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Abstract—This paper considers a communication system where
a source sends time-sensitive information to its destination via
queues in tandem. We assume that the arrival process as well
as the service process (of each server) are memoryless, and
each of the servers has no buffer. For this setup, we develop
a recursive framework to characterize the mean peak age of
information (PAoI) under preemptive and non-preemptive policies
with N servers having different service rates. For the preemptive
case, the proposed framework also allows to obtain mean age of
information (AoI).

I. INTRODUCTION

Transfer of time-sensitive information is a vital aspect in
many use cases of modern communication networks, such as
healthcare, remote actuation, and automated systems. It is often
crucial for a destination node to receive up-to-date information
about a physical process observed by the source node located
somewhere else in the network. However, traditional metrics
like end-to-end delay may not be sufficient to characterize the
performance of such applications, as they do not indicate the
time at which the received messages/updates were sampled by
the source. To overcome this, a new metric called the age of
information (AoI) has gained popularity in recent years for
measuring the freshness of updates received at the destination.
The statistical properties of AoI have been extensively studied
in the literature for a variety of network settings mostly
involving single-hop communication link. However, the infor-
mation transfer between two nodes often needs to be navigated
through multiple gateways placed in the core network along
the end-to-end communication link. As these gateways are also
responsible for scheduling the traffic of other links, they may
cause random delays in forwarding the messages corresponding
to the intended destination node, which in turn affects the AoI
performance. Inspired by this, we aim to characterize the AoI
in a multi-hop communication. While doing so, we develop a
new recursive approach that offers an appealing alternative to
existing approaches that are computationally complex for large
settings, as discussed shortly.

Related works: Since the introduction of the AoI metric
in [1], a substantial amount of research has been conducted
to characterize and optimize age performance in a variety of
communication networks. The mean and distribution of AoI
as well as of its variant, known as peak AoI (PAoI), have
been extensively analyzed for various queuing systems, for
examples see [2]–[7] for single source case and [8]–[14] for
multi-source case. The interested readers can refer to [15] and
[16] for an excellent survey on the mainstream analyses of AoI.
In particular, the authors of [8] have developed an analytical

approach based on the Stochastic Hybrid Systems (SHS) [17]
for determining the moments of age under a system described
by finite-state continuous-time Markov chain. The SHS-model
has become a main facilitator for deriving the mean AoI and
moment generating function of AoI for complex systems.

One of the research directions in the AoI analysis that has
received relatively less attention is the characterization of age
in multi-hop network settings, which is the focus of this paper.
The authors of [18] derived the age-optimal scheduling policies
for multi-hop systems involving multiple interfering source-
destination pairs. The authors of [19], [20] investigated the
performance of age in multi-hop networks and demonstrated
that the age is minimized under a preemptive policy when
the multi-hop link service times follow exponential processes.
However, for the case of general distributions of those service
times, the authors show that a non-preemptive policy is age-
optimal. Further, in [21], the distribution of age for the gossip
network is derived using SHS model. Furthermore, by a careful
application of SHS-model, the authors of [9], [22] have derived
a closed-form expression of the mean AoI for systems consist-
ing of N preemptive queues in tandem. Conversely, the authors
of [23], [24] applied SHS to derive closed-form expressions
of the mean AoI under non-preemptive queues in tandem for
N = 2 (with different service rates) and N = 3 (with equal
service rates). It was shown that the SHS model leads to an
intractable set of linear equations for N > 3 case. To the best
of our knowledge, the analysis of mean PAoI for preemptive
policy and mean AoI/PAoI for the non-preemptive policy is not
present in the literature for the general case of N .

Further, using SHS model, the authors of [25] derived a
closed-form expression for an upper bound of the mean AoI
under Jackson Networks with finite buffer size. It is worth
noting that the SHS model can be computationally expensive
to analyze or simulate, especially when dealing with large state
spaces or systems with complex dynamics/interactions, which
makes it challenging to obtain efficient and scalable solutions.
Further, it often requires certain simplifying assumptions, such
as Markovian state space, to make the analysis tractable.
Inspired by such limitations of the existing approaches, we
develop a new recursive framework to evaluate the mean per-
formance of PAoI for preemptive and non-preemptive queues
in tandem. Our framework also allows to obtain mean AoI for
preemptive queues in tandem.

Contributions: This paper focuses on analyzing the mean
PAoI under the tandem of queues while assuming memoryless
processes for the arrival process and the service process of each
server with different rates. For a system with N unit capacity
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queues, we develop a new recursive analytical framework
to evaluate the mean PAoI under the preemptive and non-
preemptive policies. Using the recursive framework, we also
evaluate the mean AoI for the preemptive policy which was first
characterized in [9]. The proposed framework can be utilized
to analyze the distribution of PAoI. Overall, it provides an
appealing alternative to the existing approaches, such as SHS,
that are computationally complex in large-scale settings.

Our analysis provides useful insights into how the service
processes of servers in tandem and how their disciplines impact
the performance of age.

II. SYSTEM MODEL
We consider a status update system with N servers between

the source and destination. Each server is assumed to have a
unit capacity and is arranged in tandem as shown in Fig 1. The
source is assumed to provide time-sensitive updates to the first
server regarding some physical process, for which the age needs
to be measured at the destination. The updates from the source
are generated according to a Poisson process with an arrival rate
λ and the service times of the i-th server are assumed to follow
an exponential distribution with parameter µi. The source can
be interpreted as a virtual server that emits/serves the updates
according to an exponential inter-departure time at rate µ0 = λ.
We consider preemptive and non-preemptive queuing policies.
In the preemptive policy, the in-service updates at each server
are replaced with newly arriving updates. On the other hand,
in the non-preemptive, newly arriving updates are dropped at
each server if it is busy.

Source Server 1 Server 2 Server N
Monitor

Figure 1. System model with N queues in tandem.
This paper focuses on characterizing age of updates received

by the destination through the tandem of queues, as described
above. The AoI at the destination is defined as

δ(t) = t− U(t), (1)
where U(t) is the generation instant of the freshest update
received by the destination. Fig. 2 shows a sample path of AoI
under tandem of preemptive queues. As shown in the figure,
τk and τ ′k,l represent the time of arrival at the first server and
time of departure from the l-th server, respectively, of the k-
th update. Let Tk = τ ′k,n − τk be the service time of the k-th
update and let Yk = τ ′k,n − τ ′k−1,n be the inter-departure time
between the k-th and the (k − 1)-th updates.

The mean AoI is defined as the time mean of the age process
δ(t), whereas the mean PAoI is defined as the mean of δ(t)
observed just before the delivery of updates. The means of
PAoI and AoI are given by [2, Equations (8) and (10)]

Ā = E[Yk] + E[Tk−1], (2)

and ∆ = 0.5
E[Y 2

k ]

E[Yk]
+
E[YkTk−1]

E[Yk]
, (3)

III. AGE UNDER PREEMPTIVE QUEUES IN TANDEM

In this section, we analyze the age for the case of preemptive
queues in tandem. Let ψi represent the event where i-th server

Figure 2. Illustration of the sample path of age δ(t) for N = 3 under
preemptive policy. The green up arrow markers indicate the arrival instants
of updates at server 1 whereas light-blue, magenta, and orange down arrow
markers indicate the service instants of the updates from the first, second,
and third servers, respectively. The red cross markers represent the older
updates replaced with newer ones. The three different shades represent the
AoIs observed at the output of three servers.

is busy and all the servers j > i are idle at the time of
delivery of the (k − 1)-th update to the monitor. The analysis
of the moments of Tk and Yk given ψi relies on the successful
delivery of the k-th update to the monitor. Let us call this packet
as the packet of interest. In the following, we first analyze the
probability of event ψi. There can be a total of 2N possible
states wherein each server can be idle or busy. But for the event
ψi, the state of server j < i is irrelevant as the transition in
server j < i will not alter ψi. Keeping this in mind, we define
our state as (a, b) such that a > b where a is an index of the
server that holds the packet of interest and b is the index of the
server before a that is busy (meaning the servers with index j
are idle for b < j < a). The reason for defining the state in
such a way is that the only packet in server b can potentially
preempt the packet of interest in server a. This is because the
preemption of the packet in server b will not affect the state
(a, b) since the distribution of time required for transition at
server b remains unaltered after the preemption.

Note that upon the delivery of the packet of interest to the
monitor from state (N, b′), the system enters in state (N+1, b′)
as the monitor can be interpreted as another server indexed by
N + 1, which acts like a sink node that consumes the packets
and does not forward them further, i.e., the inter-departure rate
at the monitor is µN+1 = 0. Furthermore, the system enters
in state (1, 0) upon the arrival of the packet of interest at
server 1, as the virtual server (i.e., source), indexed by 0, is
always busy (since it generates update with inter-departure at
rate µ0 = λ). Hence, the analysis of Tk, Yk, and ψi depends
on the condition that the packet of interest in state (a, b) is not
preempted until it’s delivered to the monitor from state (N, b′)
for ∀ b′ = b, . . . , N − 1.

In order to derive the probability of ψi, we first derive the
probability of reaching state (a′, b′) from state (a, b).

Lemma 1. The transition probability from state (a, b) to (a+
1, b) and (a, b+1) is equal to µa

µa+µb
and µb

µa+µb
, respectively.

Proof. Let Sk be the service time of k-th server. The probabil-
ity of reaching state (a+ 1, b) from state (a, b) can be simply
obtained as P (Sa < Sb) =

µa

µa+µb
. Similary, the probability of



reaching state (a, b + 1) from state (a, b) can be obtained as
P (Sb < Sa) =

µb

µa+µb
.

We denote the reach probability from state (a, b) to (a′, b′)
as P(a, b, a′, b′), which we obtain in the following lemma.

Lemma 2. Reach probability can be obtained recursively as

P(a, b, a′, b′) =
µa

µa + µb
P(a+ 1, b, a′, b′)

+
µb

µa + µb
P(a, b+ 1, a′, b′),

(4)

with the base conditions

P(a, b, a′, b′) =

{
1, if a = a′ and b = b′,

0, if a > a′ or b > b′ or a ≤ b.
(5)

Proof. If (a, b) = (a′, b′) then our system is already in the
final state, and hence P(a, b, a′, b′) = 1. In addition, we have
P(a, b, a′, b′) = 0 if a > a′ or b > b′ or a ≤ b as this transition
is not possible by the construction of the state.

To reach state (a′, b′) from (a, b) the system must go through
either state (a+ 1, b) or (a, b+ 1). Therefore,

P(a, b, a′, b′) = P(a, b, a+ 1, b) · P(a+ 1, b, a′, b′)

+ P(a, b, a, b+ 1) · P(a, b+ 1, a′, b′).

Finally, from Lemma 1, we arrive at the result given in (4).

Using reach probability given in Lemma 2, we derive the
probability of event ψi in the following lemma.

Lemma 3. For 0 ≤ i < N ,

P(ψi) =
ζi∑N−1

m=0 ζm
, (6)

where ζi = P(1, 0, N, i) µN

µN+µi
.

Proof. Let ζi denote the probability that the packet of interest
is delivered to the monitor from the state (N, i). Therefore,

ζi = P(1, 0, N, i)P(N, i,N + 1, i). (7)
where P(1, 0, N, i) can be obtained using Lemma 2, and from
Lemma 1, we have P(N, i,N + 1, i) = µN

µN+µi
. Further, we

obtain the probability of ψi simply by normalizing ζi.

Using the above result, we now obtain the moments of Yk.
Recall, for a given ψi, we have Yk =

∑N
j=i Sj where Sj

is the service time of the j-th server. Since each Sj follows
exponential distribution with parameter µj independently of
each other, the conditional first and second moments of Yk for
given ψi become

E[Yk|ψi] =
∑N

m=i

1

µm
, and (8)

E[Y 2
k |ψi] =

∑
i≤l,m≤N

2

µlµm
, (9)

respectively. Finally, deconditioning (8) and (9) using (6)
provides the first two moments of Yk as

Ȳ1 =

N−1∑
i=0

E[Yk|ψi]P[ψi], and (10)

Ȳ2 =

N−1∑
i=0

E[Y 2
k |ψi]P[ψi]. (11)

We now focus on determining the mean service time, i.e.,
E[Tk−1]. For this, let us introduce a useful variable which we
call reach time. Reach time gives the average time to reach state
(a′, b′) from the state (a, b) and is denoted as T(a, b, a′, b′).

Lemma 4. Reach time T(a, b, a′, b′) can be obtained by
recursively by evaluating (12) given at the top of the next page.

Proof. The base conditions given in (13) follow from the
similar arguments given in the proof of Lemma 2. Let p1 and p2
be the probabilities of reaching the state (a′, b′) from (a, b) via
state (a+1, b) and state (a, b+1), respectively. From Lemma
2, we get

p1 =
µa

µa + µb
P(a+ 1, b, a′, b′), and (15)

p2 =
µb

µa + µb
P(a, b+ 1, a′, b′). (16)

Now, given that the next state is (a+1, b), the density function
of the service time Sa becomes

fSa
(Sa|Sb > Sa) =

P(Sb > t|Sa = t)fSa
(t)∫∞

0
P(Sb > t|Sa = t)fSa

(t)dt
,

= (µa + µb) exp(−(µa + µb)t). (17)
Similarly, given that the next state is (a, b + 1), the density
function of the service time Sb becomes

fSb
(Sb|Sa > Sb) = (µa + µb) exp(−(µa + µb)t). (18)

Hence, we get

E[Sa|Sa < Sb] = E[Sb|Sb < Sa] =
1

µa + µb
. (19)

To reach state (a′, b′) from (a, b), the packet of interest must
go through either state (a+ 1, b) or (a, b+ 1). Therefore,

T(a, b, a′, b′) =
p1

p1 + p2
[T(a, b, a+ 1, b) + T(a+ 1, b, a′, b′)]

+
p2

p1 + p2
[T(a, b, a, b+ 1) + T(a, b+ 1, a′, b′)] .

From (19), we get T(a, b, a+1, b) = T(a, b, a, b+1) = 1
µa+µb

.
Substituting these one step reach times in the above expres-
sions, completes the proof.

In the next lemma, we calculate the expected service time.

Lemma 5. Given ψi, the expected service time is

E[Tk|ψi] = T(1, 0, N, i) +
1

µN + µi
, (20)

where T(1, 0, N, i) can be computed from Lemma 4.

Proof. Given ψi, the expected service time is nothing but the
reach time between the states (1, 0) and (N+1, i) via the state
(N, i). Therefore, we get

E[Tk|ψi] = T(1, 0, N, i) + T(N, i,N + 1, i).

Using this and (19), we get (20) .



T(a, b, a′, b′) =
1

µa + µb
+

p1
p1 + p2

T(a+ 1, b, a′, b′) +
p2

p1 + p2
T(a, b+ 1, a′, b′) (12)

such that

T(a, b, a′, b′) = 0, if

{
a = a′ and b = b′,

p1 = p2 = 0,
(13)

p1 =
µa

µa + µb
P(a+ 1, b, a′, b′) and p2 =

µb

µa + µb
P(a, b+ 1, a′, b′). (14)

From (6) and Lemma 5, we get the mean of service time as

T̄1 =

N−1∑
i=0

E[Tk|ψi]P(ψi). (21)

Finally, we can obtain the mean PAoI by combining the
above results together as done in the following theorem.

Theorem 1. The mean PAoI Ā under preemptive policy can
be evaluated by substituting (10) and (21) in (2).

Corollary 1. For N = 2 servers, the mean PAoI under pre-
emptive policy is

Ā =
1

λ
+

1

µ1
+

1

µ2
+

1

λ+ µ1
+

1

λ+ µ2
+

1

µ1 + µ2

− 2

λ+ µ1 + µ2
.

A. Mean Age of Information

In the following, we show that our recursive framework
can also be used to compute the mean AoI. For computing
mean AoI, as can be seen from (3), we require the expectation
of product of Tk−1 and Yk. This expectation is difficult to
calculate directly as joint density function of Tk−1 and Yk is
not known. However, we can show that these random variables
are conditionally independent given ψi. This can be seen by
recalling that ψi is the event where the k-th packet is in the
i-th server at the instant of delivery of the (k − 1)-th packet.

Proposition 1. The random variables Tk−1 and Yk are condi-
tionally independent given ψi.

Proof. Given ψi, the remaining time required for the delivery
of the k-th packet is equal to

∑N
j=i Sj , where Sj is the time

taken by the j-th server to serve the k-th update. Note that even
if the packet in the j-th server is preempted, the remaining time
will be the same because of the memoryless property of service
process. This remaining time is nothing but the inter-departure
time Yk which naturally is independent of the service time of
the (k−1)-th packet. Therefore, we can say that Yk =

∑N
j=i Sj

and Tk−1 are conditionally independent given ψi.

Hence, using the conditional moments of Tk and Yk for given
ψi, we can obtain the expectation of YkTk−1 as

Z̄1 =

N−1∑
i=0

E[Yk|ψi]E[Tk−1|ψi]P(ψi). (22)

Finally, we can obtain the mean AoI by combining the above
results together as done in the following corollary.

Corollary 2. The mean AoI ∆ can be evaluated by substituting
(6), (8), (10), (11), (20) and (22) in (3).

IV. AGE UNDER NON-PREEMPTIVE QUEUES IN TANDEM

In this section, we analyze the age for the case of non-
preemptive queues in tandem. In the non-preemptive policy,
the packet will be dropped if it observes that the immediately
next server is busy at the instant when its service completes at
the current server. To capture this, we will redefine the state for
provisioning our analysis. In state (a, b), server b contains the
packet of interest and server a is the nearest busy server from
server b such that a > b. Note the packet of interest can be
potentially dropped by the update being served by its nearest
next server. Hence, in order to determine the mean of service
time Tk, we need to first find the nearest busy server when
the packet of interest enters server 1 (a becomes the nearest
occupied server such that the server j is idle for a > j > 1).
Let θi denote an event where server i is the nearest occupied
server when the packet of interest enters server 1. To derive the
probability of θi, we first derive the probability of successful
delivery from state (a, b) in the following lemma. Recall that
the monitor is considered to be (N + 1)-th server.

Lemma 6. The transition probability that an packet success-
fully goes from the state (a, b) to the state (N + 1, b′) can be
recursivley obtained as

P(a, b) =
µa

µa + µb
P(a+ 1, b) +

µb

µa + µb
P (a, b+ 1), (23)

with the base conditions

P(a, b) =

{
1, if a = N + 1

0, or a ≤ b.
(24)

Proof. Here, a = N +1 means the packet in server a has been
successfully delivered and there are no packet ahead of the
update in server b that will result in its drop. Hence, P(a, b) = 1
if a = N + 1. Since a > b, we have P(a, b) = 0 if a ≤ b.
These conditions form the base conditions for the recursive
relation. Given the previous state is (a, b), the probability of
the current state being (a+ 1, b) is µa

µa+µb
and the probability

of the current state being (a, b+1) is µb

µa+µb
. Using this along

with the arguments given in the proof of Lemma 2, we find
the recursive relation given in (23).

In the next lemma, we derive the probability of the event θi.



T(a, b) =
1

µa + µb
+

p1
p1 + p2

T(a+ 1, b) +
p2

p1 + p2
T(a, b+ 1). (28)

such that
T(a, b) =

{
0, if b = N + 1 or p1 = p2 = 0,
1
µb

+ T (a, b+ 1), if a = N + 1,

p1 =
µa

µa + µb
P(a+ 1, b) and p2 =

µb

µa + µb
P(a, b+ 1).

Lemma 7. For 2 ≤ i ≤ N + 1,

P (θi) =
ηi∑N+1

i=2 ηi
, (25)

where ηi is given in (26).

Proof. The analysis of the probability of θi depends on the state
of the system when the packet of interest arrives in server 1
and the probability of its successful delivery from that state.

The probability of successful delivery from server j without
occurring a new arrival is µj

µj+λ . Besides, the probability of new
arrival in state (i, 0) is λ

λ+µi
. Using this, we can determine

the probability that the update arriving in state (i, 1) gets
successfully delivered as

ηi =

i−1∏
j=2

µj

µj + λ

λ

λ+ µi
P(i, 1), (26)

where P(i, 1) can be obtained using Lemma 6 and µN+1 = 0.
Further, normalizing ηi gives the probability of θi.

Interestingly, it can be noted that inter-departure Yk’s are
equal in distribution under preemption and non-preemption
policies which is mainly because the preemption under the
memoryless service process essentially replaces the older up-
date with the new one without affecting the remaining service
time statistics. Thus, the moments of Yk can be determined
using (10) and (11). Now, in the following, we determine the
moments of Tk conditioned on θi. For this, we introduce the
reach time for non-preemption as the average time required for
the successful delivery of the packet of interest in server b and
denote it as T(a, b).

Lemma 8. Reach time for state (a, b) can be obtained by
recursively evaluating (28) given at the top of the this page.

Proof. As b = N + 1 implies that the update is delivered and
a = N + 1 implies that there is no update that can potentially
drop the update in server b, we obtain the base conditions for
the recurrence relation. Further, following the steps given in
the proof of Lemma 4, we obtain the recursive relation for the
reach time as given in (28).

Given that the update arrives in state (i, 1), its mean service
time can be obtained using the reach time as E[Tk|θi] =
T(i, 1). Therefore, we obtain the mean of service time Tk as

T̄1 =
∑N+1

i=2
T(i, 1)P(θi), (29)

where P(θi) is given in Lemma 6. Using the above results, we
can obtain the mean PAoI as given in the following theroem.

Theorem 2. The mean PAoI Ā under non-preemptive policy
can be evaluated by substituting (10) and (29) in (2).

Corollary 3. For N = 2 servers, the mean PAoI under the
non-preemptive policy is

Ā =
1

λ
+

2

µ1
+

2

µ2
+

1

µ1 + µ2
− 2

λ+ µ1 + µ2
.

V. NUMERICAL RESULTS AND DISCUSSION

To compare mean PAoI between the preemptive and non-
preemptive policies, it is sufficient to analyse the behaviour
of mean service time as the mean inter-departure time is the
same for the two policies. In Fig. 3, we show the behaviour
of mean service time with respect to the arrival rate λ for
N = 3, 4, and 5 servers. It can be observed that the mean
service time drops with λ under preemptive case as expected.
However, the trend is opposite for the non-preemptive case
which might be attributed to the fact of increased packet drop
rate at higher λ under non-preemption.

Figure 3. Mean service time T̄1 vs λ for N = 3, 4, 5 servers with service
times µi = 1.5 for i = 1, . . . , N − 1 and µN = 1.5, 5, and 10 for
N = 3, 4, and 5, respectively. The solid and dashed lines indicate the mean
service times under preemption and non-preemption, respectively.

VI. CONCLUSION

In this paper, we analyzed the mean peak age performance
under the tandem of queues for exponential arrival and service
processes with different rates. For a system with N unit
capacity queues, we developed a recursive analytical frame-
work to evaluate the mean PAoI under the preemptive and
non-preemptive policies. We also showed that our recursive
framework can be used to compute the mean AoI under the
preemptive policy. Our numerical analysis shows that with
the increase of arrival rate, the mean service time decreases
in preemptive discipline whereas it increases in the non-
preemptive policy.
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APPENDIX

Corollary 1. For N = 2 servers, the mean PAoI under pre-
emptive policy is

Ā =
1

λ
+

1

µ1
+

1

µ2
+

1

λ+ µ1
+

1

λ+ µ2
+

1

µ1 + µ2

− 2

λ+ µ1 + µ2
.

Proof. Using (6), we can evaluate the probabilities of ψo and
ψ1 as

P(ψ0) =
µ1 + µ2

λ+ µ1 + µ2
and P(ψ1) =

λ

λ+ µ1 + µ2
.

Next, using (10), we can the obtain the conditional moments
of Yk as

E[Yk|ψ0] =
1

λ
+

1

µ1
+

1

µ2
,

E[Yk|ψ1] =
1

µ1
+

1

µ2
.

Therefore, the expected inter-departure time is

Y 1 =
1

λ
+

1

µ1
+

1

µ2
− 1

λ+ µ1 + µ2
. (30)

Further, using Lemma (5), we can the obtain the conditional
means of Tk as

E[Tk|ψ0] =
1

λ+ µ1
+

1

λ+ µ2
,

E[Tk|ψ1] =
1

λ+ µ1
+

1

λ+ µ2
+

1

µ1 + µ2
.

Plugging the above results together in (2) and performing
some algebraic calculations, we obtain the mean PAoI

Ā =
1

λ
+

1

µ1
+

1

µ2
+

1

λ+ µ1
+

1

λ+ µ2
+

1

µ1 + µ2

− 2

λ+ µ1 + µ2
,

as desired.

Corollary 3. For N = 2 servers, the mean PAoI under the
non-preemptive policy is

Ā =
1

λ
+

2

µ1
+

2

µ2
+

1

µ1 + µ2
− 2

λ+ µ1 + µ2
.

Proof. Using (25), we can evaluate the probabilities of θ2 and
θ3 as

P(θ2) =
λ

λ+ µ1 + µ2
and P(θ3) =

µ1 + µ2

λ+ µ1 + µ2
.

Using Lemma (8), we can the obtain the conditional means
of Tk as

E[Tk|θ2] =
1

µ1
+

1

µ2
+

1

µ1 + µ2
,

E[Tk|θ3] =
1

µ1
+

1

µ2
.

Plugging the above results together with (30) in (2) and
performing some algebraic calculations, we obtain the mean
PAoI

Ā =
1

λ
+

2

µ1
+

2

µ2
+

1

µ1 + µ2
− 2

λ+ µ1 + µ2
.
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