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Abstract

Vico et al. (2016) suggest a fast algorithm for computing volume potentials, benefi-
cial to fields with problems requiring the solution of Poisson’s equation with free-space
boundary conditions, such as the beam and plasma physics communities. Currently,
the standard method for solving the free-space Poisson equation is the algorithm of
Hockney and Eastwood (1988), which is second order in convergence at best. The al-
gorithm proposed by Vico et al. converges spectrally for sufficiently smooth functions
i.e. faster than any fixed order in the number of grid points. In this paper, we im-
plement a performance portable version of the traditional Hockney-Eastwood and the
novel Vico-Greengard Poisson solver as part of the IPPL (Independent Parallel Particle
Layer) library. For sufficiently smooth source functions, the Vico-Greengard algorithm
achieves higher accuracy than the Hockney-Eastwood method with the same grid size,
reducing the computational demands of high resolution simulations since one could use
coarser grids to achieve them. More concretely, to get a relative error of 10−4 between
the numerical and analytical solution, one requires only 163 grid points in the former,
but 1283 in the latter, more than a 99% memory footprint reduction. Additionally, we
propose an algorithmic improvement to the Vico-Greengard method which further re-
duces its memory footprint. This is particularly important for GPUs which have limited
memory resources, and should be taken into account when selecting numerical algo-
rithms for performance portable codes. Finally, we showcase performance through GPU
and CPU scaling studies on the Perlmutter (NERSC) supercomputer, with efficiencies
staying above 50% in the strong scaling case.
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1. Introduction

Simulation codes in many areas of physics need to solve elliptic partial differential
equations (PDEs), such as the Poisson equation or the Helmholtz equation. Many com-
putational methods have been developed for this purpose. In particular, we look at
integral-based approaches for open boundary conditions, as is customary in previous
work [1, 2, 3]. This approach requires dealing with free-space Green’s functions, which
are singular at the origin and long-range in nature, requiring special attention during
computational implementations.

We take the example of the Poisson equation in the context of electrostatics. The
PDE governing our system in this case is given by:

∆ϕ(x⃗) = −ρ(x⃗)

ϵ0
, (1)

where ρ(x⃗) is the charge density and ϕ(x⃗) the scalar potential, ϵ0 the vacuum permittiv-
ity, and x⃗ ∈ R3. For free-space boundaries (ϕ(x⃗) → 0 as |x⃗| → ∞), the solution ϕ can
be written as a convolution:

ϕ(x⃗) =
1

ϵ0

∫
G(x⃗− x⃗′)ρ(x⃗′)dx⃗′, (2)

where the Green’s function G(x⃗) = 1/(4π|x⃗|) is the solution of ∆ϕ = −δ(x⃗). A computa-
tional brute-force approach would consist of discretizing G and ρ on the computational
mesh, and approximating the integral as a sum. However, the computational cost of
such an operation is O(N2) [4], where N = NxNyNz, with Nx, Ny, and Nz being the
number of grid points in each direction of the 3D grid.

For uniform meshes, the computational cost can be reduced by making use of fast
Fourier transforms (FFTs). The convolution theorem states that in Fourier space a con-
volution can be written as a multiplication [5]. Equation (2) can therefore be rewritten
as ϕ = F−1{F{G}F{ρ}} where F denotes a Fourier transform and F−1 its inverse. This
aproach drastically reduces the cost to O(N logN). However, FFTs work for periodic
signals, and in this case ρ and G are not periodic, since we are interested in free space
boundary conditions. Hockney and Eastwood introduced an algorithm which converts
the convolution to a cyclic one, making all involved signals periodic, while still obtaining
the correct free-space solution at the end [1].

Vico, Greengard, and Ferrando have proposed a novel, fast and spectrally accurate
method which can be applied to many scientific computing problems requiring a con-
volution with a free-space Green’s function [6]. For smooth distributions, the accuracy
of this solver converges faster than any fixed polynomial order of the gridsize as the
resolution is increased, whereas the Hockney-Eastwood algorithm is only second-order
accurate. As suggested in [7], this method could replace the Hockney-Eastwood algo-
rithm for beam and plasma physics problems, and provide better accuracy with lower
resolution and therefore a smaller memory footprint. Using a faster, more accurate, and
less memory intensive code is suitable for memory-bound architectures such as GPUs,
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which are becoming increasingly common in scientific computing and super-computing
clusters.

However, the new Vico-Greengard method adds another memory bottleneck, even
if there is a gain in accuracy: while in the standard Hockney-Eastwood method one
needs to double the domain (2N)3, in the new method a pre-computation of the Green’s
function on a (4N)3 grid is required to capture the full frequency content [6]. Storing
this (4N)3 grid causes the memory footprint of the Poisson solver to double for each
dimension, resulting in an eight-fold memory increase in total.

We propose an algorithmic improvement by changing from a discrete Fourier trans-
form to the discrete cosine transform to constrain the pre-computation to a (2N + 1)3

grid, reducing the memory footprint to be similar to the Hockney-Eastwood algorithm.
With this improvement, the novel Vico-Greengard method becomes attractive both from
the memory requirement as well as its ability to deliver high accuracy solutions.

In this paper, we present a parallel, performant, and portable version of the algo-
rithm originally proposed by Vico, Greengard, and Ferrando [6]. We outline our im-
plementation in Section 2. A comprehensive evaluation of our implementation through
convergence studies, scaling studies, and memory benchmarks, demonstrating its supe-
rior performance compared to the state-of-the-art Hockney-Eastwood algorithm is given
in Section 3.

2. Methodology

2.1. IPPL: Independent Parallel Particle Layer

IPPL [8] is an open-source C++ framework that provides the tools to develop particle-
mesh methods, such as particle-in-cell, explained in Appendix A.1. The framework is
built upon Kokkos [9] which enables cross-platform performance portability for shared
memory parallelism. Inter-process communication takes place via the message passing
inteface (MPI), the de facto standard for distributed memory parallelism. IPPL fur-
ther depends on the heFFTe (highly efficient FFT for exascale) library to carry out fast
Fourier transforms (FFTs). A general overview of the dependencies and features of IPPL
is depicted in Figure 1. IPPL has a set of benchmark problems in plasma physics ap-
plications, namely ALPINE [10], which helps in developing novel algorithms, optimizing
HPC implementations, and benchmarking individual components. Further details about
the structure of IPPL can be found in [8, 10].

It is in the context of these particle-mesh methods in IPPL that we seek to solve the
Poisson equation (Eq. 1). As mentioned previously, for free-space boundary conditions,
this is usually done by writing the solution in terms of a convolution, which is efficiently
computed in Fourier space and then Fourier transformed back to real space. Until
recently, the standard method for doing so was the Hockney-Eastwood method, explained
in the following section.

2.2. Hockney-Eastwood Method

In order to make the calculation of the convolution in Eq. (2) efficient, the Hockney-
Eastwood method makes the convolution cyclic, such that FFTs can be used. Assuming
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Figure 1: A general overview of the IPPL framework and its external library dependencies. The frame-
work provides the essential components to develop particle-mesh methods. A set of mini-applications is
gathered in ALPINE [10] which is currently distributed as part of IPPL.

a 3-dimensional physical domain of size [0, Lx]×[0, Ly]×[0, Lz] and a mesh ofNx×Ny×Nz

grid-points, such that the mesh spacing is hx = Lx/Nx, hy = Ly/Ny, hz = Lz/Nz in the
corresponding directions, the steps of the algorithm are as follows [1]:

1. Double the computational grid in the non-periodic directions (those which have
open boundary conditions). If all boundary conditions are open, this means we
will have a grid of size 2Nx × 2Ny × 2Nz.

2. The source term ρ(x⃗), which is defined on x⃗ ∈ [0, Lx)×[0, Ly)×[0, Lz), is then zero-
padded to be defined on the full doubled domain. So for x⃗ ∈ [0, 2Lx)× [0, 2Ly)×
[0, 2Lz), we define ρ2(x⃗) such that:

ρ2(x⃗) =

{
ρ(x⃗), if x⃗ ∈ [0, Lx)× [0, Ly)× [0, Lz)

0, otherwise.

3. The Green’s function G(x⃗) also needs to be extended to the doubled domain. This
is accomplished by circular shifting and making G(x⃗) periodic, such that the new
function G2(x⃗) satisfies:

G2(x⃗) =



G(x⃗), if x⃗ ∈ [0, Lx)× [0, Ly)× [0, Lz)

G(2Lx − x, y, z), if x⃗ ∈ [Lx, 2Lx)× [0, Ly)× [0, Lz)

G(x, 2Ly − y, z), if x⃗ ∈ [0, Lx)× [Ly, 2Ly)× [0, Lz)

G(x, y, 2Lz − z), if x⃗ ∈ [0, Lx)× [0, Ly)× [Lz, 2Lz)

G(2Lx − x, 2Ly − y, z), if x⃗ ∈ [Lx, 2Lx)× [Ly, 2Ly)× [0, Lz)

G(2Lx − x, y, 2Lz − z), if x⃗ ∈ [Lx, 2Lx)× [0, Ly)× [Lz, 2Lz)

G(x, 2Ly − y, 2Lz − z), if x⃗ ∈ [0, Lx)× [Ly, 2Ly)× [Lz, 2Lz)

G(2Lx − x, 2Ly − y, 2Lz − z), otherwise.
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The Green’s function is singular at the origin and must therefore be regularized.
It is customary to replace the singularity by G(⃗0) = −1/4π.

4. Since ρ2 and G2 are now periodic with period (2Lx, 2Ly, 2Lz), we can Fourier
transform them (after discretization) using FFTs. In the Fourier domain, the
convolution becomes a simple multiplication of the Fourier transforms of ρ2 and
G2. In this case, the potential on the doubled domain is given by ϕ2:

ϕ2 = hxhyhzF−1{F{ρ2} × F{G2}}.

5. The physical solution for the potential is obtained by restricting the double-grid
solution to the physical domain, i.e. ϕ(x⃗) = ϕ2(x⃗) for x⃗ ∈ [0, Lx)× [0, Ly)× [0, Lz).
The proof of the equivalence in the physical domain between the cyclic convolution
and the original convolution can be found in [11, p. 12].

The computational cost to solve the Poisson equation with this method isO((8N)log(8N)),
where N = NxNyNz. The trade-off is the increased memory requirement to store the
fields ρ2 and G2 on the doubled domain. The Hockney-Eastwood method is second-order
accurate. Thus, if high accuracy is desired, the computation quickly becomes expensive.
It is therefore advantageous to explore more accurate methods, such as the spectrally
accurate Vico-Greengard method [7], which is briefly summarised below.

2.3. Vico-Greengard Method

Vico, Greengard, and Ferrando describe a new method which differs from Section 2.2
by the choice of Green’s function. However, this change enables spectral accuracy for
smooth functions [6]. For the Poisson equation, where the differential operator is the
Laplace operator, the choice of the Green’s function in the Fourier space as per [6] is

GL(s⃗) = 2

(
sin(L|s⃗|/2)

|s⃗|

)2

, (3)

where s⃗ ∈ R3 is in frequency domain and L is the truncation window size, which must be
chosen larger than the maximum distance between any two points in the computational

domain [6], i.e. L = α
√

L2
x + L2

y + L2
z with α > 1 for a domain [0, Lx]× [0, Ly]× [0, Lz].

Here, we have chosen α = 1.1.
To avoid any loss of information when calculating the inverse Fourier transform of

Eq. (3), the transform must be performed on a 4Nx×4Ny×4Nz grid due to the oscillatory
nature of GL. First, as explained by Hockney and Eastwood [1, p. 213]), we need to have
a grid of double the original size to perform the aperiodic convolution. The additional
factor of two in the mesh size compared to the Hockney-Eastwood method comes from
the fact that GL is an oscillatory signal. As stated by the Nyquist sampling theorem,
an oscillatory signal must be sampled at a sampling rate fs two times larger than the
maximum frequency fmax of that signal, i.e. fs > 2fmax, to not lose any information.

However, if all the convolution computation is performed on the quadruple grid,
the source term must also be zero-padded on the quadruple domain, which makes the
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method prohibitively memory-intensive for computational simulations. Fortunately, this
can be avoided by calculating the inverse transform of GL on the fourfold grid in only
one pre-computation step, which is then restricted to the doubled grid of size 2Nx ×
2Ny × 2Nz to obtain G2. The restricted Green’s function G2 is afterwards reused every
time step in which the Poisson solve is called during the simulation. The quadruple
grid is therefore never needed again during the course of the simulation unless the grid
spacing changes in which case the Green’s function again needs to be updated. Thus,
the algorithm follows the same steps as in Section 2.2 except for the Green’s function
computation, where we use the pre-computed G2. In this case, the complexity is similar
to the Hockney-Eastwood method, but the method has a higher accuracy for sufficiently
smooth functions. The main drawback is the need for a 4Nx × 4Ny × 4Nz grid in the
pre-computation step, which increases memory demands by a factor of eight compared
to the Hockney-Eastwood method. This is especially a problem with GPU architectures,
which generally have less memory available than their CPU counterparts. In order to
circumvent this, we present an algorithmic change to reduce the memory required by
the pre-computation step.

2.4. A Modified Vico-Greengard Method

A simple modification in the above algorithm allows us to reduce the grid size of the
pre-computation step from (4Nx×4Ny×4Nz) to ((2Nx+1)×(2Ny+1)×(2Nz+1)). We
make use of the fact that the Green’s function GL used in the Vico-Greengard method,
given by Eq. (3), is purely real and has even symmetry i.e. GL(s⃗) = GL(−s⃗). In view
of the even symmetry, the Green’s function on the Fourier domain GL, which is defined
on a 4Nx × 4Ny × 4Nz grid to contain the full frequency content, actually only has
((2Nx + 1) × (2Ny + 1) × (2Nz + 1)) unique values. Furthermore, the discrete Fourier
transform reduces to a discrete cosine transform (DCT) thanks to the same properties of
the signal, namely that GL is purely real and even. In this way, we can perform the pre-
computation step of the Vico-Greengard method on the (2N+1)3 domain instead of the
fourfold domain, and use the DCT to compute the inverse transform of GL. This way,
the memory footprint of the Vico-Greengard method is the same order-of-magnitude to
the Hockney-Eastwood method.

3. Results and Discussion

3.1. Code verification and accuracy analysis

To test the correctness and accuracy of the numerical methods used in our imple-
mentation, we use the analytical solution of the Poisson’s equation for a Gaussian source

ρ = − 1√
(2π)3

exp

(
− r2

2σ2

)
, (4)

which is given by [7]

ϕexact =
1

4πr
erf

(
r√
2σ

)
,
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with r =
√
(x− µ)2 + (y − µ)2 + (z − µ)2. We position the Gaussian in the center of a

unit box, i.e. µ = 0.5 and Lx = Ly = Lz = 1, with standard deviation σ = 0.05.
In a second test case, we show the behaviour of the numerical schemes when the

source is non-smooth. The test case described in [12] has a source term given by

ρ =

{
4πG, if r ≤ 1

0, if r > 1
, (5)

and the exact solution

ϕexact =

{
−2

3πG(3− r2), if r ≤ 1

−4
3π

G
r , if r > 1

,

where G = 6.67408 · 10−11 m3kg−1s−2 is the gravitational constant and r is as above.
We choose µ = 1.2 to center the distribution in the 3D cubic box of extents Lx = Ly =
Lz = 2.4. The solution ϕ is the gravitational potential of a sphere.
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Figure 2: Relative error between analytical and computed solutions for all three solvers (Hockney-
Eastwood, Vico-Greengard, and its modified version). The 2nd-order convergence theoretical line is
plotted for reference. Left: Source term given by Equation 4. Right: Source term given by Equation 5.

In order to compare the numerical and analytical solutions, we use the relative error
L2 norm. By means of a convergence study we compare the error convergence rates
with their theoretical values to verify the correctness of the implementation. In Figure
2, we obtain the expected second-order convergence with the Hockney-Eastwood solver,
whereas with the Vico-Greengard solver we get spectral convergence for the smooth
source and second-order convergence for the non-smooth source terms. The modified
Vico-Greengard solver follows the same trend as the original, therefore proving the cor-
rectness of our algorithmic modifications.

These results also shed light on the limitations of the new solver: the convergence of
Vico-Greengard solver depends on the smoothness of the source term. For the second
test case with a non-smooth source term, i.e. Equation 5, the Vico-Greengard solver
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is only as good as the Hockney-Eastwood solver. However, since the modified Vico-
Greengard solver does not cause any additional computational costs in terms of memory
and complexity compared to the Hockney-Eastwood solver, it can replace it as the default
method. The accuracy is therefore limited by the properties of the source term instead
of the solver itself.

3.2. Scaling studies

We run strong and weak scaling studies of both the Hockney-Eastwood and Vico-
Greengard solvers implemented in IPPL. These studies are conducted on the Perlmutter
system, a HPE Cray machine at NERSC (USA). To showcase portability and scaling
across architectures, the studies are done both on the GPU and CPU partitions. The
GPU partition contains 1536 nodes where each of them is equipped with 4 NVIDIA
A100 GPUs. The CPU partition consists of 3072 nodes, with 2 AMD EPYC 7763 CPUs
of 64 cores each. We run the simulations with 1 MPI rank per GPU for the GPU scaling
studies and 128 MPI ranks per CPU node (1 MPI task per physical core) for the CPU
scaling studies.

The strong scaling study is done by keeping the problem size fixed and measuring
the timing as we increase the number of nodes for the simulation. We run this for two
different problem sizes: 5123 and 10243. The weak scaling study consists in increasing
the number of nodes used for the simulation while maintaining a constant workload,
i.e. we increase the problem size with the number of nodes. Starting with 5123 as
our problem size, we increase to 5122 × 1024 when doubling the number of nodes, then
512× 10242 for four times the initial node count and finally ending at 10243.

IPPL was compiled with Cuda 12.0 (GPU-specific), FFTW 3.3.10.5 (CPU-specific),
Kokkos 4.1.0, Heffte 2.4.0, and manual installations of MPICH (due to some technical
issues, a manual installation of MPICH was needed in order to be able to compile with
Cuda 12 on the cluster). One small caveat is that the MPICH version used to compile
IPPL on CPU is 4.1.2 whereas for GPU it is 4.1.1, due to some technical issues on the
cluster. Since this is a minor version change with bug fixes related to “user-reported
crashes and build issues” [13], we do not expect differences in our scaling studies.

In Fig. 3 we show the GPU strong scaling results of the 5123 grid simulation for both
the Hockney-Eastwood algorithm (left panel) and the modified Vico algorithm (right
panel). The blue lines denote the overall algorithm execution times. The timings of
the forward and backward FFT transforms are highlighted in green. The costs for the
data transfer between the grids of size N3 and (2N)3 and vice versa are shown in red.
The algorithms have nearly identical execution times and they show very good scaling
behaviour up to 256 nodes (i.e. 1024 GPUs). The parallel efficiency does not drop below
65%. After 32 nodes, the data copy kernel timings (red lines) start to flatten since the
communication costs associated with the data transfer break even with the actual data
copy. The CPU strong scaling of the same setup is given in Fig. 4. We again observe
very good scaling behaviour, i.e. the parallel efficiency remains above 50%. Note that
here we start with 1 node rather than 4 nodes as for the GPU scaling due to the smaller
amount of memory on the GPUs. Also, the data transfer timings do not flatten as we
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Figure 3: Strong scaling results on GPU for both the Hockney-Eastwood (left) and the modified Vico-
Greengard solver (right) with a problem size of N3 = 5123, using the heFFTe parameters of pencil
decomposition, a2av communication, no reordering, and with GPU-aware enabled. The efficiency stays
above 65%.

have seen for the GPU runs because the actual data copy on the CPU is slower than on
the GPU and therefore hides the associated communication costs. The dominating cost
on both hardware systems (GPU and CPU) are the FFT transforms as expected. Note
that the FFT timers also include communication costs.

The GPU and CPU strong scalings for a problem size of 10243 grid points are pro-
vided in Fig. 5 and Fig. 6, respectively. We obtain similar scaling behaviour on both
hardware systems as for 5123 grid points and the parallel efficiency remains above 65%.
The weak scaling results on both hardware systems are given in Fig. 7 and Fig. 8. We
start at a problem size of 5123 grid points and increase the problem size up to 10243

grid point while keeping the workload per node approximately constant. On both hard-
ware systems we experience a loss in parallel efficiency because the cost of the all-to-all
communication in the FFTs increases with the node count while the workload is kept
constant.

3.3. Memory footprint

We can quantify the memory gain obtained from using the discrete cosine transform
by measuring the memory usage on one processor for all three solvers: the Hockney-
Eastwood solver, the Vico-Greengard solver, and the modified version of Vico-Greengard.
The CPU results are shown in Figure 9, and are similar for the GPU case. As we can
see, without the improvement, the memory footprint of Vico-Greengard is ∼5-8 times
larger than the Hockney-Eastwood method. With the algorithmic modification of using
the discrete cosine transform, the memory footprint is brought down to be similar to the
Hockney-Eastwood method. The Vico-Greengard algorithm therefore becomes a viable
solver for the free-space Poisson equation in the context of mesh-based methods.
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Figure 4: Strong scaling results on CPU for both the Hockney-Eastwood (left) and the modified Vico-
Greengard solver (right) with a problem size of N3 = 5123, using the heFFTe parameters of pencil
decomposition, a2av communication, no reordering. The efficiency stays above 50%.

Figure 5: Strong scaling results on GPU for both the Hockney (left) and the modified Vico solver
(right) with a problem size of N3 = 10243, using the heFFTe parameters of pencil decomposition, a2av
communication, no reordering, and with GPU-aware enabled. The efficiency stays above 80%.
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Figure 6: Strong scaling results on CPU for both the Hockney-Eastwood (left) and the modified Vico-
Greengard solver (right) with a problem size of N3 = 10243, using the heFFTe parameters of pencil
decomposition, a2av communication, no reordering. The efficiency stays above 75%.

Figure 7: Weak scaling results on GPU for both the Hockney-Eastwood (left) and the modified Vico-
Greengard solver (right), starting from a problem size of N3 = 5123 and increasing the workload propor-
tionally to the node increase until reaching a problem size of N3 = 10243. The heFFTe parameters used
are pencil decomposition, a2av communication, no reordering, and GPU-aware enabled. The efficiency
stays above 75%.
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Figure 8: Weak scaling results on CPU for both the Hockney-Eastwood (left) and the modified Vico-
Greengard solver (right), starting from a problem size of N3 = 5123 and increasing the workload pro-
portionally to the increase in node counts until reaching a problem size of N3 = 10243. The heFFTe

parameters used are pencil decomposition, a2av communication, no reordering. The efficiency goes down
to 40%.
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Figure 9: Memory footprints for various problem sizes obtained using Kokkos Highwater on CPU.
Left: Memory comparison of Hockney-Eastwood, original Vico-Greengard, and modified Vico-Greengard
solvers. Right: Comparison of only Hockney-Eastwood and the modified Vico-Greengard solver, which
has an algorithmic optimization.
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4. Conclusion

In this work, we introduce an enhancement to the fast free space Poisson solver
initially proposed by Vico et al. in [6]. Our improvement reduces the memory usage of
the algorithm to just one-eighth of its original amount, bringing its memory footprint
into the same order-of-magnitude range as the Hockney-Eastwood solver [1], the current
state-of-the-art method for addressing the free space Poisson problem in particle-mesh
simulations. The new solver offers a significant advantage by providing spectral accuracy
for smooth source terms. As a result, it needs fewer grid points compared to the state-
of-the-art second-order Hockney-Eastwood solver to achieve the same level of accuracy
for sufficiently smooth distributions. This makes it an excellent choice for overcoming
memory and runtime constraints in large-scale, high-resolution simulations.

We have implemented this newly improved solver in a massively parallel and portable
framework targeted to exascale machines. We quantify the correctness and accuracy
improvements with respect to the Hockney-Eastwood method, as well as the memory
improvements with respect to the original algorithm in [6]. Finally, we demonstrate the
efficiency of the solver by running strong and weak scaling analyses on Perlmutter, for
both CPU and GPU, using up to ∼ 70% of the full machine in the latter case. The results
of the strong scaling study show that the efficiency stays above 50% for the problem size
of 5123, and above 65% in the case of the larger problem size 10243.

Currently, the new solver has been verified in the context of a plasma physics appli-
cation, a charge-neutral Penning trap, the results of which can be found in Appendix
A.

In future work, we will apply this free space solver in the context of beam dynamics
simulations using OPAL [2], a particle accelerator modelling code, which is currently
being interfaced with the IPPL framework.

Availability

IPPL is an open source project. The source code can be found here: https://

github.com/IPPL-framework/ippl. The version of IPPL used for this study is tagged
scaling study vico paper. The versions of the build dependencies used on the Perl-
mutter system at NERSC are listed in the Results section of the paper. The convergence
study can be found in test/solver/TestGaussian convergence.cpp, and the scaling
studies were done with test/solver/TestGaussian.cpp. The solver type can be chosen
by passing either HOCKNEY, VICO, or VICO 2, which correspond to the Hockney-Eastwood,
Vico-Greengard, and modified Vico-Greengard methods respectively.
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Appendix A. Penning trap simulation using the Particle-In-Cell scheme

As an application of the Vico-Greengard solver, we use it in combination with the
Particle-In-Cell (PIC) scheme for an electrostatic plasma physics simulation. More con-
cretely, we simulate the dynamics of an electron bunch in a Penning trap with external
electric and magnetic fields to confine them. First, we introduce the theory behind the
PIC method, and then we follow-up with the results, where we compare the simulation
using the Vico-Greengard solver with the Hockney-Eastwood solver.

Appendix A.1. The Particle-In-Cell (PIC) scheme

The particle-in-cell method combines particle tracking in phase space with a mesh-
based approach to speedup force calculations. To reduce the computational cost needed
to model physical phenomena, a cloud of plasma particles is replaced by a macro-particle
with the same charge-to-mass ratio. In the case considered here, these macro-particles
evolve in phase space over time according to the Vlasov-Poisson equation and Newton’s
second law of motion. In order to compute the force fields, the charge density of the
particles is computed on the grid points of a fixed mesh (scatter), on which we solve for
the electrostatic fields (field solve). These are then interpolated to the macro-particle
locations (gather) in order to compute the force which will drive the particles to their
new position at the next time-step (particle push) [14]. The PIC loop consists of the
scatter, solve, gather, and push, and is repeated at each time-step until the end of the
simulation, schematically shown in Figure A.10.

SOLVE:
Calculate field
ϕ and E⃗ from ρ

GATHER:
Interpolate

fields from grid
to particles

PUSH:
Update particle po-
sition and velocity

SCATTER:
Interpolate charge
of macro-particles

onto grid to obtain ρ

INITIALIZATION:
Initialize particle

positions, velocities,
and charges

Figure A.10: The PIC loop, which is repeated every time-step after the initialization.

Let r⃗i be the position of macro-particle i with mass mi and charge qi, p⃗i = mγv⃗i
its relativistic momentum, v⃗i its velocity, and γi = 1/

√
1− |v⃗i|2/c2 the Lorentz factor,
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where c is the speed of light. The equations of motion are given by the Newton-Lorentz
equations:

dr⃗i
dt

=
p⃗i

miγi
dp⃗i
dt

= qi(E⃗i +
p⃗i

miγi
× B⃗i).

The above are integrated using a Leapfrog algorithm [15] in the particle push phase to
evolve all of the macro-particles (i = 1, ..., Np where Np is the number of macro-particles)

to the next timestep. The fields E⃗i and B⃗i are the sum of the self-fields of the particles
and any external fields that may be applied, E⃗ext and B⃗ext. In the electrostatic case,
the magnetic self-field is zero in the non-relativistic regime. In the case of relativistic
particles, a magnetic self-field appears due to the moving charges.

Let x⃗ ∈ R represent a position in the computational mesh, for fields (not the same
as the macro-particle positions). At each time-step, the electric field E⃗(x⃗) is obtained
from

E⃗(x⃗) = −∇⃗ϕ(x⃗), (A.1)

where the potential ϕ(x⃗) is computed from the charge density ρ(x⃗) using Eq. (1). After
calculating the electric field E⃗(x⃗) on the mesh, it is interpolated as E⃗i to each macro-
particle located at r⃗i (gather phase).

As mentioned in the previous section, the Poisson equation in the solve phase of the
PIC loop is written as a convolution and solved in Fourier space. In the case of free-space
boundaries, one needs to to use the Hockney-Eastwood or the Vico-Greengard method
as explained before.

Appendix A.2. Penning trap as a physics example

For the Penning trap, we follow the same set-up as in [10], with open boundary
conditions. We do a qualitative comparison between using the Hockney-Eastwood solver
and the Vico-Greengard solver by looking at the evolution of the electron charge density,
as shown in Figure A.11. Both solvers produce the same expected behaviour with similar
runtimes.

Identifying the regimes or test cases where the high accuracy of the Vico-Greengard
solver is beneficial is beyond the scope of the current work and will be carried as a part
of future work.
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(a) Time = 0 (b) Time = 1.95 (c) Time = 3.91

(d) Time = 0 (e) Time = 1.95 (f) Time = 3.91

Figure A.11: Evolution of electron bunch dynamics in a 3D charge-neutral Penning trap, shown as
snapshots in time during the simulation. The first and second rows correspond to using the Hockney-
Eastwood and Vico-Greengard solvers, respectively.
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