∆xαη+O(∆x2
α) , e±Aα∆xαη = I±Aα∆xαη+O(∆x2

α), as ∆xα → 0.
(39)

This leads to the first order approximation of Kα in terms of ∆xα, hence from Eq. (34)

Kα = K̃α +O(∆x2
α) ∼

[
0 1/EAα − 1/EA

(ρA− ρAα)ω
2 0

]
∆xα, as ∆xα → 0. (40)

Therefore, Eq. (25) yields

Qα ∼

{ (
∆xα

EAα
− ∆xα

EA

)
Nx(xα)

(ρA− ρAα)∆xαω
2 u(xα)

}
, as ∆xα → 0. (41)

The magnitudes Kα = EAα/∆xα and K = EA/∆xα are the linear rigidities of two springs
corresponding to the elastic longitudinal behaviour of a rod–segment ∆xα, for both the inclusion
and the surrounding medium respectively. Hence, the value ∆u = Nx(xα)/Kα −Nx(xα)/K can
be interpreted as a small jump in the displacement fields due to the presence of an inhomogeneity
at x = xα.The second term represents the inertia force (mass per acceleration) produced in a
segment ∆xα due to the difference in masses, m = ρA∆xα and mα = ρAα∆xα. This difference
∆Nx = − (mα −m)ω2 u(xα) represents a new inertia force which will propagate along the rod
via the Green’s function as a scattering radiation, as shown in Eq. (36). The scattering effect
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depends strongly on both the width of the inclusion and on the contrast between properties. The
terms of vector Qα for longitudinal waves can be read as

Qα =

{ (
1

Kα
− 1

K

)
Nx(xα)

(m−mα)ω
2 u(xα)

}
≡

{
∆u
∆Nx

}
. (42)

Similar interpretations can be made for other types of waveguides. For instance, considering a
Timoshenko beam (see Table 3), the vector Qα after the same simplification becomes

Qα ∼






(
∆xα

GAα
− ∆xα

GA

)
Vz(xα)(

∆xα

EIα
− ∆xα

EI

)
My(xα)

− (ρAα − ρA)∆xαω
2w(xα)

− (ρIα − ρI)∆xαω
2 ϕy(xα)






≡






∆w
∆ϕy

∆Vz

∆My





, as ∆xα → 0. (43)

Here, the two first components of Qα represent a displacement due to the shear strain and
a rotation due to the bending flexibility respectively. Similarly, the last two entries represent
inertia forces produced by the difference in mass and rotational inertia of the cross section.

3 Solution of the multiple scattering problem

The solution of the total field involves determining the state–vector at x = xα, and hence the
scattering problem compatibility-equations must be established. As introduced above, let us
consider an incident field ψ0(x) and the scattered field us(x) radiated from the inclusions. From
Eq. (37) the total field is then

u(x) = ψ0(x) + us(x) = ψ0(x) +

N∑

β=1

G(x − xβ)Kβ u(xβ) , (44)

where G(x) is the matrix of Green’s functions of the system (matrix of the same size as A) which
will be deduced in Sec. 4. Above, the variables u(xα) are unknown for every α = 1, 2, . . . , N ,
their solution is found after evaluating Eq. (44) at x = x1, . . . , xN leading to the following system
of linear equations

u(xα)−

N∑

β=1

G(xα − xβ)Kβ u(xβ) = ψ0(xα) , α = 1, 2, . . . , N . (45)

Since the size of vector u(x) is 2m, then Eq. (45) represents a system of 2mN equations for
2mN unknowns. After some rearrangements, Eq. (45) can be written as




I−G(0+)K1 −G(x1 − x2)K2 · · · −G(x1 − xN )KN

−G(x2 − x1)K1 I−G(0+)K2 · · · −G(x2 − xN )KN

...
...

. . .
...

−G(xN − x1)K1 −G(xN − x2)K2 · · · I−G(0+)KN








u(x1)
u(x2)

...
u(xN )





=





ψ0(x1)
ψ0(x2)

...
ψ0(xN )





,

(46)
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with N unknown state–vectors on the left hand side, each of dimension 2m, hence the 2mN
unknowns are given by all of the components of

u(x1) , . . . ,u(xN ) . (47)

See, for example Table 1 and 3 for the explicit unknown components within u(xα) which need
to be determined for different models of the waveguide.

4 Closed-form derivation of the Green’s matrix

The procedure developed herein makes it possible to treat one-dimensional structures with a
distribution of N inclusions as if it were a homogeneous medium under the influence of N point
sources. Since the derivations are valid for any homogeneous waveguide satisfying Eq. (2), we
develop the Green’s matrix G(x) in terms of the matrix A so that the expressions can be applied
to simulate multiple scattering problems for any such waveguide.

A waveguide governed by the matrix A with state–vector u will present in general 2m
modes, withmmodes corresponding to rightwards waves andmmodes corresponding to leftwards
waves. These modes can be either propagating or evanescent depending on the nature of the
model considered. For instance, longitudinal waves in rods have m = 1 propagating modes in
each direction. Low frequency flexural waves present 2m = 4 modes, one propagating and one
evanescent for both rightward and leftward waves. High frequency beam waves (Timoshenko
beam) present m = 2 propagating modes at each direction (bending and shear waves). Denoting
uj and vj to be the right and left eigenvectors associated to each mode with eigenvalue λj , i.e.
for the matrix A governing the conserved quantities along the empty-waveguide

Auj = λj uj , vT
j A = λj v

T
j , vT

j ul = δjl , 1 ≤ j, l ≤ 2m (48)

where δjl denotes the Kronecker delta function. Consider the wavefield due to the point–force
excitation f(x) = Q(x0) δ(x− x0), at any point along the waveguide by Eq. (14) we have

u(x) =

{
eAx u(0) x < x0 ,

eAx u(0) + eA(x−x0) Q(x0) x > x0 .
(49)

Moreover, since we are dealing with infinite waveguides, the wavefield solution radiates waves
in both directions, rightwards for x > x0 and leftwards for x < x0. Therefore, ordering our
eigenvalues such that the first m modes represent rightward waves and the last m leftward
waves, the solution may be expressed as follows

u(x) =

{ ∑
j≤m Cj uj e

λjx x > x0 ,

−
∑

j>m Cj uj e
λjx x < x0 ,

(50)

where the coefficients Cj , 1 ≤ j ≤ 2m need to be determined. In the above, the negative sign is
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a formal convention. Evaluating Eq. (50) at x = x−
0 and at x = x+

0 we have

eAx0 u(x0) = −
∑

j>m

Cj uj e
λjx0 , (x0 = x−

0 ) (51)

eAx0 u(x0) +Q(x0) =
∑

j≤m

Cj uj e
λjx0 , (x0 = x+

0 ) . (52)

The above equations represent a system of 4m linear equations with 4m unknowns from which
we can obtain: 2m components of u(0) and the 2m coefficients Cj , 1 ≤ j ≤ 2m. Subtracting
Eq. (51) from Eq. (52) we find

2m∑

j=1

Cj uj e
λjx0 = Q(x0) . (53)

Premultiplying Eq. (53) by vT
l and using the orthogonal relationships, we can obtain the explicit

value of each coefficient Cl as

Cl = vT
l Q(x0) e

−λjx0 , 1 ≤ l ≤ 2m. (54)

Now, using the above result in Eq. (50), we find the following explicit expression for u(x)

u(x) = G(x− x0)Q(x0) , (55)

where the matrix of Green’s functions G(x) is finally

G(x) =






∑

j≤m

uj v
T
j eλjx x > 0 ,

−
∑

j>m

uj v
T
j eλjx x < 0 .

(56)

Using the orthogonality conditions, it is straightforward to obtain the following properties of
G(x)

G′(x) = AG(x) , (57)

G(0+)−G(0−) = I2m . (58)

Here I2m denotes the identity matrix of dimension (2m) × (2m). The property in Eq. (58)
characterises the jump discontinuity in the state–vector about the origin, as required for the
diagonal terms in the matrix of Eq. (46). Additionally, expressions (56)-(58) hold for any point–
force source terms from Eq. (44); therefore, in Eqs. (56)-(58) we may evaluate at particular
values of the form x = xα − xβ , to compute the required blocks of the matrix in Eq. (46),
where xα, xβ represent the coordinates of two arbitrary scatterers. The matrix in Eq. (46) is
readily invertible, and hence given a known source term ψ0, the required state vectors u(xα)
are readily determined. Once every u(xα) is known, the multiple scattering problem is solved as
the state–vector field is easily computed over the entire waveguide from Eq. (44). From here,
one can extract the displacement field for instance. To illustrate how simple it is to consider
different models within these expressions, we provide several cases of structural 1D models and
their respective state vectors - refer to Table 3, where one simply needs to insert the appropriate
A into these expressions to solve the multiple scattering problem for any elastic-waveguide of
interest.
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5 Numerical example: multiple scattering from classical

longitudinal waves in a rod

Let us consider an aluminium rod with a 5×5 cm2 square cross–section. The sectional stiffness
and mass per unit length of the rod was taken to be EA = 1.75× 105 kN/m and ρA =5.25 kg/m
respectively. In sections 5 and 6, our main objective is to validate the proposed model, checking
the range of validity of the point–force approximation for small inclusions in different models.
To this end, we investigate how the solution behaves as several parameters vary. Regarding the
characteristics of the set of inclusions, we can distinguish between the sectional stiffness and the
mass per unit length, denoted by EAα and ρA respectively, the width of the inclusion ∆xα and
the total number of scatterers N .

In Fig. 2, the wavefield u(x, ω) along a L = 4 m section of an infinitely long rod has been
calculated using both the exact solution based on the TMM, and the proposed approach as
outlined in the paragraph above section 5. This figure considers the inclusions to be softer than
that of the empty-waveguide (EAα/EA = 0.6 and ρAα/ρA = 0.6) and considers two distributions
of scatterers for the following cases:

(i) N = 10 randomly distributed scatterers located within a two meter portion of the rod,
with ∆xα = 0.05h = 2.5 mm (Figs. 2(left) ),

(ii) N = 20 randomly distributed scatterers within the same two meter portion of the rod and
with ∆xα = 0.10h = 5.0 mm (Figs. 2(right)).

The range of validity of the point-source approximation will be studied within a frequency range
consistent with the validity of the model used for the waveguide. The reference frequency, ωref,
specifying the upper bound in frequency for which the rod model remains accurate is given in
Graff [49] as

ωref = 0.30

√
EA

ρIOν2
≈ 40 kHz , (59)

where IO is the polar moment of inertia of the cross section and ν is the Poisson coefficient. The
limit in Eq. (59) is obtained by comparing the classical rod model with the higher-order Love
rod-model, where it is established that for ω ≤ ωref there exists a good agreement between both
models. Hence, we shall consider ω/ωref ≤ 1 for the frequency range of interest for the comparison
between the TMM solution and our approximate solution constructed from the Green’s function.

The results shown in Figs. 2(left) and Fig. 2(right) consider the wavefield u(x, ω) = |u| eiφ,
where we plot both the magnitude |u| and phase φ of the wave for the cases (i) and (ii) as
outlined above. Comparing |u| in Figs. 2(a) and Fig. 2(b), we observe that the approximation is
valid over the frequency range of interest as long as N or ∆xα does not get too large. For larger
values of N and ∆xα, especially for higher frequencies where the wavelength becomes smaller,
the accuracy of the solution drops off. However, note that the magnitude of the approximate
solution is much more affected than its phase, which closely matches the exact solution in the
whole frequency range considered, as shown in Fig. 2(c) and Fig. 2(d).
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Figure 2: Wavefield results of magnitude, phase and error for an infinitely long rod,
containing N = 10 and ∆xα = 0.05h (top left) and N = 20 and ∆xα = 0.1h (top right)
randomly distributed scatterers, under rightwards incident plane wave excitation, where
h = 5 cm denotes the high of the cross section and L = 4 m is the length of the region
under study. We consider the wavefield at positions P1, P2 and P3, as defined in the
schematic in the top panels where L = 4m. The relative parameters for both cases here
were EAα/EA = 0.5 and ρAα/ρA = 0.5. Here, we plot the: magnitude of wavefield
in (a) and (b), phase of wavefield in (c) and (d), and the relative error as function of
frequency and of the parameter κ in (e) and (f).

According to the theoretical results, the accuracy of the proposed model strongly depends
on several physical parameters. These are: the frequency (i.e. the wavelength), the number of
inclusions N , their size ∆xα, and finally the contrast between material parameters represented
by Aα −A. In order to simply study the influence of all of these parameters on the error of the
approximation, we introduce the following scattering parameter κ defined as

κ = N ∆xα · µ (Aα −A) , (60)

and we hypothesize that the error introduced by approximating the inclusions as point-source
terms can be estimated by κ. In the above, µ(M) represents the spectral radius of the matrix
M, defined for any diagonalizable matrix M as [67]

µ(M) = max {|λ| : λ is eigenvalue of M} . (61)
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Figure 3: Wavefield results of magnitude and error for an infinitely long rod containing
N = 5 periodically distributed scatterers, with a lattice spacing of a = 0.4m under
rightwards incident plane wave excitation. The contrast of properties considered is:
EAα/EA = ρAα/ρA = 1.50 (left) and EAα/EA = ρAα/ρA = 3.00 (right). We consider
the wavefield at the positions P1, P2 and P3, as defined in the schematic in the top panel
where L = 4m. Panels (a) and (b) show the magnitude of wavefield, (c) and (d) show
relative error as function of frequency and of the parameter κ.

We use the notation µ(·) instead of the classical rho-notation ρ(·) for the spectral radius,
to avoid confusion with the density. The parameter κ is dimensionless since the eigenvalues
of matrices A and Aα have physical meaning as wavenumbers. The relationship between this
parameter and the relative error of the wavefield for the three points P1, P2 and P3 has been
plotted in Figs. 2(d) and 2(f). The relative error is defined as

relative error =
|u(x, ω)− uapprox(x, ω)|

|u(x, ω)|
. (62)

As expected, the relative error of the approximation decreases as κ becomes smaller with
the logarithmic scale revealing the relative error is of O(κ2) for any of the considered points
(P1, P2 and P3). Therefore, Eq. (44) accurately predicts the behaviour of waves arriving to the
scatterer array (point P1), where the field is the sum of the incident and the reflected waves.
As seen in Figs. 2(d) and 2(f), the error accumulates as the wave passes each approximated
scatterer. This behaviour can be generalized to other waveguides and for other configurations.
In general, modelling small inclusions as point-source terms produces a waveform very close to
that of the exact model, and the error in doing so is of O(κ2) which increases with increasing: ω,
∆xα and with the contrast of properties. When changing N , ∆xα and (Aα −A) independently
but keeping κ constant (as when comparing Fig. 2(d) with Fig. 2(f)) the relative error is found
to be of the same order of magnitude.
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Figure 4: The displacement field of the configuration from Fig. 3, with parameters
EAα/EA = ρAα/ρA = 3, ∆xα/h = 0.10, subject to plane-wave excitation for four
different frequencies. The parameter κ changes for each waveform and is given in the
top left corner of each graph.

In Fig. 3 we consider the results for a configuration of inclusions arranged periodically in
space. The number of scatterers is N = 5 and ∆xα = 0.10h, where h = 5cm is the height of
the rod. The rigidity and mass parameters of the inclusions are EAα/EA = ρAα/ρA = 1.50 for
Fig. 3(a) and 3(c) and EAα/EA = ρAα/ρA = 3.00 for Fig. 3(b) and 3(d). The Bragg peaks of
the periodic distribution arise at the following frequencies [68]

ωBragg =
nπ

a

√
EA

ρA
= {0.176ωref, 0.353ωref, 0.529ωref, . . . } , (63)

where a = 0.4 m is the separation distance between scatterers. In Fig. 3 we see a good agree-
ment between the approximate and exact solutions for the wavefield over the entire frequency
range considered, even when considering a relatively high contrast between the host-medium
and inclusions as in Fig. 3(b) and 3(d). The plots of relative error depict the same pattern as
observed in Fig. 2: again the reflected wave is more accurate (several orders of magnitude) than
the transmitted wave for any frequency, and the error accumulates as the wave passes every
approximated scatterer. Again, the relative error is of O(κ2).

In Figs. 4(a)-(d), we consider the same configuration in Fig. 3 (b) & (d) where now the
stationary solution is plotted over a section of the waveguide for four different frequencies. In
Figs. 4(a)-(d), the approximate solution has remarkable accuracy along the whole length of the
rod for all cases; however, observe that as we reduce the wavelength by increasing the frequency,
a loss of precision is perceived downstream of the scatterers as seen by the comparisons of the
wavefield at points P1, P2 and P3 in Fig. 3. Each one of the wavefields shows the value of
κ associated with the simulation. In general, after testing with a large number of simulations,
values of κ ≤ 1 are associated with satisfactory results of the proposed method.
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6 Numerical example: multiple scattering from flexural

waves in a Timoshenko beam

In this section, the proposed approximation will be validated for the Timoshenko beam model
which considers both rotational and shear effects. Refer to Table 3 for A in the Timoshenko
2m = 4 case. We consider a aluminium beam with a 12×12 cm2 square cross section, resulting
in a cut–off frequency of ωc =

√
GAz/ρIy = 13 kHz for the homogeneous beam. The aim of this

section is to study the time-domain wavefield propagation produced by a point-source excitation,
f(t), placed at the origin x = 0. The excitation has a Gaussian-form pulse centred at ω = ωe,
where we consider two values for ωe to validate the model: (1) the low-frequency case with
ωe = 0.2ωc, and (2) the high-frequency case with ωe = 1.2ωc. For this example, a configuration
of N = 5 scatterers as shown in Fig. 5 is used. For ψ0, we consider case (ii) in section 2.1, and
utilise the Fourier expansion in the applied frequency range [69, 70] to determine the field in the
time-domain.

Case 1 (low-frequency) Case 2 (high-frequency)

Frequency, ω/ωc 0.200 1.200
EIα/EI 0.512 0.512
GAα/GA 0.800 0.800
ρAα/ρA 1.200 1.200
ρIα/ρI 0.768 0.768
∆xα/h 0.220 0.220

κ = N ∆xα · µ (Aα −A) 0.1766 1.059

Table 2: Mechanical properties of the scatterers with respect to those of the empty-beam.
The two cases, low- and high-frequency refers to the main frequency of the excitation
pulse ωe = 0.20ωc and ωe = 1.20ωc respectively.

The mechanical properties of the inclusions with respect to the empty–beam are listed in
Table 2 for the two cases considered. The corresponding value of the scattering parameter κ has
also been added to Table 2. The contrast of properties, number and width and inclusions are
kept constant from one case to the other. Since case 2 is of a higher frequency than case 1, the
scattering parameter κ is one order of magnitude higher. Again, the approximate model from
Eq. (44) will be tested against the exact solution from the TMM.

In Fig. 6 the results of the time-domain simulations are plotted. Case 1 has been plotted in
the graphs of the left column: Figs. 6(a) and 6(c) depict the wavefield in magnitude for case 1
(low-frequency) for the exact and approximate solutions respectively. Figs. 6(b) and 6(d) show
the same variables and methods but for case 2 (high-frequency).
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Figure 5: (Top) An infinitely long beam containing N = 5 randomly distributed scat-
terers under point source excitation f(t), we consider the wavefield over a L = 3.5 m
portion of the beam as shown. (Middle) Normalized time-domain Gaussian force-pulse
for the low-frequency case 1, with a time-window of T = 15 ms and frequency-pulse
of ωe = 0.20ωc. (Bottom) Normalized time-domain Gaussian force-pulse for the high-
frequency case 2, with a time-window of T = 8 ms and frequency-pulse of ωe = 1.20ωc.
Here ωc =

√
GAz/ρIy = 13 kHz.

As in section 5, on comparing the exact and approximate simulations in Fig. 6, we see that
the accuracy of the approximate solution drops off as the wavelength decreases. Again, the error
accumulates as the wave passes every approximated scatterer. In the time-domain simulations
it is seen that in the low frequency case, Figs. 6(a) and 6(c), the fit is almost perfect and no
discrepancies are observed. For this case, the scattering parameter κ = 0.176 and is associ-
ated with very good results obtained by the approximate model. As the excitation frequency
increases, the value of κ increases, and in case 2 κ = 1.06. For smaller wavelengths, the small
scatterer approximation by point–force terms is not as good, and this is observed when compar-
ing Figs 6(b) and 6(d) or considering Fig. 6(f) - where the disagreement between the exact and
the approximate solution is more evident than in the lower frequency case. However, similarly
to section 5, it should be noted that the loss of accuracy of the approximate wavefield is only
observed in amplitude and not in the phase of the wave.
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Case 1: low-frequency Case 2: high-frequency

Figure 6: Comparison between the exact and approximate solution for the time-domain
simulations of the multiple scattering problem outlined in Fig. 5. Left plots show
the space-time propagation results of case 1 (low-frequency excitation frequency ωe =
0.20ωc): (a) Exact wavefield magnitude, (c) Approximate wavefield magnitude, (e) Some
simulations snapshots. Right plots show the space-time propagation results of case 2
(high-frequency, excitation frequency ωe = 1.20ωc): (b) Exact wavefield magnitude, (d)
Approximate wavefield magnitude, (f) Some simulations snapshots.

Observe, in Fig 6(b) and Fig 6(d), that the approximate solution still produces reasonable
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results with the correct behaviour; for instance, the shear modes still travel at a higher velocity
than the bending modes. Moreover, it is remarkable that the approximate solution produces a
wavefield that roughly matches that of the exact solution when the κ parameter is high. For
smaller values of κ, it is evident that the approximate method accurately simulates structures
under high frequency ranges so long as the other parameters (number of scatterers, width and
contrast properties) are chosen appropriately. Moreover, after performing an extensive parameter
sweep over many simulations, we can say that our proposed approximate method is accurate
when κ ≤ 1 for higher order beam models. It is clear that the distribution of inclusions has some
influence on the error of the approximation, as the errors are not the same if the N obstacles
are randomly distributed or placed periodically. However, for all multiple scattering simulations
considered, the same scattering parameter κ ≤ 1 is a good indicator that the approximation
used will be accurate. A more detailed analysis of the errors introduced by approximating small
inclusions with point source terms is left for future work.

7 Conclusions

We studied the propagation of elastic waves in one-dimensional waveguides containing multiple
obstacles in the form of inclusions. Both the empty-waveguide and the inclusions were consid-
ered to be formed from homogeneous materials. When considering the inclusions to be embedded
within the empty-waveguide, we solved the multiple scattering problem when a change in the
mechanical properties takes place in-between an inclusion and its surrounding material. Here,
either changes in the cross section and/or the material parameters were considered. The size of
the inclusions were considered small in comparison to the wavelength, and in such cases, through
the formalism of generalised functions we demonstrated how these inclusions can be approxi-
mated by point–force source terms applied to the empty-waveguide. Subsequently, we applied
this methodology to construct the approximate solutions for the multiple scattering problem
through the Green’s function of the empty-waveguide, and this was the main aim of the paper.

The theoretical procedure was developed for the general case in first order form, where the
constitutive relations appropriate for any waveguide were expressed as a matrix. The general
solution was determined through the Green’s function in matrix form, and is appropriate to con-
sider multiple scattering problems for one-dimensional waveguides, modelled with an arbitrary
number of degrees of freedom and containing an arbitrary number of inclusions. These expres-
sions are simple to utilize for multiple scattering simulations within different types of waveguides,
this was demonstrated with two numerical examples: a rod with longitudinal waves and a Timo-
shenko beam with bending and shear waves. We cross-verified our approximate solutions against
the exact solution using the TMM, and proposed a dimensionless scattering parameter κ to dis-
cuss quantitatively how strongly scattering the inclusions were and to estimate the order of the
relative errors within the approximate solution. The comparison of results covers the frequency
domain and the time domain verifying that, in general, there is a good agreement between the
approximate and the exact results when κ is less than or equal to unity. We anticipate that our
proposed approximate method, based upon Green’s functions, is versatile and simple enough to
consider coupled problems containing many degrees of freedom, with implications for the design
of structured media to control wave propagation.
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Appendix

A Examples of one-dimensional elastic waveguides

Refer to Table 3 for the matrices A governing the constitutive relations for different types of
one-dimensional elastic waveguides. These matrices can readily be inserted into the expressions
in Eqs (44), (46) & (56) to solve multiple scattering problems for any waveguide of interest.
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Model u(x) f(x) Matrix A

Longitudinal
(classical rod)
2m = 2

{

u
Nx

} {

0
−qx

} [

0 1/EA
−ρAω2 0

]

Longitudinal
(Love’s rod)
2m = 2

{

u
Nx

} {

0
−qx

} [

0 1/(EA− ρIxν2ω2)
−ρAω2 0

]

Torsional
(Saint-Vennat)
2m = 2
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θx
Tx

} {
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−mx
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0 1/GJ
−ρIxω2 0

]

Torsional
(Vlassov)
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Flexural
(Euler-Bernoulli)
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0 1 0 1/GAz 0 0
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−ρAyGω2 0 −ρIxω2 0 0 0















Table 3: State–vector, force vector and matrix of parameters for four different types of
elastic waveguides, those with: purely longitudinal waves, purely torsional waves, purely
flexural waves and coupled problems.

28


	Introduction
	Elastic waveguides with a distribution of multiple scatterers
	The incident field
	The scattered field

	Solution of the multiple scattering problem
	Closed-form derivation of the Green's matrix
	Numerical example: multiple scattering from classical longitudinal waves in a rod
	Numerical example: multiple scattering from flexural waves in a Timoshenko beam
	Conclusions
	Examples of one-dimensional elastic waveguides

