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Products of involutions in symplectic groups over

general fields (II)

Clément de Seguins Pazzis∗†
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Abstract

Let s be an n-dimensional symplectic form over a field F of characteristic
other than 2, with n > 2.

In a previous article, we have proved that if F is infinite then every
element of the symplectic group Sp(s) is the product of four involutions if
n is a multiple of 4 and of five involutions otherwise.

Here, we adapt this result to all finite fields with characteristic not
2, with the sole exception of the very special situation where n = 4 and
|F| = 3, a special case which we study extensively.

AMS Classification: 15A23; 15A21, 12E20.
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1 Introduction

1.1 The problem

Throughout, N will denote the set of all non-negative integers (following French
notation), and N∗ the set of all positive ones.

An element of a group G is called k-reflectional when it is the product of
k involutions of G (i.e. elements x of G such that x2 = 1G).
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Let (V, s) be a symplectic space of dimension n over an arbitrary field F

with characteristic other than 2 (i.e. V is a vector space of dimension n over F,
and s is a symplectic form on V , that is a non-degenerate alternating bilinear
form on V ). Recently, there has been renewed interest in the structure of the
symplectic group Sp(s) with respect to the involutions and more precisely in
the problem of decomposing an element of Sp(s) into a product of involutions
with minimal number of factors. Since there are only trivial involutions in Sp(s)
(that is ± idV ) if n = 2, we will assume n ≥ 4 from now on.

Strikingly, good results have appeared only recently in the literature. De La
Cruz [6] proved that if the underlying field is algebraically closed, then every
element of Sp(s) is 4-reflectional. It was proved in [10] (section 7.1 there) that
this result is entirely optimal, for all values of n ≥ 4. Awa and de La Cruz [1] later
solved the case n = 4 for the field of real numbers, and almost simultaneously
Ellers and Villa [3] generalized de La Cruz’s result for all n that are multiples of
4 and all fields in which the polynomial t2 + 1 has a root: Unfortunately, their
method is nothing short of a miracle and has no reasonable extension to other
fields.

In the recent [10], a breakthrough was made. Thanks to a new method called
“space-pullback”, it was proved that over any infinite field:

• every element of Sp(s) is 4-reflectional if n is a multiple of 4;

• every element of Sp(s) is 5-reflectional if n is not a multiple of 4.

Whether the second result is optimal remains an open problem, whereas the
adaptation of the first result to finite fields has been shown to fail for F3 and n =
4 (section 7.3 in [10]). Interestingly, the algebraic properties of the underlying
field played no part in the methods of [10]: the key feature was the infiniteness
of the field, which allowed one to make a careful choice of parameters.

The present article is devoted to the adaptation of the previous results to
finite fields (still with characteristic other than 2; in sharp contrast, for fields
with characteristic 2 it is known that every element of a symplectic group is
2-reflectional [5]). It turns out that new methods are required to handle such
fields, and in particular the case of F3 is very difficult. As said earlier it was
proved that some elements of Sp4(F3) are not 4-reflectional. Fortunately, this
case is the only exception to the previous results, but this failure profoundly
complicates the strategy of proof for F3.

Fortunately, when dealing with symplectic forms over finite fields, what we
lose in the variety of scalars is gained in the simplicity of the structure of the
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conjugacy classes in Sp(s). Indeed, in Sp(s) the conjugacy class of an element
u is not only encoded in the invariant factors of u seen an a vector space endo-
morphism, but also in additional invariants which we call the Wall1 invariants:

• For each irreducible monic palindromial (see our precise definition in Sec-
tion 2.1) p ∈ F[t]r {t± 1} and each integer r ≥ 1, there is a Wall invari-
ant attached to u with respect to (p, r) in the form of the isometry class
of a nondegenerate skew-Hermitian form over the residue field F[t]/(p)
(equipped with the non-identity involution that takes the coset of t to its
inverse), and the rank of this skew-Hermitian form is the number of pri-
mary invariants of u that equal pr, i.e. the Jordan number of u attached
to the pair (p, r);

• For each η = ±1 and each even integer r ≥ 2, there is a Wall invariant
attached to u with respect to (t− η, r) in the form of the isometry class of
a nondegenerate symmetric bilinear form over F whose rank is the number
of Jordan cells of size r for u with respect to the eigenvalue η.

Since here the field F is systematically taken finite, the skew-Hermitian Wall
invariants are redundant with the plain Jordan numbers, as their isometry class
is already encoded in their rank, which is simply a Jordan number of u. This
is a consequence of the classical fact that nondegenerate Hermitian forms over
finite fields are classified by their rank. In contrast, Wall invariants with respect
to pairs of the form (t±1, r) cannot be overlooked, but at least their complexity
is limited by the classification of quadratic forms over F, which is not difficult.

In contrast with [10], in which we entirely avoided Wall invariants, for finite
fields we will need to care about them, but fortunately they are far more simple
than for infinite fields!

The main technique used in [10] is what we call the space-pullback technique.
Here, apart from this technique, which will remain our main tool, we will use a
collection of additional techniques:

• Algebraic model techniques, in which specific pairs (s, u) are represented
by using field extensions of F;

• Cyclic matrices fitting techniques, reminiscent of de La Cruz’s approach
from [6];

1We could as well have attributed these invariants to Williamson and Springer [11].
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• And also purely geometric methods, where we look at the action of u ∈
Sp(s) on totally s-singular subspaces (these techniques are used to deal
with the case where n is not a multiple of 4).

1.2 Main result, and structure of the article

Our main result is the following theorem.

Theorem 1.1 (Main theorem). Let (V, s) be a symplectic space of dimension
n > 2 over a finite field F.

(a) If n = 0 mod 4, then every element of Sp(s) is 4-reflectional, unless dimV =
4 and |F| = 3.

(b) If n = 2 mod 4, then every element of Sp(s) is 5-reflectional

(c) If n = 4 and |F| = 3, then every element of Sp(s) is 5-reflectional.

Result (c) is optimal, as shown in section 7.3 of [10]. In Section 7, we will
give a complete picture of Sp4(F3) with respect to k-reflectionality, i.e. for each
conjugacy class in Sp4(F3) we will find the least number of involutions that are
necessary to decompose its elements into products of involutions.

In [10], the main way to prove the equivalent of Theorem 1.1 for infinite
fields was by induction on the dimension (by steps of four). Yet such a strategy
appears to be infeasible for finite fields, and much more profound and precise
methods are needed. Unfortunately, at the present point of the article it is not
possible to give any sensible idea of our methods, and we have to review much
material before we can finally sketch the new ideas. So, let us immediately
describe the overall structure of the article.

• The first four sections that follow the present introduction consist of re-
views of known essential material on symplectic groups and decompositions
into products of involutions. First of all, in Section 2, we review the classi-
fication of conjugacy classes in symplectic groups, as well as the classifica-
tion of conjugacy classes of indecomposable elements. Then, in Section 3,
we recall some results from [10] that give wide ranges of specific elements
of Sp(s) that admit decompositions into a small number of involutions,
as well as results that can easily be deduced from known results on such
decompositions in general linear groups. In particular, we review Nielsen’s
theorem, in which the 2-reflectional elements of Sp(s) are characterized,
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and we give two key examples of 3-reflectional elements. In Section 4, we
obtain decompositions of specific cells thanks to techniques in general lin-
ear groups, as well as ideas from Galois theory. Finally, in Section 5, we
review and expand on the “space-pullback” method that was used in [10]
to obtain the equivalent of Theorem 1.1 for infinite fields. Here, the new
results deal with the way of obtaining very large subspaces on which the
space-pullback method can be applied (Proposition 5.4), and also the way
of adapting the method to obtain very specific results (Lemmas 5.1 and
5.2).

• After these preliminary technical parts, we will be ready to prove Theorem
1.1. First of all, we will prove point (a) in Section 6. The study is cut into
two parts: given u ∈ Sp(s), different methods are required according as
the total number of Jordan cells of odd size of u for an eigenvalue in {±1}
is a multiple of 4 or not.

• Point (c) will then be proved in Section 7, in which we will actually give a
full account of the structure of Sp4(F3): for each conjugacy class C we will
give the minimal length for a decomposition of its elements into a product
of involutions.

• The last section (Section 8) is devoted to the proof of point (b) of Theorem
1.1.

In a large part of the study, substantial shortcuts could be obtained by
discarding fields with 3 elements, but we have chosen to keep the treatment as
general as possible throughout.

2 A review of conjugacy classes in symplectic groups

2.1 Basic considerations on polynomials

Throughout, t is an indeterminate for polynomials. We denote by F[t] the algebra
of all polynomials in the indeterminate t and with coefficients in F, and by Irr(F)
the set of all monic irreducible polynomials of F[t] that are distinct from t (i.e.
that have no zero root). For any p ∈ F[t] of degree d such that p(0) 6= 0, one
defines the reciprocal polynomial

p♯ := p(0)−1tdp(t−1)
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of p, which is monic of degree d. One sees that (p♯)♯ = p whenever p is monic.
Note that p♯ is irreducible whenever p is irreducible. One says that p is a
palindromial whenever p = p♯. Classically, every p ∈ Irr(F)r {t± 1} which is
a palindromial has even degree and satisfies p(0) = 1.

2.2 Cyclic endomorphisms

Remember that an endomorphism u of a finite dimensional vector space V is
called cyclic whenever there exists a vector x ∈ V such that {uk(x) | k ∈ N}
spans V . In that case, u is determined up to conjugation in the general linear
group of V by its minimal polynomial, which coincides with its characteristic
polynomial. This justifies the following terminology:

Definition 2.1. Let p ∈ F[t] be a monic polynomial with degree n. A C(p)-
endomorphism of a finite-dimensional vector space V is a cyclic endomorphism
of V with minimal (i.e. characteristic) polynomial p.

To speak more quickly, we will simply that an endomorphism is C(p) to mean
that it is a C(p)-endomorphism.

2.3 The viewpoint of pairs

Definition 2.2. An s-pair (s, u) consists of a symplectic form s on a finite-
dimensional vector space V over F, and of an s-symplectic transformation u (i.e.
∀(x, y) ∈ V 2, s(u(x), u(y)) = s(x, y)). We say that V is the underlying vector
space of (s, u), and that its dimension is the dimension of (s, u). An s-pair is
called trivial when its dimension is zero.

Two s-pairs (s, u) and (s′, u′), with underlying vector spaces V and V ′, are
called isometric whenever there exists a linear isometry ϕ from (V, s) to (V ′, s′)

(that is, ϕ : V
≃
→ V ′ is a linear bijection and ∀(x, y) ∈ V 2, s′(ϕ(x), ϕ(y)) =

s(x, y)) such that u′ = ϕ ◦ u ◦ ϕ−1. This defines an equivalence relation on the
collection of all s-pairs.

Let (s, u) be an s-pair, with underlying vector space V . Assume that we

have a splitting V = V1
⊥s

⊕ V2 into s-orthogonal subspaces, both stable under
u. Then V1 and V2 are s-regular, and we denote by s1 and s2 the resulting
symplectic forms on V1 and V2, yielding s-pairs (s1, uV1

) and (s2, uV2
). We shall

write u = uV1

⊥
⊕ uV2

without any reference to s (in practice, the symplectic form
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under consideration is always obvious from the context). We say that (s, u) is
the (internal) orthogonal sum of (s1, uV1

) and (s2, uV2
). The generalization to

an internal orthogonal sum of more than two s-pairs is effortless. We say that
(s, u) is indecomposable when it is non-trivial and there is no decomposition

V = V1
⊥
⊕ V2 into non-trivial s-orthogonal subspaces that are stable under u.

Obviously, every s-pair splits as an orthogonal direct sum of finitely many
indecomposable s-pairs (and potentially zero such pairs).

2.4 Symplectic extensions

Let v be an automorphism of a finite-dimensional vector space V . Denote by
V ⋆ := Hom(V,F) the dual vector space of V , and by vt : ϕ ∈ V ⋆ 7→ ϕ ◦ v ∈ V ⋆

the transpose of v. For a linear subspace W of V , we denote by W ◦ := {f ∈
V ⋆ : f|W = 0} its dual-orthogonal in V ⋆.

The (external) symplectic extension of v is the s-pair S(v) defined as follows
with underlying vector space V × V ⋆: the symplectic form is

((x, ϕ), (y, ψ)) := ϕ(y)− ψ(x)

and the automorphism is

u : (x, ϕ) 7−→
(
v(x), (v−1)t(ϕ)

)
.

In this article, we will need the internal viewpoint for these pairs. So, let (s, u)
be an s-pair with underlying vector space V and dimension n. Remember that
a Lagrangian of s is a linear subspace L of V that is totally s-singular (that
is ∀(x, y) ∈ V 2, s(x, y) = 0) and that has dimension n

2 · Two Lagrangians L and
L′ are called transverse whenever L ∩ L′ = {0}, i.e. V = L ⊕ L′. Now, assume
that we have two such Lagrangians that are stable under u; then u is entirely
determined by their data and by the automorphism v := uL of L that u induces:
more specifically, the symplectic form s induces a vector space isomorphism
ϕ : x ∈ L′ 7→ s(x,−) ∈ L⋆, and one proves that uL′ = ϕ−1 ◦ (uL)

t ◦ ϕ by using
the fact that u is s-symplectic.

Conversely, let L and L′ be transverse Lagrangians of (V, s), and let v be a
vector space automorphism of L. Then, the unique automorphism of V whose
restriction to L is v and whose restriction to L′ is ϕ−1 ◦ vt ◦ ϕ is s-symplectic:
we call it the symplectic extension of v to L′ and denote it by sL′(v).

In matrix terms, if we have a symplectic basis B of V that is adapted to
V = L ⊕ L′, then the symplectic extensions to L′ of the automorphisms of L
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are the automorphisms that are represented in B by the matrices of the form
A ⊕ A♯ with A ∈ GLd(F) (for d := dimL), where for an arbitrary invertible
matrix M ∈ GLn(F) we set

M ♯ := (MT )−1.

Remark 2.1. Let L be a Lagrangian of V and B be a symplectic basis whose first
n vectors span L. Then every u ∈ Sp(s) that leaves L invariant has its matrix
in B of the form [

A ?
0 A♯

]
,

and in particular if uL = ε id for some ε = ±1 then the above matrix takes the
form [

εIn ?
0 εIn

]
.

Lemma 2.1. Let (V, s) be a symplectic space and L be a Lagrangian of it.
Assume that some automorphism v of L splits into v = v1 ⊕ v2, and denote
respectively by L1 and L2 the corresponding linear subspaces of L.

Then every symplectic extension of v is symplectically similar to the orthog-
onal direct sum of symplectic extensions of v1 and v2.

Proof. Let L′ be a Lagrangian that is transverse to L. Let us consider the
isomorphism ϕ : x ∈ L′ ≃

7−→ s(x,−) ∈ L⋆.

Setting L′
1 := ϕ−1(L◦

2) and L′
2 := ϕ−1(L◦

1), we see that V = (L1 ⊕ L′
1)

⊥
⊕s

(L2 ⊕L′
2), and in particular both L1 ⊕L′

1 and L2 ⊕L′
2 are s-regular. Moreover,

all of L1,L
′
1,L2,L

′
2 are stable under sL′(u); as for all i ∈ {1, 2} the resulting

endomorphism of Li ⊕L′
i is s-symplectic, it must equal sL′

i
(vi). Hence sL′(u) =

sL′

1
(v1)

⊥
⊕ sL′

2
(v2), which yields the claimed result.

2.5 Recognizing symplectic transformations

The following result was proved in [10] (combine lemma 2.2 and corollary 2.7
there):

Lemma 2.2. Let (s, u) be an s-pair, with underlying vector space V . Assume
that we have a totally s-singular subspace W of V that is stable under u. Denote
by p the characteristic polynomial of uW , by s the symplectic form on W⊥/W
induced by s, and by u the s-symplectic transformation of W⊥/W induced by u.
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Assume finally that the characteristic polynomial of u is relatively prime with

pp♯. Then there is a splitting (s, u) = (s0, u0)
⊥
⊕ (s1, u1) in which:

(i) The underlying vector space V0 of (s0, u0) includes W as a Lagrangian that
is stable under u0 with induced endomorphism equal to uW .

(ii) The s-pair (s1, u1) is isometric to (s, u).

If in addition p is relatively prime with p♯ then u0 is a symplectic extension of
uW .

2.6 A classification of indecomposable s-pairs

Using a part of Wall’s classification of conjugacy classes in symplectic groups
[12], one can retrieve the structure of indecomposable s-pairs. Here, it will be
convenient to sort these s-pairs into six types, and for the sake of clarity we draw
a table of these six types.

Table 1: The classification of indecomposable s-pairs (s, u)

Type Type of u as an endomorphism Associated data

I C(p2n)-automorphism p ∈ Irr(F)r {t± 1} palindromial
n ∈ N∗

II C(p2n+1)-automorphism p ∈ Irr(F)r {t± 1} palindromial
n ∈ N

III symplectic extension of a q ∈ Irr(F) with q 6= q♯

C(q2n)-automorphism n ∈ N∗

IV symplectic extension of a q ∈ Irr(F) with q 6= q♯

C(q2n+1)-automorphism n ∈ N

V C((t− η)2n)-automorphism η = ±1, n ∈ N∗

VI symplectic extension of a η = ±1, n ∈ N

C((t− η)2n+1)-automorphism

Note that the indecomposable s-pairs of type VI are the only ones with a
non-cyclic component u.

In [10], the terminology was slightly different as it was not needed there to
differentiate between the indecomposable cells of type I and II nor between the
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indecomposable cells of type III and IV; here the distinction will be relevant for
dimensions that are not multiples of 4.

2.7 Wall invariants

In the present work, we will not need the full power of Wall’s classification of
conjugacy classes in symplectic groups, but it is necessary to state some partial
results.

To every s-pair (s, u) we attach three kinds of invariants:

• The Jordan numbers of u: for each p ∈ Irr(F) and each integer r ≥ 1, we
denote by np,r(u) the number of primary invariants of u that equal pr; this
number equals the dimension, over the residue field F[t]/(p), of the coker-
nel Vp,r of the mapping Ker p(u)r+1/Ker p(u)r →֒ Ker p(u)r/Ker p(u)r−1

induced by p(u). If p 6= p♯ then it turns out that np,r(u) = np♯,r(u) (be-
cause u, being s-symplectic, is similar to u−1 in the general linear group
of its underlying vector space).

• The quadratic Wall invariants of u: For each η ∈ {±1} and each even
integer r = 2k + 2 ≥ 2, the quadratic Wall invariant (s, u)t−η,r is the
nondegenerate symmetric bilinear form induced by

(x, y) 7→
1

2
s
(
x, (u− u−1)(u+ u−1 − 2η id)k(y)

)

on the quotient vector space Vt−η,r.

• TheHermitian Wall invariants of u: For each palindromial p in Irr(F)r
{t± 1} and each integer r ≥ 1, we attach to (s, u) a nondegenerate skew-
Hermitian form (s, u)p,r over L := F[t]/(p) (for the non-identity involution
that takes the class of t to its inverse) on the L-vector space Vp,r. We will
not give the precise construction of this skew-Hermitian form and simply
refer the interested reader to section 1.4 of [9].

Theorem 2.3 (Wall’s theorem). Let F be a field of characteristic other than 2.
Two s-pairs (s, u) and (s′, u′) over F are isometric if and only if all the following
three conditions are fulfilled:

(i) The endomorphisms u and u′ are similar (as endomorphisms of vector
spaces over F), or equivalently np,r(u) = np,r(u

′) for all p ∈ Irr(F) and all
r ∈ N∗.
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(ii) For every η = ±1 and every even integer r ≥ 2, the quadratic Wall invari-
ants (s, u)t−η,r and (s′, u′)t−η,r are equivalent (as symmetric bilinear forms
over F).

(iii) For every palindromial p ∈ Irr(F) r {t ± 1} and every integer r ≥ 1, the
(nondegenerate) skew-Hermitian forms (s, u)p,r and (s′, u′)p,r are equiva-
lent over the field L := F[t]/(p).

Over a finite field equipped with a non-identity involution, nondegenerate
Hermitian forms are classified by their rank, and hence so are skew-Hermitian
forms (they are in natural correspondence with Hermitian forms, by multiplying
Hermitian forms with a fixed non-zero skew-Hermitian element of the field).
And here the rank of (s, u)p,r is precisely the dimension of Vp,r as a vector
space over F[t]/(p), i.e. it is the Jordan number np,r(u). Hence, over finite fields
the Hermitian Wall invariants are irrelevant for the classification of conjugacy
classes, and only the quadratic Wall invariants need to be considered in addition
to the Jordan numbers:

Theorem 2.4 (Wall’s theorem for finite fields). Let (s, u) and (s′, u′) be two s-
pairs over a finite field F of characteristic other than 2. For (s, u) and (s′, u′) to
be isometric, it is then necessary and sufficient that both the following conditions
hold:

(i) One has np,r(u) = np,r(u
′) for all p ∈ Irr(F) and all r ≥ 1.

(ii) For every η = ±1 and every even r ≥ 2, the quadratic Wall invari-
ants (s, u)t−η,r and (s′, u′)t−η,r are equivalent as symmetric bilinear forms
over F.

In the present work, we will try avoiding situations where the second condi-
tion is needed to identify an isometry of s-pairs.

3 A review of known results on decompositions into

involutions

3.1 Basic considerations

We start with very basic yet crucial remarks.

Remarks 3.1. (i) Let u be a k-reflectional element of a symplectic group. Then
u is also l-reflectional in the said symplectic group for all l ≥ k.

11



(ii) Let (s, u) and (s′, u′) be isometric s-pairs. If u is k-reflectional in Sp(s)
then u′ is k-reflectional in Sp(s′).

(iii) Let (s, u) be an s-pair, and k be a positive integer. Assume that we have

a splitting (s, u) ≃ (s1, u1)
⊥
⊕ (s2, u2) in which ui is k-reflectional in Sp(si)

for all i ∈ {1, 2}. Then u is k-reflectional in Sp(s).

The following terminology will also be quite useful.

Definition 3.1. Let u1 and u2 be two elements of a symplectic group Sp(s).
We say that u1 is i-adjacent to u2 whenever there exists an involution i ∈ Sp(s)
such that u1 = iu2.

Remark 3.2. If u1 is i-adjacent to a k-reflectional element u2, then u1 is (k+1)-
reflectional.

Remark 3.3. Assume that we have a decomposition u = u1
⊥
⊕ u2, and u1 and u2

are respectively i-adjacent to transformations u′1 and u′2 (in the corresponding

symplectic groups). Then u is i-adjacent to u′1
⊥
⊕ u′2.

3.2 Symplectic extensions

Let (V, s) be a symplectic space and (L,L′) be a pair of transverse Lagrangians
of it. The mapping

sL′ : v ∈ GL(L) 7→ sL′(v) ∈ Sp(s)

is easily seen to be a group homomorphism. This yields the following result,
which was also featured in [9]:

Proposition 3.1. Let (s, u) be an s-pair, and let k ∈ N∗. If (s, u) is a symplectic
extension of an automorphism that is k-reflectional (in the corresponding general
linear group), then u is k-reflectional in Sp(s).

3.3 The characterization of 2-reflectional elements

It is critical now that we state Nielsen’s characterization of products of two
involutions in symplectic groups. This result is proved in the recent [9] (Nielsen
never published the result, although it was stated in Bünger’s PhD thesis [2]).
Note that the implication (ii) ⇒ (i) is a special case of Proposition 3.1.
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Theorem 3.2 (Nielsen’s theorem). Let (s, u) be an s-pair. The following con-
ditions are equivalent:

(i) u is the product of two involutions in Sp(s);

(ii) u is a symplectic extension of an automorphism that is the product of two
involutions (in the corresponding general linear group);

(iii) u is a symplectic extension of an automorphism that is similar to its in-
verse;

(iv) u is a symplectic extension of an automorphism whose invariant factors
are palindromials;

(v) All the Jordan numbers of u are even, and all the Wall invariants of (s, u)
are hyperbolic.

For finite fields, the hyperbolicity of a Hermitian Wall invariant is equivalent
to having its underlying vector space of even dimension. Hence, for such fields
condition (v) is limited to the statement that all the Jordan numbers of u are even
and that all the quadratic Wall invariants of (s, u) are hyperbolic. In particular,
if u has no eigenvalue in {±1}, or if it has only Jordan cells of odd size for those
eigenvalues, then it is 2-reflectional in Sp(s) if and only if all its Jordan numbers
are even.

Now, here are some useful examples of s-pairs that satisfy the conditions in
this theorem:

• If u is an indecomposable cell of type VI, then it is 2-reflectional (e.g. by
characterization (iv)).

• If F is finite then for every s-pair (s, u) such that u2 = − id and rku is
a multiple of 4, the transformation u is 2-reflectional in Sp(s). Indeed,
in that case either t2 + 1 is irreducible over F, in which case u has a sole
non-zero Jordan number, namely nt2+1,1(u), and it equals rku

2 ; or t2 + 1
splits over F, with roots ±ı, in which case u has exactly two non-zero
Jordan numbers, both equal to rku

2 · Note that this uses the finiteness of
F in a critical way, as is demonstrated by the case of the field R of real
numbers: in that case indeed, Hermitian forms over R[t]/(t2 + 1) ≃ C are
not classified solely by their rank, so the corresponding Hermitian Wall
invariants need a close examination.
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• In contrast (and for the very same reasons), if we have an s-pair (s, u) such
that u2 = − id and rku is not a multiple of 4, then u is not 2-reflectional
in Sp(s).

3.4 Cyclic adaptation lemma

Let us start from a classical lemma on cyclic automorphisms of a vector space:

Lemma 3.3 (Proposition 3.4 in [8]). Let q ∈ F[t] be a monic polynomial of
degree d > 0 such that q(0) 6= 0. Let u be a C(q)-automorphism of a vector space
V , and let r ∈ F[t] be monic of degree d. If either r(0) = −q(0), or r(0) = q(0)
with d odd, then there exists an involution i ∈ GL(V ) such that iu is C(r).

From there, we readily deduce:

Lemma 3.4. Let (V, s) be a symplectic space, and L and L′ be two transverse
Lagrangians of it. Let u be a C(q)-automorphism of L, and let r ∈ F[t] be a
monic polynomial with the same degree as q.

If either r(0) = −q(0), or r(0) = q(0) with d odd, then sL′(u) is i-adjacent
to sL′(v) for some C(r)-automorphism v of L.

3.5 Some useful 3-reflectional elements

We will need two important results which allow one to recognize 3-reflectional
elements. The first one is easily obtained by combining Proposition 3.1 with the
classical result that states that every cyclic automorphism with determinant ±1
is 3-reflectional in the corresponding general linear group (see e.g. proposition
3.7 of [8]):

Proposition 3.5. Let (s, u) be an s-pair. Assume that u is a symplectic exten-
sion of a cyclic automorphism whose minimal polynomial p satisfies p(0) = ±1.
Then u is 3-reflectional in Sp(s).

The second result is more difficult. It was proved in [10] as an application
of the space-pullback technique. It will also play a crucial part in the present
work.

Proposition 3.6 (Proposition 3.6 in [10]). Let (s, u) be an s-pair. Assume
that u is a symplectic extension of a cyclic automorphism v whose minimal
polynomial is even and relatively prime with its reciprocal polynomial. Then u
is 3-reflectional in Sp(s).
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Note that in Proposition 3.6, v need not be a product of involutions in the
corresponding general linear group (as we might have det v 6= ±1!).

4 On specific indecomposable cells

Here, we will illustrate the use of previous results by tackling some types of
indecomposable cells. The results here will be used only for the case of F3 in
dimension 4, but the proofs are interesting in themselves.

4.1 A lemma on polynomials

We start with a lemma on polynomials. Remember that χ(F) 6= 2.

Lemma 4.1. Let n ≥ 2 be an integer. Assume that F is finite. Then there exists
a monic irreducible polynomial p ∈ F[t] of degree n such that p(0) = −1.

Proof. We choose a finite extension L of degree n of F, and a generator ζ of the
group L

× of units. Denote by q the cardinality of F and set k := q−1
2 if n is

even, k := q−1 if n is odd, and z := ζk; in any case, we denote by p the minimal
polynomial of z over F. Since kql < qn − 1 for all l ∈ [[0, n − 1]], the elements
z, zq, . . . , zq

n−1

, which are the images of z under the elements of Gal(L/F), are
pairwise distinct, and hence p has degree n. For the constant coefficient, we
compute

p(0) = (−1)n
n−1∏

k=0

zq
k

= (−1)nz
qn−1

q−1 .

If n is even we have z
qn−1

q−1 = ζ
qn−1

2 = −1. If n is odd we have z
qn−1

q−1 = ζq
n−1 = 1.

In any case we deduce that p(0) = −1.

4.2 Tackling cells of type I, III or V

Lemma 4.2. Assume that F is finite. Let (s, u) be an s-pair with dimension a
multiple of 4. Assume that it is an indecomposable cell of type I, III or V. Then
u is 4-reflectional in Sp(s).

Proof. There is a palindromial p of even degree (not necessarily irreducible) such
that p(0) = 1, and an integer n ≥ 1 such that u is C(p2n). Set L := Ker p(u)n =
Im p(u)n, and note that L⊥s = (Im p(u)n)⊥s = Ker p(u)n = L. Hence L is a
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Lagrangian. Let us take a transverse Lagrangian L′ of L. The endomorphism v
of L induced by u is C(pn).

By Lemma 4.1, we can find an irreducible polynomial q of degree n deg(p)
such that q(0) = −1. By the cyclic adaptation lemma (Lemma 3.4), we can
choose an involution i of the vector space L such that iv is C(q). Hence sL′(i)u
stabilizes L and the induced endomorphism is iv. Note that q is irreducible with
even degree and q(0) = −1, so it is relatively prime with q♯. By Lemma 2.2, we
deduce that sL′(i)u is a symplectic extension of iv. Hence sL′(i)u is 3-reflectional
by Proposition 3.6. Hence, u is 4-reflectional in Sp(s).

Lemma 4.3. Assume that |F| = 3. Let (s, u) be an s-pair in which u is
C
(
(t2 + 1)2

)
. Then u is i-adjacent to a C(t4 + 1)-symplectic transformation.

Proof. This is readily deduced from the proof of Lemma 4.2 by taking q :=
t2− t− 1, which is irreducible over F with degree 2. With the notation from the
proof, the characteristic polynomial of sL′(i)u is qq♯ = t4 + 1, which has only
simple irreducible factors, and hence t4 + 1 is also the minimal polynomial of
sL′(i)u, whereas sL′(i) is an involution in Sp(s).

4.3 Tackling cells of type II

Lemma 4.4. Assume that F is finite. Let (s, u) be an indecomposable s-pair of
type II, with dimension a multiple of 4. Then u is 4-reflectional in Sp(s).

The proof is partly inspired by Ellers and Villa’s argument from [3].

Proof. We write the minimal polynomial of u as p2n+1 where p ∈ Irr(F) is a
palindromial of even degree d. Note that d is a multiple of 4 because so is
(2n+ 1)d.

We start with the case n = 0.
Consider the splitting field L := F[t]/(p) equipped with the involution x 7→ x•

that takes the coset λ of t to its inverse, and with the norm N : x ∈ L 7→ xx•.
Choose an arbitrary nonzero skew-Hermitian (i.e. skew-selfadjoint) element

h of L (say, h = λ− λ−1), and consider the symplectic form

s′ : (x, y) 7→ TrL/F(hx
•y)

on the F-vector space L
2. Since λ•λ = 1, one sees that u′ : x 7→ λx is s′-

symplectic. Since u′ is C(p), we deduce that (s, u) is isometric to (s′, u′) (once
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more, there is no relevant Wall invariant here because p has no root in {−1, 1}
and the field F is finite). It will suffice to prove that u′ is 4-reflectional in Sp(s′).

Now, denote by K the subfield of all Hermitian (i.e. selfadjoint) elements of
L. Since d is a multiple of 4, the degree of K over F is even, and it follows
(because K is finite) that there is an element ı ∈ K such that ı2 = −1. Note
that N(ı) = ı2 = −1. Consider then r1 : x 7→ ıx• and r2 : x 7→ −λıx•, which
are F-linear (and even K-linear). Using N(−ıλ) = −1 = N(ı) and the obvious
fact that x 7→ x• is s′-skewsymplectic, we gather that both r1 and r2 are s′-
symplectic. Clearly u′ = r2r1, and r

2
1 = − id = r22.

To conclude, it suffices to prove that each one of r1 and r2 is 2-reflectional
in Sp(s′). But this follows immediately from one of the examples from Section
3.3, because d is a multiple of 4. Hence, u′ is 4-reflectional in Sp(s′), and we
conclude that u is 4-reflectional in Sp(s).

Now, we turn to the case n > 0. Then Ker pn(u) = Im pn+1(u) = (Ker pn+1(u))⊥s .
In particular Ker pn(u) is totally s-singular. Let us take a basis (e1, . . . , eN ) of
Ker pn(u) (with N := nd), and then extend it to a basis (e1, . . . , eN , f1, . . . , fd) of
Ker pn+1(u) such that (f1, . . . , fd) is s-symplectic. Note that span(f1, . . . , fd) is
s-regular. Finally, we extend (e1, . . . , eN ) into a symplectic basis (e1, . . . , eN , g1, . . . , gN )
of span(f1, . . . , fd)

⊥s . Hence B := (e1, . . . , eN , f1, . . . , fd, g1, . . . , gN ) is a basis of
V and the matrix of u in that basis looks as follows:

M =



A ? ?
0 B ?
0 0 A♯




where A ∈ GLnd(F) is cyclic with minimal polynomial pn, and B ∈ Spd(F)
is cyclic with minimal polynomial p. By the first case we have studied in the
above, we find a symplectic involution S ∈ Spd(F) such that SB is 3-reflectional
in Spd(F). Once more, we use Lemma 4.1 to find some q ∈ Irr(F) of degree
dn such that q(0) = −1. By Lemma 3.3, we can find an involutory matrix
S′ ∈ GLnd(F) such that S′A is cyclic with minimal polynomial q. Denote by i1
the endomorphism of V represented in B by

S̃ :=



S′ 0 0
0 S 0
0 0 (S′)♯


 .

With the way B has been chosen, it is clear that i1 is s-symplectic, and obviously

17



i1 is an involution. Then, i1s is represented in B by



S′A ? ?
0 SB ?
0 0 (S′A)♯


 .

Now, the characteristic polynomial of SB must be relatively prime with q be-
cause its degree is less than or equal to nd, whereas q is irreducible and is not
a palindromial. Moreover, q is relatively prime with q♯. Hence, by Lemma 2.2

we gather that i1u splits into the orthogonal direct sum u1
⊥
⊕ u2, where u1 is

a symplectic extension of a C(q)-automorphism, and u2 is 3-reflectional in the
corresponding symplectic group. Finally, by Proposition 3.5, u1 is 3-reflectional
in the corresponding symplectic group. Hence i1u is 3-reflectional in Sp(s), and
we conclude that u is 4-reflectional in Sp(s).

5 The space-pullback technique, recalled and refined

5.1 A review of the space-pullback technique

We will recall this technique, which was the key to the main theorem of [10]
(see sections 3.1 and 3.2 there for more details). The idea is to look at the
action on totally s-singular subspaces. So, assume that we have an s-pair (s, u),
with underlying vector space V , and a totally s-singular subspace W such that
u(W ) ∩W = {0}. Then, we look at the restricted bilinear form

su,W : (x, y) ∈W 2 7−→ s(x, u(y)),

and we assume that it is nondegenerate. Note that its respective symmetric and
skew-symmetric parts are

(x, y) ∈W 2 7−→
1

2
s
(
x, (u−u−1)(y)

)
and (x, y) ∈W 2 7−→

1

2
s
(
x, (u+u−1)(y)

)
.

Under the condition of nondegeneracy, the subspace W ⊕ u(W ) is s-regular.
Then we take an arbitrary symplectic form b on W . It turns out that:

(i) There is a unique symplectic involution i of W ⊕ u(W ) such that i(W ) =
u(W ) and

∀(x, y) ∈W 2, b(x, y) = s(x, i(y)).
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(ii) There is also a unique endomorphism v of W such that

∀(x, y) ∈W 2, su,W (x, y) = b(x, v(y)).

And then i(u(x)) = v(x) for all x ∈W . This justifies the term “space-pullback”,
as i pulls u(W ) back into W . Now, we extend i to a symplectic involution ĩ of
V by choosing a symplectic involution of (W ⊕ u(W ))⊥s , which will be called
the residual involution induced by ĩ, and denoted by i′.

The composite symplectic transformation ĩ ◦u leaves W invariant, and it in-
duces a symplectic transformation of W⊥s/W . The analysis of this transforma-
tion is crucial. Denoting by π the canonical projection of u(W )⊕ (W ⊕u(W ))⊥s

onto (W ⊕ u(W ))⊥s , we call the mapping x 7→ π(u(x)) (which is well defined
on (W ⊕ u(W ))⊥s) the residual endomorphism of (W ⊕ u(W ))⊥s induced
by u. If we denote this endomorphism by u′, then the symplectic transfor-
mation of W⊥s/W induced by iu is symplectically similar to the symplectic
transformation i′u′ of (W ⊕u(W ))⊥s , and more precisely the canonical mapping

ϕ : (W ⊕ u(W ))⊥s
≃

−→ W⊥s/W is such that ϕ ◦ (i′u′) ◦ ϕ−1 is the symplectic
transformation of W⊥s/W induced by iu. Hence, the type of the former is en-
tirely determined by the effect of ĩ on (W ⊕ u(W ))⊥s and by the bilinear form
induced by su on (W ⊕ u(W ))⊥s .

In order to make the technique fruitful, we will need careful choices of W , b
and of a symplectic involution of (W ⊕u(W ))⊥s (to be the residual involution of
the involution i ∈ Sp(s) that is constructed in the space-pullback). In practice,
most of the time we do not define b directly, rather we choose a vector space
automorphism v of W such that (x, y) 7→ su,W (x, v−1(y)) is symplectic, and we
try to force the conjugacy class of v in GL(W ). Note that if su,W is symmetric,
asking that (x, y) 7→ su,W (x, v−1(y)) be symplectic amounts to asking that v be
su,W -skew-symmetric. And in all but one case (more precisely Lemma 6.10), we
will try to have su,W symmetric.

In Section 5.2, we will obtain interesting results on the choice of the conjugacy
class of v. And in Section 5.3, we will discuss how to choose W wisely.

5.2 Adapting the symplectic form for space-pullbacking

Since a complete understanding of the situation is not required, we will limit
ourselves to a very specific yet critical situation.

Lemma 5.1. Assume that F is finite. Let p ∈ Irr(F) be even. Then there exists
a pair (b, v) consisting of:
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(i) A nonhyperbolic nondegenerate symmetric bilinear form b on a vector space
V ;

(ii) A b-skew-selfadjoint C(p)-endomorphism v of V .

Proof. Denote by d the degree of p.
We consider the field L := F[t]/(p) equipped with the non-identity involution

x 7→ x• that takes the coset λ of t to its opposite (it is well defined because p
is even), and the F-linear mapping v : x 7→ λx. We also consider the subfield
K := {x ∈ L : x• = x}, of which L is a quadratic extension. The bilinear
form b : (x, y) 7→ TrL/F(x

•y) is nondegenerate and symmetric, and v is b-skew-
selfadjoint. It remains to investigate the type of b.

Let us write d := deg p and Gal(L/F) = {σ1, . . . , σd}. Since L is a Galois
extension of F (remember that L is finite) and L = F[λ], it is classical that
the Gram matrix of b in the basis (1, λ, . . . , λd−1) equals (M•)TM , where M =
(σi(λ

j−1))1≤i,j≤d, and hence one of the determinants of b is (detM)•(detM).
Since L is finite with even degree over F, there is a unique quadratic extension

M of F such that M ⊆ L. As the discriminant of p over F equals ±(detM)2,
we deduce that detM ∈ M. When applying an element of Gal(L/F) entry-wise,
the rows of M are permuted, and in particular (detM)• = ± detM . The group
Gal(L/F) is cyclic and we take a generator ϕ of it. The morphism ϕ acts as a
d-cycle on the roots of p, and its d

2 -th power x 7→ x• acts as the product of d
2 -

commuting transpositions on them; hence the signature of the latter permutation
equals (−1)d/2, so that (detM)• = (−1)d/2 detM . The same line of reasoning
shows that detM 6∈ F because ϕ(detM) = detMϕ = (−1)d−1 detM 6= detM .
Hence, for some β ∈ MrF, the scalar (−1)d/2β2 is a determinant of b .

If b were hyperbolic, then (−1)d/2β2 = (−1)d/2α2 for some α ∈ F, leading to
β = ±α and contradicting the fact that β 6∈ F. Hence b is nonhyperbolic.

Lemma 5.2. Let λ ∈ F r {0, 1,−1} and n ≥ 1. Then there exists a pair (b, v)
consisting of:

(i) A hyperbolic bilinear form b on a vector space V of dimension 2n;

(ii) A b-skew-selfadjoint endomorphism v of V that is diagonalizable with eigen-
values ±λ, both with multiplicity n.

Proof. It suffices to consider the matrices

A :=

[
λIn 0n
0n −λIn

]
and S :=

[
0n In
In 0n

]
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of M2n(F). We note that S represents a hyperbolic bilinear form, that A is
diagonalizable with eigenvalues ±λ, both with multiplicity n, and that SA is
alternating. Hence, it suffices to take for b the bilinear form (X,Y ) 7→ XTSY
on F

2n, and for v the endomorphism X 7→ AX of F2n.

5.3 Finding large subspaces for space-pullbacking

Here, we inquire about the existence of large totally s-singular subspaces W for
which su,W is symmetric and nondegenerate.

First of all, we recall the following result from [10]:

Proposition 5.3 (Corollary 3.3 in [10]). Let (s, u) be an s-pair such that u has
no Jordan cell of odd size for an eigenvalue in {±1}. Then there exists an s-
Lagrangian L such that u(L) ∩ L = {0} and the bilinear form su,L : (x, y) 7→
s(x, u(y)) is symmetric and nondegenerate.

Now, we turn to the case of indecomposable cells of type VI. In [10], we
entirely refrained from tackling them directly, but here it will be necessary to
do so.

Proposition 5.4. Let (s, u) be an s-pair which is an indecomposable cell of type
V I with dimension 4n+ 2 (where n ≥ 1) and eigenvalue η. Then there exists a
2n-dimensional totally s-singular subspace W such that:

(i) su,W is a hyperbolic bilinear form;

(ii) u(W ) ∩W = {0};

(iii) When denoting by π the orthogonal projection onto (W + u(W ))⊥s , the
endomorphism x 7→ π(u(x)) of (W + u(W ))⊥s equals η id.

One thing must be pointed out. In the situation of Proposition 5.4, there
can be no Lagrangian L such that su,L is symmetric and nondegenerate: indeed,
it can be proved that the existence of such a Lagrangian would yield that the
invariant factors of u are palindromials of even degree, which is not the case here.
So, the result we have just stated is essentially optimal for indecomposable cells
of type VI.

Proof. Multiplying u by η if necessary, we can assume that η = 1.
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We use an algebraic model for (s, u). Consider the ring F[t, t−1] of all Laurent
polynomials with one indeterminate t and coefficients in F, the quotient ring

R := F[t, t−1]/
(
(t− 1)2n+1

)

and the involution x 7→ x• of R that takes the coset λ of t to its inverse (it is
well defined because the ideal generated by (t − 1)2n+1 is invariant under the
involution of F[t, t−1] that takes t to t−1). The eigenspaces of this involution are
denoted by

H := {x ∈ R : x• = x} (the set of all Hermitian elements)

and

S := {x ∈ R : x• = −x} (the set of all skew-Hermitian elements).

One sees that H is the subalgebra generated by λ + λ•, and it is naturally
isomorphic to F[t]/(t− 2)n+1 through the isomorphism

ϕ : H
≃

−→ F[t]/(t− 2)n+1

that takes λ+λ−1 to the coset of t mod (t−2)n+1. In particular, dimFH = n+1,
and hence dimH S = n.

Note that xy ∈ S for all x ∈ H and y ∈ S. For x ∈ R, we denote by

xh :=
x+ x•

2
and xs :=

x− x•

2

its Hermitian and skew-Hermitian part, respectively. It will be useful to note
that the kernel of

κ : x ∈ R 7→ (λ− λ−1)x

is the 1-dimensional F-linear subspace spanned by the Hermitian element

ω := (λ+ λ−1 − 2)n;

Moreover κ(H) = S: indeed κ(H) ⊂ S, whereas dimH = dimS + 1 and
dim(Ker κ) = 1.

Next, we define e as the F-linear form on F[t]/(t− 2)n+1 that takes the coset
of (t − 2)k to 0 for all k ∈ [[0, n − 1]], and that takes the coset of (t − 2)n to 1.
One checks that (x, y) 7→ e(xy) is a nondegenerate bilinear form on the F-vector
space F[t]/(t− 2)n+1.

It follows that f : (x, y) 7→ e(ϕ((xy)h)) is a symmetric bilinear form on the
F-vector space R, and we shall now see that it is nondegenerate.
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• First of all, note that f(x, y) = 0 for all (x, y) ∈ H × S.

• Let x ∈ H and assume that f(x, y) = 0 for all y ∈ H. Then, for all y ∈ H
we see that e(ϕ(x)ϕ(y)) = 0 (because xy ∈ H and hence (xy)h = xy), and
since e is nondegenerate it follows that ϕ(x) = 0 and hence x = 0.

• Let x ∈ S, and assume that f(x, y) = 0 for all y ∈ S. Since κ(H) = S,
we have x = (λ − λ−1)x1 for some x1 ∈ H, we deduce that e(ϕ((λ −
λ−1)2x1y1)) = 0 for all y1 ∈ H, and hence (λ − λ−1)2x1 = 0. Hence
x ∈ Kerκ. But as noted in the above this shows that x ∈ H, whence x = 0
because x ∈ S.

From the above three points, it is easily concluded that f is nondegenerate.
Note also, for the remainder of the proof, that S = H⊥f as a consequence of the
above.

Next, on the F-vector space R2, we consider the symplectic form

s′ : ((x, y), (x′, y′)) 7−→ f(x, y′)− f(x′, y)

and the endomorphism
u′ : (x, y) 7→ (λx, λ−1y).

It is clear that (s′, u′) is an s-pair and that u′ has exactly two Jordan cells at-
tached to the eigenvalue 1, both with size 2n+1 (consider the induced endomor-
phisms on the subspaces R×{0} and {0}×R). Hence (s, u) is isometric to (s′, u′),
and in the remainder of the proof we will simply assume that (s, u) = (s′, u′).

Note that H × S is totally s-singular. Now, take

H0 := {x ∈ H : f(x, 1R) = 0} = {1R}
⊥f ∩H and W := H0 × S.

We will prove that W has the required properties. We readily have that W ⊆
H×S is totally s-singular, and it is clear that dimW = 2n. Next, we prove that
su,W is hyperbolic. And first of all we prove that it is symmetric. This amounts
to proving that u + u−1 maps W into its s-orthogonal. Setting α := λ + λ−1,
we see that (u + u−1)(x, y) = (αx, αy) ∈ H × S for all (x, y) ∈ W , and hence
bothW and (u+u−1)(W ) are included in the totally s-singular subspace H×S,
which yields that su,W is symmetric.

Next, let (x, y) belong to the radical of su,W .

• For all z ∈ S, we write s((0, z), u(x, y)) = 0. We deduce that λx ∈ S⊥f =
H, Hence λ•x• = λx, leading to (λ − λ−1)x = 0. But then x = θω for
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some θ ∈ F, and f(1R, x) = θ by the definition of e. Since x ∈ H0, this
leads to θ = 0 and hence to x = 0.

• For all z ∈ H0, we write s((z, 0), u(x, y)) = 0. It follows that λ•y ∈ (H0)
⊥f ,

and hence λ•y = x1 + x2 where x1 ∈ H ∩ (H0)
⊥f = F1R and x2 ∈ S.

Applying the involution and summing, we get (λ•−λ) y = 2x1. Since λ
•−λ

is not invertible in R, this equality yields x1 = 0. Then (λ − λ−1) y = 0,
and we conclude that y ∈ Fω ∩ S = {0}.

Hence (x, y) = (0, 0), and we conclude that su,W is nondegenerate.
Noting that dimS = n = dimW

2 and that {0}×S is obviously totally isotropic
for su,W , we gather that su,W is hyperbolic.

Next, we prove that u(W ) ∩W = {0}, which is equivalent to proving that
H0 ∩ λH0 = {0} and S ∩ λS = {0}.

• Let x ∈ H0 ∩ λH0. Then λ
•x ∈ H so λ•x = (λ•x)• = λx. Once more this

leads to x ∈ Fω and then to x = 0 because H0 ∩ Fω = {0}.

• Let x ∈ S ∩ λS. Then λ•x ∈ S so λ•x = −(λ•x)• = λx, and as before we
get x = 0 directly because S ∩ Fω = {0}.

It remains to prove statement (c). To do so, it suffices to prove that the
bilinear mapping

(x, y) ∈ (R2)2 7−→ s(x, (u− id)(y))

vanishes everywhere on ((W + u(W ))⊥s)2. Yet obviously

(W + u(W ))⊥s = (S⊥f ∩ λS⊥f )×
(
H

⊥f

0 ∩ λ−1H
⊥f

0

)

and so it will suffice to see that e(ϕ(((λ − 1)xy)h) = 0 for all x ∈ S⊥f ∩ λS⊥f

and y ∈ R. But this is easy: let indeed x ∈ S⊥f ∩ λS⊥f = H ∩ λH. Then
λ•x ∈ H and x ∈ H, whence λ•x = λx. Once more this leads to x ∈ Fω and
hence to (λ−1)x = 0; we conclude that e(ϕ((λ−1)xy)h) = 0 for all y ∈ R. This
concludes the proof.

6 Dimensions that are multiples of 4

Here, we let (s, u) be an s-pair whose dimension n is a multiple of 4. Our aim is
to prove that u is 4-reflectional in Sp(s) unless n = 4 and |F| = 3.
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The basic idea is to split u into indecomposable cells and then to regroup
all the cells that are not of type VI on one side, and all those of type VI on the
other side: this yields a splitting

u = ur
⊥
⊕ ue

with a corresponding splitting V = Vr ⊕ Ve of the underlying vector space V , in
which:

• ur has no Jordan cell of odd size for an eigenvalue in {±1};

• ue is triangularizable and has all its eigenvalues in {±1}, and all its Jordan
cells of odd size.

We will say that ur is a regular part of u, and that ue is an exceptional part
of u.

6.1 Basic results on polynomials over finite fields

Lemma 6.1. Assume that F is finite, and let p ∈ F[t] be irreducible, monic, and
distinct from t2 + 1. Then p cannot be both even and a palindromial.

Proof. Assume on the contrary that p is both even and a palindromial, and
consider the splitting field L := F[t]/(p) (this is a splitting field because F is
finite, so every finite extension of it is a Galois one). The Galois group Gal(L/F)
is cyclic, so it has at most one element of order 2. Yet, we have the Galois
automorphism σ1 ∈ Gal(L/F) that takes the coset x of t to its opposite (because
p is even), and the Galois automorphism σ2 ∈ Gal(L/F) that takes x to x−1

(because p is a palindromial). Note that σ1 6= id and σ2 6= id (otherwise x ∈
{0, 1,−1}, which is not allowed). And (σ1)

2(x) = x = (σ2)
2(x). Hence, (σ1)

2 =
(σ2)

2 = id, to the effect that σ1 = σ2. It would follow that x2 = −1, and as
deg(p) ≥ 2 this would lead to p = t2 + 1.

Lemma 6.2. Let n ≥ 1 be a positive integer. Assume that F is finite. Then
there exists a polynomial p ∈ Irr(F) that is even and has degree 2n. If in addition
|F| > 3 then p can be taken to be different from t2 + 1.

Note that if p 6= t2+1 then Lemma 6.1 shows that p cannot be a palindromial.
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Proof. We can take a finite extension L of F of degree 2n. There is a unique non-
identity involution σ of L, and we consider the subfield K := {x ∈ L : σ(x) = x}.
Its group K

× of units is cyclic with even order, and we can pick a generator ω
of it. Then we know that L contains a square root z of ω, and z 6∈ K (because
|K×| is even). Hence F[z] contains every power of ω, and hence it includes K;
and since z 6∈ K and [L : K] = 2 we deduce that F[z] = L. We deduce that
z has degree 2n over F. If we denote by q the minimal polynomial of ω over
F, we know that q has degree 2 and that q(t2), which is monic of degree 2n,
annihilates z. Hence p := q(t2) is the minimal polynomial of z, to the effect that
it is irreducible. Obviously, it is even.

Finally, if n = 1 and |F| > 3, we see that ω 6= −1, to the effect that
p 6= t2 + 1.

6.2 Preliminary work in dimension 4

Lemma 6.3. Assume that F is finite and |F| > 3. Let (s, u) be an s-pair in
which u is C

(
(t2 + 1)2

)
. Then u is 3-reflectional in Sp(s).

Here, the assumption that |F| > 3 is critical, and the result fails for F3, which
will be seen in Section 7.

Proof. We choose an arbitrary h ∈ F r {0, 2,−2}. One checks that the matrix

M :=

[
0 −I2
I2 hI2

]

belongs to Sp4(F); it has two invariant factors, all equal to t2 − ht+ 1, a poly-
nomial with no root in {−1, 1}.

As the field is finite, we deduce from Nielsen’s theorem thatM is 2-reflectional
in Sp4(F). Let us consider the involution

A :=

[
0 K

K−1 0

]
∈ Sp4(F), where K :=

[
0 −1
1 0

]
.

One sees that

AM =

[
K hK
0 K

]
and then (AM)2 =

[
−I2 −2hI2
0 −I2

]
.

Hence (t2 + 1)2 annihilates AM but t2 + 1 does not.
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The minimal polynomial of AM is a palindromial with no root in {−1, 1},
so its degree is even, and we conclude that it equals (t2 + 1)2.

Finally, since F is finite and AM has no eigenvalue in {−1, 1}, the conjugacy
class of AM in Sp4(F) is determined by the Jordan numbers of AM . Hence,
every C

(
(t2 + 1)2

)
-symplectic automorphism is represented by AM in a well-

chosen symplectic basis. As AM is 3-reflectional in Sp4(F), we conclude that u
is 3-reflectional in Sp(s).

6.3 The regular case

Here, we will consider the easiest case: the one where u has no Jordan cell of
odd size for an eigenvalue in {−1, 1}. This case is dealt with thanks to the
space-pullback method, but there are additional complexities due to the failure
of Lemma 6.3 for F3.

Proposition 6.4. Assume that F is finite. Let (s, u) be an s-pair whose dimen-
sion n is a multiple of 4. Assume that u has no Jordan cell of odd size for an
eigenvalue in {±1}. Then u is 4-reflectional in Sp(s) unless n = 4 and |F| = 3.

Proof. We discard the special case where n = 4 and |F| = 3.
Denote by V the underlying vector space of (s, u). To start with, Propo-

sition 5.3 yields a Lagrangian L of (V, s) such that su,L is nondegenerate and
symmetric, and L ∩ u(L) = {0}. We will use a space-pullback thanks to L, and
it remains to make a careful choice of a symplectic form on L, which amounts to
choose an su,L-skew-selfadjoint automorphism v of L (then the symplectic form
we take is (x, y) 7→ su,L(x, v

−1(y))). By such a space-pullback, u will be seen to
be i-adjacent to some u′ ∈ Sp(s) that leaves L invariant and for which u′L = v.

The favorable case is the one where su,L is non-hyperbolic. In that case, we
can use Lemma 6.2 to find an even polynomial p ∈ Irr(F) with degree n

2 and
p 6= t2 + 1 (note how this uses the assumption that n > 4 or |F| > 3). Then
p is not a palindromial, so it is relatively prime with p♯. By Lemma 5.1 (using
the fact that two nondegenerate and nonhyperbolic symmetric bilinear forms
over a finite field – of characteristic other than 2 – are equivalent whenever they
have the same rank) we find a C(p)-automorphism v of L such that v is su,L-
skew-selfadjoint. Hence, in using L and v for space-pullbacking, we find that
u is i-adjacent to some u′ ∈ Sp(s) that leaves L invariant and for which u′L is
C(p). And then, since p is relatively prime with p♯ we deduce from Lemma 2.2
that u′ is a symplectic extension of u′L. And by Proposition 3.6 the symplectic
transformation u′ is 3-reflectional in Sp(s). Hence u is 4-reflectional in Sp(s).
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In the remainder of the proof, we assume that su,L is hyperbolic. In this
unfavorable case, we need to split the discussion into as many as four subcases.

Case 1: |F| > 3 and t2 + 1 splits over F.

We note that n
2 is even. By Lemma 5.2, we can apply the space-pullback tech-

nique to obtain that u is i-adjacent to some u′ ∈ Sp(s) that leaves L invariant
and such that (u′)L is diagonalisable with characteristic polynomial (t2 + 1)n/4

(take λ as a root of t2+1). It easily follows that (t2 +1)2 annihilates u′. Hence,
u′ is an orthogonal direct sum of indecomposable cells with minimal polynomial
(t2 + 1)2 and of an even number of indecomposable cells with minimal polyno-
mial t2 + 1. Yet, by Nielsen’s theorem, any orthogonal direct sum of an even
number of indecomposable cells with minimal polynomial t2+1 is 2-reflectional.
Hence, by Lemma 6.3, we see that u′ is 3-reflectional in Sp(s), and hence u is
4-reflectional in Sp(s).

Case 2: |F| > 3 and t2 + 1 is irreducible over F.

In particular |F| > 5, so we can choose λ ∈ F r {0} such that λ4 6= 1. Then by
space-pullbacking, we find that u is i-adjacent to a symplectic transformation u′

that leaves L invariant and whose induced automorphism of L is a direct sum of
C ((t− λ)(t+ λ))-automorphisms. As (t − λ)(t + λ) is relatively prime with its
reciprocal polynomial, we find that u′ is a symplectic extension of (u′)L. And
then we deduce that u′ is the orthogonal direct sum of symplectic extensions
of C(t2 − λ2)-automorphisms. Hence, by Proposition 3.6 we see that u′ is 3-
reflectional in Sp(s), and we conclude that u is 4-reflectional in Sp(s).

Case 3: |F| = 3 and n is a multiple of 8.
We know from Lemma 5.1 that there exists a pair (b, w) that consists of a
non-hyperbolic nondegenerate symmetric bilinear form b of rank 2 and of a b-
skew-symmetric automorphism w with minimal polynomial t2 + 1. By taking
an orthogonal direct sum of n

4 copies of (b, w), we see that the resulting pair

(̃b, ṽ) is such that b̃ is hyperbolic (because n
4 is even) and that w̃ has minimal

polynomial t2+1. Hence, by using an isometry, we find that there exists an su,L-
skew-symmetric automorphism w with minimal polynomial t2+1. Applying the
space-pullback technique with L and v, we deduce that u is i-adjacent to some
u′ ∈ Sp(s) that leaves L invariant and such that u′L has minimal polynomial
t2 + 1. Hence u′ is clearly annihilated by (t2 + 1)2, and we deduce that it
splits into the orthogonal direct sum of n1 indecomposable cells with minimal
polynomial (t2 + 1)2, and of n2 indecomposable cells with minimal polynomial
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t2 + 1, for some integers n1 ≥ 0 and n2 ≥ 0 that satisfy 4n1 + 2n2 = n. Hence
2n1 + n2 is a multiple of 4, and we deduce that n2 is even and that n1 and n2

2
have the same parity. If n1 is even then u′ directly satisfies the conditions of

Nielsen’s theorem. If n1 is odd, we resplit u′ into (v1
⊥
⊕ v2)

⊥
⊕ v3 where:

• v1 is an indecomposable cell with minimal polynomial (t2 + 1)2;

• v2 is the orthogonal direct sum of two indecomposable cells with minimal
polynomial t2 + 1;

• v3 is the orthogonal direct sum of an even number of indecomposable cells
with minimal polynomial (t2 + 1)2 and of an even number of indecompos-
able cells with minimal polynomial t2 + 1.

The difficulty here is that v1 is not 3-reflectional, and the trick consists in using
Lemma 4.3: it shows indeed that v1 is i-adjacent to some C(t4+1)-transformation
v′1 (with the same underlying space). Now, the same can be said of v2, thanks
to Lemma 3.4: indeed, as F is finite we see that v2 is actually a symplectic
extension of a C(t2+1)-automorphism, and hence v2 is i-adjacent to a C(t

2−t−1)-
automorphism v′2, and just like in the end of the proof of Lemma 4.3 we find

that v′2 is C(t4 + 1). Hence u′ is i-adjacent to (v′1
⊥
⊕ v′2)

⊥
⊕ v3, and by Nielsen’s

theorem for finite fields the latter is 2-reflectional. Hence u is 4-reflectional in
Sp(s).

Case 4: |F| = 3 and n = 8m+ 4 for some m ≥ 1.
By Lemma 6.2, we can choose an even q ∈ Irr(F) with degree 4m. Note that
q(0) = ±1 because |F| = 3. By Lemma 6.1, q is not a palindromial, and hence
it is relatively prime with q♯. And obviously q and q♯ are relatively prime with
t2 + 1. By Lemma 5.1, we can find pairs (b1, v1) and (b2, v2) in which b1 and
b2 are non-hyperbolic nondegenerate symmetric bilinear forms, v1 is b1-skew-
selfadjoint and C(t2 + 1), and v2 is b2-skew-selfadjoint and C(q). Taking the
orthogonal direct sum yields a pair (b, w) in which b is a hyperbolic bilinear
form and w is a b-skew-selfadjoint C((t2 + 1) q)-automorphism. Hence, there
exists an su,L-skew-selfadjoint C((t

2 + 1) q)-automorphism v of L. Applying the
space-pullback technique, we deduce that u is i-adjacent to some u′ ∈ Sp(s) that
leaves L invariant and such that u′L = v. Then the characteristic polynomial
of u′ equals qq♯(t2 + 1)2. By decomposing u′ into indecomposable cells, we

find a splitting u′ = u′1
⊥
⊕ u′2 in which u′1 is a symplectic extension of a C(q)-
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automorphism, and u′2 is either C
(
(t2 + 1)2

)
or the orthogonal direct sum of two

C(t2 + 1)-symplectic transformations.
Assume first that u′2 has minimal polynomial t2 + 1. Then by Nielsen’s the-

orem it is 2-reflectional, whereas Proposition 3.6 yields that u′1 is 3-reflectional.
Hence u′ is 3-reflectional, and we deduce that u is 4-reflectional.

Assume finally that u′2 is C
(
(t2 + 1)2

)
. Then by Lemma 4.3 it is i-adjacent

to some C(t4 + 1)-symplectic transformation u′′2 . Besides, by Lemma 3.4 u′1 is
i-adjacent to a symplectic extension u′′1 of a C

(
(t− 1)4m−3(t− q(0))(t2 − t− 1)

)
-

automorphism v′. Using Lemma 2.1, we can further resplit v′ = j1
⊥
⊕ j2 where

j1 is a symplectic extension of a C
(
(t− 1)4m−3(t− q(0))

)
-automorphism and

j2 is a symplectic extension of a C(t2 − t − 1)-automorphism. Hence j1 is 2-
reflectional by Nielsen’s theorem, whereas j2 is C(t4 + 1). Hence u′ is i-adjacent

to j1
⊥
⊕ (j2

⊥
⊕ u′′2), and j2

⊥
⊕ u′′2 is 2-reflectional by Nielsen’s theorem. Hence

j1
⊥
⊕ (j2

⊥
⊕ u′′2) is 2-reflectional in Sp(s), and we conclude that u is 4-reflectional

in Sp(s).

In the next two parts, we examine the situation where the dimension of a
regular part is not a multiple of 4. This requires that we pair this regular part
with a cell of type VI, and hence we will start by examining the most simple
situation, in which the regular part has dimension 2.

6.4 Pairing a cyclic cell of dimension 2 with an indecomposable

cell of type VI

We start with the case of finite fields with more than 3 elements.

Lemma 6.5. Assume that F is finite and |F| > 3. Let (s, u) be an s-pair in

which u = u1
⊥
⊕ u2, where u1 is cyclic with minimal polynomial p of degree 2,

and u2 has exactly two Jordan cells, both of odd size 2n + 1, for an eigenvalue
in {±1}. Then:

(a) u is 4-reflectional in Sp(s);

(b) If n = 0 then u is i-adjacent to a 3-reflectional C(p(t2))-symplectic transfor-
mation u′.

We start by recalling the following result from [10]:

30



Lemma 6.6 (Lemma 5.2 in [10]). Let λ ∈ F r {0, 1,−1}. Let v be a cyclic
automorphism of a vector space P of dimension 2, with determinant 1. Then v
is the product of two C

(
(t− λ)(t− λ−1)

)
endomorphisms v1 and v2 of P .

Proof of Lemma 6.5. The assumption |F| > 3 allows us to find λ ∈ Fr {0} such
that λ 6= λ−1, and throughout the proof we fix such a scalar λ. Replacing u with
−u if necessary, we can assume that 1 is the sole eigenvalue of u2.

Denote by V1 and V2 the respective underlying vector spaces of u1 and u2.
For some transverse lagrangians L and L′ of V2, the transformation u2 is the
symplectic extension sL′(v) for some automorphism v of L which is a Jordan
cell of size 2n + 1 for the eigenvalue 1. Let us take a basis (e1, . . . , e2n+1) of L
in which v(ei) = ei + ei−1 for all i ∈ [[1, 2n+1]] (where we convene that e0 = 0).

By Lemma 6.6, the automorphism u1 is the product of two C
(
(t− λ)(t− λ−1)

)
-

automorphisms u′1 and u′′1 of V1, and hence both u′1 and u′′1 are symplectic. De-
note by v′ the automorphism of L such that v′(ei) = ei for all i ∈ [[1, 2n+1]]r{n},

and v′(en+1) = λ−1en+1; set then u′ := u′1
⊥
⊕ sL′(v′) and u′′ := (u′)−1u =

u′′1
⊥
⊕ sL′((v′)−1v). We shall see that both u′ and u′′ are 2-reflectional in Sp(s),

which will prove point (a).

By Lemma 2.1, we see that u′ = u′1
⊥
⊕ w′

⊥
⊕ id where w′ is a symplectic

extension of λ−1 id (defined on a 1-dimensional Lagrangian), and hence w′ is

C
(
(t− λ)(t− λ−1)

)
. Hence u′1

⊥
⊕w′ is diagonalizable with spectrum {λ,−λ} and

all its Jordan numbers are even. By Nielsen’s theorem, u′1
⊥
⊕ w′ is 2-reflectional

in the corresponding symplectic group, and hence u′ is 2-reflectional in Sp(s).
Finally, we note that (v′)−1v is obviously C

(
(t− 1)2n(t− λ)

)
(with cyclic

vector e2n+1), and hence it is the direct sum of a C(t − λ)-automorphism w2

and of a C
(
(t− 1)2n

)
cyclic automorphism j2. Lemma 2.1 yields a splitting

u′′ = (u′′1
⊥
⊕w′

2)
⊥
⊕ j′2 where w′

2 and j′2 are respective symplectic extensions of w2

and j2. With the same line of reasoning as for u′, we use Nielsen’s theorem to

see that u′′1
⊥
⊕w′

2 is 2-reflectional (in the corresponding symplectic group), and so
is j′2 because Wonenburger’s theorem [13] shows that j2 is 2-reflectional in the
corresponding general linear group. Hence u′′ is 2-reflectional in Sp(s), which
completes the proof of point (a).

It remains to prove point (b). So let us now assume that n = 0. In that
case, we choose symplectic bases (e1, f1) and (e2, f2) in which the respective
matrices of u1 and u2 are C and I2, where C is cyclic with minimal polynomial
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p. Let us consider the endomorphism α of the underlying space V of (s, u)

whose matrix in the basis (e1, f1, e2, f2) equals

[
0 I2
I2 0

]
. Clearly, α ∈ Sp(s)

and α is an involution. The matrix of αu in the permuted basis (e2, f2, e1, f1)

equals

[
0 C
I2 0

]
, and by Lemma 14 of [7] (in which the condition that α 6= 0

and β 6= 0 is useless) it is cyclic with minimal polynomial p(t2). Now, as in the
above we can split C = A1A2 where both A1 and A2 are cyclic with minimal
polynomial (t− λ)(t− λ−1). Denote by β the automorphism of V whose matrix

in the basis (e1, f1, e2, f2) equals

[
0 A−1

1

A1 0

]
. Again, one sees that β belongs to

Sp(s) (because detA1 = 1) and that it is an involution. The matrix of β(αu)

in (e1, f1, e2, f2) then equals

[
A2 0
0 A1

]
, and as in the above we use Nielsen’s

theorem to see that it is 2-reflectional. Hence αu is 3-reflectional in Sp(s), which
proves point (b).

With the same line of reasoning as in the start of the proof of point (b), we
also obtain:

Lemma 6.7. Assume that F is finite. Let (s, u) be an s-pair in which u = u1
⊥
⊕u2,

where u1 is cyclic with minimal polynomial p of degree 2, and u2 is the identity
on a 2-dimensional space. Then u is i-adjacent to a symplectic transformation
u′ with minimal polynomial p(t2).

We move forward with a result that holds regardlessly of the field F under
consideration (but with χ(F) 6= 2, of course).

Lemma 6.8. Let (s, u) be an s-pair with a splitting u = ur
⊥
⊕ ue where ur is

C((t + 1)2), and ue is the identity of a 2-dimensional subspace. Then u is 3-
reflectional in Sp(s).

Proof. Let ε ∈ F r {0}.
We will work backwards. Denote by s′ the standard symplectic form on

F4, and put D :=

[
−1 1
0 1

]
and ∆ :=

[
0 1
1 0

]
. Note that ∆ is hyperbolic as a

symmetric matrix. The matrices

J :=

[
D 0
0 D♯

]
and V :=

[
I2 ε∆
0 I2

]
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belong to Sp4(F). The first one is involutory because D2 = I2, and the second
one is 2-reflectional by Nielsen’s theorem, because its minimal polynomial is
(t − 1)2 and its Wall invariant attached to (t − 1, 2) has Gram matrix −ε∆,
which is hyperbolic. Hence the product JV is 3-reflectional. We find

JV =

[
D εD∆
0 D♯

]
.

Obviously, (t+ 1)2(t− 1)2 is the characteristic polynomial of JV . Moreover,

JV − I4 =




−2 1 ε −ε
0 0 ε 0
0 0 −2 0
0 0 1 0


 .

Clearly rk(JV − I4) = 2. Moreover

(JV )2 − I4 =

[
02 ε(∆ +D∆D♯)
02 02

]
,

where ∆ +D∆D♯ =

[
−2 0
0 0

]
has rank 1. Hence the symplectic automorphism

u′ of F4 that is represented by JV in the standard basis is the direct sum of the
identity on a 2-dimensional space and of a C((t+ 1)2)-automorphism.

In order to conclude, it will suffice to adjust ε so that (s′, u′) and (s, u)
have equivalent Wall invariants attached to (t + 1, 2). Yet the Wall invariant
(s, u′)t+1,2 is equivalent to the regular part of the symmetric bilinear form su′ ,
and this regular part has rank 1. Ditto for u. To identify (s, u′)t+1,2 up to
equivalence, it suffices to compute a non-zero value of the quadratic form at-
tached to su′ . Denoting by e1, . . . , e4 the standard basis of F

4, we see that
su′(e3, e3) = s(e3, εe1+ εe2− e3+ e4) = εs(e3, e1) = −ε, so we can always choose
ε so that the value −ε is reached by the quadratic form which is attached to the
Wall invariant (s, u)t+1,2. With that choice, (s′, u′) ≃ (s, u), which proves that
u is 3-reflectional in Sp(s).

Lemma 6.9. Assume that |F| = 3. Let (s, u) be an s-pair with a splitting

u = ur
⊥
⊕ ue where ur is cyclic of rank 2 with an eigenvalue in {±1} and ue is

an indecomposable cell of type VI, with rank 4n+2 ≥ 2. Then u is 4-reflectional
in Sp(s).
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Proof. We use Lemma 3.4 to work on ue. First of all, we lose no generality in
assuming that −1 is the eigenvalue of ur because the problem is unchanged in
replacing u with −u.

Let us set p := t2n + 1 if n > 0, and p := 1 otherwise. Since 2n + 1
is odd, Lemma 3.4 shows that ue is i-adjacent to a symplectic extension w

of a C((t − 1) p)-automorphism. Hence u is i-adjacent to ur
⊥
⊕ w. Thanks to

Lemma 2.1, we can resplit w = w1

⊥
⊕w2 where w1 = idP for some 2-dimensional

subspace P , and w2 is a symplectic extension of a C(p)-automorphism. Since
p is a palindromial, Nielsen’s theorem shows that w2 is 2-reflectional, whereas

ur
⊥
⊕ w1 is 3-reflectional by Lemma 6.8. Hence ur

⊥
⊕ w is 3-reflectional in Sp(s),

and we conclude that u is 4-reflectional in Sp(s).

One case remains to be tackled.

Lemma 6.10. Assume that |F| = 3. Let (s, u) be an s-pair with a splitting

u = ur
⊥
⊕ ue where ur is C(t2 + 1) and ue is an indecomposable cell of type VI

with rank 4n− 2 ≥ 2. Then u is 4-reflectional in Sp(s).

Proof. We start with the case n = 1. Denote by Vr and Ve the respective
underlying spaces of ue and ur.

Replacing u with −u if necessary, we can assume that the eigenvalue of ue is
1. Because the field F is finite, the symplectic transformations of a 2-dimensional
symplectic space that have minimal polynomial t2 + 1 form a conjugacy class.
Hence there is a symplectic basis (e1, e2) of Vr such that u(e1) = e2 and u(e2) =
−e1.

Let us also take a symplectic basis (f1, f2) of Ve. We apply the space-pullback
technique with the subspace W := span(e1 + f1, e2 − f2), which is easily seen to
be a Lagrangian of V . First of all, we compute that





su,W (e1 + f1, e1 + f1) = s(e1 + f1, e2 + f1) = s(e1, e2) = 1

su,W (e2 − f2, e2 − f2) = s(e2 − f2,−e1 − f2) = s(e2,−e1) = 1

su,W (e1 + f1, e2 − f2) = s(e1 + f1,−e1 − f2) = s(f1,−f2) = −1

su,W (e2 − f2, e1 + f1) = s(e2 − f2, e2 + f1) = s(−f2, f1) = 1.

Note that su,W is non-symmetric, a rare instance where we use the space-pullback
technique with such a bilinear form!
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Now, let us take the symplectic form b on W for which (e1 + f1, e2 − f2)
is a symplectic basis. Then the endomorphism v of W such that ∀(x, y) ∈
W 2, s(x, u(y)) = b(x, v(y)) has its matrix in (e1 + f1, e2 − f2) equal to A =[
−1 −1
1 −1

]
, which is cyclic with characteristic polynomial t2+2t+2 = t2− t−1.

Applying the space-pullback technique, we see that u is i-adjacent to some u′ ∈
Sp(s) that stabilizes W with u′W = v. Since t2− t−1 is relatively prime with its
reciprocal polynomial t2+t−1, we deduce from Lemma 2.2 that u′ is a symplectic
extension of v. And then Proposition 3.5 shows that u′ is 3-reflectional in Sp(s).
Therefore u is 4-reflectional in Sp(s).

Next, we assume that n ≥ 2. Here, we will use the Cyclic Adaptation Lemma
to break ue up. This lemma yields that ue is i-adjacent to a symplectic extension
of a C((t− 1)(t2 − t− 1)(t+1)2n−4)-automorphism, which can be resplit into an

orthogonal direct sum w1

⊥
⊕w2

⊥
⊕w3 where w1 is the identity on a 2-dimensional

space, w2 has characteristic polynomial t4+1, and w3 is a symplectic extension of

a C
(
(t+ 1)2n−4

)
-automorphism. Hence u is i-adjacent to (ur

⊥
⊕w1)

⊥
⊕w2

⊥
⊕w3. In

the first part of the proof, we have shown that ur
⊥
⊕w1 is i-adjacent to a C(t4+1)-

automorphism w′
1, and hence u is i-adjacent to (w′

1

⊥
⊕w2)

⊥
⊕w3. And by Nielsen’s

theorem both w′
1

⊥
⊕ w2 and w3 are 2-reflectional. Hence u is 4-reflectional.

We are now able to conclude the present section:

Proposition 6.11. Assume that F is finite. Let (s, u) be an s-pair that splits into
the orthogonal direct sum of a 2-dimensional s-pair and of an indecomposable
s-pair of type VI. Then u is 4-reflectional in Sp(s).

Proof. Take the first summand: if it is cyclic, then the result is obtained by
Lemma 6.5 if |F| > 3, and by combining Lemmas 6.9 and 6.10 otherwise; if it
is not cyclic, then it is indecomposable of type VI, and then we readily deduce
from Nielsen’s theorem that u is 2-reflectional in Sp(s).

6.5 A favorable case where rkur + rkue ≥ 12

We will obtain the following lemma thanks to the space-pullback technique:

Lemma 6.12. Let (s, u) be an s-pair with a regular/exceptional decomposition

u = ur
⊥
⊕ ue in which rkur ≥ 6, rku ≥ 12, rkur is not a multiple of 4, and ue is

a cell of type VI. Then u is 4-reflectional in Sp(s).

35



Proof. Denote by Vr and Ve the respective underlying spaces of ur and ue and
by 4nr + 2 and 4ne + 2 their respective dimensions.

First of all, we use Proposition 5.3 to obtain a Lagrangian L of Vr such
that su,L is symmetric and nondegenerate, and L ∩ u(L) = {0}. Since F is
finite, we can find a linear hyperplane Hr of L such that su,Hr is regular and
non-hyperbolic.

Note that Hr has dimension 2nr and that u(Hr) ∩ Hr = {0}. Next, by
Lemma 5.4, we can find a totally s-singular subspace He of Ve such that su,He

is hyperbolic, He ∩ u(He) = {0}, dimHe = 2ne, and the bilinear form (x, y) 7→
s(x, (u− id)(y)) is totally singular on (He + u(He))

⊥s ∩ Ve.

We will apply the space-pullback technique with W := Hr

⊥
⊕ He, which is

totally s-singular of dimension 2(nr + ne), and such that su,W is regular and
non-hyperbolic. We also note that the bilinear form (x, y) 7→ s(x, u(y)) on
(W + u(W ))⊥s is the orthogonal direct sum of:

• The bilinear form (x, y) 7→ s(x, u(y)) on (Hr + u(Hr))
⊥s ∩ Vr, which is

defined on a 2-dimensional space;

• The bilinear form (x, y) 7→ s(x, u(y)) on (He + u(He))
⊥s ∩ Ve, which is

defined on a 2-dimensional space and coincides on this space with (x, y) 7→
s(x, y).

In applying the space-pullback technique to u andW , it follows that the residual
symplectic automorphism [u] of (W⊕u(W ))⊥s that is attached to u andW is the
orthogonal direct sum of two symplectic transformations of rank 2, one of which
is the identity: hence Proposition 6.11 yields symplectic involutions i1, i2, i3, i4
of (W ⊕ u(W ))⊥s such that [u] = i1i2i3i4.

Next, by Lemma 6.2 we can choose an even polynomial p ∈ Irr(F) with degree
2(nr + ne). And then Lemma 5.1 yields a symplectic form b on W such that
the endomorphism v of W that satisfies ∀(x, y) ∈ W 2, b(x, v(y)) = s(x, u(y)) is
C(p). In particular, p is not a palindromial (by Lemma 6.1) but its degree is at
least 4. As the characteristic polynomial of i1[u] is a palindromial of degree 4, it
is relatively prime with both p and p♯. Hence by combining the space-pullback
technique (using i1 as the residual involution), we obtain that u is i-adjacent

to some u′ ∈ Sp(s) that splits into an orthogonal direct sum u′1
⊥
⊕ u′2 where u′1

is a symplectic extension of v, and u′2 is symplectically similar to i1[u]. By the
latter, u′2 is 3-reflectional, whereas Proposition 3.6 shows that u′1 is 3-reflectional.
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Hence u′ is 3-reflectional in Sp(s), and we conclude that u is 4-reflectional in
Sp(s).

6.6 The case where rkur = 6 and rkue = 2

We arrive at one of the most difficult situations so far.

Lemma 6.13. Let (s, u) be an s-pair with a regular/exceptional decomposition

u = ur
⊥
⊕ ue in which rkur = 6 and rkue = 2. Then u is 4-reflectional in Sp(s).

Proof. Without loss of generality, we can assume that ue = id. Denote by Vr and
Ve the respective underlying vector spaces of ue and ur. By Proposition 5.3, we
can find a Lagrangian L of Vr such that su,L is symmetric and nondegenerate, and
L∩u(L) = {0}. Then, since F is finite we can choose a linear hyperplane H of L
such that su,H is hyperbolic if t2+1 splits over F, and non-hyperbolic otherwise.
It is critical here to acknowledge that the resulting symplectic automorphism
of (H ⊕ u(H))⊥s ∩ Vr is cyclic. Indeed, let us take a non-zero vector x of L
that lies in the su,L-orthogonal complement of H. In particular s(x, u(x)) 6= 0.
We also note that x ∈ (H ⊕ u(H))⊥s ; moreover, since s(x, u(x)) 6= 0 the s-
orthogonal projection of u(x) onto (H ⊕ u(H))⊥s is not a scalar multiple of x,
yielding that the said symplectic automorphism maps x to a vector that is not
a scalar multiple of x. This proves the claimed statement. Hence, in applying
the space-pullback technique to H and u, we find that the resulting symplectic
automorphism [u] is the direct sum of a cyclic symplectic automorphism of rank
2, whose characteristic polynomial we denote by q, and of the identity of a
2-dimensional space.

Next, by combining Lemmas 5.1 and 5.2, we can find an su,H -skew-selfadjoint
C(t2 + 1)-automorphism v.

Now, we split the proof into three cases.

Case 1: |F| > 3 and q 6= (t+ 1)2.
Then, by point (b) of Lemma 6.5, the resulting symplectic automorphism [u]
is i-adjacent to a 3-reflectional symplectic C(q(t2))-automorphism v′, and we
note that q(t2) is relatively prime with t2 + 1. By applying the space-pullback
technique, we deduce that u is i-adjacent to some u′ ∈ Sp(s) which splits into

u′1
⊥
⊕ u′2, where:

• either u′1 is C((t2 + 1)2) or it has invariant factors t2 + 1 and t2 + 1;
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• u′2 is symplectically similar to v′.

In any case, u′1 is 3-reflectional (by Lemma 6.3 in the first case, and by Nielsen’s
theorem in the second one). Since v′ is 3-reflectional, we conclude that u′ is
3-reflectional.

Case 2: q = (t+ 1)2 or q = (t− 1)2.
We can choose a symplectic involution i1 of (H ⊕ u(H))⊥s such that i1[u] is the
direct sum of a C((t+1)2)-automorphism and of the identity of a 2-dimensional
space. Applying the space-pullback technique with the subspace W , the sym-
plectic form (x, y) 7→ su,W (x, v−1(y)) and the residual involution i1, by Lemma

2.2 we find that u is i-adjacent to some u′ ∈ Sp(s) which splits into u′1
⊥
⊕ u′2

where:

• either u′1 is C((t2 + 1)2) or its invariant factors are t2 + 1 and t2 + 1;

• u′2 is the direct sum of a C((t + 1)2)-cell and of the identity of a 2-
dimensional space;

Note that u′2 is 3-reflectional by Lemma 6.8. If u′1 has invariant factors t2 + 1
and t2 + 1, then it is 2-reflectional by Nielsen’s theorem, and hence u′ is 3-
reflectional. If u′1 is C((t2 + 1)2), then Lemma 4.3 applied to u′2 yields that u′ is
i-adjacent to the orthogonal direct sum u′′ of two C((t2+1)2)-cells; then Nielsen’s
theorem shows that u′′ is 2-reflectional in Sp(s). In any case we conclude that
u is 4-reflectional in Sp(s).

Case 3: |F| = 3 and q = t2 + 1.
In that case, we see from Lemma 6.7 that [u] is i-adjacent to a C(t4 + 1)-
automorphism w. By applying the space-pullback technique once more, we find

that u is i-adjacent to some u′ ∈ Sp(s) which splits into u′1
⊥
⊕ u′2 where:

• either u′1 is C((t2 + 1)2) or its invariant factors are t2 + 1 and t2 + 1;

• u′2 is C(t4 + 1).

By Wall’s theorem, u′2 is a symplectic extension of a C(t2− t−1)-automorphism,
and we deduce from Proposition 3.5 that it is 3-reflectional. Besides, if u′1 is not
indecomposable then it is 2-reflectional and hence u′ is 3-reflectional.

Assume finally that u′1 is C((t2 +1)2). Then, by Lemma 4.3, we find that u′1
is i-adjacent to a C(t4 +1)-symplectic transformation. And we deduce that u′ is

i-adjacent to v′1
⊥
⊕ u′2, which is 2-reflectional by Nielsen’s theorem.
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In any case we have shown that u is 4-reflectional.

6.7 Conclusion

We are finally ready to complete the proof of point (a) in Theorem 1.1. So, let
us start from an s-pair (s, u) whose dimension n is a multiple of 4, discarding
the special case where n = 4 and |F| = 3. Let us consider a regular-exceptional
decomposition

u = ur
⊥
⊕ ue

of it, with the respective ranks of ur and ue denote by nr and ne. Note that ue
is 2-reflectional by Nielsen’s theorem.

Case 1: nr is a multiple of 4.
If nr = 0, then u is 2-reflectional by Nielsen’s theorem.

Assume now that nr > 0. In most cases, we already know that ur is 4-
reflectional:

• If nr > 4 or |F| > 3, then this is given by Proposition 6.4;

• If ur is an indecomposable cell of type I, II, III or V, then this is given by
Lemmas 4.2 and 4.4.

• If ur is a symplectic extension of a C(t2−t−1)-automorphism, then Propo-
sition 3.5 shows that it is 3-reflectional.

As ue is 2-reflectional, we obtain that in all those cases u is 4-reflectional.

Let us consider the remaining case. Then |F| = 3, nr = 4 and ur = v1
⊥
⊕ v2

where v1 and v2 are cyclic automorphisms of 2-dimensional vector spaces. Then
ne > 0, and since ne is a multiple of 4 we gather that ue is the sum of several

indecomposables cells of type VI. Hence we can split ue = w1

⊥
⊕ w2

⊥
⊕ w3 where

w1 and w2 are cells of type VI and w3 is an orthogonal direct sum of cells of

type VI. Hence u = (v1
⊥
⊕ w1)

⊥
⊕ (v2

⊥
⊕ w2)

⊥
⊕ w3, and by Proposition 6.11 each

one of v1
⊥
⊕w1 and v2

⊥
⊕w2 is 4-reflectional. As w3 is 2-reflectional, we conclude

that u is 4-reflectional.

Case 2: nr is not a multiple of 4.

We can split ue = w1

⊥
⊕ w2 where w1 is an indecomposable cell of type VI, and
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w2 is an orthogonal direct sum of such cells. Hence, it will suffice to see that

ur
⊥
⊕ w1 is 4-reflectional. If nr = 2 this follows directly from Proposition 6.11.

Assume now that nr ≥ 6. If nr = 6 and ne = 2, the result follows from Lemma
6.13. Otherwise, nr + ne ≥ 12 and the result follows directly from Lemma 6.12.

Hence, the proof of point (a) in Theorem 1.1 is now completed.

7 A complete analysis of Sp4(F3)

In this section, we take F = F3, we fix a 4-dimensional symplectic space (V, s)
over F3 and we describe, for each element u in Sp(s), the least integer k such
that u is k-reflectional, which we will call the reflectional length of u and
denote by rl(u). Note that if u has reflectional length k > 0, then so does −u
unless u = − id.

One of our aims is the following result, but we will go much further than
Theorem 1.1, since we will determine the reflectional length of every element
of Sp(s) in terms of its conjugacy class (see Section 7.4 for a table of the full
results).

Theorem 7.1. Let s be a 4-dimensional symplectic form over F3. Then every
element of Sp(s) is 5-reflectional.

Of course, the elements of reflectional length 1 are − id and the non-trivial
involutions. By Nielsen’s theorem, the elements of reflectional length 2 are:

• The quarter turns, i.e. the u ∈ Sp(s) such that u2 = − id;

• The u ∈ Sp(s) with minimal polynomial (t− η)2 and with hyperbolic Wall
invariant (attached to (t− η, 2)), for η = ±1.

Before we examine the remaining elements, let us recall some useful results
from [10] (see section 7 therein).

Lemma 7.2 (Trace Trick). Let u ∈ Sp(s) be 3-reflectional but not 2-reflectional.
Then tru = 0.

Lemma 7.3 (Commutation Lemma). Let a and b be automorphisms of a vector
space that are annihilated by monic polynomials p and q of degree 2 such that
p(0)q(0) 6= 0. Then, for u := ab, the elements a and b commute with u +
p(0)q(0)u−1.
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Lemma 7.4 (Reformulation of lemma 7.7 in [10]). Let u ∈ Sp(s) have minimal
polynomial (t2− 1)2, with Wall invariants such that (s, u)t−1,2 ≃ −(s, u)t+1,2. If
u is not 3-reflectional in Sp(s) then it is not 4-reflectional either.

Lemma 7.5 (Proposition 7.6 from [10]). Let u ∈ Sp(s) have minimal polynomial
(t2 + 1)(t− η)2 for some η = ±1. Then u is not 4-reflectional in Sp(s).

7.1 Elements with reflectional length 3

Lemma 7.6. Let u ∈ Sp(s) have minimal polynomial (t2 − 1)2 and be such that
(s, u)t−1,2 ≃ −(s, u)t+1,2. Then u is not 3-reflectional in Sp(s).

Proof. Throughout the proof, we consider the quadratic form

Qu : x ∈ V 7→ s(x, u(x)).

The symmetric bilinear form that is attached to Qu is

(x, y) ∈ V 2 7→
1

2
s(x, (u− u−1)(y)) = −s(x, (u− u−1)(y)),

and hence its regular part is equivalent to −(s, u)t−1,2⊥− (s, u)t+1,2. It follows
from our assumptions that the regular part of Qu is hyperbolic.

Assume now that there is an involution i ∈ Sp(s) such that v := iu is 2-
reflectional. We note that u has only one Jordan cell of size 2 for the eigenvalue
1, and hence u is not 2-reflectional in Sp(s). Hence v is not an involution; by
Nielsen’s theorem v is a symplectic extension of an endomorphism w of a 2-
dimensional vector space which is similar to its inverse, and w cannot be an
involution whence the caracteristic polynomial of w equals t2 + αt+ 1 for some
scalar α; and we deduce from the Cayley-Hamilton theorem that t2 + αt + 1
annihilates v. The Commutation Lemma then shows that both i and v commute
with u− u−1.

Hence i, v and u induce automorphisms of the quotient space V := V/Ker(u−
u−1), which has dimension 2. We denote these authomorphisms by i, v and u,
respectively. And we even obtain that i, v and u are orthogonal automorphisms
of V for the quadratic form induced on V by Qu, which is hyperbolic.

Note that u is a non-trivial involution, and that i is an involution. If i were
trivial, then by Remark 2.1 i would have only one eigenvalue and hence it would
be trivial, and then u = iv = ±v would be 2-reflectional, which is not true.
Hence i is a non-trivial involution of V .
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Yet, in a hyperbolic plane over F3, there are only two non-isotropic lines,
and hence there are only two non-trivial symmetries. Thus i = ±u, leading to
v = ± id. Multiplying v with −1 if necessary, we can assume that v = id. In
that case, we see from Remark 2.1 that χv = (t − 1)4, while v(x) = x for all
x ∈ Ker(u − u−1), and we deduce that the minimal polynomial of v is (t − 1)2

and that v has two Jordan cells of size 2 for the eigenvalue 1 (again, by Nielsen’s
theorem). Thus Im(v − id) ⊆ Ker(u − u−1) and Im(v − id) has dimension 2,
leading to Im(v − id) = Ker(u− u−1).

We will finish with a matrix computation. We can take a symplectic basis
B = (e1, e2, f1, f2) in which the first two vectors constitute a basis of Ker(u−u−1)
with i(e1) = e1 and i(e2) = −e2, and i(f1) = f1 and i(f2) = −f2. From v = id,
we get that the respective matrices of i and v in B are

D2 :=

[
D 0
0 D

]
and V =

[
I2 ∆
0 I2

]

where D =

[
1 0
0 −1

]
and ∆ ∈ M2(F). Since V ∈ Sp4(F), the matrix ∆ is

symmetric.
Note that −∆ represents the regular part of the quadratic form Qv, so it

must be hyperbolic, and hence det(∆) = det(−∆) = −1.

Next, u is represented by U :=

[
D D∆
0 D

]
in a symplectic basis. In this basis,

the Gram matrix of Qu is then equal to

1

2
K4(U−U−1) =

1

2
K4(D2V−V −1D−1

2 ) =
1

2
K4

[
02 D∆+∆D
02 02

]
=

[
02 02

02 −D∆+(D∆)T

2

]
.

Hence, the regular part of Qu, which has rank 2, has a Gram matrix that is the
opposite of the symmetric part of D∆.

Writing ∆ =

[
a b
b c

]
, we find D∆ =

[
a b
−b −c

]
and hence the opposite of

the symmetric part of D∆ has determinant −ac. As the regular part of Qu is
hyperbolic, we deduce that −ac = −1. Yet ac − b2 = det∆ = −1, leading to
−ac = 1 − b2 ∈ {0, 1}. This contradiction shows that u is not 3-reflectional in
Sp(s).

We turn to the difficult case of cyclic automorphisms with minimal polyno-
mial (t2 + 1)2. The following lemma will be useful:
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Lemma 7.7. Let i be a symplectic involution in Sp(s), and L be a Lagrangian
of (V, s). Then dimL − dim(L ∩ i(L)) is even.

Proof. Note first that i⋆ = i−1 = i, whence i is s-selfadjoint, and since s is
symplectic this yields that b : (x, y) ∈ V 2 7→ s(x, i(y)) is alternating. Yet the
left-radical of the bilinear form bL : (x, y) ∈ L2 7→ b(x, y) equals L ∩ i(L)⊥s =
L ∩ i(L⊥s) = L ∩ i(L) and hence the rank of bL equals dimL − dim(L ∩ i(L)).
Since bL is alternating, this rank is even, and the proof is complete.

Lemma 7.8. Let u ∈ Sp(s) have minimal polynomial (t2 + 1)2. Then u is not
3-reflectional in Sp(s).

This result shows that the provision |F| > 3 in Lemma 6.3 was unavoidable.

Proof. We already know that u is not 2-reflectional. Assume that u = iv where i
is an involution and v is 2-reflectional. Then v is not 1-reflectional, and just like
in the proof of Lemma 7.6 we deduce from Nielsen’s theorem that v2+αv+id = 0
for some scalar α. Besides i is nontrivial.
Case 1: (v − η id)2 = 0 for some η = ±1.
Note that L := Ker(u2 + id) = Im(u2 + id) = Ker(u2 + id)⊥s is a Lagrangian
of V and u induces a quarter turn of L. If L were stable under i then it would
also be stable under v, the endomorphism induced by v would have determinant
1 (being triangularizable with a sole eigenvalue, equal to ±1), the involution
induced by i would have determinant 1 and hence it would be trivial; and finally
i = ± id because i is s-symplectic.

So, i(L) 6= L, and by Lemma 7.7 this yields i(L)∩L = {0}. It follows that u is
obtained from v by space-pullbacking with the Lagrangian L and the involution
i. This leads us to investigate the bilinear form sv,L. Noting that v+v−1 = 2η id,
we see that the skew-symmetric part of sv vanishes on every s-Lagrangian and
in particular on L. Hence sv,L is symmetric. Moreover 2sv,L is a restriction of
(x, y) 7→ s(v, (v − v−1)(y)), which has rank 2 and with regular part isometric to
the quadratic Wall invariant (s, v)t−η,2. Since sv,L is nondegenerate, we deduce
that it is isometric to 1

2(s, v)t−η,2, which is hyperbolic because v is 2-reflectional.
Hence sv,L is hyperbolic. We can finally choose x ∈ Lr {0} to be sv,L-isotropic.
Then sv,L(x, u

−1(x)) = s(x, i(x)) = 0 because i is s-selfadjoint. It follows that
u−1(x) ∈ Fx, which contradicts the fact that u has no eigenvalue.

Case 2: v2 = − id.
By Lemma 7.3, it follows that i and v commute with w := u− u−1. Next, note
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that w2 = (u + u−1)2 − 4 id = − id. Now, we can naturally endow V with a
structure of vector space (of dimension 2) over the field L := F[w] (which is
isomorphic to F9). The s-adjunction operator leaves L invariant since w⋆ =
u⋆ − u = −w = w−1, and it is the non-identity automorphism of the field L.
The F-bilinear form (x, y) ∈ V 2 7→ s(x,w(y)) is symmetric and nondegenerate.
For all (x, y) ∈ V 2, there is a unique h(x, y) ∈ L such that

∀λ ∈ L, s(x,w(λy)) = TrL/F(λh(x, y)).

Obviously, h is right-L-linear and nondegenerate. Moreover, for all (x, y) ∈ V 2

and all λ ∈ L, we have

s(y,w(λx)) = s(−w(y), λx) = s(−λ⋆w(y), x) = s(x,w(λ⋆y))

= TrL/F(λ
⋆h(x, y)) = TrL/F(λh(x, y)

⋆)

and hence h(y, x) = h(x, y)⋆. Hence h is a Hermitian form on the L-vector space
V .

Next, since i and v commute with w and since they are isometries for s,
we gather that they belong to the unitary group U(h) of h. And now, h is
hyperbolic, as is any Hermitian form of even rank over a finite field. So, it has
as many isotropic lines as there are elements of norm 1 in L. Hence there are
four such lines, and we denote their set by X. The unitary group U(h) then
naturally acts on X. Next, i is a non-trivial involution in U(h) so its eigenspaces
are non-isotropic lines, and hence i leaves no element of X invariant. But i2 = id
so i induces a double-transposition of X.

Next, note that (wv)2 = w2v2 = id. Hence either v = ±w−1, in which
case v induces the identity of X, or v has two distinct eigenvalues in L (namely
w−1 and −w−1), and the corresponding eigenspaces are h-orthogonal to one
another; in the latter case, we obtain, as we did for i, that v induces a double-
transposition of X. In any case, we conclude that u induces a permutation of
X that belongs to the Klein subgroup of S(X), i.e. it is either the identity or a
double-transposition.

Note that the elements of X are simply the Lagrangians for s that are stable
under w. In particular, the Lagrangian L := Ker(u2 + id) belongs to X, and
since u(L) = L we deduce that u induces the identity of X. Hence, by taking
L′ ∈ X r {L}, we find that L′ is a Lagrangian that is transverse to L (because
L and L′ have trivial intersection as L-linear subspaces) and stable under u.
And then u = sL′(uL) would be annihilated by t2 + 1, which is false. This final
contradiction completes the proof.
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We are now ready to obtain the full classification of 3-reflectional elements
in Sp4(F3).

Proposition 7.9. The elements of Sp(s) with reflectional length 3 are:

• The elements with minimal polynomial (t− η)(t+ η)2 for some η = ±1.

• The elements with minimal polynomial (t2 − 1)2 and equivalent Wall in-
variants attached to (t− 1, 2) and (t+ 1, 2);

• The elements with minimal polynomial t4 + 1.

Proof. We have seen in Lemma 6.8 that every element of Sp(s) with minimal
polynomial (t−1)(t+1)2 has reflectional length at most 3. And Nielsen’s theorem
shows that such an element cannot be 2-reflectional. Multiplying with −1, we
deduce that every every element of Sp(s) with minimal polynomial (t+1)(t−1)2

has reflectional length 3.
Next, let u ∈ Sp(s) have minimal polynomial (t2 − 1)2 and equivalent Wall

invariants attached to (t − 1, 2) and (t + 1, 2). Then u = u1
⊥
⊕ u2 where u1

and u2 are respectively C((t − 1)2) and C((t + 1)2) symplectic transformations.
The quadratic Wall invariants of u are non-hyperbolic, and hence rl(u) > 2 by

Nielsen’s theorem, yet u is i-adjacent to u′ := u1
⊥
⊕(−u2), for which the sole non-

zero Jordan number is nt−1,2(u
′), which equals 2, and the sole quadratic Wall

invariant is (s, u′)t−1,2 ≃ (s, u)t−1,2⊥ (−(s, u)t+1,2), which is hyperbolic. Hence
u′ is 2-reflectional, and we deduce that rl(u) = 3.

Finally, if u has minimal polynomial t4 +1, then it is a symplectic extension
of a C(t2− t−1)-automorphism, and hence u is 3-reflectional by Proposition 3.5.
Once more, we already know from Nielsen’s theorem that u is not 2-reflectional
in Sp(s).

Conversely, let u ∈ Sp(s) be 3-reflectional but not 2-reflectional. By the
Trace Trick, tr(u) = 0. Hence the characteristic polynomial of u, which is a
palindromial q such that q(0) = 1, equals t4 + at2 + 1 for some a ∈ F3. If
a = 0 then u is of the third type cited in the proposition. If a = −1 then either
u has minimal polynomial (t2 + 1)2, in which case Lemma 7.8 contradicts our
assumptions, or it has minimal polynomial t2+1, in which case it is 2-reflectional.

Assume finally that a = 1, so that the characteristic polynomial of u equals
(t2−1)2. As u is not 2-reflectional, the minimal polynomial of u cannot be t2−1,
and hence it equals either (t− 1)(t+ 1)2 or (t+ 1)(t− 1)2 or (t2 − 1)2. Assume
finally that the minimal polynomial of u is (t2 − 1)2. Then by Lemma 7.6 we
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cannot have (s, u)t−1,2 ≃ −(s, u)t+1,2, and hence (s, u)t−1,2 ≃ (s, u)t+1,2 because
the bilinear forms (s, u)t−1,2 and (s, u)t+1,2 are symmetric with rank 1. Thus u
is of the second stated type, which completes the proof.

7.2 Elements with reflectional length 4

Next, we determine the elements with reflectional length 4. From Lemmas 4.2
and 4.4, we deduce that if u ∈ Sp(s) is indecomposable, then it is 4-reflectional
unless u is C(t4 + 1). But we have seen earlier that an element with reflec-
tional length 3 is indecomposable if and only if its minimal polynomial is t4 +1.
Hence, the indecomposable elements with reflectional length 4 are exactly the
indecomposable elements with minimal polynomial different from t4 + 1.

Next, we consider the decomposable elements. By Proposition 6.11, we know

that every element of the form v
⊥
⊕ η id, with η = ±1 and v a symplectic trans-

formation of rank 2, is 4-reflectional. And we also know from Proposition 7.9
which of those are 3-reflectional.

If an element u has minimal polynomial (t2−1)2, then either its sole nontrivial
quadratic Wall invariants are equivalent, in which case u is 3-reflectional, or they
are inequivalent. In the latter case, it has been recalled as Lemma 7.4 (see also
lemma 7.7 of [10]) that if u is not 3-reflectional then it is not 4-reflectional either;
yet we have just seen in Lemma 7.6 that u is not 3-reflectional. We conclude that
an element with minimal polynomial (t2 − 1)2 cannot have reflectional length 4.

This leaves us with two remaining cases to consider:

• The symplectic transformations with minimal polynomial (t2 + 1)(t− η)2

for some η = ±1;

• The symplectic transformations with invariant factors (t− η)2, (t− η)2 for
some η = ±1, and a non-hyperbolic Wall invariant.

It has been recalled as Proposition 7.5 (see proposition 7.6 in [10]) that the
former are not 4-reflectional. The latter are tackled in the next lemma:

Lemma 7.10. Let u ∈ Sp(s) have invariant factors (t − η)2 and (t − η)2 for
some η = ±1, and non-hyperbolic Wall invariant attached to (t− η, 2). Then u
is 4-reflectional in Sp(b).

Proof. Without loss of generality, we can assume that η = 1. Let S ∈ S2(F3) be
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a symmetric matrix. Consider the matrix

US :=

[
I2 S
0 I2

]
.

If S is invertible, we note that US represents, in a symplectic basis of (V, s),
a symplectic transformation v with two invariant factors, all equal to (t − 1)2,
and −S as a Gram matrix for the Wall invariant (s, v)t−1,2. In particular, if
S is hyperbolic then v is 2-reflectional in Sp(s); and if S is non-hyperbolic
then US represents u in a well-chosen symplectic basis of (V, s). Noting that
US+T = USUT for all S, T in S2(F), it will suffice to find two hyperbolic matrices
S, T in S2(F3) such that S + T is invertible yet non-hyperbolic (for then both
US and UT are 2-reflectional in Sp4(F3), and hence US+T is 4-reflectional in

Sp4(F3)). We conclude by noting that S :=

[
1 0
0 −1

]
and T :=

[
0 1
1 0

]
are

hyperbolic but their sum

[
1 1
1 −1

]
has determinant 1 and hence is invertible but

non-hyperbolic.

7.3 Elements with reflectional length 5

We are left with two last types of elements, and we will prove that they have
reflectional length 5.

Proposition 7.11. Let u ∈ Sp(s) have minimal polynomial (t2 + 1)(t− η)2 for
some η = ±1. Then u has reflectional length 5.

Proof. For some symplectic basis (e1, e2, f1, f2) of V and some ε = ±1, the

matrix of u in (e1, f1, e2, f2) equals K⊕T whereK :=

[
0 −1
1 0

]
and T :=

[
η ε
0 η

]
.

Replacing u with u−1 if necessary, we can assume that ε = 1. Then one sees

that the endomorphism i of V whose matrix in (e1, f1, e2, f2) equals

[
02 I2
I2 02

]
is

an s-symplectic involution, and then as the matrix of iu in the same basis equals[
02 T
K 02

]
we gather that its characteristic polynomial equals t4−tr(KT ) t2+1 =

t4 − t2 + 1 = (t2 +1)2. Hence iu is 4-reflectional in Sp(s), and we conclude that
u is 5-reflectional in Sp(s). Besides, by Proposition 7.5 we know that u is not
4-reflectional in Sp(s).

47



Proposition 7.12. Let u ∈ Sp(s) have minimal polynomial (t2 − 1)2, with
(s, u)t−1,2 6≃ (s, u)t+1,2. Then u has reflectional length 5.

Proof. It has been seen in the previous section that u is not 4-reflectional. Hence
it will suffice to prove that it is 5-reflectional. The subspace L := Ker(u2− id) is
an s-Lagrangian. The restriction uL is C(t2−1). We can choose a Lagrangian L′

that is transverse to L, and by Lemma 3.3 we can choose an involution i ∈ GL(L)
such that iuL is C(t2 + 1). Then sL′(i)u has characteristic polynomial (t2 + 1)2,
and hence it is 4-reflectional in Sp(s). As sL′(i) is a symplectic involution of
Sp(s), we conclude that u is 5-reflectional in Sp(s).

In particular, we have proved that every element of Sp(s) is 5-reflectional,
thereby completing the proof of Theorem 7.1.

7.4 Conclusion

We gather the previous results in the following table, leaving aside the elements
with reflectional length 0 or 1. In this table, s is a symplectic form of rank 4 over
F3. It is useful to note that the sole monic irreducible palindromials of degree 4
over F3 are t4 + t3 + t2 + t+ 1 and t4 − t3 + t2 − t+ 1.
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Table 2: The reflectional length of any u ∈ Sp(s) that is not an involution

Invariant factors Constraint on Wall invariants Reflectional length

t2 + 1, t2 + 1 2

(t− η)2, (t− η)2 (s, u)t−η,2 hyperbolic 2
for some η = ±1

t4 + 1 3

(t+ η)2(t− η), t− η 3
for some η = ±1

(t2 − 1)2 (s, u)t−1,2 ≃ (s, u)t+1,2 3

t4 + t3 + t2 + t+ 1 4

t4 − t3 + t2 − t+ 1 4

(t− η)4 4
for some η = ±1

(t2 + 1)2 4

(t− η)2, (t− η)2 (s, u)t−η,2 non-hyperbolic 4
for some η = ±1

(t2 − 1)2 (s, u)t−1,2 ≃ −(s, u)t+1,2 5

(t2 + 1)(t − η)2 5
for some η = ±1

8 Dimensions that are not multiples of 4

In this section, we complete the proof of Theorem 1.1 by proving point (b). The
proof relies on the solution of the 6-dimensional case, which was almost entirely
solved in [10], and on point (a) and (c) of Theorem 1.1, which solve the case of
dimensions that are multiples of 4. One of the main ideas indeed is to reduce
the situation to the case of dimensions that are multiples of 4, thanks to what
we call the plane fixing technique.

The plane fixing technique works as follows. By “plane”, we mean a 2-
dimensional linear subspace. Let (s, u) be an s-pair with dimension n ≥ 10
which is not a multiple of 4. Assume that u is i-adjacent to some u′ ∈ Sp(s) that

fixes every vector of some s-regular plane P . Then we split u′ = idP
⊥
⊕v, where

the underlying vector space of v is P⊥s , which has dimension n− 2. As n− 2 is
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a multiple of 4 and is greater than 4, point (a) of Theorem 1.1 yields that v is
4-reflectional in the corresponding symplectic group, and hence so is u′. And it
follows that u is 5-reflectional in Sp(s).

It remains to see how to find u′ in practice. We will search for an s-regular
plane P such that P⊥su(P ), and we will say that such a plane is adapted to u.
Then we can construct i as the linear involution of the underlying vector space
V of (s, u) such that i(x) = u(x) for all x ∈ P , i(x) = u−1(x) for all x ∈ u(P ),
and i(x) = x for all x ∈ (P ⊕u(P ))⊥s . It is easily checked that i is an involution
and that it belongs to Sp(s). And from the definition we readily obtain that
(iu)(x) = x for all x ∈ P . In practice, finding such planes P is difficult, but we
will manage to do it in most situations of indecomposable cells.

The remainder of this section is laid out as follows: in Section 8.1, we recall
the results that we proved in [10], and we complete the 6-dimensional case. In
Section 8.2, we obtain the existence of an adapted plane for most indecompos-
able cells of type I to IV. In Section 8.3, we tackle indecomposable cells of type
V: there, we do not obtain an adapted plane, but we still manage to find an
involution i ∈ Sp(s) such that iu fixes every vector of an s-regular plane. Fi-
nally, in Section 8.4, we wrap the proof up, which requires that we care about
a special case for fields with more than 3 elements (related to some specific
indecomposable cells for which the results of Section 8.2 cannot be adapted).

8.1 The 6-dimensional case

This case has been almost entirely completed in [10], even for finite fields, so we
will be very brief. In [10], we have proved the following result, which holds over
an arbitrary field (with characteristic not 2):

Proposition 8.1 (Corollary 6.4 of [10]). Let (s, u) be an s-pair of dimension 6
with no Jordan cell of odd size attached to 1 or −1. Then u is 5-reflectional in
Sp(s).

From there, completing the 6-dimensional case is easy. Let (s, u) be an s-pair
of dimension 6. Thanks to Proposition 8.1, it suffices to deal with the case where
u has Jordan cells of odd size attached to 1 or −1, and now we assume that this
case holds. By the classification of indecomposable cells, it follows that there
are two possibilities:

• Either (s, u) is an indecomposable cell of type VI; in that case u is 2-
reflectional in Sp(s);
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• Or u = η idP
⊥
⊕v for some plane P , some η = ±1 and some symplectic

transformation v of P⊥s ; in that case points (a) and (c) of Theorem 1.1
yield that v is 5-reflectional in the corresponding symplectic group, and
hence u is 5-reflectional in Sp(s).

Hence, in any case u is 5-reflectional in Sp(s).

8.2 Finding adapted planes

Lemma 8.2. Assume that F is finite. Let (s, u) be an s-pair. Assume that u
is C(p) for some polynomial p of degree d ≥ 6 which is either an irreducible
palindromial or the product qq♯ for some q ∈ Irr(F) such that q♯ 6= q. Then there
exists an s-regular plane P such that u(P )⊥sP .

Proof. Note in any case that p(0) = 1.
We use an algebraic model for (s, u). We consider the quotient F-algebra

R := F[t]/(p), and we equip it with the non-identity involution x 7→ x• that
takes the coset λ of t to λ−1. We write tr short for TrR/F, and we say that an
element x ∈ R is Hermitian if x• = x, and skew-Hermitian if x• = −x. We also
set

S := {x ∈ R : x• = −x}.

It is crucial to stress that either R is a separable field extension of F or it
is isomorphic to the direct product of two such extensions. Hence, in any case
(x, y) ∈ R2 7→ tr(xy) is a nondegenerate symmetric bilinear form on the F-vector
space R. Moreover, even if R is not a field, every nonzero skew-Hermitian ele-
ment is invertible. Assume indeed that we have a non-invertible skew-Hermitian
element x ∈ R and p = qq♯ for some q ∈ Irr(F) such that q♯ 6= q. Then
r(λ)x = 0 for some r ∈ {q, q♯}, and hence by applying the involution we also
obtain −r(λ−1)x = 0, yielding r♯(λ)x = 0. By Bézout’s theorem, this yields
x = 0.

Next, we choose an arbitrary non-zero skew-Hermitian element h of R, to be
adjusted later, and we take the symplectic form

s′ : (x, y) ∈ R2 7→ tr(hx•y)

and the automorphism u′ : x 7→ λx of the F-vector space R, which is a C(p)-
transformation in Sp(s′). As F is finite, Wall’s theorem shows that (s, u) is
isometric to (s′, u′), and hence no generality is lost in assuming that (s, u) =
(s′, u′), which we will now do.
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We try to adjust h so that P := span(1, λ2) is s-regular and s-orthogonal to
u(P ) = span(λ, λ3). The first condition is satisfied if and only if tr(hλ2) 6= 0, and
the second one if and only if tr(hλ) = tr(hλ−1) = tr(hλ3) = 0, which reduces to
tr(hλ) = tr(hλ3) = 0 because tr(hλ−1) = tr((hλ−1)•) = tr(h•λ) = − tr(hλ).

Now, assume that no h ∈ S satisfies tr(hλ2) 6= 0 and tr(hλ) = tr(hλ3) = 0.
Then the kernel of the F-linear map f : h ∈ S 7→ tr(hλ2) includes the intersection
of those of f1 : h ∈ S 7→ tr(hλ) and f2 : h ∈ S 7→ tr(hλ3). By duality theory, f is
a linear combination of f1 and f2, yielding (α, β) ∈ F

2 such that λ2−αλ−βλ3 is
tr-orthogonal to S. In turn, this means that λ2−αλ−βλ3 is Hermitian, yielding

λ2 − αλ− βλ3 = λ−2 − αλ−1 − βλ−3.

But in any case this would yield a non-zero monic annihilating polynomial of
degree at most 6 for λ, with constant coefficient −1. Yet p is the minimal
polynomial of λ, with degree at least 6 and p(0) = 1. This is a contradiction.

We conclude that h can be chosen in S so that tr(hλ2) 6= 0 and tr(hλ) =
tr(hλ3) = 0, and in that case it is clearly non-zero.

With the specific choice we have just made, P := span(1, λ2) is an s-regular
plane and it is s-orthogonal to u(P ) = span(λ, λ3).

Lemma 8.3. Assume that F is finite. Let n ≥ 2 be an integer. Let (s, u) be an
s-pair in which u is cyclic with minimal polynomial pn for some p which is either
an irreducible monic palindromial or the product qq♯ for some q ∈ Irr(F) such
that q♯ 6= q. Assume further that either deg(p) > 2, or p = t2 + 1 and n > 2.
Then there exists an s-regular plane P such that u(P )⊥sP .

Proof. We will resort again to an algebraic model of (s, u), but with a slightly
more complicated form than in the proof of the preceding lemma. We consider
the ring F[t, t−1] of Laurent polynomials in one variable t, and the quotient F-
algebra R := F[t, t−1]/(pn). We also write p = tdm(t+ t−1) where deg(p) = 2d.
Then m has degree d and is irreducible. We write λ for the coset of t in R, and
we set u′ : x ∈ R 7→ λx. Note that u′ is C(pn).

This time around, we denote by tr the trace of the residue field L :=
F[t, t−1]/(m(t + t−1)) over F. Again, L is equipped with the involution x 7→ x•

that takes the coset of t to its inverse, and we note that the symmetric bilinear
form

b : (x, y) ∈ L
2 7→ tr(xy)
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is nondegenerate and that tr is invariant under conjugation. The F-linear sub-
spaces

H := {x ∈ L : x• = x} and S := {x ∈ L : x• = −x}

are b-regular for this bilinear form, and are b-orthogonal to one another.
Now, we introduce a nice symplectic structure on the F-algebra R for which

u′ is a symplectic automorphism. We consider the linear subspace

A0 := span(tk)−d<k<d ⊕ F(td − t−d)

(which is stable under the canonical involution of F[t, t−1]) and the graded de-
composition

F[t, t−1] =
⊕

k∈N

mk(t+ t−1)A0︸ ︷︷ ︸
Ak

,

and we denote by πk the projection onto Ak that is associated with this decompo-
sition. The decomposition is valid as, by using the identity td+ t−d = m(t+ t−1)
mod span(tk)−d<k<d, one checks by induction that

∀N ∈ N,
N∑

k=0

Ak = span(tk)−(N+1)d<k<(N+1)d ⊕ F
(
t(N+1)d − t−(N+1)d

)
.

Each Ak is stable under the canonical involution, and hence each πk commutes
with it. Finally,

∑
k≥N Ak is the ideal generated by mN (t+ t−1), for all N ≥ 0.

The projection onto the residue field L := F[t, t−1]/(m(t+t−1)) induces an F-

vector space isomorphism ϕ : A0
≃
→ L, which we will use to identify the elements

of A0 with elements of L.
We can now define the relevant symplectic form on R. We start by fixing

an arbitrary h0 ∈ S r {0} (to be adjusted later). Then, for x, y in F[t, t−1],
we extract πn−1(x

•y), which is an element of An−1, then map it back to A0 by
dividing by mn−1(t+ t−1), and finally we compute the trace

tr
(
h0 ϕ(((m

n−1(t+ t−1))−1πn−1(x
•y))

)
∈ F.

The resulting mapping is F-bilinear and it vanishes whenever x or y is a multiple
of m(t + t−1)n (because then the product x•y belongs to ⊕

k≥n
Ak and hence its

projection on An−1 is zero). It follows that, by identifying A0 with the residue
field L thanks to ϕ, the previous mapping induces an F-bilinear mapping s′ on
R2. And because λ•λ = 1 we see that u′ is an s′-isometry. It is then classical to
check that s′ is actually a symplectic form on the F-vector space R:
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• First of all it is clear that s′ is F-bilinear;

• Next, s′ is alternating because, since πn−1 commutes with the involution
x 7→ x•, we find that πn−1(x

•x) is Hermitian, and hence h0 ϕ(((m
n−1(t+

t−1))−1πn−1(x
•x)) is skew-Hermitian, to the effect that its trace is zero;

• Finally, let us prove that s′ is nondegenerate: let x ∈ R r {0}, which we
write x = m(t+ t−1)ka• +m(t+ t−1)k+1a′ for some integer k ∈ [[0, n− 1]],
some a ∈ A0 r {0} and some a′ ∈ F[t, t−1]. Let us take an arbitrary
w ∈ A0, and set y := m(t+t−1)n−1−kw. then s′(x, y) = tr(h0ϕ(π0(aw))) =
tr(h0aw), where aw stands for the coset of aw modulo m(t+ t−1)F[t, t−1]
(in L). Now, if x belonged to the radical of s′ we would obtain b(h0a,w) =
tr(h0aw) = 0 for all w ∈ A0, thereby contradicting the non-degeneracy of
b. Hence s′(x,−) 6= 0, and we conclude that s′ is nondegenerate.

Remember now that u′ is C(pn). As F is finite and p has no root in {1,−1}, there
is no Wall invariant to consider, and we deduce that (s, u) is isometric to (s′, u′).
Hence no generality is lost in assuming that (s, u) = (s′, u′), an assumption we
will now make.

It remains to construct the plane P . To do so, we fix an arbitrary non-zero
skew-Hermitian element h1 ∈ L r {0}, and we take x as the coset of 1 in R
and y as the coset of m(t + t−1)n−1ϕ−1(h1) in R. Obviously x, y are linearly
independent over F because n > 1. We take

P := span(x, y).

Then x•x = 1R and hence s(x, x) = 0 because πn−1(1R) = 0, while y•y = 0
(because n ≥ 2) and hence s(y, y) = 0. Finally s(x, y) = tr(h0h1), and hence P
is s-regular if and only if tr(h0h1) 6= 0.

Next, x•(λx) is the coset of t in R. Yet t ∈ A0 if deg p > 2; otherwise
m(t+ t−1) = t+ t−1, t = 1

2(t− t
−1)+ 1

2(t+ t
−1) ∈ A0+A1, and the assumptions

require that n > 2. Hence in any case πn−1(t) = 0, and hence s(x, λx) = 0.
Moreover s(y, λy) = 0 because y•(λy) is the coset of an element of the ideal∑
k≥2(n−1)

Ak, with projection zero on An−1.

Finally, we note that s(y, λx) = −s(λx, y) = −s(x, λ−1y) and s(x, λy) −
s(x, λ−1y) = s(x, (λ− λ−1)y). Noting that λ− λ−1 projects modulo m(t+ t−1)
to a skew-Hermitian element h2 of L, we find s(x, (λ− λ−1)y) = tr(h0h2h1) = 0
because h0h2h1 is skew-Hermitian. It follows that

s(x, λy) = s(x, λ−1y) =
1

2
s(x, (λ+ λ−1)y).
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Hence
P⊥su(P ) ⇔ s(x, (λ+ λ−1)y) = 0.

Hence, it remains to prove that h0 and h1 can be chosen in S so that
tr(h0h1) 6= 0 and tr(h0h1z) = 0, where z stands for the coset of t+ t−1 in L. If
p = t2 + 1 then z = 0. So, it suffices to choose h0 and h1 so that tr(h0h1) 6= 0,
which is possible because S is non-zero and b-regular.

Assume finally that deg p > 2. Then z is invertible in L. Assume that there
is no pair (h0, h1) ∈ S2 such that tr(h0h1) 6= 0 and tr(h0h1z) = 0. Then, for
all h0, h1 in S, tr(h0h1z) = 0 ⇒ tr(h0h1) = 0. Noting that ψ : h 7→ z−1h is an
endomorphism of S, and that S is b-regular, this yields that ψ leaves invariant
the tr-orthogonal complement in S of every 1-dimensional subspace, and hence
it leaves invariant every linear hyperplane of S; classically this is enough to see
that ψ leaves invariant every 1-dimensional subspace of S, and in particular
z−1(λ − λ−1) = α(λ − λ−1) for some α ∈ F. But then α(t + t−1) = 1 mod
m(t+ t−1), contradicting the fact that deg p > 2.

Hence in any case there exists a pair (h0, h1) ∈ S2 such that tr(h0h1) 6= 0
and tr(h0h1z) = 0, and with this choice we obtain that P = span(x, y) is an
s-regular plane and that P⊥su(P ) (note that the condition tr(h0h1) 6= 0 ensures
that both h0 and h1 are non-zero).

8.3 Tackling cells of type V

Lemma 8.4. Let (s, u) be an s-pair that is an indecomposable cell of type V and
dimension at least 4. Then there exists an involution i ∈ Sp(s) together with an
s-regular plane P such that iu fixes every vector of P .

Proof. We will work backwards. We start with general results on cells of type
V and with eigenvalue 1. Let (V, s) be an arbitrary symplectic space of dimen-
sion 2n > 0, and (e1, . . . , en, f1, . . . , fn) be an s-symplectic basis of V . Let us
consider a strictly upper-triangular matrix N = (ni,j) ∈ Mn(F) and an arbitrary
matrix B = (bi,j) ∈ Mn(F). The automorphism u of V with matrix in the basis
(e1, . . . , en, f1, . . . , fn) equal to

[
In +N B

0 (In +N)♯

]

is s-symplectic if and only if (In +N)−1B is symmetric. Assuming that such is
the case, it is easily checked that u has characteristic polynomial (t− 1)2n, and
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it is C((t − 1)2n) if and only if bn,n 6= 0 and In + N is cyclic (i.e. ni,i+1 6= 0 for
all i ∈ [[1, n− 1]]). In that case one checks that

(u− id)2n−1(f1) = (−1)n−1bn,n

n−1∏

k=1

(nk,k+1)
2 e1.

Since (u+ id)u−(n−1)(e1) = 2e1 we obtain

s
(
f1, (u− u−1)(u+ u−1 − 2 id)n−1(f1)

)
= 2(−1)nbn,n

(
n−1∏

k=1

nk,k+1

)2

,

and hence the quadratic form attached to the Wall invariant (s, u)t−1,2n takes
the value 2(−1)nbn,n.

Now, let us go back to an arbitrary indecomposable s-pair (s, u) of type V
and dimension 2n ≥ 4. Without loss of generality, we can assume that the
corresponding eigenvalue is 1, and we can choose α ∈ F r {0} in the range
of the quadratic form that is attached to the Wall invariant (s, u)t−1,2n. We
denote by V the underlying vector space of (s, u). We choose an arbitrary s-
regular plane P of V together with a symplectic basis (e2, . . . , en, f2, . . . , fn) of
P⊥s , as well as a symplectic basis (e1, f1) of P . We take the upper-triangular
Jordan matrix N := (δi+1,j)1≤i,j≤n−1 ∈ Mn−1(F) and the symmetric matrix
C ∈ Sn−1(F) with exactly one non-zero entry, which equals 1 and is located at
the (n− 1, n − 1)-spot. Finally, we take an arbitrary scalar α ∈ F r {0}. Then

we take B := (−1)n

2 α(In−1 + N)C, and we note that bn−1,n−1 = (−1)n

2 α. We
define u′ as the symplectic automorphism of P⊥s with matrix

[
In−1 +N B

0 (In−1 +N)♯

]

in the basis (e2, . . . , en, f2, . . . , fn), and we extend it to a symplectic automor-
phism of V by taking u′(x) = −x for all x ∈ P . Finally, we take

D :=

[
−1 L
0 In−1

]
∈ Mn(F), where L :=

[
1 0 · · · 0

]
,

we note that D2 = In, and we define i as the linear involution of V with matrix
D⊕D♯ in the basis (e1, . . . , en, f1, . . . , fn). Note that i ∈ Sp(s). Then the matrix
of iu′ in that basis reads

[
In +N ′ B′

0 (In +N ′)♯

]
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where b′n,n = bn−1,n−1 and N ′ is upper-triangular with n′k,k+1 6= 0 for all k ∈
[[1, n − 1]]. It follows from the early considerations in this proof that iu′ is an
indecomposable cell of type V with eigenvalue 1 and that α is in the range
of the quadratic form that is attached to (s, iu′)t−1,2n. Hence (s, iu′)t−1,2n ≃
(s, u)t−1,2n, and we deduce that iu′ is conjugated to u in Sp(s). Hence u is
i-adjacent to a conjugate of −u′ in Sp(s), which yields the claimed result.

8.4 Completing the proof

We are almost ready to complete the proof of point (b) of Theorem 1.1. So, we
let (s, u) be an s-pair with dimension n ≥ 6 such that n = 2 mod 4, and we
seek to prove that u is 5-reflectional in Sp(s). We proceed by induction on n. If
n = 6, this is already known from Section 8.1, so now we assume that n ≥ 10.

If u has a Jordan cell of odd size for an eigenvalue in {±1}, then we can

find a decomposition u = u1
⊥
⊕ u2 where u2 is an indecomposable cell of type

VI, and then the rank of u1 is a multiple of 4. Then u2 is 2-reflectional in the
corresponding symplectic group, whereas by points (a) and (c) of Theorem 1.1
(or trivially if u1 has rank 0) we see that u1 is 5-reflectional in the corresponding
symplectic group. Hence u is 5-reflectional in Sp(s).

Assume now that u has no Jordan cell of odd size for an eigenvalue in {±1}.

Let us then consider a decomposition u = u1
⊥
⊕ · · ·

⊥
⊕ ur into indecomposable

cells, by non-increasing order of rank.

• If r ≥ 2 and rkur−1 = 2 then we regroup u = (u1
⊥
⊕· · ·

⊥
⊕ur−2)⊕(ur−1

⊥
⊕ur),

and we note that ur−1

⊥
⊕ur is 5-reflectional in the corresponding symplectic

group, whereas by induction so is u1
⊥
⊕· · ·

⊥
⊕ur−2 (because it has rank n−4).

• If r ≥ 3 and rkur−1 > 2, or if r = 2 and rkur > 2, then we regroup

u = u1
⊥
⊕ (u2

⊥
⊕ · · ·

⊥
⊕ ur), and again we obtain the result by induction and

by using points (a) and (c) of Theorem 1.1.

Hence, only two cases remain.
Case 1: (s, u) is an indecomposable cell of type I to V, with dimension at least
10.
Case 2: (s, u) is the orthogonal direct sum of an indecomposable cell of type I
to V (and dimension at least 8) with an indecomposable cell of dimension 2.
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Let us start with the special case of F3. The monic polynomials with degree
2 and constant coefficient 1 over F3 are (t− 1)2, (t+ 1)2 and t2 + 1. Hence, by
combining Lemmas 8.2, 8.3 and 8.4, we obtain that for every indecomposable
cell (s′, u′) of type I to V and dimension at least 8, there exists an involution
i ∈ Sp(s′) such that iu′ fixes every vector of a regular s′-plane. Hence, in any of
the above two cases, there exists an involution i ∈ Sp(s) such that iu fixes every
vector of some regular s-plane P . Then, as explained at the beginning of Section
8, applying point (a) of Theorem 1.1 to (iu)P⊥ yields that iu is 4-reflectional in
Sp(s), and we conclude that u is 5-reflectional in Sp(s).

The same method works if F is finite and |F| > 3, with the exception of the
following two special cases, where we set m := n−2

4 ·
Special case 1: (s, u) is an indecomposable cell of type II or IV, with minimal
polynomial p2m+1 for some monic p ∈ F[t] with degree 2, no root in {±1} and
p(0) = 1.
Special case 2: (s, u) is the orthogonal direct sum of two indecomposable cells,
one of which is of type I or III with minimal polynomial p2m for some monic
p ∈ F[t] with degree 2, no root in {±1} and p(0) = 1, and the other of which
has dimension 2.

In both cases, we can find a totally s-singular subspaceW of V that is stable
under u, has dimension 2(m − 1), and such that uW is cyclic with minimal
polynomial q such that q(0) = 1. Then, the result is obtained thanks to our last
lemma:

Lemma 8.5. Assume that F is finite with |F| > 3. Let n = 4m + 2 ≥ 10
where m is an integer. Let (s, u) be an s-pair. Assume that there exists a totally
s-singular subspace W that is stable under u, has dimension 2(m − 1), and is
such that uW is cyclic with minimal polynomial q such that q(0) = 1. Then u is
5-reflectional in Sp(s).

Proof. Denote by V the underlying vector space of (s, u). Let us take a comple-
mentary subspaceW ′ ofW⊥ in V . Let us take a symplectic basis (e1, . . . , e2m−2, f1, . . . , f2m−2)
of W ⊕W ′ in which (e1, . . . , e2m−2) is a basis of W and (f1, . . . , f2m−2) is a ba-
sis of W ′. Let us take a symplectic basis (g1, . . . , g6) of (W ⊕ W ′)⊥. Then
B := (e1, . . . , e2m−2, g1, . . . , g6, f1, . . . , f2m−2) is a basis of V and the matrix of
u in that basis reads 


A ? ?
0 B ?
0 0 A♯
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where A ∈ GL2m−2(F) is cyclic with minimal polynomial q, and B ∈ Sp6(F).
As seen in Section 8.1, we can find an involutory matrix B1 ∈ Sp6(F) such that
B1B is 4-reflectional in Sp6(F).

By Lemma 4.1, we can find an r ∈ Irr(F) with degree 2m − 2 such that
r(0) = −1. Next, by Lemma 3.3, we can find an involutory A1 ∈ GL2m−2(F)
such that A1A is cyclic with minimal polynomial r. Denote by i ∈ Sp(s) the

symplectic involution whose matrix in B equals A1 ⊕B1 ⊕A♯
1. Then the matrix

of iu in the same basis has the form


A1A ? ?
0 B1B ?
0 0 (A1A)

♯


 .

Note that r is not a palindromial (being of even degree and irreducible with
r(0) 6= 1). Assume further that r is relatively prime with the characteristic

polynomial of B1B. Then by Lemma 2.2 we find a decomposition iu = u′1
⊥
⊕ u′2

where u′1 has rank 4m − 4 and u′2 is represented by B1B in some symplectic
basis. Then u′2 is 4-reflectional in the corresponding symplectic group, whereas
u′1 is 4-reflectional by point (a) of Theorem 1.1.

It remains to prove that a correct choice of r can be made. If 2m−2 ≥ 4, this
is straightforward because if r were not relatively prime with the characteristic
polynomial χB1B then the latter (which is a palindromial) would be divided by
rr♯, which has degree at least 8.

It remains to consider the case where m = 2. In that one, we slightly change
the choice of r: indeed it is not necessary to have an irreducible polynomial (nor
one that is relatively prime with r♯), rather we just need a polynomial such that
rr♯ is relatively prime with χB1B (and, of course, r is monic with degree 2 and
r(0) = −1).

Now suppose that our initial choice of r fails. Then as rr♯ divides χB1B and
both polynomials have constant coefficient 1, χB1B has at most two roots in
Fr {0}, counted with multiplicities, and for each such root α the roots of χB1B

are actually α and α−1, counted with multiplicities. Then, either χB1B has no
root in {1,−1}, in which case we replace r with t2 − 1 to get the desired result,
or all the roots of χB1B in F r {0} belong to {1,−1}, in which case we replace
r with (t−α)(t+ α−1), where α is chosen in Fr {0, 1,−1}. In any case, we see
that rr♯ is relatively prime with χB1B , which yields the desired conclusion.

The proof of point (b) of Theorem 1.1 is now completed.
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