
Set Transformation: Trade-off Between Repair
Bandwidth and Sub-packetization

Hao Shi†, Zhengyi Jiang†, Zhongyi Huang†, Bo Bai‡, Gong Zhang‡, and Hanxu Hou‡⋆
† Department of Mathematics Sciences, Tsinghua University, Beijing, China

‡ Theory Lab, Central Research Institute, 2012 Labs, Huawei Tech. Co. Ltd., Hong Kong SAR

Abstract—Maximum distance separable (MDS) codes facilitate
the achievement of elevated levels of fault tolerance in storage
systems while incurring minimal redundancy overhead. Reed-
Solomon (RS) codes are typical MDS codes with the sub-
packetization level being one, however, they require large repair
bandwidth defined as the total amount of symbols downloaded
from other surviving nodes during single-node failure/repair. In
this paper, we present the set transformation, which can transform
any MDS code into set transformed code such that (i) the sub-
packetization level is flexible and ranges from 2 to (n− k)⌊

n
n−k

⌋

in which n is the number of nodes and k is the number of data
nodes, (ii) the new code is MDS code, (iii) the new code has lower
repair bandwidth for any single-node failure. We show that our
set transformed codes have both lower repair bandwidth and
lower field size than the existing related MDS array codes, such
as elastic transformed codes [1]. Specifically, our set transformed
codes have 2%−6.6% repair bandwidth reduction compared with
elastic transformed codes [1] for the evaluated typical parameters.

I. INTRODUCTION

Maximum distance separable (MDS) codes are widely
employed in storage systems to provide optimal trade-off
between storage overhead and fault tolerance. An (n, k, α)
MDS array code encodes kα data symbols into nα coded
symbols that are equally stored in n nodes, where each node
stores α symbols. We call the number of symbols stored in
each node as the sub-packetization level. The (n, k, α) MDS
array codes satisfy the MDS property, that is, any k out of n
nodes can retrieve all kα data symbols. The codes are called
systematic codes if the kα data symbols are included in the nα
coded symbols. Since non-systematic codes can be converted
into systematic codes through linear transformation, we will
not make a distinction in this paper. Reed-Solomon (RS) codes
[2] are typical MDS array codes with the sub-packetization
level α = 1.

Repair bandwidth is an important metric since node failure is
common in distributed storage systems. It is shown in [3] that
single-node failure occurs more frequently among all failures. It
is important to repair the failed node with the repair bandwidth
as small as possible [4]. Dimakis et al. showed that we can
repair the failed node by accessing at least α

n−k symbols from
each of the other n− 1 surviving nodes and the MDS array
codes achieving the minimum repair bandwidth (n−1)α

n−k are
called minimum storage regenerating (MSR) codes. Many MSR
codes have been proposed [5]–[12]. However, high-code-rate
(i.e., k

n > 1
2 ) MSR codes [10] require that the sub-packetization

⋆: Corresponding author.

level increases exponentially with parameters n and k. It is
practically important to design high-code-rate MDS array codes
with repair bandwidth as small as possible, for a given small
sub-packetization level.

The piggybacking framework [13] proposed by Rashmi et al.
can generate MDS array codes with low repair bandwidth and
low sub-packetization level over a small field size. Many follow-
up piggybacking codes were proposed [14]–[18]. However,
how the piggybacking framework used to maintain the MDS
property limits the repair bandwidth reduction of piggybacking
codes.

To further reduce the repair bandwidth, many MDS array
codes with richer structures have been proposed [1], [19]–
[23]. Shi et al. [19] proposed piggybacking+ codes via
efficient transformation to reach lower repair bandwidth than
piggybacking codes over a small field size and linear sub-
packetization level. HashTag Erasure Codes (HTEC) [20] have
flexible sub-packetization 2 ≤ α ≤ r⌈

k
r ⌉ and low repair

bandwidth. However, the construction of HTEC is not explicit
and HTEC only considered efficient repair for data nodes.
Moreover, the field size of HTEC is large (O(

(
n
k

)
(n− k)α))

for maintaining MDS property. Wang et al. [22], [23] proposed
Bidirectional Piggybacking Design (BPD) with small sub-
packetization 2 ≤ α ≤ r to reduce the repair bandwidth
for each node over a relatively small field size.

Li et al. proposed the base transformation [21] that can
convert a general MDS code called base code into a new
MDS code with reduced repair bandwidth by increasing
sub-packetization level without altering the finite field size.
However, base transformation [21] has two limitations: (i) it is
not suitable for binary MDS codes; (ii) the sub-packetization
level of the transformed code should be r times that of the
base code. Recently, elastic transformation proposed in [1]
can generate elastic transformed MDS codes with flexible sub-
packetization level 2 ≤ α ≤ r⌊

n
r ⌋ to achieve small repair

bandwidth for each node. To maintain the MDS property,
the field size is increased to O(2(

(
n−1
k−1

)
−

(⌈ n
α∗ ⌉−1

⌈ k
α∗ ⌉−1

)
)), where

2 ≤ α∗ ≤ r [1].
In this paper, we present a new transformation called set

transformation that can generate set transformed MDS codes
with lower repair bandwidth than the existing related codes.
Compared with elastic transformation, our set transformation
has two advantages. First, our set transformed codes have lower
repair bandwidth than elastic transformed codes. Second, the

ar
X

iv
:2

40
5.

02
71

3v
1 

 [
cs

.I
T

] 
 4

 M
ay

 2
02

4



field size of our set transformed codes is lower than that of
elastic transformed codes. The essential reason for our set
transformed codes obtaining the above two advantages is as
follows. Elastic transformation converts a non-square array into
a square array by performing base transformation [21] twice.
While in our set transformation, we first skillfully divide the
non-square array into some square arrays, and then employ the
base transformation [21] for each square array.

II. SET TRANSFORMATION

In this section, we present the construction of set transfor-
mation, which can be used to generate MDS array codes with
lower repair bandwidth.

Our set transformation can transform any α× β array into
another α × β array, where α and β are positive integers
with α ≤ β. For easier presentation, in the following, we
assume that α ≤ β < 2α. Denote these αβ symbols of the
α× β array as {bi,j}j=1,2,...,β

i=1,2,...,α . For any i ∈ {1, 2, . . . , α} and
j ∈ {1, 2, . . . , β}, bi,j represents the symbol in the i-th row
and j-th column.

The construction of general set transformation is divided
into the following three steps.

• Step one (Sub-array Allocation): Divide the α×β array
into the (2α − β) × (2α − β) sub-array A, (2α − β) ×
(2β−2α) sub-array B1, (β−α)× (2α−β) sub-array B2

and (β − α)× (2β − 2α) sub-array C. Fig. 1 shows the
sub-array allocation. Although we can divide the array
into some other sub-arrays, the repair bandwidth of the
codes with the above allocation is minimum among all
the allocations.

• Step two (Set Allocation): Divide the αβ symbols in the
α× β array into α2 sets Ri,j , where i, j ∈ {1, 2, . . . , α}.
Specifically, let Ri,j be

{
{bi,j} 1 ≤ j ≤ 2α− β;

{bi,2j−2α+β−1, bi,2j−2α+β} 2α− β + 1 ≤ j ≤ α,
(1)

where 1 ≤ i ≤ α. There are α × (2α − β) sets
containing one symbol, and the remaining α×(β−α) sets
containing two symbols. Therefore, A contains (2α−β)2

sets {Ri,j}j=1,2,...,2α−β
i=1,2,...,2α−β ; B1 contains (2α − β)(β − α)

sets {Ri,j}j=2α−β+1,...,α
i=1,2,...,2α−β ; B2 contains (2α− β)(β − α)

sets {Ri,j}j=1,2,...,2α−β
i=2α−β+1,...,α; C contains (β − α)2 sets

{Ri,j}j=2α−β+1,...,α
i=2α−β+1,...,α .

• Step three (Set Pairwise Combination): For i ̸=
j ∈ {1, 2, . . . , α}, define Ri,j and Rj,i as a pair of
coupled sets. We perform linear combinations for all the
symbols in the coupled sets Ri,j and Rj,i for i ̸= j to
update the symbols to be {b′i,j}

j=1,2,...,β
i=1,2,...,α and the sets to

be {R′
i,j}i,j=1,2,...,α. The symbols in the sets Ri,i for

i = 1, 2, . . . , α are unchanged. For i ̸= j ∈ {1, 2, . . . , α},

we call the symbols in R′
i,j and R′

j,i as coupled symbols.
Specifically, the updated (2α− β)2 sets in A are

R′
i,j =


{b′i,j = bi,j + bj,i} i < j;

{b′i,j = bi,j} i = j;

{b′i,j = bi,j + θi,j · bj,i} i > j,

(2)

where i, j = 1, 2, . . . , 2α − β and θi,j ∈ Fq\{0, 1}. The
(2α− β)(β − α) sets in B1 are updated to be

R′
i,j = {b′i,2j−2α+β−1 = bi,2j−2α+β−1 + bj,i,

b′i,2j−2α+β = bi,2j−2α+β},

where i = 1, 2, . . . , 2α − β and j = 2α − β + 1, . . . , β.
The (2α− β)(β − α) sets in B2 are updated to be

R′
i,j = {b′i,j = bi,j + θi,j · (bj,2i−2α+β−1 + bj,2i−2α+β)},

where i = 2α − β + 1, . . . , α, j = 1, 2, . . . , 2α − β and
θi,j ∈ Fq\{0, 1}. The (β−α)2 sets R′

i,j in C are updated
to be



{b′i,2j−2α+β−1 =

bi,2j−2α+β−1 + θi,2j−2α+β−1 · bj,2i−2α+β−1,

b′i,2j−2α+β =

bi,2j−2α+β + θi,2j−2α+β · bj,2i−2α+β}, i > j

{b′i,2j−2α+β−1 = bi,2j−2α+β−1,

b′i,2j−2α+β = bi,2j−2α+β}, i = j

{b′i,2j−2α+β−1 = bi,2j−2α+β−1 + bj,2i−2α+β−1,

b′i,2j−2α+β = bi,2j−2α+β + bj,2i−2α+β}, i < j

where i = 2α− β+1, . . . , α, j = 2α− β+1, . . . , β and
θi,j ∈ Fq\{0, 1}.

Fig. 1: Sub-array allocation for α×β array with α ≤ β < 2α.

Note that some symbols are not changed in step three and
we call them as original symbols. Since the symbols in sets
R′

i,i are uncoupled symbols, they are original symbols, where
i = 1, 2, . . . , α. According to step three, we can see that some
coupled symbols are also original symbols. The above three
steps are our set transformation. When α = β, then our set
transformation is reduced to the base transformation [21].

Example 1. Consider an example of (α, β) = (4, 6). According
to step one, the 4× 6 array is divided into 2× 2 sub-array A,
2× 4 sub-array B1, 2× 2 sub-array B2 and 2× 4 sub-array
C. According to step two, we divide the 24 symbols in the



4 × 6 array into 16 sets {Ri,j}i,j=1,2,3,4, where each of the
eight sets {Ri,j}j=1,2

i=1,2,3,4 has one symbol and each of the eight
sets {Ri,j}j=3,4

i=1,2,3,4 has two symbols. According to step three,
the 16 sets are updated to be {R′

i,j}i,j=1,2,3,4, where the set
transformation on the 4× 6 array is shown in Fig. 2. In Fig. 2,
coupled sets are in the same color and each big box represents
a sub-array and each small box represents a set.

Fig. 2: Set Transformation on 4× 6 array.

The idea of our set transformation for general parameters
α and β with α ≤ β is similar to that with α ≤ β < 2α. We
summarize the idea as follows. First, we divide the α×β array
into (α− β mod α)× (α− β mod α)⌊β

α⌋ sub-array A, (α−
β mod α)× (β mod α)⌈β

α⌉ sub-array B1, (β mod α)× (α−
β mod α)⌊β

α⌋ sub-array B2 and (β mod α)× (β mod α)⌈β
α⌉

sub-array C. Second, we divide each sub-array into many sets
such that each set contains some symbols. Specifically, there
are ⌊β

α⌋ symbols for each set in sub-array A and sub-array
B2, ⌈β

α⌉ symbols for each set in sub-array B1 and sub-array
C. Third, we perform the set pairwise combination for all the
sets. Notice that if β ≥ 2α, and α ∤ β, we can split it into
⌈β
α⌉ − 2 arrays of size α× α and one α× (α+ (β mod α))

array. If β ≥ 2α and α | β, we can split it into β
α arrays of

size α×α. We can show that the repair bandwidth is the same
as the codes with β < 2α.

III. SET TRANSFORMED CODES VIA SET
TRANSFORMATION

In this section, we present the construction of our set
transformed codes by employing the set transformation for
basis MDS codes, propose the efficient repair method for our
set transformed codes, and show that our transformed codes
are MDS codes.

A. Set Transformed Codes

Our set transformed codes are an α×n array, where r = n−k
and 2 ≤ α ≤ r.

First, we form an α × n array by creating α instances of
(n, k) RS systematic code. In the array, each row represents
an instance. Specifically, for i = 1, 2, . . . , α, let

(ai,1, ai,2, . . . , ai,k, f1(ai), . . . , fr(ai))

be the instance in the i-th row, where ai := (ai,1, ai,2, . . . , ai,k)
represents the k data symbols in this instance, and {fs(ai)}rs=1

represent the r parity symbols.
Second, we divide the α× k array consisting by the first k

columns of the α×n array into ⌊ k
α⌋ sub-arrays {Φi}i=1,2,...,⌊ k

α ⌋.
If α|k, then each sub-array is of size α×α. Otherwise, if α ∤ k,
then Φ⌊ k

α ⌋ is of size α× (k − (⌊ k
α⌋ − 1)α)) and each of the

other sub-array is of size α×α. Similarly, we divide the α× r
array consisting by the last r columns into ⌊ r

α⌋ sub-arrays. If
α|r, each sub-array is of size α× α. Otherwise, if α ∤ r, the
last sub-array is of size α× (r− (⌊ r

α⌋− 1)α)) and each of the
other sub-array is of size α× α. Therefore, we have divided
the α×n array into ⌊ k

α⌋+⌊ r
α⌋ sub-arrays, each sub-array is of

size α×α or α× (k− (⌊ k
α⌋−1)α)) or α× (r− (⌊ r

α⌋−1)α)).
Third, we perform the set transformation on each of the

obtained ⌊ k
α⌋+⌊ r

α⌋ sub-arrays to obtain ⌊ k
α⌋+⌊ r

α⌋ transformed-
arrays which form the α× n array. We store the α symbols
in column j in node j, where j = 1, 2, . . . , n.

The resulting codes are both called set transformed codes
and we denote the codes as the ST-RS(n, k, α) codes. Note that
we have divided the α × n array into ⌊ k

α⌋+ ⌊ r
α⌋ sub-arrays

in the above construction. Similarly, we can also divide the
α× n array into ⌊n

α⌋ sub-arrays to obtain our codes, as like
elastic transformed codes.

For notational convenience, denote the symbol in row i and
column j of ST-RS(n, k, α) codes as xi,j , where i = 1, 2, . . . , α
and j = 1, 2, . . . , n.

B. Repair Process for Single-Node Failure

Suppose that node t fails, where t ∈ {1, 2, . . . , n}, we need
to repair the α symbols x1,t, x2,t, . . . , xα,t in the failed node
t. Recall that we have divided the α×n array into ⌊ k

α⌋+ ⌊ r
α⌋

sub-arrays in the second step of our construction and have
employed the set transformation for each sub-array to obtain
the transformed-array. Therefore, we can obtain α2 sets R′

i,j

for each transformed-array, where i, j ∈ {1, 2, . . . , α}. The α
symbols in the failed node t are located in one column of
one transformed array. We label the indices of the ⌊ k

α⌋+ ⌊ r
α⌋

transformed-arrays from 1 to ⌊ k
α⌋ + ⌊ r

α⌋. Without loss of
generality, suppose that the α failed symbols are located in
transformed-array ℓ, where 1 ≤ ℓ ≤ ⌊ k

α⌋ + ⌊ r
α⌋. We present

the repair process of node t as follows.
• Step 1 (Selecting the major row): Note that in

transformed-array ℓ, we have α2 sets {R′
i,j}i,j=1,2,...,α.

According to step three of our set transformation in Section
II, the set R′

s,s contains one or two symbols that are
symbols of an (n, k) RS codeword. There must exist one



integer s ∈ {1, 2, . . . , α} such that xs,t ∈ R′
s,s. We call

row s as the major row of node t.
• Step 2 (Downloading helper symbols): We download the

following three sets of symbols: (i) set S1 that contains k
symbols in the major row, except the failed symbol and
symbols coupled with the failed symbols. Note that we
can always find the k symbols in S1, since α ≤ r and
n− α ≥ k; (ii) set S2 that contains the symbols coupled
with the k symbols in set S1; (iii) set S3 that contains
the symbols coupled with the failed symbols.

• Step 3 (Repairing the failed symbols in a major row):
We use the symbols in sets S1 and S2 to recover the
codeword symbols of the (n, k) RS code in the major
row, i.e., row s.

• Step 4 (Recovering the symbols in the failed node t):
We use the symbols in set S3, together with the k symbols
recovered in Step 3, to repair all symbols in node t.

Following the above steps we can complete the single node
failure repair of ST-RS (n, k, α), and we can use the same
method to repair a single failed node for the case where the
n× α array is directly divided into ⌊n

α⌋ transformed arrays.

Example 2. Consider the example of (n, k, α) = (14, 10, 3),
the ST-RS(14, 10, 3) code is an array of size 3 × 14. The
three symbols in column j are stored in node j, where j =
1, 2, . . . , 14. We divide the 3× 14 array into four transformed
arrays, each of the first two transformed arrays is of size 3× 3
and each of the last two transformed arrays is of size 3× 4.
Fig. 3 shows the array of ST-RS(14, 10, 3) code.

Suppose that node 1 has failed, we need to repair the 3
symbols x1,1, x2,1, x3,1. Since node 1 is located in the first
transformed array, we have ℓ = 1. According to step three of
the set transformation in Section II, we have that

(x1,1, x2,1, x3,1) = (a1,1, a2,1 + θ2,1 · a1,2, a3,1 + θ3,1 · a1,3).

Since R′
1,1 = {x1,1} and x1,1 = a1,1 is a symbol of the i-th

instance of (14, 10) RS code, we have that s = 1 and row
s = 1 is the major row of node t = 1. According to step 2
of the repair process, we can download the k = 10 symbols
in set S1 (the symbols with green color in Fig. 3), download
the 5 symbols in set S2 (the symbols with purple color in
Fig. 3) and download the 2 symbols in set S3 (the symbols
with blue color in Fig. 3) to repair the erased 3 symbols.
According to step 3 of the repair process, we can recover
the k = 10 symbols {a1,j}j=1,2,...,10 from the downloaded
symbols in sets S1 and S2. Specifically, we can compute a1,5 =
(θ2,4−1)−1(x2,4−x1,5), a2,4 = (θ2,4−1)−1(θ2,4 ·x1,5−x2,4)
from 2 symbols x2,4 = a2,4+θ2,4 ·a1,5 and x1,5 = a2,4+a1,5}.

Similarly, we can compute the 10 symbols {a1,i}10i=4 ∪
{f1(a1), f2(a1), f4(a1)} from the symbols in sets S1 and S2,
and further recover the 3 symbols a1,1, a1,2, a1,3. Together
with the symbols in set S3 and a1,2, a1,3, we can recover the
failed symbols x2,1 = a2,1 + θ2,1 · a1,2 = (x1,2 − a1,2)+ θ2,1 ·
a1,2, x3,1 = a3,1 + θ3,1 · a1,3 = (x1,3 − a1,3) + θ3,1 · a1,3.

We can count that the repair bandwidth of node 1 is 17
symbols (56.7%). Recall that the repair bandwidth of the node

of elastic transformed code with the same parameter is 20
symbols (66.7%). Our codes have a smaller repair bandwidth
than that of elastic transformed code.

Fig. 3: ST-RS(14, 10, 3) code with two square sub-arrays and
two non-square sub-arrays.

C. Analysis of Repair Bandwidth
In the following, we analyze the lower bound of repair

bandwidth of our codes. Suppose that we have divided the
α× n array into ⌊n

α⌋ sub-arrays in our codes.

Theorem 3. The repair bandwidth γ of our ST-RS(n, k, α)
codes is lower bounded by:{

k + α− 1 k ≤ ⌊n
α⌋ − 1 + (n mod α),

2k − ⌊n
α⌋ − (n mod α) + α k > ⌊n

α⌋ − 1 + (n mod α).

Proof. According to the repair process in Section III.B, the
repair bandwidth is the total number of symbols in sets S1, S2,
and S3. It is easy to see that there are k symbols in set S1.

Next, we consider the number of symbols in set S2. We first
claim that (i) there exists one non-coupled symbol which is in
R′

i,i and α− 1 coupled symbols in row i of an α× α square
transformed-array; (ii) there exists at most two non-coupled
symbols which are in R′

i,i, at most β−α− 1 original symbols
and at least coupled non-original symbols in row i of an α×β
non-square transformed-array, where i = 1, 2, . . . , α. More
original symbols mean lower repair bandwidth when selecting
symbols in set S2. There are at most ⌊n

α⌋ − 1 + (n mod α)
original symbols in each row. If k ≤ ⌊n

α⌋−1+(n mod α), then
we can select all the k symbols in set S1 to be original symbols
and |S2| = 0. Otherwise, if k > ⌊n

α⌋−1+(n mod α), we can
select ⌊n

α⌋−1 non-coupled symbols, at most n mod α original
symbols and at least k − (⌊n

α⌋ − 1 + (n mod α)) or at most
k−(⌊n

α⌋−1) coupled symbols in set S1. Therefore, the number
of symbols in set S2 is at least k − (⌊n

α⌋ − 1 + (n mod α)).
There are at least α− 1 symbols coupled with the α failed

symbols. Therefore, the number of symbols in set S3 is at least
α− 1. The theorem is proved.

D. The MDS Property
The next theorem shows the filed size of our ST-RS(n, k, α)

codes to maintain the MDS property.



Theorem 4. If the field size is larger than(
n− 1

k − 1

)
−
(⌈n

α⌉ − 1

⌈ k
α⌉ − 1

)
, (3)

then we can always find the values θi,j such that our codes
are MDS codes.

Proof. It is sufficient to show that any k out of the n nodes
can recover all the data symbols. Suppose that r nodes are
erased, there are

(
n
k

)
cases in selecting any k out of the n

nodes. For each case, the determinant of the corresponding
coefficient matrix is a polynomial of variables θi,j , where
i = 1, 2, . . . , α and j = 1, 2, . . . , n. The variable θi,j is used
in at most one entry in one square set transformation array, and
at most two entries in a non-square set transformation array.
Thus the degree of θi,j of the determinant polynomial is at
most one. We want to find the values for variables θi,j such
that the evaluation of the determinants multiplication of all(
n
k

)
cases is non-zero. The degree of variable θi,j of all

(
n
k

)
determinants multiplication is at least

(
n−1
k−1

)
. By [24, Theorem

1.2], if the field size q is larger than the degree of each θi,j
in the determinants multiplication, there exists at least one
value for each variable θi,j such that the evaluation of the
determinants multiplication is non-zero. Therefore, our codes
are MDS codes if the field size is

(
n−1
k−1

)
.

Note that we can always retrieve all the data symbols from
some cases of k nodes. If the k nodes are chosen as all the
columns in some transformed arrays, then we can compute all
the data symbols [25, Theorem 1]. There are

(⌈n
α ⌉−1

⌈ k
α ⌉−1

)
such

special cases. We only need to make sure that the evaluation of
the multiplication of

(
n−1
k−1

)
−
(⌈n

α ⌉−1

⌈ k
α ⌉−1

)
determinants is non-zero,

and the theorem is proved.

IV. COMPARISON

In this section, we evaluate the performance of our ST-
RS(n, k, α) codes and the existing MDS codes in terms of
field size, sub-packetization level and repair bandwidth.

Table I shows the field size and sub-packetization level of
our codes and the existing related MDS codes, including HTEC
[20], C1 [22], C2 [26], C3 [27], and ET-RS codes [1] that have
low repair bandwidth and small sub-packetization level. We can
see from Table I that our codes have lower field size than all
the other evaluated codes, and have a flexible sub-packetization
level like ET-RS codes. Note that we can recursively apply our
set transformation for RS codes many times to achieve any
sub-packetization level like ET-RS codes [1].

Define the average repair bandwidth ratio as the ratio of
the average repair bandwidth of all n nodes to the number of
data symbols. In the following, we first show that the repair
bandwidth of our ST-RS(n, k, α) codes is strictly lower than
that of ET-RS(n, k, α) codes [1] (refer to Theorem 6). Then
we evaluate the average repair bandwidth ratio for some typical
parameters of our ST-RS(n, k, α) codes and ET-RS codes (refer
to Table II, these data are exactly the repair bandwidth of the
repair methods).

Next lemma shows that our codes have strictly less repair
bandwidth than ET-RS codes for some nodes.

Codes Field Size Sub-packetization

C2 [26]
(n
k

)
(n− k)α+1 r

k
r

C3 [27]
(n
k

)α(α−1)
2

⌊ k
α
⌋ (d− k + 1)

⌊ n
(d−k+1)η

⌋

HTEC [20]
(n
k

)
(n− k)α 2 ≤ α ≤ r⌈

k
r
⌉

C1 [22]
(n−1
k−1

)
+ 2 2 ≤ α ≤ r

ET-RS [1] 2
((n−1

k−1

)
−

(⌈ n
α∗ ⌉−1

⌈ k
α∗ ⌉−1

))
2 ≤ α ≤ r⌊

n
r
⌋

Our codes
(n−1
k−1

)
−

(⌈ n
α∗ ⌉−1

⌈ k
α∗ ⌉−1

)
2 ≤ α ≤ r⌊

n
r
⌋

TABLE I: Evaluation for our codes and related codes.

Lemma 5. Let γST-RS be the repair bandwidth of single-
node failure in the first n− 2(n mod α) nodes of our codes,
and γET-RS be the lower bound on the repair bandwidth
of single-node failure in the first n − 2(n mod α) nodes
of ET-RS(n, k, α). We have that γET−RS − γST−RS ≥ 0.
Moreover, there exist (α − (n mod α))⌊n

α⌋ nodes such that
γET−RS − γST−RS ≥ n mod α.

Proof. See Appendix A.

The next theorem shows that our codes have a lower average
repair bandwidth ratio than ET-RS codes for high-code-rate
parameters.

Theorem 6. Suppose that n/k > 0.5, the average repair
bandwidth ratio γ̄ST−RS of our ST-RS(n, k, α) is lower than
that of ET-RS(n, k, α).

Proof. See Appendix B.

Table II shows the average repair bandwidth ratio of our
ST-RS(n, k, α) codes, ET-RS codes and HTEC codes, under
some typical parameters. Note that the values are exactly the
repair bandwidth in the table. It can be seen from Table II that
ST-RS codes have lower repair bandwidth than the other two
codes for all the evaluated parameters.

(n, k, α) ET-RS HTEC ST-RS Cut-set bound

(10, 7, 3) 72.3% 68.5% 65.7% 42.8%

(14, 10, 4) 55.3% 60.1% 51.7% 32.5%

(17, 13, 4) 54.2% 57.2% 49.7% 30.7%

(22, 18, 4) 50.1% 54.1% 48.1% 29.1%

(29, 25, 4) 49.0% 51.5% 46.8% 28.0%

TABLE II: Average repair bandwidth ratio of three codes.

V. CONCLUSION

In this paper, we propose set transformation that can
transform base MDS code into set transformed MDS code
with lower repair bandwidth. Compared with existing elastic
transformed codes, our set transformed codes require a smaller
field size and lower repair bandwidth. How to design a more
general transformation structure to further reduce the repair
bandwidth is one of our future works.



REFERENCES

[1] K. Tang, K. Cheng, H. H. W. Chan, X. Li, P. P. C. Lee, Y. Hu, J. Li,
and T.-Y. Wu, “Balancing Repair Bandwidth and Sub-Packetization in
Erasure-Coded Storage via Elastic Transformation,” in IEEE INFOCOM
2023 - IEEE Conference on Computer Communications, 2023, pp. 1–10.

[2] I. S. Reed and G. Solomon, “Polynomial Codes over Certain Finite
Fields,” Journal of the Society for Industrial & Applied Mathematics,
vol. 8, no. 2, pp. 300–304, 1960.

[3] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan, “Availability in Globally Distributed Storage
Systems,” in Proc. of the 9th Usenix Symposium on Operating Systems
Design and Implementation, 2010, pp. 1–7.

[4] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran,
“Network Coding for Distributed Storage Systems,” IEEE Trans. Infor-
mation Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[5] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal Exact-Regenerating
Codes for Distributed Storage at the MSR and MBR Points via a Product-
Matrix Construction,” IEEE Trans. Information Theory, vol. 57, no. 8,
pp. 5227–5239, August 2011.

[6] I. Tamo, Z. Wang, and J. Bruck, “Zigzag Codes: MDS Array Codes with
Optimal Rebuilding,” IEEE Trans. Information Theory, vol. 59, no. 3,
pp. 1597–1616, May 2013.

[7] H. Hou, K. W. Shum, M. Chen, and H. Li, “BASIC Codes: Low-
Complexity Regenerating Codes for Distributed Storage Systems,” IEEE
Trans. Information Theory, vol. 62, no. 6, pp. 3053–3069, 2016.

[8] M. Ye and A. Barg, “Explicit Constructions of Optimal-Access MDS
Codes with Nearly Optimal Sub-Packetization,” IEEE Transactions on
Information Theory, vol. 63, no. 10, pp. 6307–6317, 2017.

[9] J. Li, X. Tang, and C. Tian, “A Generic Transformation to Enable Optimal
Repair in MDS codes for Distributed Storage Systems,” IEEE Trans.
Information Theory, vol. 64, no. 9, pp. 6257–6267, 2018.

[10] S. B. Balaji and P. V. Kumar, “A Tight Lower Bound on the Sub-
Packetization Level of Optimal-Access MSR and MDS Codes,” in Proc.
IEEE Int. Symp. Inf. Theory, 2018, pp. 2381–2385.

[11] H. Hou, P. P. Lee, and Y. S. Han, “Multi-Layer Transformed MDS Codes
with Optimal Repair Access and Low Sub-Packetization,” arXiv preprint
arXiv:1907.08938, 2019.

[12] H. Hou and P. P. Lee, “Binary MDS Array Codes with Optimal Repair,”
IEEE Trans. Information Theory, vol. 66, no. 3, pp. 1405–1422, Mar.
2020.

[13] K. V. Rashmi, N. B. Shah, and K. Ramchandran, “A Piggybacking
Design Framework for Read-and Download-efficient Distributed Storage
Codes,” IEEE Trans. Information Theory, vol. 63, no. 9, pp. 5802–5820,
2017.

[14] G. Y. Li, X. Lin, and X. Tang, “An Efficient One-to-One Piggybacking
Design for Distributed Storage Systems,” IEEE Trans. Communications,
vol. 67, no. 12, pp. 8193–8205, 2019.

[15] Z. Jiang, H. Hou, Y. S. Han, Z. Huang, B. Bai, and G. Zhang, “An
Efficient Piggybacking Design with Lower Repair Bandwidth and Lower
Sub-packetization,” in Proc. IEEE Int. Symp. Inf. Theory, 2021, pp.
2328–2333.

[16] H. Shi, H. Hou, Y. S. Han, P. P. C. Lee, Z. Jiang, Z. Huang, and B. Bai,
“New Piggybacking Codes with Lower Repair Bandwidth for Any Single-
Node Failure,” in 2022 IEEE International Symposium on Information
Theory (ISIT), 2022, pp. 2601–2606.

[17] Z. Jiang, H. Shi, Z. Huang, B. Bai, G. Zhang, and H. Hou, “Toward
Lower Repair Bandwidth of Piggybacking Codes via Jointly Design for
Both Data and Parity Nodes,” in 2023 IEEE Global Communications
Conference: Selected Areas in Communications: Cloud/edge Computing,
Networking, and Data Storage (Globecom2023 SAC CLOUD), Kuala
Lumpur, Malaysia, December 2023, p. 6.

[18] ——, “Toward Lower Repair Bandwidth and Optimal Repair Complexity
of Piggybacking Codes with Small Sub-packetization,” IEEE Transactions
on Communications, pp. 1–1, 2024.

[19] H. Shi, Z. Jiang, Z. Huang, B. Bai, G. Zhang, and H. Hou, “Piggybacking+
Codes: MDS Array Codes with Linear Sub-Packetization to Achieve
Lower Repair Bandwidth,” in 2023 IEEE Global Communications
Conference: Selected Areas in Communications: Cloud/edge Computing,
Networking, and Data Storage (Globecom2023 SAC CLOUD), Kuala
Lumpur, Malaysia, December 2023, p. 6.

[20] K. Kralevska, D. Gligoroski, R. E. Jensen, and H. Øverby, “HashTag
Erasure Codes: From Theory to Practice,” IEEE Transactions on Big
Data, vol. 4, no. 4, pp. 516–529, 2018.

[21] J. Li, X. Tang, and C. Tian, “A Generic Transformation for Optimal
Repair Bandwidth and Rebuilding Access in MDS Codes,” in 2017
IEEE International Symposium on Information Theory (ISIT), 2017, pp.
1623–1627.

[22] K. Wang and Z. Zhang, “Bidirectional Piggybacking Design for All Nodes
With Sub-Packetization 2 < l < r,” IEEE Transactions on Communications,
vol. 71, no. 12, pp. 6859–6869, 2023.

[23] ——, “Bidirectional Piggybacking Design for All Nodes with Sub-
Packetization l = r,” in 2023 IEEE Information Theory Workshop (ITW),
2023, pp. 305–310.

[24] N. ALON, “Combinatorial Nullstellensatz,” Combinatorics, Probability
and Computing, vol. 8, no. 1-2, p. 7–29, 1999.

[25] J. Li, X. Tang, and C. Tian, “A Generic Transformation to Enable
Optimal Repair in MDS Codes for Distributed Storage Systems,” IEEE
Transactions on Information Theory, vol. 64, no. 9, pp. 6257–6267, 2018.

[26] G. K. Agarwal, B. Sasidharan, and P. Vijay Kumar, “An Alternate
Construction of An Access-optimal Regenerating Code with Optimal
Sub-packetization Level,” in 2015 Twenty First National Conference on
Communications (NCC), 2015, pp. 1–6.

[27] H. Hou, P. P. C. Lee, and Y. S. Han, “Multi-Layer Transformed MDS
Codes with Optimal Repair Access and Low Sub-Packetization,” 2019.



APPENDIX A
PROOF OF LEMMA 5

Proof. Referring to Theorem 3 and [1, Theorem 2], the repair
process of both set transformation and elastic transformation is
divided into three sets of downloading, we note that the three
sets of set transformation are sets ST

1 ,ST
2 ,ST

3 , and the three
sets of elastic transformation are sets SE

1 ,SE
2 ,SE

3 .
Recall that according to the similar steps of Section III.B,

the first α(⌊n
α⌋−1) nodes form ⌊n

α⌋−1 α×α arrays, and the
remaining α + n mod α nodes form an α × (α + n mod α)
array to make transformation respectively.

Suppose node t failed and t ∈ {1, 2, . . . , n− 2(n mod α)},
to recover node t, we discuss the three sets in the repair process
in turn.

The first sets ST
1 and SE

2 are discussed first, it is easy to
see that |ST

1 | = |SE
1 | = k;

Then for the last sets, if node t is not in the last 2(n mod α)
nodes, the symbols in node t must be in the sub-array A and B2.
Every symbol in the sub-array A and B2 can only download
at most one coupled symbol to recover, so |ST

1 | = α − 1.
However, |SE

1 | ≥ α− 1.
For the second sets, recall that it includes the coupled

symbols for the k symbols in the first set. In set ST
1 , there are

⌊n
α⌋ − 1 + (n mod α) symbols that do not need to download

coupled symbols, at most n mod α symbols that need to
download two coupled symbols and the rest of symbols that
need to download one coupled symbols. In set SE

1 , there are
⌊n
α⌋−1 symbols that do not need to download coupled symbols,

up to n mod α symbols that need to download two coupled
symbols, and the rest of symbols that need to download one
coupled symbols. We select k symbols with as few coupled
symbols as possible. So there must be |ST

2 | ≤ |SE
2 |. Finally,

γET−RS − γST−RS =

3∑
i=1

(|SE
i | − |ST

i |)

≥ |SE
2 | − |ST

2 | ≥ 0.

If node t in the first α − (n mod α) nodes of every set
transformation array (totally (α−(n mod α))⌊n

α⌋ nodes), there
must be at n mod α coupled but original symbols in the major
row because the second symbol of the sets in sub-array B1 is
original. At this point,

|ST
2 | = k − (⌊n

α
⌋ − 1 + (n mod α))

and
|SE

2 | ≥ k − (⌊n
α
⌋ − 1).

Finally, we can get

γET−RS − γST−RS = (

3∑
i=1

(|SE
i | − |ST

i |)

≥ |SE
2 | − |ST

2 |
≥ n mod α.

APPENDIX B
PROOF OF THEOREM 6

Proof. From Lemma 5, we can know that for the first
n−2(n mod α) nodes, ST-RS(n, k, α) has at least (α−n mod
α)⌊n

α⌋(n mod α) symbols repair bandwidth less than ET-
RS(n, k, α). Recall that the average repair bandwidth ratio
is defined as the ratio of the sum of the repair bandwidth
of all nodes and the number of nodes times kα, below it
is only necessary to show that the total repair bandwidth of
the 2(n mod α) remaining nodes ST-RS(n, k, α) is at most
(α− n mod α)⌊n

α⌋(n mod α) symbols more than that of ET-
RS(n, k, α).

Like the proof process of Lemma 5, suppose node t failed,
to recover node t, we discuss the three sets in the repair process
in turn.

The first sets ST
1 and SE

2 are discussed first, it is easy to
see that |ST

1 | = |SE
1 | = k;

For the second sets, like the similar proof in Lemma 5, in
set ST

1 , there are ⌊n
α⌋ − 1 + (n mod α) symbols that do not

need to download coupled symbols and the rest of symbols
that need to download one coupled symbols. In set SE

1 , there
are ⌊n

α⌋ − 1 symbols that do not need to download coupled
symbols and the rest of the symbols that need to download one
coupled symbols. We select k elements with as few coupled
symbols as possible. So there must be |ST

2 | ≤ |SE
2 |. Finally,

γET−RS − γST−RS =

3∑
i=1

(|SE
i | − |ST

i |)

≥ |SE
2 | − |ST

2 | ≥ 0.

Finally, for the last sets, given that each pair of symbols in
sub-array B1 corresponds to a single symbol in ST-RS(n, k, α),
we possibly need to download two symbols to recover one
symbol in sub-array B1, and other symbols only need to
download one symbol. Recall that the number of symbols in
sub-array B1 is 2(n mod α)(α−n mod α). On the other hand,
one lost symbol in ET-RS(n, k, α) at least needs to download
one symbol to recover it. In total, for ST-RS(n, k, α), we at
most download 2(n mod α)(α−n mod α) symbols more than
that of ET-RS(n, k, α) for the last set.

In order to have a lower repair bandwidth ratio, we wish
that

(α− n mod α)⌊n
α
⌋(n mod α)− 2(n mod α)(α− n mod α)

≥ 0.

then
(⌊n
α
⌋ − 2)(n mod α)(α− n mod α) ≥ 0.

If n mod α = 0, then the inequality is constant, and it may be
assumed that n mod α > 0, while we must have α > n mod α.
Simplify that we can get

⌊n
α
⌋ − 2 ≥ 0,

we only need
⌊n
α
⌋ ≥ 2.



Because of 2k > n > 2r ≥ 2α, the conclusion is clearly
valid.


