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Abstract—This work introduces a multi-antenna coded caching
problem in a two-dimensional multi-access network, where a
server with L transmit antennas and N files communicates
to K1K2 users, each with a single receive antenna, through a
wireless broadcast link. The network consists of K1K2 cache
nodes and K1K2 users. The cache nodes, each with capacity
M , are placed on a rectangular grid with K1 rows and K2

columns, and the users are placed regularly on the square grid
such that a user can access r2 neighbouring caches in a cyclic
wrap-around fashion. For a given cache memory M , the goal
of the coded caching problem is to serve the user demands
with a minimum delivery time. We propose a solution for the
aforementioned coded caching problem by designing two arrays:
a caching array and a delivery array. Further, we present two
classes of caching and delivery arrays and obtain corresponding
multi-access coded caching schemes. The first scheme achieves

a normalized delivery time (NDT)
K1K2(1−r

2 M
N

)

L+K1K2
M
N

. The second

scheme achieves an NDT
K1K2(1−r

2 M
N

)

L+K1K2r
2 M

N

when M/N = 1/K1K2

and L = K1K2 − r2, which is optimal under uncoded placement
and one-shot delivery.

I. INTRODUCTION

With the advent of smart devices and content streaming

applications, network traffic has grown unprecedentedly over

the last decade. To combat the traffic congestion experienced

during peak hours, caching is considered to be a promising

technique where caches distributed across the network are

used to prefetch contents during off-peak hours. When users

request a file during peak hours, a part of the contents gets

served from the caches. Therefore, the server needs to transmit

only the remaining portion, thereby reducing the load over

the shared link and the delivery time required to serve the

users. In conventional caching techniques, the file contents

are sent in uncoded form, and each transmission benefits only

a single user. In [1], the authors showed that multicasting

opportunities could be created by employing coding in the

delivery phase. The network model considered in [1] is called

a dedicated cache network where there is a server with a

library of files and a set of users, each endowed with its own

cache, connected through an error-free shared link. The coded

caching scheme proposed in [1] was shown to be optimal

under uncoded placement when the number of files is not less

than the number of users [2], [3]. Later, the coded caching

technique was studied extensively in various settings [4]–[7].

In this work, we consider the two-dimensional (2D) multi-

access coded caching (MACC) model introduced in [8]. The

2D MACC model is a generalization of the well-studied

one-dimensional multi-access coded caching network, first

introduced in [4]. The one-dimensional MACC network con-

sists of an identical number of users and caches, and each

user accesses a set of consecutive caches in a cyclic wrap-

around manner. The study of cyclic wrap-around MACC

networks was motivated by the circular Wyner model for

interference networks [9]. Several coded caching schemes and

lower bounds characterizing the performance were derived

for the one-dimensional MACC network [5], [10]–[13]. The

study on 2D MACC network was inspired by the cellular

networks architecture in [14]. The 2D MACC network defined

in [8] consists of K1 ×K2 cache nodes and K1 ×K2 users,

where the caches are placed in a rectangular grid of K1

rows and K2 columns. The users are placed regularly in a

square grid such that a user can access r × r neighbouring

caches in a cyclic wrap-around fashion. In [8], the authors

proposed achievable schemes with rates
K1K2(1−r2 M

N
)

K1K2
M
N

and

K1K2(1−r2 M
N

)

1+K1K2
M
N

for different parameter settings. The work in

[15] also considered a variant of the 2D MACC scheme.

However, we consider the 2D MACC network proposed in

[8] along with the possibility of multiple transmit antennas

at the server. This setting has not been studied before in the

coded caching literature. The multi-antenna setting explored

in other coded caching networks [7], [16]–[20] suggests that

using multiple antennas at the server can provide notable

performance gains compared to the single antenna variants

of the problem. In this regard, we study the 2D MACC

network with multiple transmit antennas, and propose a few

achievability results.

A. Contributions

In this work, we introduce the problem of multi-antenna

coded caching in a 2D multi-access network with cycle wrap-

around, and make the following technical contributions:

• We propose a solution for the 2D multi-antenna MACC

problem by constructing two arrays, namely a caching ar-

ray and a delivery array (Section III-A, Section III-B). As

the names indicate, the placement phase of the proposed

coded caching scheme is determined by the caching array

and the delivery phase is according the delivery array.

The idea of caching and delivery arrays follows from the

extended placement delivery arrays (EPDA) proposed in

[18].

http://arxiv.org/abs/2405.02683v1
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Figure 1: (K1,K2, r, L,M,N) MACC system

• We propose two constructions of caching and delivery

arrays. First, we show that caching and delivery arrays

can be obtained by manipulating EPDAs if r|K1 (r
divides K1) and r|K2. From the obtained caching and

delivery arrays, we derive an MACC scheme with a

normalized delivery time (NDT) Tn =
K1K2(1−r2 M

N
)

L+K1K2
M
N

(Lemma 1, Remark 1).

• The optimality of the single-antenna 2D MACC scheme

in [8] itself is unknown. But interestingly, we present an

optimal 2D MACC scheme in the multi-antenna setting.

The proposed scheme is applicable for the case when

M/N = 1/K1K2 and L = K1K2 − r2, and we

present a construction of caching and delivery arrays

for the same. The resulting MACC scheme has an NDT

Tn =
K1K2(1−r2 M

N
)

L+K1K2r2
M
N

, which is optimal under uncoded

placement and one-shot linear delivery (Corollary 1).

Further, with the help of an example, we show that this

construction is applicable to a general setting where a)

t|K1 and r ≤ K1/t or t|K2 and r ≤ K2/t, and b)

L = K1K2−r2t, t = K1K2M/N is an integer (Remark

2).

B. Notations

For a positive integer m, the set {1, 2, . . . ,m} is denoted

as [m]. For two positive integers a, b such that a ≤ b, [a : b] =
{a, a+ 1, . . . , b}. For integers a, b ≤ K

[a : b]K =

{
{a, a+ 1, . . . , b} if a ≤ b.

{a, a+ 1, . . . ,K, 1, . . . , b} if a > b.

For any two integers j and m, 〈j〉m denotes j (mod m) if

j (mod m) 6= 0, and 〈j〉m = m if j (mod m) = 0. For

two positive integers p and q, q|p means that q divides p (i.e.,

p = zq for some integer z). For two vectors u and v, u ⊥ v

means that vT
u = 0, and u 6⊥ v means that vT

u 6= 0. Finally,

the symbol C represents the field of complex numbers.

II. SYSTEM MODEL

A. Problem Setting

The system model consists of a central server with N files,

W[1:N ] , {Wn : n ∈ [N ]}, each of size B bits. We consider

a multiple-input single-output (MISO) broadcast channel in

which a server with L transmit antennas communicates to a

set of users, each with a single receive antenna. There are

K1 × K2 cache nodes and as many users in the network,

where K1 and K2 are positive integers. The cache nodes, each

having a capacity of MB bits, are placed in a rectangular grid

consisting of K1 rows and K2 columns. The cache nodes are

denoted as Z(k1,k2), where k1 ∈ [K1] and k2 ∈ [K2]. Without

loss of generality, we assume that K2 ≥ K1. The K1K2 users,

{Uk : k ∈ [K1K2]}, are placed regularly on the square grid

such that a user accesses r×r neighbouring caches in a cyclic

wrap-around fashion (we assume that r < K1). User Uk,

where k = (i−1)K2+j, i ∈ [K1], j ∈ [K2], can access all the

cache nodes Z(k1,k2) such that max(〈k1−i〉K1, 〈k2−j〉K2) <
r. In other words, user Uk can access the caches Z(i+u,j+v)

for every u, v ∈ [r]. Further, we assume that the number of

files with the server is not less than the number of users.

i.e., N ≥ K1K2. We refer to the aforementioned setting as

the (K1,K2, r, L,M,N) multi-access coded caching (MACC)

network. A (K1 = 3,K2 = 4, r = 2, L,M,N) MACC

network is shown in Figure 1.

The (K1,K2, r, L,M,N) MACC scheme operates in two

phases: a placement phase and a delivery phase. In the

placement phase, the server fills the caches with file contents,

adhering to the capacity of the caches. The cache placement

is done without knowing the demands of the users. Further,

the placement phase can be coded or uncoded. In this work,

we design schemes with uncoded placement, where the files

are divided into subfiles and stored in the caches without

making any coded combinations of the files or subfiles. The

content stored in Z(k1,k2) is denoted as Z(k1,k2). The delivery

phase starts after the users’ demands are known to the server.

Let user Uk demands the file Wdk
from the server, where

k = (i − 1)K2 + j, i ∈ [K1], j ∈ [K2]. The demand

of all the users are denoted by d = (d1, d2, . . . , dK1K2).
After knowing the demand vector d, the server broadcasts

the message X = (x(τ))
T (d)
τ=1 to the users over the channel,

where T (d) is the duration or block-length of the channel

code, and x(τ) ∈ CL×1 is the transmitted vector at time

τ ∈ [T (d)] subject to the power constraint E(||x(τ)||2) ≤ P .

The message X is a function of d, the cache contents, and

the channel coefficients between the transmit antennas and the

users. At time τ , the received message at user Uk is given

by yk(τ) = h
T
k x(τ) + wk(τ), where hk ∈ CL×1 denotes

the channel between the server and user Uk, and wk(τ) ∼
CN (0, 1) (circularly symmetric gaussian with unit variance) is

the additive noise observed at user Uk at time τ . The entries of

the channel matrix H = [h1,h2, . . . ,hK1K2 ] are independent

and identically distributed, and remain invariant within each

codeword transmission. Also, we assume that the server and

the users have perfect channel state information (CSI). User

Uk recovers an estimate W̃dk
of the demanded file Wdk

using

(yk(τ))
T (d)
τ=1 and its accessible cache contents. For a given

cache placement, we define the worst-case probability of error

as

Pe = max
d∈[N ]K1K2

max
k∈[K1K2]

P(W̃dk
6= Wdk

).



A coding scheme is said to be feasible if the worst-case

probability of error Pe → 0 as the file size B → ∞.

We use the metric normalized delivery time (defined below)

to characterize the performance of the multi-antenna MACC

scheme.

Definition 1 (Normalized delivery time (NDT) [21]): For a

feasible coding scheme, an NDT Tn is said to be achievable

if Tn = lim
P→∞

lim
B→∞

T
B/ log P , where T = max

d∈[N ]K1K2

T (d) and

B/ logP is the time required to transmit B bits to a single

user at high SNR with a transmission rate logP . The optimal

NDT is defined as

T ∗
n = inf{Tn : Tn is achievable}.

The NDT is the worst-case delivery time required to serve

all the users’ demands normalized with respect to the time

required to serve a single file to a single user under cacheless

setting. Note that the NDT is identical to the rate measure used

for the single-stream error-free setting in [8], since it accounts

for the file size and the high SNR link capability.

Now, we revisit the multi-antenna coded caching problem

in the dedicated cache network to give a bound on the

performance of the multi-antenna scheme in the 2D MACC

setting. Consider a dedicated cache network with K users,

each having a cache of size M bits and a single receive

antenna, connected to a server having L transmit antennas and

a library of N files. The optimal NDT for the above network,

under uncoded placement and one-shot delivery is
K(1−M/N)
L+KM/N

[22]. Any achievable NDT of the 2D MACC scheme is also

achievable in a dedicated cache network with L transmit

antennas and K1K2 users, each having a cache size of r2M
bits. Hence, under uncoded placement and one-shot delivery,

the optimal NDT of the 2D MACC scheme is lower bounded

by T ∗
n(M) ≥ K1K2(1−r2M/N)

L+K1K2r2M/N .

B. Preliminaries

In this section, we briefly review the extended placement

delivery array (EPDA) in [18], [19]. Corresponding to an

EPDA, there exists a multi-antenna coded caching scheme for

the dedicated cache network. The construction of our caching

and delivery arrays makes use of EPDAs, which are defined

as follows:

Definition 2 (Extended Placement Delivery Array [18]): Let

K,L(≤ K), F, Z, S be positive integers. An array A = [aj,k],
j ∈ [F ], k ∈ [K] consisting of the symbol ⋆ and positive

integers in [S] is called a (K,L, F, Z, S) extended placement

delivery array (EPDA) if it satisfies the following conditions:

C1. The symbol ⋆ appears Z times in each column.

C2. Every integer in the set [S] occurs at least once in A.

C3. No integer appears more than once in any column.

C4. Consider the sub-array A
(s) of A obtained by deleting all

the rows and columns of A that do not contain the integer s.

Then for any s ∈ [S], no row of A
(s) contains more than L

integers.

Theorem 1 ([18]): Corresponding to any (K,L, F, Z, S)
EPDA, there exists a (K,L,M,N) multi-antenna coded

caching scheme for the dedicated cache network with M/N =
Z/F . Furthermore, the server can meet any user demand d

with an NDT Tn = S/F .

III. MULTI-ANTENNA CODED CACHING SCHEMES FOR 2D

MACC NETWORKS

In this section, we present two multi-antenna coded caching

schemes for the network model described in Section II-A. The

schemes are derived from two arrays, namely a caching array

and a delivery array consisting of some special characters and

integers. The caching and delivery arrays are defined in the

next subsection, and following it we show that there exists a

multi-antenna MACC scheme corresponding to every caching

array-delivery array pair.

A. Caching and Delivery Arrays

1) Caching Array

Let K1,K2(≥ K1), F , and Z be positive integers. An

array C = [cf,(k1,k2)], f ∈ [F ], k1 ∈ [K1] and k2 ∈ [K2]
consisting of a special symbol ‘⋆’ and ‘ ’ (null) is said to be a

(K1,K2, F, Z) caching array if the symbol ⋆ appears Z times

in each column.

2) Delivery Array

Let C be a (K1,K2, F, Z) caching array, and let r, L, and S
be positive integers. An array B = [bf,(k1,k2)], f ∈ [F ], k1 ∈
[K1], and k2 ∈ [K2], consisting of the symbol ⋆ and positive

integers in [S] is called a (C(K1,K2, F, Z), r, L, S) delivery

array B (or a (C, r, L, S) delivery array B) if it satisfies the

following conditions:

D1: The symbol ⋆ appears in B according to the ⋆’s in C as

bf,(k1,k2) = ⋆; if cf,(k′

1,k
′

2)
= ⋆ for some (k′1, k

′
2) such that

max(〈k′1 − k1〉K1 , 〈k
′
2 − k2〉K2) < r.

D2. Every integer in the set [S] occurs at least once in B.

D3. No integer appears more than once in any column.

D4. Consider the sub-array B
(s) of B obtained by deleting all

the rows and columns of B that do not contain the integer s.

Then, for any s ∈ [S], no row of B
(s) contains more than L

integers.

We now give an example of caching array-delivery array

pair.

Example 1: A (K1 = 3,K2 = 3, F = 9, Z = 1) caching

array C is given below:

C =




⋆
⋆

. . .

⋆


 . (1)

The caching array C is of size 9 × 9. The columns

of C are indexed as (1, 1), (1, 2),(1, 3), (2, 1), (2, 2),
(2, 3), (3, 1), (3, 2), (3, 3) from left to right. Note that each



column of C contains exactly one ⋆ as Z = 1. Next, we

present a (C, 2, 5, 5) delivery array B in (2).

B =




⋆ 1 ⋆ 1 1 1 ⋆ 1 ⋆
⋆ ⋆ 1 2 2 2 ⋆ ⋆ 1
1 ⋆ ⋆ 3 3 3 1 ⋆ ⋆
⋆ 2 ⋆ ⋆ 4 ⋆ 2 2 2
⋆ ⋆ 2 ⋆ ⋆ 4 3 3 3
2 ⋆ ⋆ 4 ⋆ ⋆ 4 4 4
3 3 3 ⋆ 5 ⋆ ⋆ 5 ⋆
4 4 4 ⋆ ⋆ 5 ⋆ ⋆ 5
5 5 5 5 ⋆ ⋆ 5 ⋆ ⋆




. (2)

The delivery array B is of same size as

C, and the columns of B are indexed as:

(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)
from left to right, as is done in C. The ⋆’s in any column

(k1, k2) of B, k1 ∈ [3], k2 ∈ [3], is determined by the ⋆’s in the

following columns of C: (k1, k2),(k1, 〈k2+1〉3),(〈k1+1〉3, k2)
and (〈k1 + 1〉3, 〈k2 + 1〉3) . Notice that ⋆’s in a column

of B is determined by ⋆’s in r2 = 4 columns of C. The

delivery array consists of integers from the set [5], and each

integer appears 9 times in the array. Also, no integer appears

more than once in any column. Now, consider sub-array B
(1)

corresponding to integer 1.

B
(1) =



⋆ 1 ⋆ 1 1 1 ⋆ 1 ⋆
⋆ ⋆ 1 2 2 2 ⋆ ⋆ 1
1 ⋆ ⋆ 3 3 3 1 ⋆ ⋆


 .

Note that no row of B(1) contains more than L = 5 integers.

This is true for every sub-array B
(s), s ∈ [5].

In the following subsection, we show that corresponding to

any caching array-delivery array pair, we can obtain a multi-

antenna 2D MACC scheme.

B. 2D MACC Schemes with Multiple Transmit Antennas

Let C be a (K1,K2, F, Z) caching array and B be a

corresponding (C, r, L, S) delivery array. From this caching

and delivery arrays, by employing the following placement

and delivery procedures, we obtain a (K1,K2, r, L,M,N) 2D

MACC scheme with a normalized cache size M/N = Z/F
and an NDT Tn = S/F . Each column of the caching array C

represents a cache node, and each column of the delivery array

B represents a user. The placement and delivery procedures

are as follows:

a) Placement phase: The cache placement is done according

to the (K1,K2, F, Z) caching array C. In the placement

phase, each file is divided into F subfiles: Wn = {Wn,f :
f ∈ [F ]}, ∀n ∈ [N ]. Then, the server fills cache Z(k1,k2) as

follows:

Z(k1,k2) = {Wn,f , ∀n ∈ [N ] : cf,(k1,k2) = ⋆, f ∈ [F ]}.

The rows of C represent the subpacketization level required

by the scheme. By definition, each column of a caching array

contains Z ⋆’s. Therefore, a cache stores Z subfiles of every

file. Thus, we have M/N = Z/F . Consider a user Uk, where

k ∈ [K1,K2] and k = (i − 1)K2 + j, i ∈ [K1], j ∈ [K2].

User Uk has access to the contents of the caches indexed by

(k1, k2) such that max(〈k1−i〉K1, 〈k2−j〉K2) < r. The ⋆’s in

a column of the delivery array B represent the subfiles known

to the corresponding user.

b) Delivery phase: The transmissions in the delivery phase is

determined by the (C, r, L, S) delivery array B. Condition D1

ensures that the ⋆’s in the column indexed with ordered pair

(i, j) of the delivery array B locate the subfiles accessible to

user Uk, where k = (i− 1)K2 + j. Further, if bf,(i,j) = s for

some s ∈ [S], then user Uk requires the subfile Wdk,f from

the delivery phase.

Assume that integer s appears ηs times in B, where s ∈ [S].
Let bf1,(i1,j1) = bf2,(i2,j2) = · · · = bfηs ,(iηs ,jηs ) = s.

Also, define k(α) , (iα − 1)K2 + jα for every α ∈
[ηs]. Notice that, Uk(α) is the user corresponding to column

(iα, jα) of B. First, the server creates a precoding matrix

V
(s) = [v

(s)
1 ,v

(s)
2 , . . . ,v

(s)
ηs ] of size L × ηs as follows: for

every α ∈ [ηs], define a set Pα = {k(β) : dfα,(iβ ,jβ) 6=
⋆, β ∈ [ηs]\{α}}. Then the αth column of V

(s) is such that

v
(s)
α 6⊥ hk(α) and v

(s)
α ⊥ hk(γ) for every γ ∈ Pα. The server

broadcasts V
(s)(Wd

k(1) ,f1 ,Wd
k(2) ,f2 , . . . ,Wd

k(ηs) ,fηs )
T over

the channel. Note that, condition D4 ensures that |Pα| ≤ L−1.

Thus, for every α ∈ [ηs], it is possible to construct the precod-

ing vector v
(s)
α with probability 1. By employing the above

placement and delivery procedures, we have the following

theorem.

Theorem 2: Corresponding to a (K1,K2, F, Z) caching

array C and a (C, r, L, S) delivery array B, there exists a

(K1,K2, r, L,M,N) MACC scheme with a normalized cache

memory M/N = Z/F . Further, the server can meet any user

demand with an NDT Tn = S/F .

Proof: In the placement phase, each file is divided into

F subfiles, and Z of them are stored in the caches. Therefore,

the normalized cache size is M/N = Z/F . Further, in the

delivery phase, there is a transmission corresponding to every

integer in [S]. Each transmission incurs a normalized delay

of 1/F , as each transmission has a size ( 1
F )th of a file size.

Thus, the NDT is Tn = S/F . Now, it remains to show that

every user can recover its demanded file.

Consider user Uk that wants the subfile Wdk,f , where k =
(i−1)K2+j for some i ∈ [K1] and j ∈ [K2]. Let bf,(i,j) = s,

for some s ∈ [S]. If bf,(i,j) = ⋆, then that subfile would have

been available to Uk from the placement phase itself. Now, we

show that user Uk can recover Wdk,f from the transmission

corresponding to integer s. In the sub-array B
(s), let bf,(i,j) =

bf2,(i2,j2) = · · · = bfηs ,(iηs ,jηs ) = s. From the server transmis-

sion x(s) = V
(s)(Wdk,f ,Wd

k(2) ,f2 , . . . ,Wd
k(ηs) ,fηs )

T , user

Uk receives:

yk(s) = h
T
kV

(s)(Wdk,f ,Wd
k(2) ,f2 , . . . ,Wd

k(ηs) ,fηs )
T

= (hT
k v

(s)
1 )Wdk,f +

ηs∑

α=2
bfα,(i,j)=⋆

(
h
T
k v

(s)
α

)
Wd

k(α) ,fα .

︸ ︷︷ ︸
Uk can compute using accessible cache contents



Notice that, we neglect the additive noise wk(s) in the further

analysis due to the high SNR assumption. The design of

precoding vectors ensures that hT
k v

(s)
α = 0 for all α ∈ [2 : ηs]

such that bfα,(i,j) 6= ⋆. In fact, the precoding vectors are

designed such that the subfiles that are not known and are

not required for user Uk will be nulled out in yk(s), ∀s ∈ [s].
Thus, Uk gets the required subfile Wdk,f . Note that k and f are

arbitrary. Therefore, all the users can recover their demanded

files. This completes the proof of Theorem 2.

Example 2: Consider the (3, 3, 9, 1) caching array C in

(1) and the (C, 2, 5, 5) delivery array B in (2). From the

(C,B) pair, we obtain a (K1 = 3,K2 = 3, r = 2, L =
5,M = 1, N = 9) MACC scheme. The server has 9 files

{W1,W2, . . . ,W9}. The server communicates to the users

with L = 5 transmit antennas. The network consists of 9
caches and 9 users arranged in a 3 × 3 rectangular grid,

where each user accesses 4 neighbouring caches in a cyclic

wrap-around manner. The corresponding 2D MACC network

is shown in Figure 2. The set of caches accessible to each user

are listed below:

U1 accesses {Z1,1,Z1,2,Z2,1,Z2,2},

U2 accesses {Z1,2,Z1,3,Z2,2,Z2,3},

U3 accesses {Z1,3,Z1,1,Z2,3,Z2,1},

U4 accesses {Z2,1,Z2,2,Z3,1,Z3,2},

U5 accesses {Z2,2,Z2,3,Z3,2,Z3,3},

U6 accesses {Z2,3,Z2,1,Z3,3,Z3,1},

U7 accesses {Z3,1,Z3,2,Z1,1,Z1,2},

U8 accesses {Z3,2,Z3,3,Z1,2,Z1,3},

U9 accesses {Z3,3,Z3,1,Z1,3,Z1,1}.

Z1,1 Z1,2 Z1,3

Z2,1 Z2,2 Z2,3

Z3,1 Z3,2 Z3,3

U1 U2

U4 U5

U7 U8

L = 5

Server

K2 = 3

U6

U9

M = 1

U3

K1 = 3

Figure 2: (3, 3, 2, 5, 1, 9) 2D MACC network

i) Placement phase: The server divides each file into F = 9
subfiles, Wn = {Wn,f , f ∈ [9]}, ∀n ∈ [9]. Since C1,(1,1) = ⋆,

cache Z(1,1) is filled as Z(1,1) = {Wn,1, n ∈ [9]}, . Sim-

ilarly, the other caches are filled as Z(1,2) = {Wn,2, n ∈
[9]}, Z(1,3) = {Wn,3, n ∈ [9]}, . . . , Z(3,3) = {Wn,9, n ∈ [9]}.

Each user can access r2 = 4 caches. For instance, U3 accesses

caches Z(1,3),Z(2,3),Z(1,1), and Z(2,1).

ii) Delivery phase: Let d = (d1, d2, . . . , d9) be the demand

vector. There are S = 5 transmissions from the server, each

taking a normalized time of 1/F = 1/9. The transmission

corresponding to integer 1 is

x(1) = V
(1)(Wd1,3,Wd2,1,Wd3,2,Wd4,1,Wd5,1,Wd6,1,

Wd7,3,Wd8,1,Wd9,2)
T ,

where V
(1) = (v

(1)
1 ,v

(1)
2 , . . . ,v

(1)
9 ) ∈ C5×9. Let us see how

the precoding vector v
(1)
1 is constructed. In the first column

of B(1), we have b
(1)
3,(1,1) = 1. In the third row of B(1), except

b
(1)
3,(1,1), the entries b

(1)
3,(2,1), b

(1)
3,(2,2), b

(1)
3,(2,3), and b

(1)
3,(3,1) are

integers. Therefore, v
(1)
1 is designed such that v

(1)
1 ⊥ h4,

v
(1)
1 ⊥ h5, v

(1)
1 ⊥ h6, and v

(1)
1 ⊥ h7 (Note that column

indices (2, 1), (2, 2), (2, 3), and (3, 1) correspond to users U4,

U5, U6, and U7, respectively). Finally, we have v
(1)
1 6⊥ h1. In

a similar manner, the other precoding vectors are designed.

Therefore, the NDT is obtained as Tn = 5/9.

Now, we see how a user recovers the desired subfiles

from the associated transmissions. For instance, we con-

sider user U1. Since b3,(1,1) = 1, the user needs Wd1,3

from the delivery phase. Therefore, the user gets Wd1,3

from the transmission corresponding to integer 1. From

that transmission, the user receives y1(1) = h
T
1 x(1) =

h
T
1 V

(1)(Wd1,3,Wd2,1, . . . ,Wd9,2)
T. By the design of the pre-

coding vector v
(1)
7 , we have h

T
1 v

(1)
7 = 0. Therefore, y1(1) =

h
T
1 v

(1)
1 Wd1,3+h

T
1 v

(1)
2 Wd2,1+h

T
1 v

(1)
3 Wd3,2+h

T
1 v

(1)
4 Wd4,1+

h
T
1 v

(1)
5 Wd5,1 +h

T
1 v

(1)
6 Wd6,1 +h

T
1 v

(1)
8 Wd8,1 +h

T
1 v

(1)
9 Wd9,2.

Since user U1 has access to Wn,1,Wn,2, ∀n ∈ [N ], it can

eliminate the remaining summands and get h
T
1 v

(1)
1 Wd1,3.

Thus,U1 retrieves the subfile Wd1,3 (note that, perfect CSI is

available to all the users). Similarly, all other users can also

recover their required subfiles.

Next, we present two constructions of caching and delivery

arrays, and describe the 2D MACC schemes resulting from

them.

C. Array Constructions and the resulting 2D MACC schemes

First, we illustrate a procedure to obtain caching and

delivery arrays from an EPDA. Using that procedure, we

obtain caching and delivery arrays from the class of EPDAs

constructed in [18], and then derive 2D multi-access coded

caching schemes from them. Those resulting MACC schemes

have an NDT
K1K2(1−r2M/N)
L+K1K2M/N . Next, we give an explicit

construction of caching and delivery arrays for a specific set

of parameters. Interestingly, the resulting MACC scheme has

an NDT
K1K2(1−r2M/N)
L+K1K2r2M/N , which is optimal under uncoded

placement and one-shot delivery.

1) Caching and delivery arrays from EPDAs

Lemma 1: Assume that r|K1 and r|K2. Then from

a (K1K2

r2 , L, F, Z, S) EPDA, it is possible to obtain a

(K1,K2, r
2F,Z) caching array C and a (C, r, L, r4S) de-

livery array B.

Proof: We present an explicit construction of C and

B from a (K1K2

r2 , L, F, Z, S) EPDA A. Let Ã be an array

obtained by replacing all the integers in A with null. We



B =




A πr2+1(A) + r2S . . . πr4−r2+1(A) + (r4 − r2)S
π2(A) + S A+ (r2 + 1)S . . . πr4−r2+2(A) + (r4 − r2 + 1)S

...
...

. . .
...

πr2(A) + (r2 − 1)S π2r2(A) + (2r2 − 1)S . . . A+ (r4 − 1)S


 (3)

diagonally concatenate the array Ã r2 times to obtain C (the

entries in C are ⋆’s and null). That is,

C =



Ã

. . .

Ã


 .

The array C has K1K2 columns and r2F rows. Further, note

that Ã has Z number of ⋆’s in each column. Therefore, C

also has Z number of ⋆’s in each column. Therefore C is a

(K1,K2, r
2F,Z) caching array. Now, we index the columns of

C in a peculiar way. The delivery array depends on the column

indexing of the caching array (through condition D1). Consider

two positive integers u, v ∈ [r]. A group of K1K2/r
2 columns

are indexed with ordered pairs ((x−1)r+u, (y−1)r+v) for

every x ∈ [K1/r] and y ∈ [K2/r]. By a group of K1K2/r
2

columns, we mean the columns corresponding to one Ã (out

of the r2 possibilities). There are r2 different ways of choosing

(u, v) and there r2 such groups of columns. Within a group,

the columns are indexed in the lexicographic order.

For an EPDA A and a positive integer q, the array A +
q is obtained by replacing every integer in the array by the

sum of the integer and q. That is, integer s in A is replaced

by s + q for every s ∈ [S]. Note that the ⋆’s remain as it

is in A + q. Also, for every ℓ ∈ [r4], πℓ(A) represents the

EPDA obtained after a column permutation of A (note that, an

EPDA remains an EPDA with the same parameters even after

column permutation). Then the delivery array B resulting from

C has ⋆’s and integers in the form given in (3). The number

of integers in B is r4S. Also, array B satisfies D3 and D4,

since EPDA A satisfies C3 and C4, respectively. Therefore,

B is a (C, r, L, r4S) delivery array. This completes the proof

of Lemma 1.

We illustrate the above construction through an example.

Example 3: Let K1 = K2 = 4, r = 2, L = 2, and M/N =
1/8. Let A be a (4, 2, 4, 2, 2) EPDA. The EPDA A and an

array Ã which is obtained by replacing all the integers in A

with null are given below.

A =




⋆ 2 1 ⋆
⋆ ⋆ 2 1
1 ⋆ ⋆ 2
2 1 ⋆ ⋆


 and Ã =




⋆ ⋆
⋆ ⋆

⋆ ⋆
⋆ ⋆


 .

By employing the technique illustrated in the proof of Lemma

1 on EPDA A, we obtain a (4, 4, 16, 2) caching array C as in

Figure 3 and a (C, 2, 2, 32) delivery array B as in Figure 4.

Remark 1: For positive integers K, t, and L such that t+L ≤
K , an EPDA construction is proposed in [18]. Now, let us

construct caching and delivery arrays from that class of EPDAs











Ã

Ã

Ã

Ã











(1, 1) (1, 3) (3, 1) (3, 3) (1, 2) (1, 4) (3, 2) (3, 4) (2, 1) (2, 3) (4, 1) (4, 3) (2, 2) (2, 4) (4, 2) (4, 4)

Figure 3: (4, 4, 16, 2) caching array C

using Lemma 1. We consider the case r|K1 and r|K2. Define,

K = K1K2/r
2 and let M/N is such that t = K1K2M/N

is an integer. We have a (K,L, (t+L)
(

K
t+L

)
, t
(

K−1
t+L−1

)
, (K −

t)
(

K
t+L

)
) EPDA A from [18]. By applying Lemma 1, we get

a (K1,K2, r
2(t+ L)

(
K

t+L

)
, t
(

K−1
t+L−1

)
) caching array C and a

(C, r, L, r4(K − t)
(

K
t+L

)
) delivery array B. From C and B,

we can obtain a (K1,K2, r, L,M,N) MACC scheme with an

NDT
r2(K−t)

t+L = K1K2(1−r2M/N)
L+K1K2M/N .

In the MACC schemes obtained from EPDAs, the number

of users simultaneously served is limited to K1K2M/N +L.

This happens because of the user grouping. The multicasting is

limited to users within a group. Next, we identify an instance

of optimality of the (K1,K2, r, L,M,N) MACC scheme.

In that case, the number of users simultaneously served is

K1K2r
2M/N + L.

2) Construction resulting in an optimal MACC scheme

The following construction of caching and delivery arrays

is valid if Z/F = 1/K1K2 and r2 + L = K1K2. First, we

construct a (K1,K2,K1K2, 1) caching array C1 as follows:

C1 =




⋆
⋆

. . .

⋆


 .

The columns are indexed in the lexicographic order as

(1, 1), (1, 2), . . . , (1,K2), . . . , (K1,K2). Each row and each

column of C1 contains only a single ⋆, therefore, in the

corresponding delivery array B1, each column contains r2 ⋆’s.

The delivery array B1 contains S = L integers. All integers

in the set [L] appears in every column of B1. This is possible

because there are only r2 = K1K2 − L number of ⋆’s in

each column, and the remaining L positions are vacant to fill

with integers. We show that B1 is a delivery array. Since B1

is obtained from caching array C1, condition D1 is satisfied.

Also, every integer in [L] appears once in every column, and

exactly K1K2 times in the entire array. Therefore, conditions

D2 and D3 are also satisfied by B1. Note that, each row of



(1,1) (1,3) (3,1) (3,3) (1,2) (1,4) (3,2) (3,4) (2,1) (2,3) (4,1) (4,3) (2,2) (2,4) (4,2) (4,4)








































































































⋆ 2 1 ⋆ 10 ⋆ ⋆ 9 17 ⋆ ⋆ 18 ⋆ 25 26 ⋆

⋆ ⋆ 2 1 ⋆ ⋆ 9 10 18 17 ⋆ ⋆ 25 26 ⋆ ⋆

1 ⋆ ⋆ 2 ⋆ 9 10 ⋆ ⋆ 18 17 ⋆ 26 ⋆ ⋆ 25
2 1 ⋆ ⋆ 9 10 ⋆ ⋆ ⋆ ⋆ 18 17 ⋆ ⋆ 25 26
⋆ 4 3 ⋆ ⋆ 12 11 ⋆ 19 ⋆ ⋆ 20 27 ⋆ ⋆ 28
⋆ ⋆ 4 3 ⋆ ⋆ 12 11 20 19 ⋆ ⋆ 28 27 ⋆ ⋆

3 ⋆ ⋆ 4 11 ⋆ ⋆ 12 ⋆ 20 19 ⋆ ⋆ 28 27 ⋆

4 3 ⋆ ⋆ 12 11 ⋆ ⋆ ⋆ ⋆ 20 19 ⋆ ⋆ 28 27
⋆ 6 5 ⋆ 14 ⋆ ⋆ 13 ⋆ 22 21 ⋆ 30 ⋆ ⋆ 29
⋆ ⋆ 6 5 ⋆ ⋆ 13 14 ⋆ ⋆ 22 21 ⋆ ⋆ 29 30
5 ⋆ ⋆ 6 ⋆ 13 14 ⋆ 21 ⋆ ⋆ 22 ⋆ 29 30 ⋆

6 5 ⋆ ⋆ 13 14 ⋆ ⋆ 22 21 ⋆ ⋆ 29 30 ⋆ ⋆

⋆ 8 7 ⋆ ⋆ 16 15 ⋆ ⋆ 24 23 ⋆ ⋆ 32 31 ⋆

⋆ ⋆ 8 7 ⋆ ⋆ 16 15 ⋆ ⋆ 24 23 ⋆ ⋆ 32 31
7 ⋆ ⋆ 8 15 ⋆ ⋆ 16 23 ⋆ ⋆ 24 31 ⋆ ⋆ 32
8 7 ⋆ ⋆ 16 15 ⋆ ⋆ 24 23 ⋆ ⋆ 32 31 ⋆ ⋆

Figure 4: (C, 2, 2, 32) delivery array B

B1 contains some L integers. Further, note that each integer

in [L] is present in all the K1K2 columns. Therefore, for

every s ∈ [S], every row of B
(s)
1 contains exactly L integers,

satisfying D4. Thus, B1 is a (C1, r, L, S) delivery array.

Corollary 1: For the (K1,K2, r, L = K1K2 − r2,M,N)
MACC scheme with M/N = 1/K1K2, an NDT
K1K2(1−r2M/N)
L+K1K2r2M/N is achievable, which is optimal under un-

coded placement and one-shot delivery.

Proof: Applying Theorem 2 on the above constructed

caching array C1 and delivery array B1 gives the required

(K1,K2, r, L = K1K2 − r2,M,N) MACC scheme with

M/N = 1/K1K2. The NDT achieved is S/F = L/K1K2 =
K1K2(1 − r2M/N)/(L + K1K2r

2M/N). We have already

seen that T ∗
n ≥ K1K2(1 − r2M/N)/(L + K1K2r

2M/N).
Therefore, the achieved NDT is optimal.

Remark 2: Let K1,K2,M and N be such that t ,

K1K2M/N is an integer. The previous construction of

caching and delivery arrays is also applicable if a) t|K1 and

r ≤ K1/t or t|K2 and r ≤ K2/t, b) r2t + L = K1K2.We

illustrate this with the help of the following example.

Example 4: Consider the (K1 = 3,K2 = 4, r = 2, L =
4,M,N) MACC scheme with M/N = 1/6. Therefore, we

have t = K1K2M/N = 2. Also, note that t|K2 and r ≤ K2/t.
Now, we construct a (K1 = 3,K2 = 4, F = K1K2/t =
6, Z = 1) caching array C1 of size 6× 12 as given below:

C1 =




⋆ ⋆
⋆ ⋆

⋆ ⋆
⋆ ⋆

⋆ ⋆
⋆ ⋆



.

The columns of C1 are indexed from (1, 1) to (3, 4) in the

lexicographic order from left to right. In the corresponding

delivery array B1, ⋆’s can be filled satisfying condition D1.

Then, each column of B1 contains four ⋆’s, and each row of

B1 contains eight ⋆’s. In this case, we have S = L/t = 2.

The obtained delivery array B1 is given below.

B1 =




⋆ 1 ⋆ ⋆ 1 ⋆ ⋆ 1 ⋆ ⋆ 1 ⋆
⋆ ⋆ 1 ⋆ ⋆ 1 ⋆ ⋆ 1 ⋆ ⋆ 1
1 ⋆ ⋆ 1 ⋆ ⋆ 1 ⋆ ⋆ 1 ⋆ ⋆
⋆ 2 ⋆ ⋆ 2 ⋆ ⋆ 2 ⋆ ⋆ 2 ⋆
⋆ ⋆ 2 ⋆ ⋆ 2 ⋆ ⋆ 2 ⋆ ⋆ 2
2 ⋆ ⋆ 2 ⋆ ⋆ 2 ⋆ ⋆ 2 ⋆ ⋆



.

The (3, 4, 2, 4,M,N) 2D MACC scheme resulting from the

above (3, 4, 6, 1) caching array C1 and (C1, 2, 4, 4) delivery

array B1 has M/N = 1/6

The NDT of the corresponding (3, 4, 2, 4,M,N) MACC

scheme is S/F = 1/3. Also, the lower bound on the NDT is

(K1K2−r2t)/(L+r2t) = 1/3. Therefore, the NDT achieved

is optimal under uncoded placement and one-shot delivery.

D. Comparison with the single-antenna scheme in [8]

In [8], a few 2D MACC schemes are proposed, but all

restricted to a single-antenna setting. Note that there are no

multi-antenna schemes known for the 2D MACC setting.

The best NDT given in [8] is K1K2(1 − r2M/N)/(1 +
K1K2M/N), when r|K1 and r|K2. Under the same constraint

with L transmit antennas, we achieved an NDT K1K2(1 −
r2M/N)/(L +K1K2M/N). The performance improvement

is clearly because of the addition of the transmit antennas. It

is also important to note that we could provide an instance of

optimality of the 2D MACC scheme with multiple transmit

antennas.

IV. CONCLUSION

In this work, we introduced the multi-antenna coded caching

problem in a 2D MACC network. We presented coding

schemes by constructing two special arrays, namely a caching

array and a delivery array. An optimal MACC scheme is

presented for certain parameter settings. Future work includes

deriving converse bounds, extending optimality to a wider

setting, and performance analysis with different precoders in

low and moderate SNR regimes.
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