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We demonstrate that rotation symmetry is not a necessary requirement for the existence of
fractional corner charges in Cn-symmetric higher-order topological crystalline insulators. Instead,
it is sufficient to have a latent rotation symmetry, which may be revealed upon performing an
isospectral reduction on the system. We introduce the concept of a filling anomaly for latent
crystalline symmetric systems, and propose modified topological invariants. The notion of higher-
order topology in two dimensions protected by Cn symmetry is thus generalized to a protection by
latent symmetry. Our claims are corroborated by concrete examples of models that show non-trivial
corner charge in the absence of Cn-symmetry. This work extends the classification of topological
crystalline insulators to include latent symmetries.

I. INTRODUCTION

Topological phases of matter have been extensively
studied and form a cornerstone of condensed matter
physics. These phases were originally understood
in the framework of the celebrated Altland-Zirnbauer
classification for non-interacting systems[1]. It considers
the presence of time-reversal, particle-hole, and chiral
symmetry to obtain 10 symmetry classes for topological
insulators (TIs) and superconductors. It was also
realized that there are various relationships between the
classes in different dimensions, leading to what is called
the ten-fold way [2]. Later, there have been various
extensions that lie outside the original Altland-Zirnbauer
classification. Examples are Floquet topological
materials [3], disordered materials/topological Anderson
insulators [4], non-Hermitian systems [5], and topological
crystalline insulators (TCI’s) [6], to name a few. The
latter are known to host quantized electronic boundary
states protected by the geometric symmetries of the
crystalline system [6–9].

Of particular interest are higher-order topological
(crystalline) insulators (HOTIs). While ‘conventional’
TIs in D dimension host states with codimension one
on their D − 1 dimensional boundary, HOTIs host
boundary states with a codimension d on their D − d
dimensional boundary. One way of realizing HOTIs is
by considering materials with quantized higher multipole
moments in the bulk. Ref. [10] proposed a classification of
materials with higher multipole moments as an extension
of the modern theory of electric polarization [11, 12].
These systems are now known to be topological and
characterized in terms of nested Wilson loops. However,
systems without a bulk multipole moment may still give
rise to quantized edge or corner states. Such systems
are in a so-called obstructed atomic limit, a phase with
a weaker topological protection than in the conventional
topological materials. This was further investigated in
Ref. [13], where the presence of rotation symmetry lead
to the definition of rotation invariants to characterize the

band topology. Energy spectra with different rotation
invariants cannot be deformed into each other without
closing the bulk gap and are therefore topologically
distinct. Nevertheless, the protection and classification
of these novel topological phases of matter requires the
presence of a geometric rotation symmetry.
Recently, a new type of symmetry, named latent

symmetry, has been proposed [14, 15]. A latent
symmetry only becomes apparent at the reduced level
upon performing a suitable dimensional reduction, the
so-called isospectral reduction (ISR)[16]. In particular,
seemingly asymmetric Hamiltonians may feature latent
geometric symmetries which have a strong impact on
the system’s eigenstates and eigenenergies [15, 17]. This
connection has been used, for instance, in the design
of flat-band lattices [18], and to explain “accidental
degeneracies” in band structures [19]. Very recently,
latent symmetries were also used to construct latent
versions of the Su-Schrieffer-Heeger (SSH) model [20] and
of the non-Hermitian SSH model [21].
In this work, we explore the implications of the

existence of latent symmetries on the classification
of topological phases. Our main result is that the
presence of a geometric rotation symmetry is not a
necessary constraint for obtaining the topological phases
introduced in Ref. [13]. Indeed, the requirement of a
rotation symmetry can be relaxed to the less stringent
condition of a latent rotation symmetry.
The outline of this paper is the following. In Section II,

we introduce the concept of filling anomaly in the context
of the SSH model. We then relate this concept to
the latent SSH model, proposed in Ref. [20], discuss
the ISR in more detail, and formalise the concept of
latent crystalline symmetries. In Section III, we review
the topological classification of Cn-symmetric TCI’s
introduced in Ref. [13] and argue how the topological
invariants should be modified for latent symmetries.
In Section IV, the notion of primitive generators is
introduced, and the generators proposed in Ref. [13]
are generalized. We propose latent primitive generators
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that have no direct rotation symmetry, but are latently
rotation symmetric. The topological behaviour of these
generators is characterised in phase diagrams using
topological rotation invariants. Using the generators,
we construct examples of crystalline latent HOTIs in
Section V. Finally, we conclude our work in Section VI.

II. FILLING ANOMALY BY LATENT
SYMMETRY

Crystalline symmetries impose restrictions on the
distribution of electrons in a crystal. As a consequence,
it may not be possible to maintain charge neutrality
everywhere in the lattice. The simplest example of a
model that exhibits this behaviour is the SSH model. Its
Bloch-Hamiltonian is given by

hSSH(k) =

(
0 v + eik

v + e−ik 0

)
, (1)

where the intracell hopping is denoted by v, the intercell
hopping is fixed to 1, and k is the dimensionless crystal
momentum (we set the lattice constant a = 1). The SSH
model exhibits a mirror symmetry M , that is

MhSSH(k)M
−1 = hSSH(−k), M =

(
0 1
1 0

)
. (2)

The presence of this mirror symmetry gives rise to two
gapped phases, separated by a band closing at |v| = 1.
At half filling, the system is an insulator, and for periodic
boundary conditions (PBC), each unit cell hosts one
electron. Overall, charge neutrality dictates that each
unit cell is composed of an ion with charge Q = |e|.
For open boundary conditions (OBC), without cutting
through unit cells, the distribution of electrons depends
on the phase. As a consequence of mirror symmetry, the
Wannier centers of the electrons can only be located at
either the center or the edge of a unit cell. For |v| > 1
(trivial phase), the Wannier centers are located at the
center of the unit cell and the system can be adiabatically
connected to the trivial atomic limit. On the other
hand, when |v| < 1 (topological phase), the Wannier
centers sit at the edge of the unit cell and the system
can be connected to its obstructed atomic limit. The
Wannier centers in both phases of the SSH model are
shown in Fig. 1(a). In the trivial phase, N electrons can
be distributed symmetrically over N unit cells to yield
charge neutrality. However, in the topological phase, this
is no longer possible. N unit cells can only be filled in
a symmetric manner using N − 1 or N + 1 electrons.
Since mirror symmetry requires the energies of the edge
states to be degenerate [see Fig. 1(b)], increasing the
Fermi energy yields an increase of N − 1 electrons to
N +1 electrons, skipping N . This leads us to the notion
of a filling anomaly η [13], associated with a crystalline
symmetry dividing the lattice in n sectors, each spanning
an angle of 2π/n rad, with n ∈ Z,

η = #ions−#electrons mod n. (3)

For the SSH model in the topological phase, we obtain
η = N − (N + 1) mod 2 = 1. Mirror symmetry
distributes this charge imbalance over the two sides of
the system, such that there will be a fractional boundary
charge of e/2 at the ends of the system. Consequently,
the dipole moment in the topological phase equals
p = e/2, while it vanishes in the trivial phase.

Recently, Ref. [20] showed that although mirror
symmetry leads to topological edge states in the SSH
model, its not a necessary constraint. Indeed, the
requirement of preserved mirror symmetry can be relaxed
to preserved latent mirror symmetry. A latent symmetry
is hidden and only becomes apparent upon performing
what is called an isospectral reduction (ISR)—akin to
an effective Hamiltonian—on the system [14]. Take a
Hamiltonian H as a starting point. The Hilbert space
on which it acts may be partitioned in a set S and its
complement S. The ISR RS(H,E) of H is then defined
through

RS(H,E) = HSS −HSS (HSS − EI)−1
HSS , (4)

where I is the identity matrix [16]. The ISR
converts the linear eigenvalue problem Hψ = Eψ
into a reduced, albeit non-linear, eigenvalue problem
RS(H,E)ψS = E ψS . For example, consider the Bloch

FIG. 1. (a) Sketch of the SSH model in its trivial (|v| > 1) and
topological (|v| < 1) phase. In the trivial (topological) phase,
Wannier centers localize in the center (boundary) of the unit
cell. (b) Spectrum of the SSH model for PBC (left) and
OBC (right), the OBC spectrum shows in-gap edge localized
modes. (c) Latent SSH model consisting of four sites with
intra cell hoppings w (thin solid line) and

√
2w (thick solid

line). Upon performing an ISR, an energy dependent SSH
model is obtained. (d) Spectrum of the latent SSH model
for PBC (left) and OBC (right). The OBC spectrum shows
in-gap edge states for filling 1/4 and 3/4 in the topological
phase.
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Hamiltonian

hLSSH(k) =


0 eik

√
2w 0

e−ik 0 w w√
2w w 0 0
0 w 0 0

 , (5)

which is also depicted in Fig. 1(c) for OBC. By
inspection, one can conclude that this Hamiltonian
does not have a mirror symmetry. Nevertheless, upon
performing an ISR over the red sites, we obtain

RS [hLSSH(k), E] =

(
a(E) s(E) + eik

s(E) + e−ik a(E)

)
≡ hLSSH(k), (6)

which bears a strong resemblance with the SSH model
given in Eq. (1), though with energy-dependent on-site

potential a(E) = 2w2/E and coupling s(E) =
√
2w2/E.

At the level of the ISR, there is a mirror symmetry:
MhLSSH(k)M

−1 = hLSSH(−k) 1. In other words, the
system given by Eq. (5) hosts a latent mirror symmetry,
which is revealed through the ISR.

The main idea of this work is to employ latent
symmetries to construct HOTIs. Before we do so, let
us discuss two important properties of latent symmetries
and the ISR. Firstly, it has been recently shown that
the presence of latent symmetry also implies a certain
(though in general non-geometric) symmetry on the level
of the original Hamiltonian [22]. Let us define the
eigenvalue problem Av = λv and let RS(A, λ) be the
ISR of A. If there exist a symmetry T that becomes
apparent after the ISR, that is

TRS(A, λ)T
−1 = RS(A, λ), (7)

then there also exists a symmetry on the level of A of the
form QAQ−1 = A, with Q = T ⊕Q, where Q is a normal
matrix that acts on S. Equivalently,

[T,RS(A, λ)]− = 0 ⇒ ∃Q = T ⊕Q : [Q,A]− = 0, (8)

where [A,B]− = AB − BA denotes the commutator. It
is important to note that the full operation Q is usually
not a geometric symmetry. We will see examples for this
statement throughout the manuscript.

With some additional technical preface, a similar
reasoning can be applied to crystalline symmetries.
Let us assume that our unit cell features a latent T
symmetry (for instance, Cn) that becomes apparent
after performing an ISR to the set S of its sites, i.e.
[RS(H,E), T ]− = 0. We then build a lattice such that (i)
the ISR performed on the union of sites S in all unit cells

1 For simplicity, from now on we will use h(k) instead of
RS [h(k), E] to denote the ISR of h(k). The energy dependence
and reduction to S are implied.

n |v| > 1 |v| < 1

να φ να φ

1 0 0 π π
2 {−ν, ν} 0 {−ν, ν} 0
3 0, {−ν, ν} 0 π, {−ν, ν} π

TABLE I. Wilson loop eigenvalues να and Zak phase φ for
different fillings n of hLSSH(k). For |v| > 1 the model is
always trivial, while for |v| < 1 the model is topological for
fillings n = 1 and n = 3.

is T -symmetric, and (ii) intercell-coupling only exists
between sites S. It is now easy to show the following: If
we denote the reduced Bloch-Hamiltonian of the lattice
by h(k), we find, analogous to Ref. [10],

Th(k)T−1 = h(DTk) , (9)

whereDT is the representation of T on the vector space of
reciprocal lattice vectors. For example, mirror symmetry
(T ≡M) flips spatial coordinates, such that DMk = −k.
The analogue of Eq. (7) is then(

T ⊕Q
)
h(k)

(
T ⊕Q

)−1
= h(DTk). (10)

To make things more specific, let us now investigate
the latent SSH model introduced in Eq. (5). This model
features a (1D) latent mirror symmetry: T = M = σx
and DMk = −k. The symmetry Q of hLSSH(k) is given
by (details on the derivation of the matrix Q are given
in Appendix A)

Q =M ⊕Q =


0 1 0 0
1 0 0 0
0 0 1√

2
1√
2

0 0 1√
2

−1√
2

 . (11)

The existence of Q is central to the analysis considered
in this work. In this case, it acts as a permutation on
the red sites, but as a general orthogonal transformation
on the other sites. Importantly, since Q acts similarly on
hLSSH(k) as an ordinary mirror symmetry would, that
is QhLSSH(k)Q

−1 = hLSSH(−k), it poses the exact same
restrictions as mirror symmetry would. For example, the
Wilson loop eigenvalues να of hLSSH(k) are restricted to
be 0, π or come in pairs {−ν, ν}. Moreover, its Zak
phase φ is quantized to 0 or π. Both the Wilson loop
eigenvalues and the Zak phase at different filling factors
are shown in Table I.
Secondly, besides revealing latent symmetries, the ISR

also allows for a simpler topological characterisation
of Bloch Hamiltonians. More concretely, consider two
Hamiltonians h1(k, t = {t1, t2, . . . , tn}) and h2(k,g =
{g1, g2, . . . , gm}). The first one, h1(k, t), represents a
known model which exhibits a gap closing at E = E0

captured through a condition on the parameters t that
could equivalently be written as f(t) = 0. For the
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SSH-model, for instance, we have t = (v) and the gap
closes at f(v) = 1 − |v| = 0; see the example below.
Let us then assume that the ISR of the second model
has the same form as h1(k), but with energy-dependent
parameters {t1(E,g), t2(E,g), . . . , tn(E,g)} ≡ t(E,g),
up to a constant energy-dependent shift a(E,g) 2, i.e.,

h2(k) = h1
[
k, t(E,g)

]
+ a(E,g)I. (12)

Then, we can extract the gap closing energies, E∗, of
h2(k,g) from

E∗ − a(E∗,g) = E0. (13)

The corresponding values of g can be obtained by solving
f
[
t(E∗,g)

]
= 0. When the ISR reduces a system to

a known model, the topological characterisation of the
system is reduced from calculating multiband topological
invariants to solving an algebraic problem [20, 21]. As an
example, consider now the latent SSH model described
by Eq. (5). The ‘ordinary’ SSH model has a gap closing
at E0 = 0 for f(v) = 1−|v| = 0. The gap closing energies
E∗ for the latent model are thus determined through

E∗ − a(E∗, w) = E∗ − 2w2

E∗ = 0. (14)

Equation 14 has two solutions E∗ = ±
√
2w, which is

corroborated by Fig. 1(d) showing two sets of in-gap
modes in red. The energies E∗ predict the topological
phase transition through f [s(E∗, w)] = 1 − |s(E∗, w)| =
0, which in this case reduces to |w| = 1, akin to the SSH
model. One can also conclude that in order to respect
the symmetries of the system at bulk insulating filling,
the system with OBC must feature a filling-anomaly.

III. TOPOLOGICAL INDICES FROM (LATENT)
ROTATIONAL SYMMETRY

In the above, we have discussed a simple latent
SSH model, which has been previously investigated
both in its Hermitian [20] and its non-Hermitian [21]
version. In the remainder of this work, we apply
a similar reasoning to develop the concept of latent
HOTIs. To this end, we start by reviewing the existing
methods for the classification of usual HOTIs. We
focus on two-dimensional insulators that preserve time-
reversal symmetry (class AI in the Altland-Zirnbauer
classification [1, 2]). The introduction of crystalline
symmetries allows for a further classification of these
materials [6, 23]. Here, we will follow Ref. [13].

2 Recall that through the ISR, the reduced parameters depend on
both energy E and the original system parameters g.

A. Recap: Topological indices through
conventional geometric rotation symmetries

The presence of a rotation symmetry Ĉn, which rotates
sites in a lattice by 2π/n rad around some point, is
represented on the level of the Bloch Hamiltonian by

Ĉnh(k)Ĉ
−1
n = h(DCn

k), (15)

where, similar to Eq. (9), DCn is a linear transformation
on k that depends on Cn. At high symmetry points
(HSPs) in the Brillouin zone, i.e. points that are
mapped to themselves (modulo a reciprocal lattice
vector), DCnΠ

(n) = Π(n), we have[
Ĉn, h

(
Π(n)

)]
−
= 0 . (16)

Because Ĉn and h(k) commute at a HSPΠ(n), they share
an eigenbasis. Thus, the Bloch states

∣∣u(k = Π(n))
〉
can

be chosen as eigenstates of Ĉn, such that

Ĉn

∣∣∣u(Π(n)
)〉

= Π(n)
p

∣∣∣u(Π(n)
)〉

. (17)

Since
(
Ĉn

)n
= I, its eigenvalues are the n-th roots of

unity:

Π(n)
p = e

2πi
n (p−1), with p ∈ {1, 2, . . . n}. (18)

From these eigenvalues, we can construct rotation
topological invariants of the form[

Π(n)
p

]
≡ #Π(n)

p −#Γ(n)
p , (19)

where #Π
(n)
p denotes the number of bands below the

energy gap with eigenvalue Π
(n)
p and Γ = 0 is the gamma

point in the Brillouin zone, which is a natural reference

point to calculate the rotational invariants3. [Π
(n)
p ]

characterises the topology of Cn-symmetric insulators
in a similar way to inversion eigenvalues: A difference
of inversion eigenvalues between two HSPs indicates
band inversion, i.e. non-trivial topology. In a similar
manner, the difference of rotation eigenvalues between

HSPs, captured by [Π
(n)
p ], allows for a comparison of

the representations of rotation symmetry. If different
representations exist, the energy bands exhibit non-
trivial topology. As a consequence of TRS and the
fact that the number of bands is constant through
the Brillouin zone, one obtains a set of independent

3 Π (Π) should be viewed as a ‘placeholder’. It will take the values

X, Y, M, K and K′ (X, Y , M , K and K′). For example, [K
(3)
2 ]

represents the number of eigenvalues of Ĉ3 |u(K)⟩ that are equal
to exp{2πi/3}, minus the number of eigenvalues evaluated at the
Γ point.
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FIG. 2. Latently Cn symmetric unit cells. (a-d) Minimal examples of unit cells that show a latent C2, C3, C4, and C6 symmetry
without a direct geometric symmetry. Relevant hopping parameters are indicated. (e-h) Cells obtained upon performing an ISR
to the red sites of the unit cells in (a-d), the reduced systems show geometric Cn symmetries, revealing the latent symmetries
in (a-d). Relevant (energy-dependent) parameters are indicated.

topological indices χ(n) for Cn-symmetric materials [13],

χ(2) =
([
X

(2)
1

]
,
[
Y

(2)
1

]
,
[
M

(2)
1

])
,

χ(4) =
([
X

(2)
1

]
,
[
M

(4)
1

]
,
[
M

(4)
2

])
,

χ(3) =
([
K

(3)
1

]
,
[
K

(3)
2

])
,

χ(6) =
([
M

(2)
1

]
,
[
K

(3)
1

])
. (20)

B. Topological indices through latent rotation
symmetries

Having reviewed the theory regarding geometric
symmetries, let us now discuss how latent symmetries fit
into the scheme. Rather surprisingly, it can be shown
that the invariants χ(n) are still applicable. The key
for this insight is Eq. (8). Equipped with this equation,

one only needs to replace the symmetry operator Ĉn in
Eq. (17) by Ĉn ⊕Q, as defined in Eq. (10). Upon doing
so, the rotation invariants of latent symmetric models can
be evaluated to characterize the topology of the system.
This leads to the definition of latent rotation symmetric
HOTIs through[

Ĉn ⊕Q, h
(
Π(n)

)]
−
= 0, (21)

where the total symmetry Ĉn ⊕ Q is not necessarily
geometric. Equivalently, we have

[
Ĉn, h

(
Π(n)

)]
−
= 0. (22)

C. Classification of HOTIs: Dipole moment and
corner charges

The rotation invariants χ(n) can be related to physical
properties of the systems, such as the dipole momentP(n)

and corner charge Q(n). These quantities are derived
in Ref. [13] for geometric symmetries and can be easily
shown to hold also for latent symmetries.

Below, we will directly state the results for the dipole
moment,

P(2) =
e

2

([
Y

(2)
1

]
+
[
M

(2)
1

])
a1

+
e

2

([
X

(2)
1

]
+
[
M

(2)
1

])
a2,

P(4) =
e

2

[
X

(2)
1

]
(a1 + a2),

P(3) =
2e

3

([
K

(3)
1

]
+ 2

[
K

(3)
2

])
(a1 + a2),

P(6) = 0, (23)
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and for the corner charge,

Q(2) =
e

4

(
−
[
X

(2)
1

]
−
[
Y

(2)
1

]
+
[
M

(2)
1

])
,

Q(4) =
e

4

([
X

(2)
1

]
+ 2

[
M

(4)
1

]
+ 3

[
M

(4)
2

])
,

Q(3) =
e

3

[
K

(3)
2

]
,

Q(6) =
e

4

[
M

(2)
1

]
+
e

6

[
K

(3)
1

]
. (24)

The dipole moments are defined modulo e/Acell times a
lattice vector and the corner charges are defined modulo
e. Here Acell denotes the area of the unit cell. Notice
also that we group the dipole moments P(2) and P(4)

(P(3) and P(6)) because they share at least one common
topological index (the same is done for the corner charges
as well).

Before we continue, let us briefly remind the reader
about the connection between these two quantities and
HOTIs. To this end, we consider a system under
OBC, terminated respecting its (latent or geometric) Cn

symmetry. The system is a HOTI if it is (higher order)
topological and insulating. The former requirement
translates in a nonzero corner charge. If the dipole
moment P(n) does not vanish, there will be in-gap states
when OBC are imposed. This poses two constraints on
a HOTI, be it conventional or latent:

• The corner charge Q(n), as given by Eq. (24), is
nonzero.

• The dipole moment P(n), as given by Eq. (23),
vanishes.

In the remainder of this manuscript, we will show how
one can construct a latent HOTI, that is, a latently Cn-
symmetric system fulfilling these two criteria.

IV. BUILDING BLOCKS FOR LATENT HOTIS

A necessary first step to construct a latent HOTI is a
sufficiently large set of latently Cn symmetric lattices. In
this section, we show how this task can be achieved. In
particular, in the next Section IVA we will introduce
unit cells that feature a latent C2−, C3−, C4−, and
C6−symmetry, as depicted in Fig. 2. Afterwards, in
Section IVB we shall use these unit cells to construct
lattices, such that the total system retains the latent Cn

rotation symmetry. Finally, in Section IVC, we present
a systematic way of constructing latently Cn-symmetric
setups with a pre-defined topological index. Equipped
with all these tools, we will then finally construct latent
HOTIs in the next Section V.

A. Latently symmetric unit cells

In the following, we will present unit cells featuring a
latent C2, C3, C4, or C6 symmetry. Before we discuss

them in detail, let us briefly remark how we designed
these cells. The C2-symmetric cell was found analytically
by starting with a four-site long chain with couplings
a, b, c and all on-site energies equal to zero. Then,
demanding that two sites u, v in this chain are latently
symmetric, analytical expressions for the three couplings
were found. We remark that there are other techniques
for the design of a latently C2-symmetric system,
with examples ranging from exhaustive search [24] to
more sophisticated graph-theoretical results [25]. The
interested reader is referred to the literature on graphs4

with cospectral vertices [25, 26]; every graph with this
property has recently been shown to have a latent C2-
symmetry [17]. For the unit cells with a latent C3, C4,
and C6-symmetry, we used the complement multiplet
technique explained in the Supplemental Material of
Ref. [19]. In particular, we started with a Cn-symmetric
Hamiltonian, which trivially hosts also a latent Cn-
symmetry5, and computed its complement multiplets.
Then, we added a new site to the system and connected
it to the complement multiplets such that the geometric
Cn-symmetry is broken while its latent Cn-symmetry is
maintained.

1. Latent C2 symmetry

In Sec. II, the notion of a latently mirror symmetric
system was introduced in the context of the latent SSH
model. In 1D, C2 and mirror symmetry are the same,
hence we take the latent SSH unit cell as a building block
for latent C2-symmetric HOTIs. The unit cell of the
latent SSH model, and its ISR to the red sites, are once
more displayed in Figs. 2(a) and 2(e), respectively. The
Hamiltonian for the single cell in Fig. 2(a) is given by

H
(2)
L = t0


0 0

√
2 0

0 0 1 1√
2 1 0 0
0 1 0 0

 . (25)

The parameters in the isospectrally reduced model in

Fig. 2(e) are given by a(2) = 2t20/E and v
(2)
0 =

√
2t20/E.

The reduced model obeys a C2-symmetry,

Ĉ2 =

(
0 1
1 0

)
, (26)

4 We note that there is a one-to-one mapping between a graph and
its adjacency matrix H, which for many graphs is Hermitian and
could thus be interpreted as a Hamiltonian.

5 This can be shown by performing the isospectral reduction
on any n sites that are mapped onto each other by the
corresponding symmetry operator Cn commuting with the
underlying Hamiltonian.
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which corresponds to the symmetry

Q(2) ≡ Ĉ2 ⊕Q
(2)

=

(
0 1
1 0

)
⊕

(
1√
2

1√
2

1√
2

− 1√
2

)
(27)

of the full Hamiltonian.

2. Latent C3 symmetry

An example of a unit cell exhibiting latent C3

symmetry is depicted in Fig. 2(b). It has 9 sites, with
hopping given by t0 (thin black lines) and 2t0 (thick black
lines). Its Hamiltonian is given by

H
(3)
L = t0



0 0 0 1 1 1 2 0 0
0 0 0 0 1 2 1 1 0
0 0 0 1 0 2 1 0 1
1 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 2 2 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0


. (28)

Upon performing an ISR to the red sites, the cell
shown in Fig. 2(f) is obtained, displaying a C3-symmetry.
The reduced model has a single energy-dependent

hopping parameter v
(3)
0 = 5t20/E and onsite potential

a(3) = 7t20/E.6 The corresponding symmetry matrix of
the full Hamiltonian Q(3) [cf. Eq. (8)] of the full system
depicted in Fig. 2(b) is given by

Q(3) ≡ Ĉ3 ⊕Q
(3)

(29)

=

0 0 1
1 0 0
0 1 0

⊕



1
2 0 1

2 − 1
2

1
2 0

1
2

1
2 0 0 − 1

2
1
2

0 1
2

1
2

1
2 0 − 1

2
0 − 1

2
1
2

1
2 0 1

2
1
2 0 − 1

2
1
2

1
2 0

− 1
2

1
2 0 0 1

2
1
2

 .

3. Latent C4 symmetry

Next, let us investigate the setup shown in Fig. 2(c),
which has 13-sites and features four different hopping
parameters: t0 (black), t1 (green), t2 (red), and t3
(blue). A double-coloured line implies a sum of the two
hopping strengths, i.e. the blue-and-red line has hopping

parameter t2 + t3. The matrix form, H
(4)
L , of Fig. 2(c)

is given in Appendix B 1 by Eq. (B1). Depending on the

6 For brevity, we have dropped the energy dependence in the
notation of the reduced hopping parameter and onsite potential:

v
(n)
i = v

(n)
i (E) and a(n) = a(n)(E).

choice of couplings, this unit cell has different geometric
symmetries. Firstly, if t1 = t2 and t3 = 0, it enjoys a C4-
symmetry. Keeping t3 = 0 but breaking the equality of
the first two couplings such that t1 ̸= t2, this symmetry
is partly broken and only a geometric C2 symmetry is
left. The situation becomes much easier, though, when
performing an ISR on the red sites. The resulting reduced
model is depicted in Fig. 2(g); it has an energy-dependent

on-site potential a(4) and hopping parameters v
(4)
0 (black)

and v
(4)
1 (grey). As can be easily checked, it has a C4

symmetry given by

Ĉ4 =

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 . (30)

Thus, regardless of the choice of couplings ti, the unit cell
is latently C4-symmetric. Once again, this demonstrates
that the ISR gives a wider, more comprehensive
viewpoint on a system than merely checking its geometric
symmetries. Before continuing, we remark that—again,
by Eq. (8)—this latent C4 symmetry corresponds to a

non-geometric symmetry Q(4) ≡ Ĉ4 ⊕ Q
(4)

of the full

unit cell. Expressions for Q
(4)

and the parameters in
Fig. 2(g) are given in Appendix B 1.

4. Latent C6 symmetry

Finally, we come to the unit cell depicted in Fig. 2(d).
It has 19 sites and features three different hopping
parameters t0 (black), t1 (green), t2 (red). A more
complex latent C6-symmetric unit cell is given in
Appendix B 2. This model is C6-symmetric only when
t1 = t2 = 0. Furthermore, it is C3 symmetric if only
t2 = 0. Once again, the picture becomes clearer when
performing an ISR to the red sites. The resulting reduced
model is depicted in Fig. 2(h); it is described in terms
of the on-site potential a(6) and hopping parameters

v
(6)
0 (black), v

(6)
1 (grey), and v

(6)
2 (red). It can be

promptly seen that the reduced model is C6-symmetric.
Thus, irrespective of the choice of coupling parameters
ti, the full unit cell is latently C6-symmetric. This latent
symmetry corresponds to a non-geometric symmetry of

the full unit cell, given by Q(6) ≡ Ĉ6 ⊕ Q
(6)

, with full

expressions for Q
(6)

and the parameters in Fig. 2(h) given
in Appendix B 2.

B. Lattice structures preserving latent
Cn-symmetries

Equipped with a set of latently Cn-symmetric unit
cells, the next step is to embed these into lattices, such
that the total setup keeps this symmetry. As we now
show, this task is rather simple. Let us assume that a
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given lattice structure is composed of a unit cell with
a geometric Cn-symmetry, such that the lattice as a
whole keeps the symmetry. Next, let us replace the
geometrically Cn-symmetric unit cell by one whose ISR
on a set S of sites has the same symmetry, i.e. a latently
Cn-symmetric unit cell. It is then a trivial task to
show that the lattice’s ISR—for clarity, we mean the
simultaneous reduction on the union of sites S in each
unit cell—is Cn-symmetric. In other words, the lattice is
latently Cn-symmetric. Examples of systems with these
features are discussed in more detail in the following
section.

C. Primitive generators and their topological
classification

With the material presented so far, one could easily
construct a large number of latently Cn-symmetric
lattices. However, to be HOTIs, they need a vanishing
dipole moment and a non-vanishing corner charge. Via
Eqs. (23) and (24), both quantities are connected to the
topological indices in Eq. (20). In principle, one could
then find latent HOTIs by a brute-force search, that is, by
computing these quantities for a large number of latently
Cn-symmetric setups and filtering out the ones that are
HOTIs. However, there is a more elegant and systematic
way that is based on the concept of primitive generators
[13]. Essentially, these are building blocks with certain
properties, which can be connected to each other in a
specific manner, such that the resulting setup features a
well-defined topological index.

To introduce these generators, let us start with an
interesting fact on topological indices. As pointed
out in Ref. [13], two models with the same Cn-
symmetry, described by Bloch Hamiltonians h1 and h2,

characterized by χ
(n)
1 and χ

(n)
2 , respectively, may be

combined to form a third model

h3 =

(
h1 γ
γ† h2

)
. (31)

Here, γ connects the two different Hamiltonians in a way
that does not close any gaps and that preserves Cn-
symmetry. The rotation invariant of the new model is

then given by χ
(n)
3 = χ

(n)
1 + χ

(n)
2 . Consequently, if for a

given symmetry χ(n) has N components, it is sufficient to
haveN models with linearly independent χ(n) to span the
whole topological phase space. This sets the basis to the
notion of primitive generators. The primitive generators
form a minimal set from which a setup with an arbitrary
topological index can be constructed. From there, the
construction of an actual (latent) HOTI is only a minor
step.

In the following, we will discuss and classify (latent)
primitive generators for every one of the four classes C2,
C3, C4, and C6 that are compatible with translational
invariance of a crystal. The key results are graphically

depicted in Figs. 3 to 6 and are discussed in more detail
in the text. For each of the four classes, we first treat the
conventional case of geometric symmetry, and then treat
the new case of latent symmetry. This dual treatment
might seem redundant, but it serves two purposes.
Firstly, the characteristics (for instance, the band
structure) of the geometric and latent setups have some
striking similarity that would otherwise be unnoticed.
Secondly, our treatment of the geometrically symmetric
primitive generators represents minor generalisations of
the primitive generators introduced in Ref. [13].
In each of the following examples, the primitive

generators are the Bloch-Hamiltonians of a crystal
obtained by inserting a specific unit cell (with either a
geometric or latent Cn symmetry) into a specific lattice
structure. We remark that a given Cn might support
different lattice structures.

1. C2-symmetry

For a C2 symmetry, we investigate only one lattice
structure, which we call the “stacked SSH model”.
a. Geometric stacked SSH. We consider the

primitive generator given by the Hamiltonian

h
(2)
1 (k) =

(
2w cos ky t+ eikx

t+ e−ikx 2w cos ky

)
. (32)

It is the Bloch-Hamiltonian of a system obtained by
inserting the unit cell depicted in Fig. 3(a) into the
stacked SSH lattice structure of Fig. 3(d). The system
corresponds to multiple SSH chains stacked in the y-
direction. Hopping within a chain occurs with an
intracell hopping given by t (solid black line) and a
horizontal intercell hopping of 1 (dashed black line). The
chains are connected with a vertical intercell hopping of
w (dot-dashed black line). The lattice vectors are given
by a1 = (1, 0) and a2 = (0, 1). Eq. (32) admits a C2-
symmetry given by

Ĉ2h
(2)
1 (kx, ky)Ĉ

−1
2 = h

(2)
1 (−kx,−ky), (33)

where Ĉ2 is given by Eq. (26). Consequently, the
topology of the system may be characterized using χ(2).
Since the value of w does not affect the gap structure,
we set w = 0. For general values of t, the spectrum
is gapped at half filling, as shown in Fig. 3(b), giving
rise to two distinct phases. These phases are separated
by a gap closing at t = +1 (−1), taking place along
the XM (YΓ) path in the Brillouin zone. For |t| < 1,
the system is in its topological phase, corresponding to
χ(2) = (1, 0, 1) and P(2) = (e/2)a1. For |t| > 1, the
system is trivial with χ(2) = (0, 0, 0) and P(2) = 0. The
different topological phases are depicted in Fig. 3(c). We
note that a second, independent, generator for C2 can
be obtained by rotating Fig. 3(d) by 90 degrees. This
would correspond by letting kx → ky and ky → −kx
in Eq. (32). As a result, the topological phase would
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FIG. 3. (a) Unit cell of the geometric C2-symmetric primitive

generator h
(2)
1 (k), with intracell hopping t. Horizontal

intercell hopping is indicated by dashed lines and is fixed to
1; vertical intercell hopping is represented by a dot-dashed

line and is given by w. (b) Energy spectrum of h
(2)
1 (k)

for t = 1/2 and w = 0. (c) Phase diagram, in which the

rotation invariants χ(2) are shown for gapped phases. (d)
Lattice structure of the C2-symmetric primitive generators.
The lattice represents stacked 1D SSH chains. (e) Unit cell of

the Latent C2-symmetric primitive generator h
(2)
L,1(k). Values

of the hopping parameters are indicated in Fig. 2(a) and
horizontal intercell hoppings (dashed lines) are fixed to 1
while vertical intercell hopping (dot-dashed lines) are given

by w. (f) Spectrum of h
(2)
L,1(k) for t0 = 1/2 and w = 0. (g)

Phase diagram at one filled band. Rotation invariants χ(2)

are displayed for gapped phases.

now have χ(2) = (0, 1, 1) and P(2) = (e/2)a2. This
would yield 2 generators for C2-symmetric systems. A
third generator can be obtained by taking one of the C4

generators in the next section and making the hopping
in the x− and y−direction different.

b. Latent stacked SSH. If we insert the unit cell
depicted in Fig. 3(e) into the lattice structure of Fig. 3(d),

we obtain a system with a Bloch-Hamiltonian given by

h
(2)
L,1(k) = H

(2)
L +


2w cos ky eikx 0 0
e−ikx 2w cos ky 0 0
0 0 0 0
0 0 0 0

 . (34)

In Fig. 3(e), the horizontal intercell hopping (dashed
black line) is fixed to 1 and the vertical intercell hopping
(dot-dashed black line) is given by w. Figure 3(f) depicts
the spectrum of Eq. (34) for t0 = 1/2 and w = 0.
Notice that the spectrum resembles two copies of the one
in Fig. 3(b). Since this primitive generator represents
stacked (latent) SSH chains, its phase diagram is the
same as that of the SSH chain. At the end of Sec. II,
we showed that for this specific latent SSH model, phase
transitions occur at |t| = 1, just like for the SSH model
(again, the value of w does not affect the gap structure).

Following this reasoning, h
(2)
L,1(k) has a gap closing at

|t0| = 1, separating the trivial phase χ(2) = (0, 0, 0)
(|t0| > 1) from the topological phase χ(2) = (1, 0, 1)
(|t0| < 1), as shown in the phase diagram in Fig. 3(g).

2. C4-symmetry

For a C4-symmetry, we consider three lattice
structures: a “2D SSH”, a “breathing square-octagon”,
and a “stacked breathing square-octagon”.
a. Geometric 2D SSH. Inserting the unit cell of

Fig. 4(a) into a lattice structure, we obtain Fig. 4(j),
which corresponds to a system described by the Bloch-
Hamiltonian

h
(4)
1 (k) =


0 t1 + eikx t2 t1 + eiky

t1 + e−ikx 0 t1 + eiky t2
t2 t1 + e−iky 0 t1 + e−ikx

t1 + e−iky t2 t1 + eikx 0

 .

(35)
The system has 4 sites per unit cell, as depicted in
Fig. 4(a), and is also known as the 2D SSH model [27–
29]. The sites are connected with hopping parameters t1
and t2 for nearest-neighbour and next-nearest-neighbour
hopping, respectively. The intercell hopping (dashed
lines) is fixed to unity. The lattice vectors are given by
a1 = (1, 0) and a2 = (0, 1). Equation 35 has a C4-
symmetry, that is:

Ĉ4h
(4)
1 (kx, ky)Ĉ

−1
4 = h

(4)
1 (ky,−kx), (36)

where Ĉ4 is given by Eq. (30). Figure 4(b) shows the

spectrum of h
(4)
1 (k) for t1 = 1/2 and t2 = 0, which

is gapped at 1/4- and 3/4-filling. For this parameter

choice, we have [X
(2)
1 ] = −1, [M

(4)
1 ] = 1, [M

(4)
2 ] = 0,

hence χ(4) = (−1, 1, 0), which corresponds to P(4) =
e(a1+a2)/2. The spectrum closes its gap for |t1|+ |t2| =
1, which occurs simultaneously at the X and Y point,
owing to the C4-symmetry. For finite t2, the system
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FIG. 4. (a,d,g) Unit cells of the geometric C4-symmetric primitive generators h
(4)
1 (k), h

(4)
2 (k), and h

(4)
3 (k), respectively. The

nearest-neighbour hoppings are represented by t1; the next-nearest-neighbour hoppings are represented by t2; the intercell

hoppings are indicated by dashed lines and are fixed to be equal to 1. (b,e,h) Energy spectra of h
(4)
1 (k) at t1 = 1/2 and t2 = 0,

h
(4)
2 (k) at t1 = 1/2 and t2 = 0, and h

(4)
3 (k) at t1 = 0 and t2 = 1/2. (c,f,i) Phase diagrams of the geometric primitive generators.

For gapped phases, the rotation invariants χ(4) are shown. (j,k,l) Lattice structures of the C4−symmetric primitive generators.
The lattices represent a 2D SSH, a breathing square-octagon, and a stacked breathing square octagon lattice, respectively.

(m,p,s) Unit cells of the latent C4-symmetric primitive generators h
(4)
L,1(k), h

(4)
L,2(k), and h

(4)
L,3(k), respectively. Values of the

hopping parameters are indicated in Fig. 2(c) and intercell hoppings (dashed lines) are fixed to 1. (n,q,t) Energy spectra of

h
(4)
L,1(k) for t0 = t1 = t2 = 1, t3 = 1/2, h

(4)
L,2(k) for t0 = t1 = t2 = 1/2, t3 = 1, and h

(4)
L,3(k) for t0 = t1 = t2 = −1, t3 = 0. (o,r,u)

Phase diagrams of h
(4)
L,1(k) at 1 filled band, h

(4)
L,2(k) at 2 filled bands, and h

(4)
L,3(k) at 3 filled bands, as a function of t0 and t3,

t1 = t2 = t0. Rotation invariants χ(4) are shown for gapped phases.

remains gapless till |t1| = 1 + |t2|. At this point, the
system becomes gapped once again with χ(4) = (0, 0, 0),
corresponding to P(4) = 0. This behavior, together
with the corresponding symmetry indicators χ(4), is
depicted in Fig. 4(c). A third primitive generator for
C2 is obtained by letting the hoppings in the x− and
y−dirrection be different. In that case, the C4-symmetry

in Fig. 4(a) gets broken into a C2 symmetry given by

Ih(4)1 (kx, ky)I−1 = h
(4)
1 (−kx,−ky), (37)

where I ≡ Ĉ2
4 .
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b. Geometric breathing square-octagon. The second
generator for C4 is given by the Bloch-Hamiltonian

h
(4)
2 (k) =


0 t1 t2 + eikx t1
t1 0 t1 t2 + eiky

t2 + e−ikx t1 0 t1
t1 t2 + e−iky t1 0

 .

(38)

The underlying system is obtained by inserting the unit
cell of Fig. 4(d) into a lattice to form the structure shown
in Fig. 4(k). The internal structure of the unit cell

is rotated with regard to h
(4)
1 (k). If the next-nearest-

neighbour hopping is set to zero, this lattice represents
(breathing) T-Graphene; otherwise, we call it the square-
octagon lattice. The lattice has attracted much attention
recently, with results ranging from topological phases to
flat-band superconductivity [30–32]. The spectrum is
gapped for |t1| + |t2| < 1 at half filling, accompanied
with rotation invariants χ(4) = (1, 1,−1) and P(4) =
e(a1 + a2)/2. An example of the spectrum for t1 = 0
and t2 = 1/2 is shown in Fig. 4(e). When |t1|+ |t2| = 1,
the gap generally closes at the M point. However, when
t1 = 0 (and therefore |t2| = 1), it closes at both the M
and Γ points. Moreover, when t2 = 0 (|t1| = 1), the gap
closes over the full XM and YM lines in the Brillouin
zone. For |t2| > 1 + |t1|, a new gap opens at the M
point (if |t1| = 0, this gap opens along the whole XM
and YM lines). This gap is trivial and characterized by
χ(4) = (0, 0, 0), P(4) = 0. For other parameter choices,
the system is gapless, as shown in Fig. 4(f).

c. Geometric stacked breathing square-octagon.
Finally, the third C4-symmetric generator is governed
by the Hamiltonian

h
(4)
3 (k) =

 0 t1 t2 t1
t1 0 t1 t2
t2 t1 0 t1
t1 t2 t1 0

 (39)

+


0 0 ei(kx+ky) 0
0 0 0 e−i(kx−ky)

e−i(kx+ky) 0 0 0
0 ei(kx−ky) 0 0

 .

The underlying system is obtained by inserting the unit
cell of Fig. 4(g) into a lattice to form the structure in
Fig. 4(l). The system has the same internal structure

as h
(4)
1 (k), as can be seen in Fig. 4(a), but has different

intercell hopping. The lattice is formed by overlapping
two breathing square-octagon lattices. The spectrum of

h
(4)
3 (k) [ Fig. 4(h)] is gapped at half filling for |t1|+ |t2| <

1, characterized by the rotation invariants χ(4) = (2, 0, 0).
This corresponds to P(4) = 0. For |t1|+ |t2| = 1, the gap
closes at the X and Y points (if t1 = 0, it also closes
at the Γ and M points). For |t2| > 1 + |t1|, a trivial
gap opens at the Γ and M points with χ(4) = (0, 0, 0),
P(4) = 0. For other values of t1 and t2, the system is
gapless, as shown in Fig. 4(i).

d. Latent C4-symmetric structures. The latent C4-
symmetric cell in Fig. 2(c) can be inserted in the three
different lattice structures of Fig. 4(j), Fig. 4(k), or
Fig. 4(l). This yields systems with Bloch-Hamiltonians
of the form

h
(4)
L,i(k) = H

(4)
L +

(
h̃
(4)
i (k) ∅4×9

∅9×4 ∅9×9

)
. (40)

Here h̃
(4)
i (k) are the Hamiltonians given in Eq. (35),

Eq. (38), and Eq. (39) with all intracell hoppings set
to zero, i.e. only intercell hopping. This is because
the second term is only there to connect the latently
symmetric cells on a lattice.

For all h
(4)
L,i(k), we set t1 = t2 = t0. Consequently, the

Hamiltonians have a geometric C4-symmetry for t3 = 0.
For finite values of t3, the geometric C4 symmetry of

h
(4)
L,i(k) gets broken. Nevertheless, the latent symmetry

of the unit cell is inherited, which becomes clear upon
taking the ISR to the red sites

h
(4)
L,i(k) = h

(4)
i

(
k, t1 = v

(4)
0 , t2 = v

(4)
1

)
+ a(4)I, (41)

which commutes with Ĉ4 given in Eq. (30). The

parameters a(4), v
(4)
0 and v

(4)
1 are polynomials of a degree

larger than 5 [See Appendix B 1]. Consequently, it is not
possible to analytically resolve the gap closing conditions
as outlined at the end of Sec. II. Figure 4(n) shows

the spectrum of h
(4)
L,1(k) for t0 = t1 = t2 = 1 and

t3 = 1/2. The spectrum is gapped at multiple fillings.
For simplicity we consider a single filled band. Figure
4(o) shows the numerically obtained phase diagram of

h
(4)
L,1(k) for a single filled band for t1 = t2 = t0. The

rotation invariants χ(4) are depicted for the gapped

phases. Similarly, the spectrum of h
(4)
L,2(k) for t0 =

t1 = t2 = −1 and t3 = 0 is shown in Fig. 4(q). The
corresponding phase diagram for 2 filled bands is shown
in Fig. 4(r). Finally, Fig. 4(t) shows the spectrum of

h
(4)
L,3(k) for t0 = t1 = t2 = 1/2 and t3 = 1. The phase

diagram shown in Fig. 4(u) is (numerically) obtained for
3 filled bands. The rotation invariants χ(4) are depicted
for the gapped phases. The topological and trivial phases
are represented by the red and blue regions, respectively.
The white regions denote metallic gapless states.

3. C3-symmetry

For C3-symmetry, we consider two lattice strucures,
namely a “breathing kagome” and a “bearded breathing
kagome”.

a. Geometric C3-symmetric structures. The
internal structure of our geometrically C3-symmetric
unit cells are shown in Figs. 5(a) and (c). They consist
of 3 sites connected with an intracell hopping t0 and an
intercell hopping fixed to 1. The two lattice structures for
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FIG. 5. (a,c) Unit cells of the geometric C3−symmetric

primitive generators h
(3)
1 (k) and h

(3)
2 (k), respectively.

Intracell hopping (black line) has a strength of t0, while
intercell hopping (dashed lines) is fixed to 1. (b) Spectrum

of h
(3)
1 (k) and h

(3)
2 (k) at t0 = 1/2. (d,e) Phase diagrams of

h
(3)
1 (k) and h

(3)
2 (k) at 2/3-filling. Rotation invariants χ(3) are

indicated for the gapped phases. (f,g) Lattice structures of the
C3−-symmetric primitive generators. The lattices represent
a breathing kagome and a bearded breathing kagome lattice,
respectively. (h,j) Unit cells of the latent C3−symmetric

primitive generators h
(3)
L,1(k) and h

(3)
L,2(k), respectively. Values

of the hopping parameters are indicated in Fig. 2(b) and
intercell hoppings (dashed lines) are fixed to 1. (i) Spectrum

of h
(3)
L,1(k) and h

(3)
L,2(k) for t0 = 0.6. (k,l) Phase diagrams at

filling n = 2 and n = 8 for h
(3)
L,1 and h

(3)
L,2, respectively. The

rotation invariants χ(3) are indicated in the different gapped
phases.

C3 symmetry are presented in Figs. 5(f)-(g). Since the
resulting systems correspond to different terminations of
the same Kagome lattice, we will treat them together.
The Hamiltonian corresponding to the unit cell shown
in Fig. 5(a) inserted into a lattice to form the structure

in Fig. 5(f) is given by

h
(3)
1 (k) =

 0 t0 + eik·a1 t0 + eik·a2

t0 + e−ik·a1 0 t0 + e−ik·a3

t0 + e−ik·a2 t0 + eik·a3 0

 ,

(42)
while the Bloch-Hamiltonian corresponding to the unit
cell in Fig. 5(c), which forms the lattice structure in
Fig. 5(g), is given by

h
(3)
2 (k) =

 0 t0 + eik·a2 t0 + e−ik·a3

t0 + e−ik·a2 0 t0 + e−ik·a1

t0 + eik·a3 t0 + eik·a1 0

 .

(43)
The lattice vectors are defined through a1 = (1, 0),

a2 = (1/2,
√
3/2), and a3 = a1 − a2. h

(3)
1 (k) and h

(3)
2 (k)

represent a (bearded) breathing Kagome lattice [33–35]
which exhibits a C3 symmetry of the form

Ĉ3h
(3)
i (kx, ky)Ĉ

−1
3 = h

(3)
i (DC3k), (44)

with DC3k =
(
−kx −

√
3ky,−ky +

√
3kx
)
/2 and

Ĉ3 =

0 0 1
1 0 0
0 1 0

 . (45)

The spectrum for both Hamiltonians is shown in Fig. 5(b)

for t0 = 1/2. For |t0| < 1, the spectrum of h
(3)
1 (k)

[h
(3)
2 (k)] is gapped at 2/3 filling and is described by a

topological invariant χ(3) = (1, 0) [χ(3) = (1,−1)] with
P(3) = (2e/3)(a1+a2) [P

(3) = (e/3)(a1+a2)]. At t0 = 1,
the gap closes at K and K′ and opens again in a trivial
phase with χ(3) = (0, 0) and P(3) = 0 for t0 > 1. At
t0 = −1, the gap closes at Γ and the spectrum remains

gapless for t0 < −1. The phase diagrams of h
(3)
1 (k) and

h
(3)
2 (k) are shown in Figs. 5(d) and (e), respectively.
b. Latent C3-symmetric structures. Inserting the

latently C3-symmetric unit cell Fig. 2(b) into a lattice
to form the structures in Figs. 5(f) and (g) yields two
latent C3-symmetric primitive generators with Bloch-
Hamiltonians

h
(3)
L,i(k) = H

(3)
L +

(
h̃
(3)
i (k) ∅3×6

∅6×3 ∅6×6

)
, (46)

with i = 1, 2. h̃
(3)
i (k) are the Hamiltonians given

in Eq. (42) and Eq. (43) with all intracell hoppings
set to zero, i.e. only intercell hopping (once again,
just to connect the larger cells on a lattice). Figures

5(f) and (g) show lattices corresponding to h
(3)
L,1 and

h
(3)
L,2, respectively. Analogous to the non-latent primitive

generators for C3 symmetry, h
(3)
L,1 and h

(3)
L,2 share the same

spectrum, as depicted in Fig. 5(i).

The ISR of h
(3)
L,i(k) to the red sites is given by

h
(3)
L,i(k) = h

(3)
i

(
k, t0 = v

(3)
0

)
+ a(3)I, (47)
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Owing to the simplicity of the parameters v
(3)
0 (= 5t20/E)

and a(3) (= 7t20/E), it is possible to analytically derive
the phase diagram of this model. In Sec. IV we showed

that h
(3)
i (k) has a gap closing at E = 1 for t0 = 1, and at

E = 0 for t0 = −1. Therefore, we obtain the energies E∗
1

and E∗
2 at which the latent models have a gap closing

E∗
1 − a(3)(E∗

1 ) = 1 and E∗
2 − a(3)(E∗

2 ) = 0. (48)

Solving the above equations yields

E∗
1 =

1

2

(
1±

√
1 + 28t20

)
and E∗

2 = ±
√
7t0. (49)

From Eq. (49), we extract the phase transitions through

v
(3)
0 (E∗

1 ) = 1 and v
(3)
0 (E∗

2 ) = −1, resulting in

t0 = ±2
√
3

5
,±

√
7

5
. (50)

The gap closing energies correspond to a filling of n = 2
and n = 8 bands out of 9. Using the above derived
constraints, we obtain the phase diagrams depicted in

Figs. 5(k) and (l) for h
(3)
L,1(k) and h

(3)
L,2(k), respectively.

The rotation invariants χ(3) are shown for the different
phases. The invariants are the same as those obtained

for h
(3)
i (k).

4. C6-symmetry

For C6-symmetry, we consider two lattice structures,
namely, the “breathing ruby lattice”, and the “Kekulé”
structure.

a. Geometric breathing ruby lattice The
Hamiltonian for the first C6-symmetric primitive
generator is given by

h
(6)
1 (k) =


0 t0 t1 t2 t1 t0
t0 0 t0 t1 t2 t1
t1 t0 0 t0 t1 t2
t2 t1 t0 0 t0 t1
t1 t2 t1 t0 0 t0
t0 t1 t2 t1 t0 0

 (51)

+


0 0 e−ik·a2 0 eik·a3 0
0 0 0 eik·a3 0 eik·a1

eik·a2 0 0 0 eik·a1 0
0 e−ik·a3 0 0 0 eik·a2

e−ik·a3 0 e−ik·a1 0 0 0
0 e−ik·a1 0 e−ik·a2 0 0

 .

It is obtained by inserting the unit cell from Fig. 6(a)
into a lattice to obtain the structure in Fig. 6(g). This
lattice is a breathing version of a Ruby lattice. The
lattice vectors are given by a1 = (1, 0), a2 = (1/2,

√
3/2)

and a3 = a1 − a2. h
(6)
1 (k) exhibits a C6 symmetry given

by

Ĉ6h
(6)
1 (kx, ky)Ĉ

−1
6 = h

(6)
1 (DC6

k), (52)

with DC6
k = (kx −

√
3ky,+

√
3kx + ky)/2 and

Ĉ6 =


0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 . (53)

First, consider the case t1 = t2 = 0. The spectrum is
gapped at 2/3-filling if |t0| < 1. The gap is characterised
by χ(6) = (0, 2), which corresponds to P(6) = 0 and
Q(6) = e/3. This can be seen in the spectrum in Fig. 6(b),
which is calculated for t0 = 1/2. At t0 = 1, the gap
closes at the Γ point and upon further increase of t0, the
spectrum remains gapless. If we only impose t2 = 0, the
phase diagram in Fig. 6(c) is obtained. For values of t0
and t1 in the red region, the system is in a topological
phase with χ(6) = (0, 2). Leaving the topological phase
(red) by increasing t1, the gap closes at the K and
K′ points and the spectrum is gapless. Upon further
increasing t1, a trivial gap [χ(6) = (0, 0)] reopens at the
K and K′ points.

b. Geometric Kekulé. The Hamiltonian for the
second C6-symmetric primitive generator is given by

h
(6)
2 (k) =


0 t0 t1 t2 t1 t0
t0 0 t0 t1 t2 t1
t1 t0 0 t0 t1 t2
t2 t1 t0 0 t0 t1
t1 t2 t1 t0 0 t0
t0 t1 t2 t1 t0 0

 (54)

+


0 0 0 e−ik·a2 0 0
0 0 0 0 eik·a3 0
0 0 0 0 0 eik·a1

eik·a2 0 0 0 0 0
0 e−ik·a3 0 0 0 0
0 0 e−ik·a1 0 0 0

 .

The corresponding system is obtained by using the unit
cell of Fig. 6(d) to form the lattice structure in Fig. 6(h).
Note that it has the same unit cell as in the Breathing
Ruby Lattice case, but rotated and with different intercell
hopping. The lattice vectors a1, a2, and a3 are the same
as in the breathing ruby lattice case. We note that the
different intercell hopping structure forms a breathing
honeycomb or Kekulé lattice [36]. Just as Eq. (51), the
primitive generator Eq. (54) has a C6 symmetry given by
Eq. (52). Again, first consider t1 = t2 = 0. The spectrum
is gapped at 1/2-filling for −1/2 < t0 < 1, as shown in
Fig. 6(e), where t0 = 1/2. This gap is characterised by
χ(6) = (2, 0), which corresponds to P(6) = 0 and Q(6) =
e/2. For fixed t2 = 0, the phase diagram in Fig. 6(f) is
obtained. The system is in its topological phase [χ(6) =
(2, 0)] for −1/2 < t0 < 1 and |t1| < (t0 + 2)/3. At t0 = 1
or |t1| = (t0 + 2)/3, the gap closes at the Γ point. For
t0 > 1 and |t1| < |t0|, the gap reopens in a trivial phase
with χ(6) = (0, 0).
Latent C6-symmetric structures. The latent primitive
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FIG. 6. (a,d) Unit cells of the geometric C6-symmetric primitive generators h
(6)
1 (k) and h

(6)
2 (k). Three C6 preserving hoppings

t0 (black), t1 (blue) and t2 (red) are indicated. Intercell hopping (dashed) is fixed to 1. (b,e) Spectra of h
(6)
1 (k) and h

(6)
2 (k),

for t0 = 1/2, t1 = t2 = 0. (c,f) Phase diagrams of h
(6)
1 (k), and h

(6)
2 (k) in the t0 − t1 plane with t2 = 0. Rotation invariants χ(6)

are indicated for gapped phases. (g,h) Lattice structures of the C6−symmetric primitive generators. The lattices represent a

breathing ruby lattice and a kekulé lattice, respectively. (i,l) Unit cells of the latent C6-symmetric primitive generators h
(6)
L,1(k)

and h
(6)
L,2(k). Values of the hopping parameters are indicated in Fig. 2(d) and intercell hoppings (dashed lines) are fixed to 1.

(j,m) Spectra of h
(6)
L,1(k) and h

(6)
L,2(k), for t0 = 3/4, t1 = 7/8, t2 = 1/8. (k,n) Phase diagrams of h

(6)
L,1(k) for n = 4 filled bands

and h
(6)
L,2(k) for n = 3 filled bands, with t1 = 1/4. Rotation invariants χ(6) are indicated in the gapped phases.

generators for C6-symmetry are given by

h
(6)
L,i(k) = H

(6)
L +

(
h̃
(6)
i (k) ∅6×13

∅13×6 ∅13×13

)
. (55)

Here, h̃
(6)
i (k) are the Hamiltonians given in Eq. (51),

Eq. (54) with all intracell hoppings set to zero, i.e.
only intercell hopping (to connect the large unit cells on

a lattice). The two systems corresponding to h
(6)
L,1(k)

and h
(6)
L,2(k) are obtained by inserting the latently C6-

symmetric unit cell shown in Fig. 2(d) into a lattice
structure to form Fig. 6(g) and Fig. 6(h), respectively.
The intercell hopping (dashed) is fixed to 1. The ISR of

h
(6)
L,i(k) is given by

h
(6)
L,i(k) = h

(6)
i

(
k, t0 = v

(6)
0 , t1 = v

(6)
1 , t2 = v

(6)
2

)
+a(6)I, (56)
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which is symmetric under the action of Ĉ6, i.e. Eq. (52).

Since the parameters a(6) and v
(6)
i are ratios of large order

polynomials in E, it is not possible to analytically obtain

the phase diagrams of h
(6)
L,i(k). Figure 6(j) [Fig. 6(m)]

show the spectrum of h
(6)
L,1(k) [h

(6)
L,2(k)] for t0 = t1 =

t2 = 1/4. A phase diagram of h
(6)
L,1(k) for 4 filled

bands is shown in Fig. 6(k), revealing a topological phase
characterised by χ(6) = (0, 2) separated by a gapless
phase from the trivial phase χ(6) = (0, 0). Moreover,

Fig. 6(n) shows a phase diagram of h
(6)
L,2(k) for 3 filled

bands. Both phase diagrams reveal the presence of the

same topological phases as in h
(6)
i (k).

V. CONSTRUCTION OF LATENT HOTIS

We are now finally equipped with all necessary tools to
allow an efficient design of latent HOTIs. As mentioned
above, any HOTI (geometric or latent) must fulfil the
following two constraints:

• The corner charge Q(n), as given by Eq. (24), is
nonzero.

• The dipole moment P(n), as given by Eq. (23),
vanishes.

In the following, we will construct latent HOTIs featuring
a Cn symmetry. Although there are many possibilities,
for brevity we only show a single example of C3−, C4−,
and C6−symmetry each. C2−symmetry is left out as
constructing a lattice with only two ‘corners’ would
correspond to a 1D chain, which is already treated in
Ref. [20]. Alternatively, a square latent C2−symmetric
lattice could be considered which only shows pairwise
equal corner charges.

a. Latent C3-symmetric HOTI. The latent C3-

symmetric generators h
(3)
L,i(k) have topological phases

with χ(3) = (0, 2) and χ(3) = (2, 0), which corresponds
to P(3) = (e/3)(a1 + a2) and P(3) = (2e/3)(a1 +
a2), respectively. For neither of these models the
dipole moment vanishes. In Sec. IVC we argued that
the generators may be stacked to obtain models with
arbitrary rotational invariant, and, thus arbitrary P(n)

and Q(n). By ‘stacking’ h
(3)
L,1(k) and h

(3)
L,2(k), we obtain

h
(3)
L (k) =

(
h
(3)
L,1(k) T
T † h

(3)
L,2(k)

)
, (57)

where T couples the two models without breaking C3-
symmetry and without closing the gap. Here, we choose

T =

(
T ∅3×6

∅6×3 ∅6×6

)
, T =

g 0 g
g g 0
0 g g

 . (58)

From Fig. 5, we observe that both h
(3)
L,i(k) are topological

for t0 = 0.2 at 8 filled bands. Taking g = 0.1 does not

close the gap, such that h
(3)
L (k) is characterised by χ(3) =

(0, 2) + (2, 0) = (2, 2). This translates to P(3) = 0 and
Q(3) = 2e/3. Figure 7(a) shows a triangular flake with

OBC corresponding to h
(3)
L (k), in which every hexagon

represents a (stacked) unit cell. The colour of the cells
represents ρ(xcell)− ρ0 where

ρ(xcell) = e
∑

x∈xcell

Nf∑
i

|ψi(x)|2, (59)

is the electronic charge density per unit cell and Nf is
the amount of filled states. ψi(x) is the wavefunction
of the ith energy eigenstate of the electron. ρ0 is the
(ionic) background charge density of the unit cells (ρ0 =
e×#filled bands×#cells). In Fig. 7(a), we take a filling
of 16 bands (8 filled bands of each model). There is a
clear localisation of excess charge in the three corners
of the flake. Adding up the excess charge within a single
sector (indicated in green), reveals that the corner charge
is quantized and equal to Qcorner = 2e/3.
b. Latent C4-symmetric HOTI. As an example of

C4-symmetric latent HOTI, we may take h
(4)
L,2(k), which

in its topological phase [χ(4) = (2, 0, 0)] at 3 filled bands
has P(4) = 0 and Q(4) = e/2, i.e., it is not necessary to
stack two models. Figure 7(b) shows the charge density

in a square flake with OBC, described by h
(4)
L,2(k) for t0 =

t1 = t2 = 1/2 and t3 = 1. Summing over a single sector
(green) reveals a total corner charge of Qcorner = e/2,
predominantly localized at the corners.

c. Latent C6-symmetric HOTI. Finally, from
Eq. (23), it follows that the dipole moment always
vanishes for any C6-symmetric system. Consequently,

both primitive generators h
(6)
L,i(k) will represent a HOTI

in their topological phase. Here, we consider h
(6)
L,1(k)

for t0 = t1 = t2 = 1/4 for 17 filled bands. For these
parameters, the system is gapped and characterised by
χ(6) = (0, 2), corresponding to P(6) = 0 and Q(6) = e/3.
Figure 7(c) shows a hexagonal flake of this system, with
OBC. It displays corner charges Qcorner = e/3 in each of
the six corners of the flake.

VI. CONCLUSION

In this paper, we have shown that the existence of
non-trivial fractional corner charges in two dimensional
systems does not require the preservation of a Cn-
symmetry. Instead, a latent symmetry is sufficient.
This may be understood from the behaviour of the

latent symmetry Ĉn ⊕ Q
(n)

at the HSPs Π, which is
exactly the same as for a non-latent symmetry, i.e.

[h(Π), Ĉn ⊕ Q
(n)

]− = 0. Owing to this property, any
two dimensional system with a latent symmetry of the

form Ĉn ⊕ Q
(n)

may host non-trivial corner modes and
can be characterised in terms of rotation invariants. In
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FIG. 7. Latent higher-order topological insulators. (a) Triangular OBC flake of h
(3)
L (k) for t0 = 0.2 and g = 0.1 at filling

Nf = 18Ncells + 2. Each of the corners shows a quantized excess corner charge of Qcorner = 2e/3. (b) Square OBC flake of

h
(4)
L,2(k) for t0 = t1 = t2 = 1/2 and t3 = 1 at filling Nf = 3Ncells + 2. Each of the corners shows a quantized excess corner

charge of Qcorner = e/2. (c) Hexagonal OBC flake of h
(6)
L,1(k) for t0 = t1 = t2 = 1/4 at filling Nf = 17Ncells + 2. Each of the

corners shows a quantized excess corner charge of Qcorner = e/3.

Section IV we gave examples of primitive generators that
have this property. We showed that for some models,
a full analytical treatment is possible, even though the
model had up to 9 bands. This reveals another strength
of our method: if, under an isospectral reduction, a
Hamiltonian reduces to an energy-dependent version of
a known model, then properties of the known model
can be used to characterize the full Hamiltonian. A
formal outline of this procedure was given at the end
of Section II.

We have given examples of unit cells that show a
latent Cn-symmetry for the four rotation symmetries
that tile the two-dimensional space and have provided an
outline for how to construct latent HOTIs based on these.
Nevertheless, our work does not restrict itself to these
unit cells. On the contrary, any cell that obeys a latent
Cn-symmetry may be used to construct a latent HOTI.
These unit cells were used merely to give three specific
examples of a latent HOTI. We emphasize that these
examples do not capture the full range of possible latent
HOTIs. Any two primitive generators based on a unit
cell – geometric- or latent symmetric – can be combined
to form a new generator. One could obtain HOTIs that
are composed of one geometric generator and one latent
generator. The examples we have provided – namely,
the 2D SSH model, a breathing square-octagon lattice,
T-Graphene, a breathing kagome lattice, a breathing
ruby lattice, and a Kekulé lattice [27–36] – have all been
previously used to study a variety of phenomena, which
is why we believe that our results might therefore be
directly relevant to them.

In addition, we discussed the possibility of a unit cell
showing a geometric C3 (C2) symmetry while its ISR
showed a latent C6 (C4) symmetry, i.e. an effective
symmetry doubling. Consequentially, the corner charges
will follow the doubled symmetry. This behaviour can
neatly be explained by performing an ISR.

Finally, TCIs protected by Cn-symmetry only form
a subset of all crystalline topological phases. Similar
methods to those outlined in our work can be applied
to systems with different crystalline symmetries. This
leads us to believe that our work opens doors for
the latent generalisation of topological phases protected
by other crystalline symmetries. Interesting cases
for future investigations would be latent versions of
topological systems lacking translational symmetry, but
still displaying global space-group symmetries. Examples
of these are possibly a generalization of a recent work
on 1D topological quasicrystalline insulators [37], or
a crystalline generalization of the topological states
observed in finite fractals [38].
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Appendix A: Derivation of the Q matrix

Reference [19] gives a derivation for the Q (and therefore also Q) matrix. Here, we will briefly outline how to
construct Q in the specific case of a latent Cn-symmetry. Let H be a real symmetric matrix with a latent Cn-
symmetry, i.e. [

RS(H,E), Ĉn

]
−
= 0. (A1)

Then the eigenstates {|ϕ⟩} of H can be chosen to satisfy

Ĉn |ϕ⟩S = e
2πi
n (p−1) |ϕ⟩S , with p ∈ {1, 2, . . . , n} OR |ϕ⟩S = 0, (A2)

where 0 is a zero vector in the S subspace. We label these states by
∣∣ϕ(p)〉 and

∣∣ϕ(0)〉, respectively. One can then
define the projectors

Pp =
∑
i

∣∣∣ϕ(p)i

〉〈
ϕ
(p)
i

∣∣∣ , P0 =
∑
i

∣∣∣ϕ(0)i

〉〈
ϕ
(0)
i

∣∣∣ . (A3)

From these projectors, Q is defined through

Q = Ĉn ⊕Q = P0 +

n∑
p=1

e
2πi
n (p−1)Pp. (A4)

Appendix B: Expressions

1. C4

The Hamiltonian for the unit cell in Fig. 2(c) of the main text is given by

H
(4)
L =



0 1 0 1 1 0 0 1 1 0 0 1 0
1 0 1 0 1 1 0 0 1 1 0 0 0
0 1 0 1 0 1 1 0 0 1 1 0 0
1 0 1 0 0 0 1 1 0 0 1 1 0
1 1 0 0 0 0 0 0 1 0 0 0 t1 + t3
0 1 1 0 0 0 0 0 0 1 0 0 t2
0 0 1 1 0 0 0 0 0 0 1 0 t1
1 0 0 1 0 0 0 0 0 0 0 1 t2
1 1 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0 t3
1 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 t1 + t3 t2 t1 t2 0 0 t3 0 0



. (B1)

The symmetry on the level of the full Hamiltonian H
(4)
L is given by

Q(4) = Ĉ4 ⊕Q
(4)

=

 0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⊕



3
4 − 1

4
1
4

1
4 − 1

4 − 1
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1
4

1
4 0
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4 0
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1
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4 0
− 1

4 − 1
4

1
4
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4
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4 0
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4 − 1
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1
4

1
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4 − 1
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1
4 0

1
4

1
4 − 1

4 − 1
4

1
4

1
4

3
4 − 1

4 0
− 1

4
1
4

1
4 − 1

4 − 1
4

1
4

1
4

3
4 0

0 0 0 0 0 0 0 0 1


(B2)

The reduced parameters that enter Fig. 2(g) and Eq. (41) are given by
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a(4) =
t20
(
4E
(
E2 − t20

)
+ t21(t0 − 7E) + 2 (t2 − 3t3) t1(E + t0) + t22(t0 − 7E) + t23(t0 − 7E) + 2t2t3(E + t0)

)
(t0 − E) (E(t0 − E)(E + t0) + 2 (Et21 + t3t1(E + t0) + E (t22 + t23)))

(B3)

v
(4)
0 = −

t0(E + t0)
(
t21(−(t0 − 2E)) + t1 (2Et3 − 2t0t2)− t22(t0 − 2E)− t23(t0 − 2E) + E(t0 − E)(E + t0)− 2t0t2t3

)
(t0 − E) (E(t0 − E)(E + t0) + 2 (Et21 + t3t1(E + t0) + E (t22 + t23)))

(B4)

v
(4)
1 =

t20 (t1 + t2 + t3)
2(E + t0)

(t0 − E) (E(t0 − E)(E + t0) + 2 (Et21 + t3t1(E + t0) + E (t22 + t23)))
(B5)

2. C6

The Hamiltonian for the unit cell in Fig. 2(d) of the main text is a simplified version of the one denoted in Fig. 8.
To obtain the former, we set t2 = t3 = t4 = 0 and let t5 → t2. The full Hamiltonian is given by

FIG. 8. A more complex latent C6−symmetric unit cell. The hopping parameters are indicated by different colors.

H
(6)
L =



0 0 0 0 0 0 0 0 0 0 t0 0 0 0 0 t0 t0 0 0
0 0 0 0 0 0 0 0 0 0 0 t0 0 0 0 0 t0 t0 0
0 0 0 0 0 0 t0 0 0 0 0 0 t0 0 0 0 0 t0 0
0 0 0 0 0 0 0 t0 0 0 0 0 t0 t0 0 0 0 0 0
0 0 0 0 0 0 0 0 t0 0 0 0 0 t0 t0 0 0 0 0
0 0 0 0 0 0 0 0 0 t0 0 0 0 0 t0 t0 0 0 0
0 0 t0 0 0 0 0 t0 0 0 0 t0 0 0 0 0 0 0 t3 + t4 + t5
0 0 0 t0 0 0 t0 0 t0 0 0 0 0 0 0 0 0 0 t3
0 0 0 0 t0 0 0 t0 0 t0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 t0 0 0 t0 0 t0 0 0 0 0 0 0 0 t4
t0 0 0 0 0 0 0 0 0 t0 0 t0 0 0 0 0 0 0 0
0 t0 0 0 0 0 t0 0 0 0 t0 0 0 0 0 0 0 0 t5
0 0 t0 t0 0 0 0 0 0 0 0 0 0 t0 0 0 0 t0 t1
0 0 0 t0 t0 0 0 0 0 0 0 0 t0 0 t0 0 0 0 t2 + t4 + t5
0 0 0 0 t0 t0 0 0 0 0 0 0 0 t0 0 t0 0 0 t1 + t3
t0 0 0 0 0 t0 0 0 0 0 0 0 0 0 t0 0 t0 0 t2 + t5
t0 t0 0 0 0 0 0 0 0 0 0 0 0 0 0 t0 0 t0 t1 + t3 + t4
0 t0 t0 0 0 0 0 0 0 0 0 0 t0 0 0 0 t0 0 t2
0 0 0 0 0 0 t3 + t4 + t5 t3 0 t4 0 t5 t1 t2 + t4 + t5 t1 + t3 t2 + t5 t1 + t3 + t4 t2 0



.

(B6)



20

The symmetry on the level of the full Hamiltonian H
(6)
L is given by

Q(6) = Ĉ6 ⊕Q
(6)

=


0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⊕
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. (B7)

The reduced parameters that enter Fig. 2(h) and Eq. (56) are of the form

a(4) =
1

∆

9∑
j=0

α(j)Ej , v
(4)
i =

1

∆

9∑
j=0

ν
(j)
i Ej , ∆ =

9∑
j=0

δ(j)Ej . (B8)

The expressions for α(j), ν
(j)
i , and δ(j) are lengthy, but easily obtainable; they are not given here.
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