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The equation of state (EOS) in the limit of infinite symmetric nuclear matter exhibits an equilib-
rium density, n0 ≈ 0.16 fm−3, at which the pressure vanishes and the energy per particle attains its
minimum, E0 ≈ −16MeV. Although not directly measurable, the nuclear saturation point (n0, E0)
can be extrapolated by density functional theory (DFT), providing tight constraints for microscopic
interactions derived from chiral effective field theory (EFT). However, when considering several DFT
predictions for (n0, E0) together, a discrepancy between model classes emerges at high confidence
levels that each model prediction’s uncertainty cannot explain. How can we leverage these DFT
constraints to rigorously benchmark nuclear saturation properties of chiral interactions? To address
this question, we present a Bayesian mixture model that combines multiple DFT predictions for
(n0, E0) using an efficient conjugate prior approach. The inferred posterior distribution for the
saturation point’s mean and covariance matrix follows a Normal-inverse-Wishart class, resulting
in posterior predictives in the form of correlated, bivariate t-distributions. The DFT uncertainty
reports are then used to mix these posteriors using an ordinary Monte Carlo approach. At the
95% credibility level, we estimate n0 ≈ 0.157 ± 0.010 fm−3 and E0 ≈ −15.97 ± 0.40MeV for the
marginal (univariate) t-distributions. Combined with chiral EFT calculations of the pure neutron
matter EOS, we obtain bivariate normal distributions for the nuclear symmetry energy and its slope
parameter evaluated at n0: Sv ≈ 32.0± 1.1MeV and L ≈ 52.6± 8.1MeV (95%), respectively. Our
Bayesian framework is publicly available, so practitioners can readily use and extend our results.

I. INTRODUCTION

Nuclear matter, a strongly interacting system made of
protons and neutrons, is pervasive throughout the visi-
ble universe. While the strong interaction binds nucle-
ons into atomic nuclei, it provides the pressure required
to support neutron stars against gravitational collapse,
driving nuclear matter in their cores to densities far be-
yond those probed in atomic nuclei. Understanding how
the properties of nuclear matter emerge and evolve across
such a wide range of densities has been a critical sub-
ject of study, with tremendous progress achieved recently
in, e.g., ab initio many-body calculations using micro-
scopic nuclear interactions derived from chiral effective
field theory (EFT) [1–8], Bayesian quantification of the-
oretical uncertainties [9–15], heavy-ion collisions [16–18],
parity-violating electron scattering [19–21], and multi-
messenger astronomy [22–24].
A system that has traditionally served to isolate the

complex nuclear dynamics is infinite nuclear matter, an
idealized framework in which nucleons interact only via
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the strong force, thereby allowing one to neglect surface
effects and thus focus on bulk nuclear matter proper-
ties. The nuclear equation of state (EOS) encodes how
the energy per particle E(nb, δ, T )/A changes as a func-
tion of the nucleon (number) density nb, isospin asymme-
try δ, and temperature T . Among the hallmarks of the
nuclear dynamics is the saturation property of isospin
symmetric nuclear matter (SNM) at zero temperature
(T = 0), characterized by equal neutron and proton
densities (δ = 0). In that limit, the EOS exhibits a
minimum at the density n0 ≈ 0.16 fm−3, which is re-
lated to the typical central density of heavy nuclei [25],
while the corresponding ground-state energy per parti-
cle E(n0)/A ≡ E0 ≈ −16MeV is closely related to the
volume term of the semi-empirical mass formula. To-
gether, (n0, E0) are referred to as the nuclear saturation
point. Despite these connections to finite nuclei, the sat-
uration point is not a physical observable that could be
measured in the laboratory (see also Ref. [26]). How-
ever, density functional theory (DFT) extrapolations to
infinite nuclear matter, informed by nuclear observables,
provide important empirical constraints for (n0, E0) and
for other important low-density EOS parameters [27–30],
such as the symmetry energy J≡Sv and its slope param-
eter L evaluated at n0. In turn, these bulk parameters
guide the construction of microscopic EOS models (e.g.,
see Refs. [31–34]).
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Nuclear saturation emerges from a delicate cancella-
tion between kinetic and interaction contributions in the
microscopic Hamiltonian, which is particularly sensitive
to repulsive three-nucleon (3N) interactions in addition
to the net attractive nucleon-nucleon (NN) contributions
(e.g., see Refs. [4, 5, 35]). This cancellation between two
large contributions makes saturation properties ideal for
benchmarking chiral interactions in the nuclear medium.
Moreover, their implementation in computational (many-
body) frameworks shed light on important open ques-
tions in chiral EFT [36], such as Weinberg power count-
ing, the source for the differing predictions for medium-
mass to heavy nuclei, and the importance of adding the
delta-baryon (∆) degree of freedom. Notably, reproduc-
ing the fairly tight empirical ranges for (n0, E0) obtained
from DFT has been challenging for state-of-the-art SNM
calculations with chiral NN and 3N interactions, even
when significant theoretical uncertainties due to EFT
truncation errors, the use of different chiral interactions,
etc. are taken into account (e.g., see Refs. [5, 37–43]).
Realistic nuclear saturation properties may provide help-
ful insights into the construction of microscopic nuclear
potentials that become more successful at simultaneously
predicting the properties of medium-mass to heavy nuclei
and of infinite nuclear matter [44–47]. However, details
of the connection between finite nuclei and infinite mat-
ter near the saturation point have proved elusive [4, 48–
50], so one may need further advances in nuclear EFT to
properly elucidate them [13, 14, 51–57].

Motivated by this narrative, it is natural to ask: How
well constrained is the nuclear saturation point? Fig-
ure 1 summarizes selected empirical constraints of the
nuclear saturation point (n0, E0) from Skyrme [58–64]
and relativistic mean field (RMF) models [27, 65–68].
When available, 95% confidence regions derived from
the developers’ uncertainty quantification (UQ) are dis-
played in the figure. The gray saturation box depicts the
range spanned by the point estimates associated with the
Skyrme models compiled in “Dutra+” [58] and “Korte-
lainen+” [59] (see also Fig. 2). It was constructed in
Ref. [37] to serve as a reference for microscopic SNM cal-
culations, and a slightly enlarged version was later used
to calibrate chiral 3N interactions [40]. Given that all
DFT predictions displayed in Fig. 1 report saturation
points that, when considered together, are clearly incon-
sistent with each other, one must conclude that not all
DFT predictions can be both precise and accurate simul-
taneously.

Since, in most cases, the functionals are calibrated
to genuine nuclear observables, the source of this in-
consistency may be associated with the functional form
and/or parameter-estimation protocol of the DFT mod-
els.1 However, whereas nuclear properties such as bind-
ing energies and charge radii encode the empirical sat-

1 DFT models may not only be calibrated to finite-nuclei observ-
ables. Other constraints are informed by neutron star observa-

uration point, one must recognize that an extrapolation
to infinite nuclear matter—where Coulomb and surface
effects are neglected—may also become an additional
source of systematic error. Although Fig. 1 suggests rel-
atively small differences in E0 because of the large model
spread, there is a noticeable difference in the model pre-
dictions for the saturation density [71]. In particular,
the Skyrme models systematically predict a higher satu-
ration density than the RMF models. The wide margins
(dashed lines) associated with the maximum margin sep-
arating hyperplane (MMSH, gray solid line) of a linear
support vector machine (SVM) classifier trained on all
mean values in Fig. 1 demonstrates this distinct separa-
tion. Additional (unlabeled) DFT constraints with mean
values above the MMSH would be classified as Skyrme
models and those below the MMSH as RMF models (see
the annotations).
The difference in the saturation density between the

two classes of models is informative. That the Skyrme
models saturate at higher density suggests that these
functionals would, in principle, predict smaller charge
radii than RMF models. Yet in practice, both set of
models reproduce experimental charge radii as these are
included in the calibration procedure. We must then con-
clude that to reproduce charge radii, the RMF function-
als must have a stiffer surface energy than the Skyrme
models. Since infinite nuclear matter is insensitive to
surface effects, this may be an important source behind
the discrepancy. In conclusion, there are unavoidable in-
accuracies in some, if not all, DFT predictions shown in
Fig. 1 due to underestimated (or even unknown) system-
atic model uncertainties, which are generally difficult to
quantify.
How can we leverage the empirical constraints from

DFT to rigorously benchmark nuclear saturation prop-
erties of chiral interactions? To address this question,
we propose a Bayesian framework that infers the (un-
observed) true empirical saturation point from a collec-
tion of pre-selected DFT predictions for (n0, E0); namely,
those represented in Fig. 1. Assuming that all consid-
ered DFT models provide equally legitimate descriptions
of nuclear matter, our framework considers each model’s
prediction for (n0, E0) and its stated UQ at face value
without further assessment. Note that only a few of these
DFT constraints include a highly sophisticated method
to quantify uncertainties, such as those by Schunck et al.
(Skyrme) via Gaussian process (GP) emulation and Giu-
liani et al. (RMF) via Galerkin-based reduced order
modeling [12, 72–75]. The result from our work is a
Bayesian mixture model that, given the stated model as-
sumptions and expert knowledge encoded in prior distri-
butions, enables statistically robust constraints for the
true empirical saturation point, which are informed by,
and consistent with, the underlying DFT model predic-

tions and chiral EFT calculations of pure neutron matter; for
some recent work, see Refs. [69, 70]) .
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FIG. 1. Summary of selected empirical constraints of the nu-
clear saturation point (n0, E0) from Skyrme [58–64] and rela-
tivistic mean field (RMF) models [65–67]. Confidence regions
are given at the 95% credibility level when applicable and un-
filled when overlapping. The saturation box (gray box) was
obtained in Ref. [37] by the range of the 14 data from the sets
labeled “Dutra+” [58] and “Kortelainen+” [59]. The “+” in
the legend stands for “et al.” This work does not consider
the constraints with the solid confidence ellipses in favor of
the more recent constraint by Giuliani et al. [67]. Kernel den-
sity estimation (KDE) is used to depict the contours of the
constraints by Giuliani et al. [67] and Schunck et al. [63, 64],
which are given as random samples from their respective pos-
terior distributions. The maximum margin separating hy-
perplane (MMSH, gray solid line) and its margins (dashed
lines), obtained from a linear support vector machine (SVM)
trained on all mean values, demonstrate the distinct separa-
tion of Skyrme and RMF predictions (see annotations). See
the main text and Table II in Sec. III for more details.

tions and their associated uncertainties. This mixture
model for (n0, E0) is thus conceptually different from re-
cent works that mix multiple DFT models directly (e.g.,
see Refs. [76–78]). Furthermore, using priors conjugate to
the likelihood functions facilitates a computationally ef-
ficient approach that requires only ordinary Monte Carlo
sampling, if uncertainties in the DFT predictions are
quantified, and is otherwise analytic. Our framework
is publicly available in the form of annotated Jupyter

notebooks [79] so that chiral EFT and many-body prac-
titioners can readily use and extend our analysis.
The remainder of this article is organized as follows.

Our Bayesian mixture model, its hierarchical design, and
conjugate distribution approach are presented in Sec. II.
The framework is implemented and informed by two col-
lections of DFT models in Sec. III. While the first collec-
tion of models includes only the Skyrme predictions that
are associated with the saturation box in Fig. 1 (with-
out considering UQ), the second collection includes both
Skyrme and RMF models with and without UQ. Sec-
tion IV concludes with a summary and outlook. Several
appendices provide more details. Appendix A summa-
rizes key properties of the relevant distribution functions;
Appendix B discusses how confidence regions (i.e., con-
fidence ellipses) of bivariate student t-distributions can
be efficiently computed and plotted; Appendix C elabo-
rates on how uncertainty-quantified DFT constraints can
be incorporated into our conjugate-distribution frame-
work using a Monte Carlo sampling implementation of
the model mixing approach; and Appendix D provides
additional results. Throughout the article, vectors and
matrices are typeset in boldface.

II. STATISTICAL FRAMEWORK

In this section, we discuss our statistical framework
for modeling the empirical saturation point using one or
more collections of DFT constraints (see Fig. 1). These
collections will be referred to as (statistical) models and
will be further specified in Sec. III. Table I summarizes
the notation we use throughout this work.

A. Hierarchical Model

Our analysis of the empirical saturation point is based
on a simple hierarchical model in which the analysis re-
ported for each functional employed to produce a satu-
ration point is taken at face value, including its reported
uncertainty. Since we do not have, or seek to obtain, any
information on how these various analyses may relate to
each other, and since we do not have any external data
conferring additional insights about their collective be-
havior, we assume that each reported saturation point is
a given data point, with a given associated uncertainty
report. Therefore, our analysis assumes that the (typ-
ically unobserved) saturation point yi ≡ (n0, E0) asso-
ciated with the model Mi is a sample from a universal
d-dimensional normal random variable Y modeling the
true saturation point of all DFT model predictions taken
collectively:

Y ∼ Nd(µ,Σ) , (1)

where µ and Σ are respectively the a priori unknown
mean vector of length d and covariance matrix of size
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TABLE I. Notation used in this work.

Notation Description

(n0, E0) nuclear saturation point: saturation density n0 (in fm−3) and associated saturation energy (per particle)
E0 ≡ E(n0)/A (in MeV) of infinite symmetric nuclear matter

d ≡ 2 dimensionality of the saturation point

Mi, M collection of one or more DFT constraints, here referred to as model; M = {Mi}ni=1

n number of models (i.e., data points) considered in the conjugate prior analysis

yi ≡ (n0, E0), Y saturation point of model Mi, i ∈ [1, 2, . . . , n], modeled as a sample of the random variable Y in Eq. (1);
in the statistical meaning typically unobserved, i.e. when model Mi provides an uncertainty for yi

Yi random variable encoding the uncertainties reported with model Mi; yi is treated as a particular sample
from Yi; when Mi reports no uncertainty, Yi = yi is non-random; Y = {Yi}ni=1

(µ,Σ) to-be-estimated parameters: mean vector and covariance matrixa of the d-variate normal distribution
Nd(µ,Σ) in Eq. (1)

y′ possible unobserved DFT constraints drawn from the posterior predictive distribution, see Eqs. (16)
and (19); when n = 0, these distributions are referred to as prior predictive distributions

tν(µ,Ψ) multivariate t-distribution with mean vector µ and scale matrixa Ψ; for brevity, this notation is used
interchangeably for the name of the distribution and the formula for its density

κn, νn,µn,Ψn hyperparameters of the posterior (n > 0) or prior (n = 0), both Normal-inverse-Wishart (NIW)
distributions

X ∼ P indicates that the random variable X has the distribution called P (or has the density P ); e.g., see
Eq. (1) where the random variable Y has a d-variate normal distribution (density)b

P (X | Y ) probability density for the random variable X given (conditional on) another random variable Y ; this
notation can also be used for random vectors

a The covariance matrix Σ and scale matrix Ψ are real-valued, symmetric, and positive definite.
b The capital letter P is used to denote probability densities, as is common in the physics literature. In statistics, however, the
capitalization is often reserved for actual probabilities, not densities, but this is merely a convention.

d× d. While one has d ≡ 2 for the saturation point, our
framework is also applicable to the general d-dimensional
case. Notice that Eq. (1) is a classical likelihood model
for Bayesian analyses. We assume that Y is normal for
simplicity of analysis, to provide practitioners with as
standard a framework as possible, and because the sat-
uration point is a point in a continuous d-dimensional
space that is only known with some uncertainty. Pre-
dictions from n different models correspond to repeated
draws {yi}ni=1, which are assumed to be independent and
identically distributed (i.i.d.). However, {yi}ni=1 are typ-
ically unobserved (in the statistical meaning) and thus
not directly accessible as data to our analysis due to un-
certainties inherent in (and typically reported by) each
model in the DFT constraints.

To account for these uncertainties, we introduce in-
stead another d-dimensional random variable Yi whose
distribution function P (Yi) is defined via the model de-
velopers’ UQ:

Yi ∼ P (Yi) , i = 1, 2, . . . , n . (2)

As mentioned, each unobserved saturation point yi is as-
sumed to be a sample coming from the overall model in
Eq. (1), and each individual developer’s model Mi pro-
duces an uncertain observation distribution Yi instead of
yi. As illustrated in Fig. 1, the Yi’s considered in this
work are:

1. linear combinations of Dirac δ distributions for
models consisting of one or more point estimates
without UQ (e.g., the data sets compiled by Du-
tra et al.). In the absence of additional information,
the point estimates are weighted equally here;

2. bivariate normal distributions with known mean
vectors and covariance matrices (e.g., the func-
tional TOV–min) inferred from covariance analy-
ses; and

3. more intricate distributions due to rigorous UQ
(e.g., by Giuliani et al.). Since their closed math-
ematical expressions are unknown or do not exist,
numerous samples are used to represent the distri-
butions, which are then formally (but not conceptu-
ally) equivalent to linear combinations of thousands
of Dirac δ distributions.

We leave the specific form of these distributions to the
expert knowledge of the model developers and take their
UQ information, if provided, so that all distributions Yi

are given and need not to be estimated in our Bayesian
analysis. Furthermore, we assume the pairs (Yi,Yj) to
be mutually independent of one another for i ̸= j, which
is somewhat justified since our analysis includes DFT
constraints from various sources. These assumptions are
crucial for the streamlined method used in this work.
Our task is then to infer the distribution for our model

parameters µ,Σ conditional on the information M com-
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ing from all the models {Mi}ni=1 after averaging over the
distributions of all uncertainties Y = {Yi}ni=1:

2

P (µ,Σ | M)

=

∫
dyP (µ,Σ | M,Y = y)P (Y = y) .

(3)

We can interpret Eq. (3)3 as a posterior distribution,
which, using Bayes’ theorem,

P (µ,Σ | M) =
P (M | µ,Σ)P (µ,Σ)

P (M)
, (4)

ought to be expressed as the product of the likelihood of
the information that we have, given the parameter values
µ,Σ, times our prior knowledge on these parameters en-
coded in a distribution P (µ,Σ) of our choosing, divided
by a normalizing constant P (M), which is interpreted
as an evidence factor in favor of the information M at
hand. Combining Eqs. (3) and (4), one notes that the
likelihood of M given the parameter values µ,Σ can be
expressed as the following mixing distribution over the
model reporting uncertainties:

P (M | µ,Σ)

=

∫
dyP (M | µ,Σ,Y = y)P (Y = y) .

(5)

Note that the likelihood parameters µ, Σ in Eq. (4) cor-
respond to our model (1), and also note that

P (Y) =

n∏
i=1

Pi(Yi) (6)

in Eq. (5) because of the discussed independence assump-
tion. This interpretation of µ and Σ implies that our
model (1) is indeed our basic likelihood model before ac-
knowledging the uncertainty in the actual sampled sat-
uration points. To consider this uncertainty, one only
needs to mix the basic likelihood against the distributions
Pi(Yi) of the models’ observations reported with their
UQ. This is precisely the operation in Eqs. (3) and (5).

Alternatively, and with equal validity, we can interpret
Eq. (3) as a simple mixture model, where the mixture op-
eration with respect to the mixing variable Y (i.e., to its

2 The notation P (Y = y) is commonly used in some application
areas of statistics to denote the density of the random variable Y
at the point y. Some statisticians might reserve this notation for
discrete random variables, and would use PY (y) here instead.

3 We use the notation “| M)” in Eq. (3) and throughout the article.
It is shorthand for the act of conditioning by the information con-
tained in the UQ reported by the developers of DFT model Mi

for each i = 1, 2, . . . , n. A more complete notation would require
defining probability-measure-valued random elements represent-
ing unspecified DFT UQ, and setting those random elements
equal to the reported uncertainties. Such formalism would be
burdensome and entirely unnecessary.

mixing density P (Y = y)) commutes with the applica-
tion of Bayes’ theorem, leading to the following rewriting
of that theorem from Eq. (4), in which mixing appears
simply as integrating against the density of the random
variables Y :

P (µ,Σ | M)

=

∫
dy P (µ,Σ | M,Y = y)P (Y = y)

=

∫
dy

P (M | µ,Σ,Y)P (µ,Σ)

P (M)
P (Y = y) . (7)

Note that Bayes’ theorem, from the second line to the
third line in Eq. (7), is only applied to the parameter-
data pair ((µ,Σ),M). This insensitivity of the develop-
ers’ UQ to the Bayesian analysis [i.e., we do no attempt
to revise the developers’ UQ] is why Bayes’ theorem and
the mixing operations commute and why Eq. (3) is equiv-
alent to Eq. (7). Although formally equivalent, we argue
in Sec. II C in favor of using this simple model mixing
approach in the last line in Eq. (7) over mixing the like-
lihood function Eq. (5) explicitly to account for uncer-
tainties in the model predictions.

The choice of the prior distribution P (µ,Σ) should,
in principle, be arbitrary and could be fully informed by
nuclear physics knowledge. Here, we choose a particu-
lar prior distribution class that, combined with the like-
lihood density associated with our statistical model (1),
ensures that the prior and posterior are in the same distri-
bution class. This choice has the desirable and convenient
feature that the posterior parameters can be inferred ana-
lytically via simple algebra without needing Monte Carlo
sampling or other computational approximations. Poste-
rior and prior in this classical, so-called conjugate prior
approach to Bayesian analysis are referred to as conjugate
distributions.

B. DFT constraints without uncertainties

We discuss first the case in which {yi}ni=1 is observed,
i.e., each model contains only a point estimate for yi

without (quantified) uncertainties. In this scenario, we
can symbolically evaluate the mixture model (3), or like-
wise the marginalized likelihood (5), since Eq. (6) simpli-
fies to a product of Dirac δ distributions located at the
(in this case) observed true saturation point yi,

P (Y) =

n∏
i=1

δ(Yi − yi) . (8)

We will encounter this scenario in Sec. III A when we
analyze the data sets used in Ref. [37] to construct the
saturation box in Fig. 1. The likelihood function for the
observed data, corresponding to our statistical model (1),
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is then given by the multivariate normal distribution

P (M | µ,Σ) =

n∏
n=1

Nd(yi | µ,Σ)

∝ |Σ|−n
2 exp

[
−1

2

n∑
i=1

(yi − µ)⊺Σ−1(yi − µ)

]
, (9)

with the determinant functional | • | and number of data
points n considered. Note that the product, the sum
inside the exponential function, and the term |Σ|−n

2 in
Eq. (9), reflect the assumption that the samples yi are
i.i.d. draws of the random variable (1). Taking advan-
tage of conjugate distributions, we choose the prior dis-
tribution to be the conjugate before the likelihood func-
tion (9): the normal-inverse-Wishart (NIW) distribution

P (µ,Σ) = NIW(µ,Σ | κ0, ν0,µ0,Ψ0)

∝ |Σ|−((ν0+d)/2+1)

× exp

[
−κ0

2
µ̃⊺Σ−1µ̃− 1

2
tr(Ψ0Σ

−1)

]
,

(10)

with the shorthand notation µ̃ = (µ − µ0) and trace
operator tr(•) on the space of d× d matrices. The NIW
distribution (10) is parameterized in terms of the four hy-
perparameters (κ0, ν0,µ0,Ψ0), where the integers κ0 > 0
and ν0 > 0 respectively are a scale parameter and the de-
gree of freedom, while µ0 is the prior mean vector andΨ0

the (real-valued, symmetric, positive-definite) prior scale
matrix. Smaller values for (κ0, ν0) result in heavier tails
at the prior level and thus typically also in more conserva-
tive UQ, particularly in data-limited settings like the one
considered here. A slightly more conservative UQ than
required can be a virtue to guard against under-reporting
uncertainty.

Using the likelihood (9) and its conjugate prior (10),
the posterior distribution is given by [80–82]

P (µ,Σ | M) = NIW(µ,Σ | κn, νn,µn,Ψn;M) , (11)

with the updated hyperparameters

κn = κ0 + n , (12a)

νn = ν0 + n , (12b)

µn =
1

κn

[
κ0µ0 + nȳ

]
, (12c)

Ψn = Ψ0 + S+
κ0n

κn
(ȳ − µ0) (ȳ − µ0)

⊺
, (12d)

where the grand sample mean is denoted by

ȳ =
1

n

n∑
i=1

yi , (13)

and sum-of-squared-deviations matrix from the grand
sample mean (13) is denoted by4

S =

n∑
i=1

(yi − ȳ) (yi − ȳ)
⊺
. (14)

By inspecting Eqs. (12), one can gain some intuition for
the meaning of the (positive-integer) hyperparameters
(κ0, ν0): the mean vector µn is estimated from κ0 prior
observations with sample mean vector µ0, whereas the
scale matrix Ψn is estimated from ν0 prior observations
with mean vector µ0 and scale matrix Ψ0 = ν0Σ0, where
Σ0 is interpreted as a prior covariance matrix.
By combining the inferred posterior (11) with our

model assumption (1), we can determine the distribution
of possible future DFT predictions based on the observed
model constraints,

P (y′ | M) =

∫
dµ

∫
dΣ Nd(y

′ | µ,Σ)P (µ,Σ | M) ,

(15)
also known as the posterior predictive distribution (PPD)
of the model’s predicted response variable y′. It ac-
counts for the uncertainties in the model parameters
µ,Σ through integrating over the posterior (11). Equa-
tion (15) is another example of a mixture model, where a
distribution is obtained from a given probability model,
assuming its parameters have their own randomness, in-
dependent of the original model. In our case, the inte-
gral in Eq. (15) can be carried out analytically (e.g., see
Refs. [80, 82]), resulting in a multivariate t-distribution
tν(µ,Ψ) with ν = νn − d + 1 degrees of freedom, mean
vector µ = µn, and scale matrix Ψ (proportional to the
distribution’s covariance matrix) given below as a func-
tion of the updated hyperparameters in Eqs. (12):

P (y′ | M) = tνn−d+1

(
µn,

Ψn(kn + 1)

kn(νn − d+ 1)

)
. (16)

In the case n = 0, we refer to Eq. (16) as the prior pre-
dictive distribution, which is completely data-agnostic
but is still interpreted as a prediction from the model
using a mixture (i.e., the priors are the mixing distri-
butions). The marginal distributions of the posterior
(and prior) predictive distribution (16) are also mul-
tivariate t-distributions with the same degree of free-
dom. Specifically, in the bivariate case, the two marginal
distributions are the univariate student t-distributions
tν(µ = µi, σ

2
i = Ψii) when the saturation density (i = 2)

or the energy (i = 1) is marginalized out. Appendix A re-
views selected properties of the NIW (11) and multivari-
ate t-distribution (16) and discusses how random samples
from these distributions can be generated, e.g., using the
Python package scipy [83]. Furthermore, Appendix B

4 Note that the d×d sum-of-squared-deviations matrix (14) divided
by n−1 corresponds to the (unbiased) sample covariance matrix.
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presents an analytic method to determine confidence re-
gions for bivariate t-distributions at given credibility lev-
els and how they can be plotted.

C. DFT constraints with uncertainties

We now revisit the general case in which model uncer-
tainties are quantified; i.e., P (Yi = yi) ̸= δ(Yi − yi) for
at least one model. In this scenario, the likelihood func-
tion (5) has to account for the random vectorY explicitly.
One may consider doing so by calculating our statistical
model’s full likelihood function (5). But this approach
would require Markov chain Monte Carlo (MCMC) sam-
pling as it breaks the conjugacy needed for the conjugate
prior approach discussed in Sec. II B.

Although brute-force MCMC sampling of the poste-
rior (4) is feasible, we argue here in favor of the alter-
native and computationally less expensive approach in
which we interpret the desired posterior (3) as a mix-
ture model with respect to the random variable Y , as
discussed in Sec. IIA. Because the to-be-mixed poste-
rior (7) is conditional on Y , we can apply the conjugate
prior approach in Sec. II B to obtain

P (µ,Σ | M,Y) = NIW(µ,Σ | κn, νn,µn,Ψn;M,Y) ,
(17)

with the updated posterior hyperparameters given by
Eqs. (12) and Y = {yi}ni=1, where each yi is a sample
from the distribution of the random variable Yi provided
by the developers of model Mi. The desired posterior
P (µ,Σ | M) is then obtained by integrating against the
distribution of the mixing model (3) in the conditional
posterior Eq. (17):

P (µ,Σ | M) =

∫
dyP (Y = y)

×NIW(µ,Σ | κn, νn,µn,Ψn;M,Y = y) . (18)

Furthermore, model mixing at the level of the posterior
propagates to the posterior (and prior) predictive distri-
bution:

P (y′ | M) =

∫
dyP (Y = y)

× tνn−d+1

(
µn,

Ψn(kn + 1)

kn(νn − d+ 1)
| M,Y = y

)
. (19)

Note that Eq. (19) simplifies to Eq. (16) in the case of
vanishing uncertainties discussed in Sec. II B. Integrating
against dyP (Y = y) in Eqs. (18) and (19) (and also for-
mally in Eq. (7)) can also be interpreted as computing the
mathematical expectation (i.e., the expected value) with
respect to the randomness in Y , which is a consequence
of the fact that our hierarchical model is a mixture.

We use here the following iterative process to sam-
ple from the posterior predictive distribution derived in
Eq. (19) for our Bayesian analysis. First, we sample each

Yi, with i ∈ [1, 2, . . . , n], once from their respective prob-
ability distributions. Treating these samples from Y as
observed data yi, we can apply the conjugate prior ap-
proach discussed in Sec. II B to obtain a sample from the
posterior predictive distribution (16) when all the yi’s are
known. Then, we draw M > 0 samples y′ from this pos-
terior predictive distribution (16). We repeat this process
N > 0 times, including the re-sampling of yi in each of
the N − 1 additional iterations, until the desired total
number of sampling points (of the posterior predictive)
Q := M ×N is obtained.

We choose Q = 108 to explore the uncertainties in the
statistical models andN = 106 to explore the DFT devel-
opers’ UQ. This corresponds to M = 102. A large value
for the total number of samples Q is particularly judi-
cious because the posterior predictions are t-distributed,
with moderate values for their posterior degree of free-
dom, implying that the distribution has relatively heavy
tails. This tail property, which reflects the data-limited
aspect of this study, can only be well-explored with a suf-
ficiently large number of samples. We have checked that
using Q = 108 sampling points is a very conservative
choice. The comparatively modest number N of sam-
ples used to explore the various models’ DFT prediction
uncertainties is a parsimonious choice, reflecting the fact
that most of the procedure’s overall uncertainty comes
from the discrepancy between the various model predic-
tions, with the individual model uncertainty appearing
as a secondary source in the overall UQ.

This iterative process is an instance of an ordinary
Monte Carlo method, with no dependence across iter-
ations, unlike MCMC methods, making this process em-
barrassingly parallelizable [84]. Mathematical details on
this ordinary Monte Carlo approach with variance reduc-
tion can be found in Appendix C; see also Chapter 5 in
Ref. [85]. Other choices for sampling from Eq. (19) exist,
including using a single iterative loop where only a single
new sample (i.e., M = 1) is used for each yi at each iter-
ation. The choice M = 1 can be described as the direct
instance of a Monte Carlo approach for model mixing.
However, we have found that our choice of (M,N) is
most computationally efficient in obtaining a stable pos-
terior prediction without needing an inordinate amount
of samples.

III. RESULTS AND DISCUSSION

In this section, we present the results of our Bayesian
inference of the empirical saturation point, which we ob-
tain by applying the Bayesian mixture model discussed in
Sec. II to the various DFT constraints depicted in Fig. 1
and detailed in Table II. We also study the implications
of our results, combined with recent microscopic pure
neutron matter (PNM) calculations, on the nuclear sym-
metry energy and its density dependence evaluated at
the (empirical) saturation density. Our publicly avail-
able Jupyter notebooks [79] enable the interested reader
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TABLE II. Details of the DFT constraints shown in Fig. 1, including Skyrme and RMF models. The constraints are given as
a set of a few individual data points (i.e., “Dutra+ (’12))”, as bivariate normal distributions (i.e., “TOV–min”), or as a large
collection of data points obtained from posterior sampling (i.e., “Schunck+ (’20)”). The number of constraints (or random
samples) is denoted by ni, and whether the DFT models are uncertainty quantified is specified in the column “UQ.”

Label Type Given as ni UQ? Comments

Dutra+ (’12) [58] Skyrme empirical 10 no this comprehensive analysis selected 16 out of 240
Skyrme models; see Table VII in Ref. [58]; six
of them were excluded due to their unreasonable
behavior at high densities or being unstable for
finite nuclei [58, 86]; the remaining models are:
KDE0v1, NRAPR, Ska25, Ska35, SKRA, SkT1,
SkT2, SkT3, SQMC700, and SV–sym32

Kortelainen+ (’14) [59] Skyrme empirical 4 yesa the models are: SLy4, UNEDF0, UNEDF1, and
UNEDF2; see Table IV in Ref. [59]

Brown (’21) [62] Skyrme empirical 12 no informed by microscopic calculations of low-
density neutron matter; see Ref. [86] for details

Dutra+ (’14) [65] RMF empirical 5 no this comprehensive analysis of 263 RMF models
(similar to Ref. [58]) selected BKA22, BKA24,
BSR11, BSR12, Z271v5, and Z271v6; see Ta-
ble VI in Ref. [65]

FSUGarnet [87]b RMF Normal 1 yes calibrated following the same procedure as
Ref. [88], but with the additional constraint of
reproducing the existence of recently observed
neutron-rich isotopes. Covariance analysis be-
tween model parameters and nuclear properties
are provided within a Gaussian approximation

FSUGold2 [88]b RMF Normal 1 yes calibrated using nuclear masses, radii, monopole
responses, and neutron star properties. Covari-
ance analysis between model parameters and nu-
clear properties is provided within a Gaussian
approximation.

RMF0XY [87]bc RMF Normal 5 yes calibrated following the same procedure as
Ref. [87], but with the additional constraints of
different assumed values for the neutron skin
of 208Pb. Covariance analysis between model
parameters and nuclear properties is provided
within a Gaussian approximation

SV–min [60] Skyrme Normal 1 yes calibration informed by ground-state properties,
including binding energies and radii, of various
nuclei

TOV–min [61] Skyrme Normal 1 yes calibration additionally constrained by neutron
stars; similar to SV–min but with different isovec-
tor properties

McDonnell+ (’15) [63] Skyrme empiricald 103 yes Bayesian calibration of the model in Ref. [89]
(UNEDF1) using nuclear masses, radii, and fis-
sion observables of spherical and deformed nuclei.
The posterior is efficiently explored by using a GP
emulator [90]

Schunck+ (’20) [64] Skyrme empiricald 6× 103 yes Bayesian calibration of the model in Ref. [89]
(UNEDF1) using newly available nuclear masses,
radii, and fission observables of spherical and de-
formed nuclei. The posterior is efficiently ex-
plored using a GP emulator [90]

Giuliani+ (’22) [67] RMF empiricald 105 yes Bayesian calibration of the model in Ref. [66] us-
ing nuclear masses and charge radii. The poste-
rior is efficiently explored via sampling using a
reduced basis method emulator [72, 73].

a For uncertainty estimates, see, e.g., Table II in Ref. [89] (UNEDF1) and Table III in Ref. [59] (UNEDF2). In this work, however, we
use the point estimates in Table IV in Ref. [59] to be consistent with Ref. [37].

b These constraints are not considered here in favor of the more recent constraint by Giuliani et al. [67].
c The placeholder “0XY’ stands for a string of three integers, encoding the predicted 208Pb neutron skin thickness; i.e., R208

skin = 0.XY fm.
d These constraints are given as random samples from the authors’ posterior distributions.
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FIG. 2. Collection of data points (n = 14) used in Ref. [37]
to construct the saturation box depicted in Fig. 1 (gray box).
It combines the models labeled Dutra et al. (’12) and Korte-
lainen et al. (’14) in Table II and thus contains only Skyrme
models without considering UQ. The curved guidelines con-
nect the labels of the models to their respective data points.

to experiment with different prior hyperparameters and
extend our analysis in various directions.

A. DFT constraints without uncertainties:
saturation box

We begin our analysis with the collection of DFT mod-
els used in Ref. [37] to construct the saturation box,
which is depicted in Figs. 1 and 2 (see also Section IV.B in
Ref. [37]). This box represents the (uncorrelated) range
in (n0, E0) obtained by the n = 14 Skyrme models la-
beled “Dutra et al. (’12)” (blue points) and “Korte-
lainen et al. (’14)” (orange points) in Table II:

n
(box)
0 ≈ 0.164± 0.007 fm−3, (20a)

E
(box)
0 ≈ −15.9± 0.4MeV . (20b)

Note that these ranges are not associated with any cred-
ibility interval, and none of the underlying data points
comes with UQ. They are treated as independent model
predictions. As shown in Fig. 2, the energy functionals
UNEDF2 and KDE0v1 set the lower bound on n0 and
E0, respectively, while SQMC700 sets the upper bound
on both. Hence, the saturation box would shrink consid-
erably if SQMC700 were not considered.

With the data collection specified, we need to encode
our prior knowledge of the empirical saturation point in
the four parameters entering the prior distribution (10).

We compare the results of two prior parameter sets, la-
beled Set A and Set B, as a simple proxy for the prior sen-
sibility of our results. The two prior sets use the smallest
values possible for the hyperparameters (κ0 = 1, ν0 = 4)
that still support a well-defined expectation value of the
underlying inverse-Wishart prior distribution (see Ap-
pendix A for details). Furthermore, we assume no prior
knowledge of the correlation between (n0, E0), rendering
the scale matrices Ψ0 in both prior sets diagonal.
For Set A, we choose the NIW prior mean vector5 and

scale matrix respectively to be

µ
(A)
0 ≡

[
n0

E0

]
=

[
0.160
−16.00

]
,Ψ

(A)
0 =

[
0.0032 0

0 0.152

]
,

(21)
resulting in the NIW posterior (11) with the updated
hyperparameters (κn = 15, νn = 18), and

µ(A)
n ≈

[
0.161
−15.93

]
, Ψ(A)

n ≈
[
0.0132 0.0512

0.0512 0.662

]
. (22)

For brevity, throughout this article, we omit the units
for n0 (in fm−3) and E0 (in MeV) when given in matrix-
vector notation. The parameter choice in Eq. (21)
incorporates our prior knowledge that (n0, E0) ≈
(0.16 fm−3,−16MeV) and that the data point associated
with SQMC700 (see Fig. 2) might be an outlier [62].

Figure 3 shows the corresponding prior predictive (16)
[i.e., n = 0] with the prior parameters (21) in the left
panel and the posterior predictive (16) [i.e., n = 14] with
the updated parameters (22) in the right panel. The
marginal distributions are plotted along the diagonals
of each panel. Recall that the two predictive distribu-
tions are bivariate t-distributions, whose marginal dis-
tributions are univariate t-distributions, as discussed in
Sec. II and Appendix A 2. Although both panels depict
the data set underlying our analysis by the orange points
(serving as a helpful reference), we stress that the prior
predictive (left panel) is agnostic of these data points.
The data-informed posterior predictive (16) (right panel)
is given by the tν(µ,Ψ) with hyperparameters:

ν(A) = 17 , µ(A) = µ(A)
n , Ψ(A) ≈

[
0.0032 0.0132

0.0132 0.172

]
.

(23)
To illustrate the tails of the predictive distributions,
Fig. 3 shows (elliptical) confidence regions centered at
the distribution’s mean vector,6 corresponding to the

5 This choice of prior mean is informed by the physical reality
emerging from what an informal scientific consensus would look
like, e.g., in view of Fig. 1. Contrary to a standard Bayesian re-
gression analysis where it is common to choose uninformed prior
means equal to zero for all regression coefficients, our model (1)
has no regression coefficients, only a single mean vector, making
the use of an informed prior mean important.

6 The elliptical contour lines at given credibility levels correspond
to constant Mahalanobis distances associated with the bivariate
t-distribution, as discussed in Appendix B.
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FIG. 3. Prior predictive (left panel; data-agnostic) and posterior predictive (right panel; data-informed) and their respective
marginal distributions in the panels along the diagonals based on the prior parameters in Set A. The n = 14 data points (orange
points) used to construct the saturation box (see Fig. 2 for details) are considered; i.e., the data sets labeled Dutra et al. (’12)
and Kortelainen et al. (’14) in Fig. 1 and Table II. The colored ellipses and dashed vertical lines encompass confidence regions
centered at the distributions’ mean values at different credibility levels, as specified in the legends. The titles of the panels
along the diagonals give the 95% confidence regions of the marginal distributions, corresponding to the blue vertical lines.

{50, 80, 95, 99}% credibility levels, which are common
levels used in UQ studies (see the legends). Our
GitHub repository [79] provides the Python function
plot confregion bivariate t(. . .) for calculating and
plotting these confidence ellipses efficiently based on the
analytic derivation in Appendix B. The dashed vertical
lines in Fig. 3 highlight the corresponding percentiles of
the marginal univariate t-distributions, with the associ-
ated (blue) 95% credibility region quoted in the titles of
these panels. That is, for the posterior predictive, we
obtain the following marginal 95% credibility regions:

n
(A)
0 ≈ 0.161± 0.007 fm−3 , (24a)

E
(A)
0 ≈ −15.93± 0.35MeV . (24b)

For Set B, we choose the NIW hyperparameters (κ0 =
1, ν0 = 4) as in Set A, but design the mean vector and
(diagonal) scale matrix to be more weakly informed,

µ
(B)
0 =

[
0.163
−15.90

]
, Ψ

(B)
0 =

[
0.0042 0

0 0.282

]
, (25)

resulting in the NIW posterior (11) with (κn = 15, νn =
18), as in Set A, and

µ(B)
n ≈

[
0.161
−15.92

]
, Ψ(B)

n ≈
[
0.0132 0.0512

0.0512 0.702

]
. (26)

Figure 7 in Appendix D shows the prior predictive and
posterior predictive for Set B similarly to Fig. 3 for Set A.
The data-informed posterior predictive (16) (right panel)
is given by the tν(µ,Ψ) with hyperparameters:

ν(B) = 17 , µ(B) = µ(B)
n , Ψ(B) ≈

[
0.0032 0.0132

0.0132 0.182

]
,

(27)
corresponding to the following 95% confidence regions of
the marginal distributions,

n
(B)
0 ≈ 0.161± 0.007 fm−3 , (28a)

E
(B)
0 ≈ −15.92± 0.37MeV , (28b)

which are consistent with (but slightly more uncertain
in E0 than) the ones obtained for Set A in Eq. (24), as
expected from the more weakly informed prior.

Overall, we find for both prior sets that the resulting
posterior predictive (16) is not normal (i.e., νn ≪ ∞)7

7 While the inferred νn = 17 is relatively large, leading to 95% and
99% credibility regions that are not inordinately wider than the
corresponding normal ones with the same variances, the differ-
ence will be more important at the level of posterior predictions
in Sec. III B.
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and that (n0, E0) are only weakly correlated.8 We quan-
tify here the linear correlation between two random vari-
ables as follows using the Pearson correlation coefficient,

ρ =
C12√
C11C22

; (29)

no (0 ⩽ |ρ| < 0.25), weak (0.25 ⩽ |ρ| < 0.5), intermediate
(0.5 ⩽ |ρ| < 0.75), and strong (0.75 ⩽ |ρ| ⩽ 1) correla-
tion, if ρ ⩾ 0, or anti-correlation, if ρ < 0. Note that,
for the considered bivariate t-distribution, the covariance
matrix C in Eq. (29) is proportional to the associated
scale matrix Ψ, as discussed in Appendix A. These find-
ings are consistent with our prior knowledge and a direct
consequence of the limited number of data points. Al-
though our two posterior predictive distributions tend to
favor somewhat lower (n0, E0) than the original satura-
tion box (20), as supported by the data, Fig. 3 shows
that the two constraints are overall consistent with one
another at the ≳ 80% credibility level (see also Fig. 7 in
Appendix D for Set B). However, only our inferred pos-
terior predictive distribution (16)9 can, and should, be
evaluated at different confidence levels to indicate uncer-
tainties in the empirical saturation point and facilitate
statistically robust comparisons with, e.g., constraints
from chiral EFT based on transparent model and prior
assumptions.

B. DFT constraints with uncertainties

We now apply the conjugate prior approach to DFT
constraints with quantified uncertainties using mixture
modeling, as described in Sec. II C. All constraints sum-
marized in Table II will be used, except for FSUGarnet,
FSUGold2, and RMF0XY as they have been replaced by
Giuliani et al. [67] using improved UQ for the calibration
of the covariant energy-density functionals. We also treat
SV–min and TOV–min as one model class, where we uni-
formly decide from which one to sample in each Monte
Carlo iteration. Hence, each Monte Carlo iteration con-
siders n = 8 collections of DFT data points drawn from
their empirical or normal distributions. To probe the
prior sensitivity of our results, we perform again the anal-
ysis for the two prior sets specified in Sec. III A.

For Set A, Fig. 4 shows the correlation plot [91] of the
posterior predictive (19), conceptionally similarly to the
right panel in Fig. 3. The corresponding (data-agnostic)
prior predictive is depicted in the left panel in Fig. 3. We
obtain the 95% credibility regions for the two marginal

8 Removing SQMC700 from the data, the inferred marginal dis-
tributions for (n0, E0) are still statistically consistent with those
obtained for prior Set A and Set B, but (n0, E0) is weakly anti-
correlated, as can be seen in Appendix D.

9 That is, tν(µ,Ψ) with the hyperparameters given in Eq. (23) for
Set A and Eq. (27) for Set B.
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FIG. 4. Posterior predictive and its marginal distributions
based on mixture modeling with the prior parameters in Set A
and data from Skyrme and RMF models considered. The
colored ellipses and dashed vertical lines encompass confi-
dence regions centered at the distributions’ mean values at
different credibility levels (see the legend). The titles of the
panels along the diagonal quote the confidence regions of the
marginal distributions at the 95% credibility level (centered
at the median), corresponding to the dashed vertical lines.
The left panel in Fig. 3 shows the associated (data-agnostic)
prior predictive. See the main text for details.

distributions,

n
(A)
0 ≈ 0.157± 0.010 fm−3 , (30a)

E
(A)
0 ≈ −15.97± 0.40MeV , (30b)

which are statistically consistent with the ones in Eq. (24)
but tend to allow for somewhat lower (n0, E0) due to the
inclusion of RMF models, while their uncertainties are
only slightly larger. Random samples from the posterior
predictive depicted in Fig. 4, whose closed form is un-
known, if it exists,10 can be straightforwardly obtained
using our publicly available Jupyter notebooks [79].
However, because an analytic approximation might also
be helpful, we fit a bivariate t-distribution to the sam-
ples from the joint posterior predictive (see Appendix B

10 One might be able to derive an analytic form for the joint pos-
terior (19) after model mixing following Appendix C.
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for the technical details). The fitted posterior predictive
tν(µ,Ψ) has νn = 9 ≪ ∞ and11

µ(A)
n ≈

[
0.157
−15.97

]
, Ψ(A)

n ≈
[
0.0052 0.0172

0.0172 0.172

]
, (31)

indicating a weak correlation between (n0, E0). Colored
ellipses in Fig. 4 encompass the confidence regions of the
fitted bivariate t-distribution at the common confidence
levels (see the legend). They approximate well the cor-
responding contours (black lines) obtained from a kernel
density estimation of the underlying data (i.e., without
fitting to the data), demonstrating that the posterior pre-
dictive can be well represented by the fitted bivariate t-
distribution with parameters given by Eq. (31).

Appendix D has our corresponding results for Set B.
At the 95% credibility level, we obtain

n
(B)
0 ≈ 0.158± 0.011 fm−3 , (32a)

E
(B)
0 ≈ −15.96± 0.43MeV , (32b)

which are slightly more uncertain than the ones in
Eq. (30) for Set A, as expected, yet statistically con-
sistent, indicating only a relatively mild prior sensitivity
of our results despite the data-limited case. The fitted
posterior predictive for Set B also describes the posterior
predictive reasonably well, having νn = 9 (as for Set A)
and very similar

µ(B)
n ≈

[
0.158
−15.96

]
, Ψ(B)

n ≈
[
0.0052 0.0192

0.0192 0.192

]
. (33)

Our constraints on the saturation density of SNM are
systematically larger than, although at the 95% confi-
dence level consistent with, the interior baryon density
of 208Pb, nb = 0.148 ± 0.004 fm−3, determined from the
improved 208Pb Radius EXperiment (PREX–II) at Jef-
ferson Laboratory [19]. Such a trend may be anticipated
given that 208Pb, a neutron-rich nucleus with an isospin
asymmetry of δ ≈ 0.21 (as opposed to δ = 0 in SNM),
probes the saturation density of neutron-rich matter that
is known to decrease with increasing δ (e.g., see Ref. [92]
and Figure 2b in Ref. [5]).12

C. Comparison with chiral EFT predictions

Figure 5 compares our empirical constraints with the
predicted saturation points of a wide range of chiral NN

11 One notes that the fitted degree of freedom is νn = n + 1 = 9,
with n = 8 data points per Monte Carlo iteration. Hence, the
mixed posterior predictive (19) has heavier tails than the to-be-
mixed posterior predictives obtained via Monte Carlo iteration.

12 Note that such a trend is also reflected in most RMF models. In-
deed, the 95% credibility results for the RMF model obtained by
Giuliani et al. [67] (see Fig. 1) yields: n0 = 0.149 . . . 0.155 fm−3

and E0 = −(16.17 . . . 16.40)MeV.

and 3N interactions (see the annotations and caption for
details). The empirical constraints inferred in Sec. III A
(left panel) and Sec. III B (right panel), respectively, for
prior Set A are depicted by the colored ellipses with white
fillings (for easier readability), which encompass the cred-
ibility levels at the common percentiles (see the legends).
Recall that these constraints are heavy-tailed bivariate
t-distributions. The results for prior Set B are statisti-
cally consistent and can be found in Appendix D. Circles
and squares depict results obtained in many-body per-
turbation theory (MBPT) calculations, whereas the tri-
angles were obtained in coupled cluster (CC) theory cal-
culations. Depicting normal distribution, the two blue
ellipses correspond to the 2σ (i.e., 86%)13 confidence
regions of the N3LO calculations in Ref. [40] with to-
all-orders EFT truncation errors quantified [10, 11] (i.e.,
“GP–B 500” and “GP–B 450”). For a detailed discus-
sion of recent EFT predictions of the nuclear saturation
point, we refer the reader to, e.g., Refs. [5, 8].
As shown in Fig. 5, only one chiral Hamiltonian (with

explicit delta isobars) saturates within the 95% confi-
dence region of the inferred saturation points. However,
rigorously ascertaining the agreement (or disagreement)
of these point estimates would require quantified theoret-
ical uncertainties in the microscopic predictions, includ-
ing estimates of the EFT truncation error. The “GP–
B 450” confidence ellipses, which quantify these EFT
truncation errors, barely overlap with our 99% confidence
regions despite its sizable uncertainties (at the 2σ confi-
dence level), while most of the other Hamiltonians sat-
urate significantly outside this confidence region. How-
ever, the chiral interactions labeled “Holt 500,” “sim 500”
and “sim 520,” “∆NNLOGO 394,” and “2.8/2.0” (see the
caption of Fig. 5 for details) saturate at densities n0 con-
sistent with the inferred empirical ranges for the satura-
tion density. On the other hand, the chiral interactions
labeled “2.0/2.0,” “2.2/2.0,” and the three deltaful “GO”
potentials saturate consistent with the empirical ranges
for the saturation energy. In conclusion, we find (con-
sistent with the literature) that the various microscopic
SNM calculations depicted in Fig. 5 are challenged by
simultaneously predicting (n0, E0) both accurately and,
within the uncertainties, in agreement with our inferred
empirical constraints (see also the similar discussions in
Refs. [5, 10, 11]).

D. Nuclear symmetry energy constraints

Next, we study the implications of the inferred em-
pirical saturation point on the nuclear symmetry energy.
In the standard quadratic approximation of the EOS’s
isospin asymmetry (δ) dependence, the symmetry energy

13 Note that confidence levels of bivariate normal distributions do
not follow the well-known 68–95–99.7 rule for univariate normal
distributions. See the discussion of Eq. (B14) in Appendix B.
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FIG. 5. Microscopic and empirical constraints on the nuclear saturation point in comparison. Predictions by many-
body perturbation theory (MBPT; circles, squares) and coupled cluster theory (CC; triangles) with chiral NN and 3N
interactions [10, 35, 39, 40, 93, 94] are shown; the annotations specify the nuclear interactions: “λ/Λ3N [ fm−1]” for
Hebeler et al. [35], “sim Λ [MeV]” for Carlsson et al. [95], “Holt Λ [MeV]” for Holt et al. [39, 93], and “∆NLOGO Λ [MeV]” and
“∆NNLOGO Λ [MeV]” [94] (with explicit delta isobars), where (Λ3N,Λ) are momentum cutoffs and λ is the resolution scale
associated with the Similarity Renormalization Group (SRG) evolution. The blue ellipses (“GP–B Λ [MeV]”) show the 2σ (i.e.,
86%) confidence regions of the MBPT calculations up to N3LO in Ref. [40] with to-all-orders EFT truncation errors quanti-
fied [10]. The Coester-like anti-correlation band [37], obtained from a simple linear fit to the chiral EFT data, is illustrated
in gray for guidance. The colored ellipses with white fillings (for easier readability) encompass our inferred regions at several
confidence levels (see the captions) respectively obtained in Sec. III A (left panel) and in Sec. III B (right panel). Note that the
credibility regions associated with 95% (blue ellipse) and 99% confidence (red ellipse) do not correspond to the traditional 2σ
and 3σ regions for these heavy-tailed (bivariate) t-distributions. Modified from Figure 2b in Ref. [5].

at a given baryon number (density) nb is determined by
the difference between the energies per particle in PNM
(E/N , δ = 1) and SNM (E/A, δ = 0) (see also, e.g.,
Refs. [5, 96]),

S(nb) ≈
E

N
(nb)−

E

A
(nb) , (34)

≡ Sv + L

(
nb − n0

3n0

)
+ . . . . (35)

Here, we focus on the symmetry energy parameters
(Sv, L) in the series expansion (35) of S(nb) about n0:

Sv = S(n0) and L = 3n0
d

dn
S(nb)

∣∣∣∣
nb=n0

. (36)

These correspond to the symmetry energy evaluated at
n0 and its so-called slope parameter, respectively. Be-
cause E(nb)/A in SNM exhibits a minimum at n0 and
we defined E0 ≡ E(n0)/A, the symmetry energy param-

eters (36) can be expressed as

Sv =
E

N
(n0)− E0 and L =

3

n0
p(n0) , (37)

with the PNM energy per particle E(n0)/N and pressure

p(n0) = n2
0

d

dnb

E

N
(nb)

∣∣∣∣
nb=n0

, (38)

evaluated at the saturation density n0. Note that the
definition of the pressure (38) is not to be confused with
the probability distribution P (n0).
To constrain the symmetry energy parameters (37),

we choose here the PNM calculations at N3LO con-
ducted in Ref. [40] for two momentum cutoffs (Λ = 500
and 450MeV) and with (correlated) to-all-orders EFT
truncation errors quantified [10, 11]. We combine these
with the (tightly constrained) empirical constraints for
(n0, E0) in SNM instead of the corresponding micro-
scopic calculations. Theoretical uncertainties in micro-
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scopic PNM calculations (at that density) are gener-
ally more controlled than they are in SNM (e.g., those
depicted in Fig. 5) since the three-neutron forces (in
PNM) are overall weaker and, through N3LO in Wein-
berg power counting, entirely determined by the NN po-
tential. Hence, microscopic predictions for E(nb)/N and
p(nb) at nb ≲ n0 obtained from different many-body
frameworks and with different chiral interactions typi-
cally agree within their uncertainties, e.g., as Figure 1 in
Ref. [33] shows. Other recent nuclear matter calculations
based on microscopic NN and 3N interactions, including
constraints on the symmetry energy, can be found in,
e.g., Refs. [6, 13, 14, 41, 97].

Specifically, we use the PNM EOSs labeled “GP–
B 500 [MeV]” and “GP–B 450 [MeV],” which are rep-
resented by GPs and provided by the BUQEYE col-
laboration [98] through publicly available Jupyter note-
books [99]. Gaussian Processes are used for interpolat-
ing and quantifying the EFT truncation errors in E(n)/N
and p(n) in PNM, as discussed in Refs. [10, 11]. We prop-
agate the uncertainties in the inferred empirical (n0, E0)
and provided microscopic (E(n0)/N, p(n0)) to (Sv, L) via
marginalization,

P (Sv, L) =

∫
dn0

∫
dE0 P (Sv, L | n0, E0)P (n0, E0) ,

(39)
where P (n0, E0) denotes the inferred posterior predic-
tive (19) [i.e., a bivariate t-distribution] and P (Sv, L |
n0, E0) the joint distribution of (Sv, L) as obtained from
Eqs. (37) and (38) for a given (n0, E0). We account for
correlations between E(n0)/N and p(n0) but assume that
both are uncorrelated with the empirical (n0, E0), as they
were derived from distinct frameworks (i.e., microscopic
EFT vs. phenomenological DFT). If (n0, E0) were in-
stead also predictions from the same chiral Hamiltonian,
E(n0)/N , p(n0), and (n0, E0) would be correlated (see
Refs. [10, 11] for details). For similar analyses of (Sv, L)
constrained by microscopic PNM calculations and the
empirical saturation point, we refer the reader to, e.g.,
Refs. [39, 100–102].

With BUQEYE’s Jupyter notebooks [99], sampling the
joint (bivariate normal) distribution P (E(n0)/N, p(n0)),
and thus via Eq. (37) also P (Sv, L | n0, E0), is straight-
forward. Following a similar two-step process as de-
scribed in Sec. III B, we first draw M = 104 random sam-
ples from P (n0, E0) and then, for each of those points, we
sample N = 800 points from P (Sv, L | n0, E0), resulting
in a total of Q = M × N = 8 × 106 sampling points of
P (Sv, L) given by Eq. (39). For simplicity, we approxi-
mate P (Sv, L) ≈ N2(µ,Σ) using the sample mean µ and
sample covariance Σ to obtain a closed form of the dis-
tribution.14 For the results in Sec. IIIA with Set A and

14 Fitting bivariate tν(µ,Ψ) to the samples resulted in approxi-
mately normal distributions due to large degrees of freedoms ν.

“GP–B 500,” we find

µ(A) ≡
[
Sv

L

]
≈

[
32.4
54.9

]
, Σ(A) ≈

[
1.12 2.92

2.92 8.12

]
, (40)

and for “GP–B 450”

µ(A) ≈
[
33.5
61.0

]
, Σ(A) ≈

[
1.02 2.62

2.62 7.22

]
, (41)

where we have omitted the unit MeV for both, Sv and
L. Likewise, for the results in Sec. III B with Set A and
“GP–B 500,” we find

µ(A) ≈
[
32.0
52.6

]
, Σ(A) ≈

[
1.12 2.92

2.92 8.12

]
, (42)

and for “GP–B 450”

µ(A) ≈
[
33.1
58.6

]
, Σ(A) ≈

[
1.02 2.72

2.72 7.42

]
. (43)

For Set B, we find that the mean vectors and covariance
matrices are consistent with Eqs. (40)–(43) for “GP–B
500” and “GP–B 450,” respectively, and so we focus here
on the results for prior Set A only.

Figure 6 depicts our constraints on (Sv, L) by the green
confidence ellipses (light: 1σ (39%), dark: 2σ (86%)).
The left panel (right panel) shows the results for the
saturation point inferred in Sec. III A (in Sec. III B) for
prior Set A. See Appendix D for the corresponding re-
sults for Set B. The two orange confidence ellipses (light:
1σ (39%), dark: 2σ (86%)) were derived in Refs. [10, 11]
based on the same quadratic approximation (37) and mi-
croscopic PNM calculations we study in this work. But
instead of the empirical (n0, E0), Refs. [10, 11] consid-
ered the saturation point predicted by the underlying
chiral Hamiltonians and computed the slope parameter
via the density derivative in Eq. (36) while account-
ing for correlations in the predicted (n0, E0) in SNM
and (E(n0)/N, p(n0)). As one can see in Fig. 5, these
predicted saturation points (blue ellipses) are system-
atically shifted towards higher (n0, E0) relative to the
inferred empirical saturation points, which propagates
to the symmetry energy predictions (e.g., larger L val-
ues). However, unlike our semi-microscopic approach,
the fully microscopic predictions in Refs. [10, 11] can ex-
ploit correlations between the microscopic predictions for
E(n0)/N and E0 to constrain the symmetry energy pa-
rameters (37) more tightly than the in-quadrature sum
of the individual uncertainties of E(n0)/N and E0.
Figure 6 also compares our results with similar PNM-

based constraints by Hebeler et al. (H) [100], Holt &
Kaiser (HK) [39], Gandolfi et al. (G) [101], and Tews &
Krüger et al. (TK) [102]. The allowed region associated
with the conjectured unitary gas (UG) constraint is de-
picted by the solid black line (in the direction of the black
arrow). In addition, Fig. 6 shows the PREX–II-informed
constraint at the 1σ (black; 39%), 2σ (dark gray; 86%),
and 3σ (light gray; 99%) confidence level recently derived
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FIG. 6. Constraints on the symmetry energy parameters Sv and its slope parameter L evaluated at the nuclear saturation
density, and the conjectured constraint from the unitary gas (UG; see the annotations). The left panel (right panel) shows the
results for the saturation point inferred in Sec. IIIA (in Sec. III B) based on prior Set A. See Appendix D for the corresponding
results for Set B. Microscopic PNM-based constraints are given by Hebeler et al. (H) [100], Holt & Kaiser (HK; 2σ confidence
level) [39], Gandolfi et al. (G) [101], and Tews & Krüger et al. (TK) [102]. The orange ellipses [10, 11] depict the confidence
regions from combined PNM and SNM calculations at N3LO [40] with EFT truncation errors quantified and two different
sets of chiral NN and 3N interactions (light: 1σ (39%), dark: 2σ (86%)). The three ellipses (black: 1σ (39%), dark gray: 2σ
(86%), light gray: 3σ (99%)) in the background correspond to the PREX–II informed constraint obtained in Ref. [21] based on
covariant energy functionals. Modified and extended from Figure 4b in Ref. [5].

in Ref. [21] from 16 covariant energy density functionals,
including FSUGold2. This empirical constraint is given
by (Sv, L) ∼ N2(µ,Σ) with

µ =

[
38.1
106

]
and Σ =

[
4.72 0
0 372

]
, (44)

where we constructed the covariance matrix Σ from the
two marginal distributions given in Ref. [21], assum-
ing that the PREX–II-informed (Sv, L) are uncorrelated
to be conservative with UQ. In fact, Ref. [21] predicts
(Sv, L) to be strongly correlated (ρ ≈ 1), which is not
manifested in the marginal distributions and likely un-
derestimates the uncertainties in the (Sv, L) plane. Note
that the mean vector in Eq. (44) (i.e., the mode of the dis-
tribution) is outside the (Sv, L) range depicted in Fig. 6
and inconsistent with the conjectured UG constraint.
Also, note that the 1σ region of bivariate normal distri-
butions corresponds to the relatively low confidence level
of 39.4% (see Appendix B). More detailed discussions of
the implications of PREX–II at Jefferson Laboratory [19]
on the EOS can be found, e.g., in Refs. [103–109].
As shown in Fig. 6, our marginalized constraints on

Sv are consistent with the previous PNM-based calcula-

tions. The strong correlation between (Sv, L) we obtain
agrees well with those of the other PNM-based calcula-
tions. However, except for the other N3LO calculation
labeled “TK,” our inferred L values are systematically
larger than the constraints “H,” “G,” and “HK,” consis-
tent with the finding that the PNM EOSs used in this
work are relatively stiff at densities nb ≈ n0 [110]. On
the other hand, the microscopic (SNM-informed) con-
straints obtained in Ref. [10, 11] (orange ellipses), which
account for correlations between E(n0)/N and E0 when
computing the symmetry energy (37), predict a weaker
correlation between (Sv, L) and slightly larger L values.
Our constraints for the two momentum cutoffs are sta-
tistically consistent with one another (at the 1σ level),
as expected from the relatively mild cutoff dependence
observed in Figure 3 in Ref. [40].

All microscopic calculations (at the confidence level
shown) are statistically consistent with the PREX–II-
informed constraint (44) at the 2σ (i.e., 86%) confidence
level or better. They fall completely within its 3σ (i.e.,
99%) region except for the lower tail of the microscopic
constraint “HK.” However, the PREX–II-informed con-
straint (44) favors larger L values with significant un-
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certainties. The anticipated ±0.03 fm precision on the
neutron skin thickness of 208Pb by the Mainz Radius
Experiment (MREX) at the Mainz Energy-Recovering
Superconducting Accelerator (MESA) will be critical in
narrowing the experimentally informed constraints on
(Sv, L) [111].

IV. SUMMARY AND OUTLOOK

Density functional theory provides important empiri-
cal constraints for benchmarking in-medium nuclear in-
teractions and modeling the nuclear EOS. One funda-
mental constraint is the equilibrium density of SNM (n0)
which represents the density at which the pressure van-
ishes and the energy per particle E0 exhibits its mini-
mum value. Collectively, this is referred to as the nuclear
saturation point (n0, E0). As shown in Fig. 1, the vari-
ous DFT predictions considered here report (n0, E0) with
high precision (or unspecified precision in cases without
UQ) leading to inconsistencies across multiple model pre-
dictions at high confidence levels.15 In essence, the DFT
constraints incorporated in this work—all of them in-
formed by nuclear observables—cannot all be simultane-
ously precise and accurate in the determination of the
saturation point. The inconsistency is also reflected by
the well-known trend that Skyrme models systematically
predict a higher saturation density than RMF models.
Hence some, if not all, models, necessarily feature UQ
inaccuracies due to unknown modeling uncertainties that
are generally difficult to quantify. One hard to quantify
model uncertainty is the surface energy, a critical compo-
nent to the energy budget of finite nuclei but irrelevant
to the study of infinite nuclear matter. In particular, a
softer surface energy can compensate for a higher satura-
tion density, ultimately leading to the same charge radii
in both Skyrme and RMF models. These issues motivate
the question of how these empirical constraints from DFT
can be leveraged to benchmark saturation properties of
chiral interactions.

In this work, we proposed a Bayesian hierarchical
model that estimates the true empirical saturation point
by mixing multiple DFT constraints. The model assump-
tion is that each DFT constraint represents a random
sample from a universal (bivariate) normal distribution
modeling the unobserved true saturation, whose mean
vector and covariance matrix are to be inferred from the
data. As detailed in Sec. II, our Bayesian framework
is computationally efficient due to distributional conju-
gacy and, if uncertainties in the DFT constraints were
estimated, ordinary Monte Carlo sampling with variance
reduction is sufficient to sample from the posterior dis-
tributions. The resulting posterior predictive distribu-

15 This inconsistency between to-be-mixed model predictions dis-
tinguishes our work from, e.g., the Bayesian model mixing ap-
proach to the SNM EOS presented in Ref. [15].

TABLE III. Summary of the central results: marginal-
ized 95%-level constraints on the empirical saturation point
(n0, E0), nuclear symmetry energy Sv, and slope parameter L
evaluated at n0 for the two scenarios discussed in Secs. IIIA
(“Skyrme only”) and III B (“Skyrme + RMF”), respectively.
Only the results for prior Set A [Eq. (21)] and the PNM EOS
“GP–B 500” are considered. The units are MeV except for
n0, which is given in fm−3. We stress that the joint distri-
butions for (n0, E0) and (Sv, L) are (correlated) bivariate t-
and normal distributions, respectively, whose parameters are
referenced in the footnotes.

Distribution Skyrme only Skyrme + RMF

n0 tν(µ,Ψ) 0.161(7)a 0.157(10)b

E0 tν(µ,Ψ) −15.93(35)a −15.97(40)b

Sv N (µ,Σ) 32.4(1.1)c 32.0(1.1)d

L N (µ,Σ) 54.9(8.1)c 52.6(8.1)d

a See Eq. (23) for the corresponding bivariate tν(µ,Ψ).
b See Eq. (31) for the corresponding (fitted) bivariate tν(µ,Ψ).
c See Eq. (40) for the corresponding bivariate N2(µ,Σ).
d See Eq. (42) for the corresponding bivariate N2(µ,Σ).

tions for (n0, E0) is in the form of mixtures of correlated,
bivariate student t-distributions, where the mixing dis-
tributions are given by the DFT developers’ stated un-
certainties. The model parameters (i.e., the bivariate
mean vector and covariance matrix of the true saturation
point) are also treated as mixtures, with respect to these
uncertainties, having the Normal-inverse-Wishart (NIW)
distribution. Their confidence regions (i.e., ellipses) can
be analytically determined and conveniently plotted at
given credibility levels, as discussed in Appendix B.16

The associated marginal distributions are univariate t-
distributions with the same updated degree of freedom.
Our Bayesian framework is publicly available [79] so that
practitioners can readily use and extend our results in
their work. It generally applies to mixing multivariate
distributions, not just bivariate DFT constraints for the
nuclear saturation point.
In Sec. III, we applied this Bayesian framework to two

collections of DFT constraints (see also Fig. 1). Table III
summarizes the central results. The first collection was
used in Ref. [37] to construct the saturation box (20) de-
picted in Figs. 1 and 2 based on the range predicted by
14 Skyrme models without considering UQ. It was sub-
sequently slightly extended and applied to benchmark

16 Specifically, our efficient posterior computation and mathemat-
ically described confidence ellipses are due to our normal likeli-
hood model with NIW prior on its parameters, which results in
NIW posteriors on these parameters and multivariate posterior
predictive t-distributions. Using mixtures to incorporate DFT
models’ uncertainties preserves this convenience, requiring only
the further step of ordinary Monte Carlo sampling.
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nuclear saturation properties of chiral interactions [40].
In that case, our mixture model simplifies to a conjugate
distribution approach without needing Monte Carlo sam-
pling. The second collection consisted of various DFT
constraints, including RMF and Skyrme models, with
and without UQ. The inferred posterior predictive dis-
tributions for (n0, E0) are generally weakly correlated,
bivariate t-distributions with heavy tails. Despite the
data-limited scenario, we found only a relatively mild
prior sensitivity based on calculations with two prior sets.
Our findings are consistent with the original saturation
box (20) at the ≳ 80% credibility level, although they
allow for somewhat lower (n0, E0). However, we recom-
mend that our posterior predictive be evaluated at mul-
tiple confidence levels (see also Appendix B) to indicate
uncertainties in the empirical saturation point and facil-
itate statistically robust comparisons with, e.g., predic-
tions from chiral EFT. None of the nuclear interactions
we considered here saturated within the 80% confidence
region of the inferred empirical saturation point.

We also constrained the symmetry energy Sv and
its density dependence L evaluated at n0 in the stan-
dard quadratic approximation of the EOS’s isospin de-
pendence (see Table III for the results). To this end,
we combined the inferred empirical saturation point in
SNM with recent microscopic calculations of the energy
per particle in PNM, where chiral NN and 3N inter-
actions were included at N3LO and correlated, to-all-
orders EFT truncation errors quantified. Our results for
(Sv, L), including their correlations, are consistent with
similar, previous PNM-based constraints, especially with
the N3LO constraints obtained in Ref. [102]. The recent
PREX–II-informed constraint [21] is reproduced at the
2σ (i.e., 86%) confidence level.

Our constraints on the empirical saturation point en-
able more rigorous benchmarks of microscopic interac-
tions derived from deltaless and deltaful EFT. The rela-
tive agreement between competing EFT predictions and
the inferred empirical saturation point can be quanti-
fied, e.g., using the Jenssen–Shannon or Jeffreys distance.
These distances could be used to calibrate chiral NN and
3N interactions to the empirical saturation point, facil-
itated by fast and accurate emulators for nuclear mat-
ter [13, 14]. Such rigorous in-medium benchmarks may
lead to predictive, microscopic interactions for state-of-
the-art nuclear structure calculations up to heavy nu-
clei and infinite nuclear matter calculations for studying
neutron stars. Conversely, our empirical constraints may
guide the development of Skyrme models that incorpo-
rate microscopic physics (i.e., long-range pion interac-
tions) via the density matrix expansion (DME) [112–114],
where the model parameters are constrained by (n0, E0)
and other low-density EOS properties.

Future applications of our Bayesian framework will
need to quantify and reduce multicollinearity in the to-
be-mixed DFT predictions for (n0, E0). That is, DFT
models similar in their functional forms and/or parame-
ter estimation protocol should not be assigned the same

mixing weights as noncollinear DFTmodels. Frameworks
for addressing model collinearities would also benefit, in
general, other model mixing efforts such as, for exam-
ple, those involving nuclear masses [76–78]. However,
we stress that this will likely not alleviate the system-
atic discrepancy between the Skyrme and RMF models
depicted in Fig. 1, which is mainly responsible for the
uncertainties in the inferred saturation point. Elucidat-
ing the origin of this discrepancy remains an important
task for nuclear DFT. Another research avenue will be
Bayesian UQ and model mixing of different DFT models
directly, involving both Skyrme and RMF models, rather
than just their predictions for the nuclear saturation
point. These research avenues are currently pursued by
the Bayesian Analysis of Nuclear Dynamics (BAND) col-
laboration [115, 116]. Parity-violating electron scattering
experiments, e.g., at the upcoming facility MESA [111],
will provide exciting electroweak probes of the interior
densities of heavy nuclei to validate and improve these
next-generation theoretical models and their uncertain-
ties.
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Appendix A: Probability distribution functions

We give here a brief, non-exhaustive overview of the
probability distribution functions used in this work and
some of their useful properties. For more information,
we refer the reader to, e.g., Ref. [80].

https://grad.msu.edu/srop
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1. Inverse-Wishart and Normal-inverse-Wishart
distribution

The inverse-Wishart (IW) distribution W−1
d (ν,Ψ) is a

multivariate generalization of the scaled inverse-χ2 dis-
tribution. For fixed positive integer d, the distribution
W−1

d (ν,Ψ) is supported by the set of d × d symmet-
ric, positive-definite matrices, and its parameters are the
degree-of-freedom integer number ν > d−1 and the d×d
scale matrix Ψ. The scale matrix has to be real-valued,
symmetric, and positive-definite. Random symmetric,
positive-definite matrices X ∼ W−1

d (X | ν,Ψ) have the
probability density17

W−1
d (X | ν,Ψ) =

|Ψ| ν2
2

νd
2 |X| ν+d+1

2 Γd

(
ν
2

)
× exp

[
−1

2
tr
(
ΨX−1

)]
, (A1)

where Γd(x) denotes the d-variate gamma function, | • |
is the usual determinant functional, and tr(•) is the usual
trace operator, on the space of d × d matrices. The dis-
tribution’s mean value and mode are respectively

E[x] =
Ψ

ν − d− 1
, for ν > d+ 1 , (A2)

Mo[x] =
Ψ

ν + d+ 1
. (A3)

Note that, in the bivariate case (i.e., d = 2) considered
in this work, the mean (A2) is only well-defined if ν ⩾ 4.
The inverse-Wishart distribution is implemented in the
Python package scipy.stats as invwishart [83].
Now, let us suppose that a random two-dimensional

vector µ is distributed as

µ | µ0, κ,Σ ∼ Nd

(
µ | µ0,

1

κ
Σ

)
, (A4)

that is, a multivariate normal distribution with mean µ0

and covariance matrix 1
κΣ, where κ is a positive integer.

Next, suppose that, independently of the randomness in
the vector µ, its parameter Σ is also random, and specif-
ically

Σ | Ψ, ν ∼ W−1
d (Σ | ν,Ψ) (A5)

is inverse-Wishart distributed with degree of freedom
ν and scale matrix Ψ. Then, the joint distribution
of the pair of variables (µ,Σ) is known as a Normal-
inverse-Wishart (NIW) distribution, denoted as (µ,Σ) ∼
NIW(µ,Σ | µ0, κ,Ψ, ν). This construction leads directly

17 The inverse of the random variable has the so-called Wishart
distribution Wd: X−1 ∼ Wd(ν,Ψ

−1).

to the probability density function of the pair (µ,Σ):

NIW(µ,Σ | µ0, κ,Ψ, ν)

= Nd

(
µ | µ0,

1

κ
Σ

)
W−1

d (Σ | Ψ, ν) (A6)

=
κd/2|Ψ|ν/2|Σ|− ν+d+2

2

(2π)d/22
νd
2 Γd(

ν
2 )

exp

[
− 1

2
tr
(
ΨΣ−1

)
− κ

2
(µ− µ0)

⊺Σ−1(µ− µ0)

]
. (A7)

The integer scalars κ > 0 and ν > d − 1, the vector µ0,
and the scale matrix Ψ are the parameters of the NIW
distribution. Samples from the NIW distribution can be
obtained in a two-step process: First, one samples Σ
from the inverse-Wishart distribution with scale matrix
Ψ and ν degree of freedom. Then, one samples µ from
a multivariate normal distribution with mean µ0 and co-
variance 1

κΣ. One repeats the process until the desired
number of sampling points, i.e., {(µi,Σi)}i, is obtained.

2. Multivariate student t-distribution18

The multivariate student t-distribution extends the
univariate student t-distribution to d-dimensional ran-
dom vectors. It can be represented using random vari-
ables and vectors as:

x = µ+ y

√
ν

u
, (A8)

where the length-d vector y is distributed as the mul-
tivariate normal Nd(y | 0,Σ) with mean 0 and covari-
ance Σ, and the scalar u has the chi-squared distribution
χ2(u | ν) with ν degrees of freedom. The corresponding
probability density function reads

tν(x | µ,Σ) =
Γ [(ν + d)/2]

Γ(ν/2)νd/2πd/2 |Σ|1/2

×
[
1 +

1

ν
(x− µ)⊺Σ−1(x− µ)

]− ν+d
2

,

(A9)

where the scale matrix Σ is not to be confused with the
distribution’s covariance matrix, which happens to be

C =
ν

ν − 2
Σ , (A10)

if ν > 2 and is otherwise undefined. Instead, Σ refers
to the covariance matrix of the normal vector y in the

18 We do not capitalize “student” because it refers to the fact that
William Gossett published his description of this distribution
under the pen name “a student.” The distribution’s name thus
refers to the common noun rather than a capitalized proper noun.
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probability representation (A8) of x. Mean and mode of
the distribution tν(x | µ,Σ) are µ. In the bivariate case
(i.e., d = 2), one finds for the normalization factor in
Eq. (A9) to be

Γ
(
ν+2
2

)
π νΓ

(
ν
2

) =
1

2π
. (A11)

By inspecting the probability representation (A8), one
sees that marginalizing tν(µ,Σ) over any subset of ran-
dom variables xs results in tν(µs,Σs). Here, µs (Σs)
is obtained by dropping all the components in µ (rows
and columns in Σ) that are not associated with xs. This
property of the multivariate student t-distribution is in-
herited from the multivariate normal distribution since y
in Eq. (A8) is a normally distributed vector. For d = 2, it
implies that the two marginal distributions of a bivariate
t-distribution with ν degrees of freedom are univariate
t-distributed with the same ν.

Why is the multivariate t-distribution relevant to this
work? Consider a normal vector with an unknown mean
µ and unknown covariance Σ, and assume that the pair
µ,Σ is NIW-distributed. For posterior (or even prior)
prediction, one must understand the distribution of such
a normal model integrated over its parameters’ NIW dis-
tribution (see Eq. (15)). The integration is equivalent to
stating that the randomness in the normal vector is inde-
pendent of the randomness in the NIW distribution of its
parameters. This independence is known as a mixture-
model assumption, and the distribution obtained after
mixing is known as the unconditional distribution of the
model for the original vector. It turns out [80, 82] that
this unconditional distribution, which includes the un-
certainty on the parameters, is the multivariate student
t-distribution (16).
Why is the posterior predictive distribution (16) a mul-

tivariate student t-distribution? The probability rep-
resentation (A8) is one way to see why the construc-
tion of this mixture model results in a multivariate t-
distribution. To keep this explanation to a technical
minimum while covering the conceptual issue at hand,
we give the argument in the case d = 1; the interested
reader will check that the argument carries through in the
multivariate case too. A normal variable X ∼ N1(µ, σ

2)
with mean µ and variance σ2 can be constructed from a
standard normal variable Z ∼ N1(0, 1) via the transform
X = µ+σZ. Next, if we now declare that, independently
of the randomness in Z, the scalar σ2 should be inverse-
chi-squared distributed, the resulting unconditional dis-
tribution of X mixed with this inverse-chi-squared can
be identified by replacing σ2 by the reciprocal of a scaled
chi-squared variable θ/u, where θ is a positive constant.
One then obtains immediately

unconditional X = µ+ Z

√
θ

u
, (A12)

where Z and u are independent of each other. This
is equivalent to the representation in Eq. (A8) in the

case d = 1 (noting that the inverse-chi-squared distri-
bution is the one-variable version of the inverse-Wishart
distribution), proving that X is univariate t-distributed
with degrees of freedom ν given by those of u, and scale
σ =

√
θ/ν. To use this constructive mixing procedure

in the case d > 1 to lead to the representation for-
mula (A8), one then only needs to start by representing
X ∼ Nd(µ,Σ) as

X = RZ+ µ , (A13)

where R is the Cholesky factor of Σ = RR⊺. The details
are omitted. Furthermore, the transform in Eq. (A13) al-
lows one to draw numerous random samples from normal
distributions with different mean vectors and covariance
matrices computationally efficiently. It also allows for the
efficient generation of t-distributed variables and vectors
via the representation (A8).

Appendix B: Confidence regions of the bivariate
t-distribution

We discuss in this Appendix how to compute confi-
dence regions of the bivariate t-distribution (d = 2)

tν(x | µ,Σ) =
1

2π
√
|Σ|

[
1 +

(x− µ)⊺Σ−1(x− µ)

ν

]− ν+2
2

,

(B1)
with mean vector µ, ν degrees of freedom, and symmet-
ric, positive-definite scale matrix Σ and its inverse Σ−1.
Our task is to determine a (α× 100)% confidence region
Ωα for which

α =

∫
Ωα

dx tν(x | µ,Σ) . (B2)

Confidence regions are not unique in general; we focus
here on those that are elliptical and centered at µ.
The analytic calculation of these confidence regions can

be conveniently carried out in polar coordinates because
the t-distribution (B1) belongs to the class of elliptical
distributions that depend on only the quadratic form

ρ2 = (x− µ)⊺Σ−1(x− µ) . (B3)

The positive definiteness of Σ (and Σ−1) implies ρ2 > 0
and allows us to write

Σ−1 = R⊺R , (B4)

with R =
√
Λ−1Q⊺, the diagonal matrix Λ containing

the eigenvalues of Σ, and the matrix Q having the corre-
sponding orthonormal eigenvectors as columns. In terms
of the transformed coordinates x̄ = R(x − µ), one then
finds that ρ2 = x̄⊺x̄, such that

x = R−1x̄+ µ , with x̄ = ρ

(
cosφ
sinφ

)
(B5)
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and R−1 = Q
√
Λ, and the angle φ = arctan2(x̄2, x̄1).

Here, arctan2(y, x) is the inverse-tangent function which
returns the unique angle in the interval (−π, π], corre-
sponding to the ratio y/x, within its correct quadrant.
The Jacobian determinant of this transformation reads∣∣∣∣∂(x1,x2)

∂(ρ, φ)

∣∣∣∣ =
∣∣∣∣∣∂x1

∂ρ
∂x1

∂φ
∂x2

∂ρ
∂x2

∂φ

∣∣∣∣∣ = |R−1|
∣∣∣∣cosφ −ρ sinφ
sinφ ρ cosφ

∣∣∣∣ ,
= |R−1| ρ =

√
|Σ| ρ . (B6)

In the last step, we used that |R−1| = |Q||
√
Λ| =

√
|Σ|.

We now look for a confidence region Ωα that has a con-
stant radius in the new coordinate system, and spans the
entire range φ ∈ (−π, π]. This means that, with the Ja-
cobian determinant (B6), we can now evaluate Eq. (B2)
as follows:19

α =

∫
Ωα

dx tν(x | µ,Σ) ,

=
2π

√
|Σ|

2π
√
|Σ|

∫ ρ0(α)

0

dρ ρ

[
1 +

ρ2

ν

]− ν+2
2

,

= 1−
(

ν

ν + ρ20(α)

) ν
2

. (B7)

Hence, the ellipse encompassing the desired (α × 100)%
confidence region, via the coordinate system given by the
problem’s eigenvectors, is parametrized as

x(φ) = ρ0(α)R
−1

(
cosφ
sinφ

)
+ µ , (B8)

with φ ∈ (−π, π] and

ρ0(α) = +

√
ν

(1− α)
2
ν

− ν . (B9)

The major and minor axes have length ρ0 max(Λ11,Λ22)
and ρ0 min(Λ11,Λ22), respectively, and are oriented in
the directions of their corresponding eigenvectors. The
axis associated with Λii is rotated by the angle

θ = arctan
Q2i

Q1i
, (B10)

with respect to the x-axis. From the quadratic form (B3),
one notes that ρ2 = d2MD(x;µ,C) ν

ν−2 , with the Maha-

lanobis distance (MD)

dMD(x;µ,C) =
√

(x− µ)TC−1(x− µ) (B11)

and mean vector µ and covariance matrix C = ν
ν−2Σ

associated with the bivariate t-distribution (B1). Hence,

19 Integrals of the form of Eq. (B7) can be solved using the
integral representation of the Gauss hypergeometric function

2F1(a, b, c; z), which is, e.g., relevant for calculations at d ̸= 2.

the ellipse encompassing the desired (α × 100)% confi-
dence region corresponds to the contour with constant

dMD(x(φ);µ,C) ≡ ρ0(α)

√
ν − 2

ν
for φ ∈ (−π, π] .

(B12)
Numerically, one can straightforwardly validate the ob-

tained confidence regions by sampling the bivariate t-
distribution (B1) and calculating the ratio of the num-
ber of samples that fall within the confidence region and
the total number of samples, α ≈ Nin/Ntot. The sam-
pling points inside the confidence region, characterized
by (α, ρ0(α)), fulfill the inequality ρ2 ⩽ ρ20(α), where
the left-hand side is given by Eq. (B3). We provide the
Python function plot confregion bivariate t(. . .) in
our GitHub repository [79] for plotting these confidence
ellipses evaluated at one or multiple given values α.
What confidence regions should one show in figures?

We suggest showing the confidence regions associated
with α = {0.5, 0.8, 0.95, 0.99}, since these are common
percentiles used in UQ studies. However, this choice is
also a matter of preference and could depend on practi-
cal considerations such as how much uncertainty or toler-
ance exists for other aspects of a given study. For the use
of a single percentile, we suggest α = 0.95 rather than
higher or lower ones, since this level gives a good sense of
the full support of the distribution, without considering
events that are far out in its tails.
For completeness, let us study limν→∞ P (x | µ,Σ) =

N2(x | µ,Σ). In this limit, we obtain a (bivariate) nor-
mal distribution and thus

lim
ν→∞

ρ0(α) ≡ ρ0,∞(α) =
√
−2 ln(1− α) , (B13)

which results in

α(ρ0,∞) = 1− exp

[
−
ρ20,∞
2

]
, (B14)

and thus, e.g.,

α(ρ0,∞ = 1) ≈ 0.393469 , (B15)

α(ρ0,∞ = 2) ≈ 0.864665 , (B16)

α(ρ0,∞ = 3) ≈ 0.988891 , (B17)

since Eq. (B14) is identical to the one that determines the
circular confidence regions for a standard bivariate nor-
mal distribution. One notes that these confidence levels
differ from the well-known 68–95–99.7 rule for univariate
normal distributions.
Finally, we discuss that the outlined validation of the

confidence ellipses can also be used to fit bivariate t-
distributions tν(µ,Σ) to a set of given random sam-
ples drawn from an (unknown) distribution. We pro-
vide the Python function fit bivariate t(...) for this
task. Since both the mean vector µ and covariance ma-
trix C, which is proportional to the scale matrix Σ (see
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Eq. (A10)), can be straightforwardly estimated from the
samples, it remains to optimize the degree of freedom ν.
To this end, for a given confidence level α, one can use
root finding (e.g., the bisection method) to find the inte-
ger ν in Eq. (B9) such that the given and estimated con-
fidence levels match up to a desired tolerance, if possible.
As before, the estimated confidence level is given by the
ratio of the number of samples that fall within the confi-
dence region Nin [i.e., those samples whose ρ fulfils ρ2 ⩽
ρ20(α) for given ν and C] and the total number of sam-
ples Ntot. We have found this simple strategy to be very
efficient in practice. Alternatively, one can determine ν
by fitting the two marginals of the t-distribution using
a Maximum Likelihood Estimation (MLE), as, e.g., im-
plemented in scipy.stats.rv continuous.fit(...) [83].
Once the best-fit value for ν is known, the scale matrix
is obtained via Eq. (A10). This process can be repeated
for different α to ensure the t-distribution fit is robust.

Appendix C: Efficiency of the Bayesian model
choices and sampling scheme

We discuss in this Appendix why the sampling method
implemented in Sec. II C correctly samples from the pos-
terior distributions described therein, why it is computa-
tionally efficient, and why our choices of prior and like-
lihood models are fruitful. For completeness, we jus-
tify here the procedure for sampling from the posterior
of the pair of likelihood parameters (µ,Σ) as well as
from the posterior predictive distribution of Y, though
this paper focuses on an analysis of Y’s posterior pre-
dictive distribution directly, bypassing the need to de-
scribe the posterior distribution of (µ,Σ). Were it not
for the explicitly computable nature of Y’s posterior pre-
dictive (t-distribution), describing a sampling procedure
for (µ,Σ)’s posterior would be required.

1. Sampling scheme and its computational
efficiency

Recall the exact expression for the posterior density of
our pair of parameters (µ,Σ) from Eq. (18),

P (µ,Σ | M) =

∫
dyP (Y = y)

×NIW(µ,Σ | κn, νn,µn,Ψn;M,Y = y) . (C1)

By definition, this density is the mixture of the NIW
distribution inside the integral on the right-hand side,
with respect to the distribution of Y = {Yi}ni=1. To
sample from this mixture distribution, one only needs to
sample a value y from Y , and then sample from the NIW
distribution inside the integral when the parameter y is
fixed.

The same sampling method results in samples from the
posterior predictive distribution, based on the expression

in Eq. (19), where now one samples from the multivariate
t-distribution after sampling a value y from Y . To com-
pute empirical statistics from such samples, the standard
Monte Carlo method stipulates that a large number Q of
samples should be taken to approximate the mathemat-
ical version of the statistic with the empirical version,
e.g., approximating the posterior predictive mean of Y
via

Epost[Y] ≈ 1

Q

Q∑
q=1

y′
q , (C2)

where the value y′
q is sampled from the t-distribution in

the second line of Eq. (19) where, again, y is taken to be
the qth sample from Y .
The sampling methodology we describe in Sec. II C

and use in this work purports to implement the above
with Q = 108 samples, while choosing to sample the t-
distribution M = 100 times per sample from Y , instead
of just once, thereby reducing the number of samples
taken from Y fromQ = 108 toQ/M = N = 106. In other
words, an outside loop samples from Y only N = 106

times, resulting in N independent samples yq, for q =
1, 2, . . . , N , and for each q from 1 to N , in an inside loop,
we draw M = 100 fresh independent samples from the
distributions of interest, assuming y = yq, using either
the NIW distribution for (µ,Σ) from the second line in
Eq. (18), or the t distribution from the prediction y′ from
the second line in Eq. (19).
This procedure still results in Q = N ×M = 108 inde-

pendent samples for the posterior objects of interest, as
in the classical method where M = 1 and Q = N = 108.
However, reducing N and increasing M appears compu-
tationally more efficient in our setting. There are several
reasons for this.
Drawing from the NIW distribution or the t-

distribution is not computationally costly, so it is possible
to draw a total of Q = 108 t or NIW samples. The over-
all uncertainty in our posteriors is attributed principally
to the deviations between the various models, which are
taken into account in the NIW and t distributions, par-
ticularly because these distributions have heavy tails due
to the small number of degrees of freedom in our poste-
riors. The overall uncertainty is only secondarily due to
individual model uncertainty reports P (Yi), which have
light tails and are of a smaller magnitude. Therefore,
more computational effort should be spent exploring the
NIW and t-distributions (total of Q = 108 samples) in
our mixed posteriors, and less needs to be spent on ex-
ploring individual model uncertainties (only N = 106

samples from the Yi’s).
On the other hand, there is a trade-off between how

much smallerN should be compared to Q, i.e., how much
greater M should be than 1. Indeed, the precision in
the Monte Carlo method is well known to be inversely
proportional to the square root of the number of sam-
ples. Therefore, since part of the error in our Monte
Carlo scheme is attributed to the use of N samples from
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Y , one expects an error of order 1/
√
N = 10−3, which

is acceptable. The Monte Carlo errors are also propor-
tional to the scale of uncertainty in the statistics being
approximated. This scale is measured using standard de-
viations. As mentioned in the previous paragraph, those
standard deviations are significantly larger for our pos-
terior NIW and t distributions for fixed y than for our
distributions P (Yi). Thus, when dealing with the Monte
Carlo error for the NIW and t samples, which is propor-
tional to 1/

√
Q = 10−4, one must also keep in mind that

the error’s magnitude is also proportional to the corre-
sponding standard deviations, which might legitimately
be close to an order of magnitude larger than the stan-
dard deviations of the P (Yi), as can be seen, e.g., in
Fig. 1.

This point explains why choosing N = 106 and Q =
108 results in a good precision, i.e., good convergence of
Monte Carlo methods based on our sampling scheme with
a good balance between the areas with higher uncertainty
and those with lower uncertainty. In particular, the in-
crease from M = 1 to M = 100 can be considered as a
so-called variance reduction scheme, in Monte Carlo par-
lance, since it takes advantage of the lower uncertainty
from one section of our models by drawing fewer samples,
compensating the higher levels of uncertainty elsewhere
in the models with full numbers of samples.

These ideas can be made more precise mathematically
by using a classical formula for the unconditional vari-
ance of a mixture distribution, which is equal to the ex-
pected value of the conditional variance plus the vari-
ance of the conditional expectation, where one condi-
tions by the mixing variable, in this case, the Y . One
quantitative element that transpires in such details is
the variance of empirical variances, which draws on a
scale parameter related to the fourth central moment. It
should be noted that for the t-distribution, the fourth
central moment does not exist for degrees of freedom
less than 5. Our fitted posterior t distribution’s degrees
of freedom is equal to 9 (see the text above Eq. (31)),
whereas the number of degrees of freedom before mix-
ing was νn = ν0 + n − d + 1 = 17, thus we are in safe
territory. However this points to our variance reduction
scheme not being expected to work well with a signifi-
cantly lower number n.

While the mathematical details are omitted for con-
ciseness, we offer here a simple analysis to show why the
choice M > 1 is a variance reduction technique in the
case where, as we have with our setting, the discrepancy
across models is significantly greater than the uncertainty
within each model. The argument below refers to the t
distribution to help with readability, but is entirely gen-
eral. Our Monte Carlo method proposes samples for the
posterior predictive distribution of Y′ = Y′(y), where
y is distributed according to the developer-reported UQ,
independently of the (t-distributed) posterior prediction
for Y′(y) when y is fixed. Now, for fixed y, we note that
the expectation and variance E [Y′(y)] and Var[Y′(y)]
can also be considered as random variables since they are

functions of the fundamentally uncertain y. We denote
by Ey and Vary the expectation and variance operators
with respect to the randomness of y, which is specified
by the developers’ UQ. Now, let

σ2
t := Ey[Var[Y′(y)]] , (C3)

σ2
y := Vary[E[Y′(y)]] . (C4)

A straightforward calculation based on the aforemen-
tioned formula for the unconditional variance of a mix-
ture leads to the following expression for the empirical
mean and variance of all our Q samples for Y′ in our
Monte Carlo method:

Var

[
1

Q

Q∑
q=1

Y′
q

]
=

σ2
t

Q
+

σ2
y

N
=

1

N

(
σ2
t

M
+ σ2

y

)
. (C5)

We must now realize that the limiting factor in ensur-
ing an adequate number of Monte Carlo samples is the
value N , since our method only takes N samples from
the developer UQ, while it produces Q samples from the
t distribution. Hence the variance in this Monte Carlo
method with mixture can be considered as the last factor
on the right-hand side of Eq. (C5), namely

(
σ2
t /M + σ2

y

)
.

Clearly, when σ2
t is significantly larger than σ2

y, it is ben-
eficial to use M significantly larger than 1 to reduce this
overall variance. To produce a balanced Monte Carlo
method, it is then judicious to choose the two terms in
this variance expression to be equal to each other. This
leads immediately to

M =
σ2
t

σ2
y

. (C6)

In our setting, one can give Fig. 1 a visual inspection to
see that, indeed, the discrepancy among models, which
is represented by σy, exceeds by a significant factor the
intra-model uncertainties, for which σt is a summary
measurement. The square of this factor would be a good
selection for M .

2. Efficiency of prior and likelihood labels

Let us explain in qualitative terms, as announced in
Sec. II A, why our mapping of priors and likelihoods is
efficient. In a hierarchical model, there is not necessar-
ily a single way to map response variables, models, and
parameters to priors and likelihoods. We restrict the dis-
cussion here to two-level hierarchies, as is the relevant
case for our study.
To understand the ambiguity, consider, for instance,

the base level of a two-level hierarchy. Though it is a
probability model, it may be interpreted as a prior. This
can, e.g., be the case if the base level refers to data that is
external to the data used to inform the top-level model.
But that is not the case for us: the base level (2) uses
the only data we have, namely all the yi’s reported via
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their associated uncertainties Yi. The base level can also
be interpreted as a prior if the top-level model involves
a latent variable, which one might wish to reconstruct.
A Bayesian methodology is well-suited to reconstruct-
ing latent variables when they are part of the likelihood
models. A näıve interpretation of a Bayesian hierarchical
model would then hesitate over which of the two levels
should be the sole likelihood equation, since both contain
the latent variables, in our case, the yi’s. Another inter-
pretation could conclude that both levels of the hierarchy
should be deemed the likelihood model, with priors being
reserved for model parameters that are not interpreted as
latent variables. This latter interpretation is what we do
here. It avoids the conundrum of involving latent vari-
ables in the prior, but there is a stronger reason for this
choice than latent variables.

In the present study, the basic object, whose posterior
distribution we are after, even before discussing posterior
prediction, is solely the pair of parameters (µ,Σ). There-
fore, the top-level Eq. (1), which is based on that pair of
parameters, should be part of the likelihood model, and
any models for that pair (µ,Σ) should be part of the
prior. Since the variables Yi are mixing variables, which
means by definition (i.e., by our original modeling choice)
that their distribution is not influenced by the data, and
the Bayesian analysis will not change their distribution,
the most efficient choice is to label the base level Eq. (2)
as also being part of the likelihood. We think this la-
beling will help readers keep track of what part of the
model is formed of parameters that need to be estimated
using Bayes and which part of the model will not be af-
fected by the Bayesian analysis. However, the base level’s
designation as part of the likelihood is, to some extent,
immaterial, precisely since the Yi’s are mixing variables
whose laws are unaffected by the data and its analysis.
In particular, the Yi’s cannot be reconstructed more pre-
cisely than their original distributions.

Appendix D: Additional Results

This Appendix provides additional results obtained
with the alternative prior Set B. We also discuss how
the results change if the functional SQMC700 is removed
from the Bayesian analysis carried out in Sec. IIIA.

Figure 7 shows the results of the analysis for the data
points that define the saturation box (20). For Set B, we
obtain the NIW posterior (11) with the updated hyper-
parameters (κn = 15, νn = 18), and

µ(B)
n ≈

[
0.161
−15.92

]
, Ψ(B)

n ≈
[
0.0132 0.0512

0.0512 0.702

]
. (D1)

We also obtain the data-informed posterior predic-
tive (16) (right panel) is given by the tν(µ,Ψ) with hy-
perparameters:

ν(B) = 17 , µ(B) = µ(B)
n , Ψ(B) ≈

[
0.0032 0.0132

0.0132 0.182

]
.

(D2)

At the 95% credibility level, we therefore obtain the two
marginal distributions:

n
(B)
0 ≈ 0.161± 0.007 fm−3 , (D3a)

E
(B)
0 ≈ −15.92± 0.37MeV . (D3b)

Figure 8 shows the results of the analysis with both
Skyrme and RMF models considered, as in Sec. III B.
The fitted posterior predictive tν(µ,Ψ) has νn = 9 ≪ ∞
and

µ(B)
n ≈

[
0.158
−15.96

]
, Ψ(B)

n ≈
[
0.0052 0.0192

0.0192 0.192

]
. (D4)

Furthermore, Figs. 9 and 10 present our results for
benchmarking chiral EFT interactions and comparing the
nuclear symmetry energy, respectively. For the results in
Sec. III A with Set B and “GP–B 500,” we find

µ(A) ≈
[
32.4
55.1

]
, Σ(A) ≈

[
1.12 2.92

2.92 8.12

]
, (D5)

and for “GP–B 450”

µ(A) ≈
[
33.5
61.1

]
, Σ(A) ≈

[
1.02 2.62

2.62 7.32

]
, (D6)

Likewise, for the results in Sec. III B with Set B and
“GP–B 500,” we find

µ(B) ≈
[
32.1
52.8

]
, Σ(B) ≈

[
1.12 3.02

3.02 8.22

]
, (D7)

and for “GP–B 450”

µ(B) ≈
[
33.2
58.9

]
, Σ(B) ≈

[
1.12 2.72

2.72 7.52

]
. (D8)

Finally, Fig. 11 and 12 show the results of our analysis
when the functional SQMC700 is removed from the an-
alyzed data set, leaving n = 13 data points. For Set A,
the data-informed posterior predictive (16) (right panel)
is given by the tν(µ,Ψ) with ν(A) = 16 and:

µ(A)
n ≈

[
0.160
−15.96

]
, Ψ(A) ≈

[
0.0022 −0.0122

−0.0122 0.122

]
.

(D9)
At the 95% credibility level, we therefore obtain the two
marginal distributions:

n
(A)
0 ≈ 0.160± 0.004 fm−3 , (D10a)

E
(A)
0 ≈ −15.96± 0.26MeV . (D10b)

For Set B, the data-informed posterior predictive (16)
(right panel) is given by the tν(µ,Ψ) with ν(B) = 16 and

µ(B)
n ≈

[
0.160
−15.95

]
, Ψ(B) ≈

[
0.0022 −0.0122

−0.0122 0.142

]
.

(D11)



24

0.163± 0.009 fm−3 (95%)

prior predictive
(Set B)

0.
14

0.
16

0.
18

Sat. Density n0 [fm−3]

−16.4

−16.2

−16.0

−15.8

−15.6

S
a
t.

E
n

er
g
y
E

0
[M

eV
]

confidence level

99%

95%

80%

50%

−1
6.
5

−1
6.
0

−1
5.
5

−1
5.
0

Sat. Energy E0 [MeV]

−15.90± 0.73 MeV (95%)

0.161± 0.007 fm−3 (95%)

posterior predictive
(Set B)

0.
14

0.
16

0.
18

Sat. Density n0 [fm−3]

−16.4

−16.2

−16.0

−15.8

−15.6

S
a
t.

E
n

er
g
y
E

0
[M

eV
]

confidence level

99%

95%

80%

50%

−1
6.
5

−1
6.
0

−1
5.
5

−1
5.
0

Sat. Energy E0 [MeV]

−15.92± 0.37 MeV (95%)

FIG. 7. Similar to Fig. 3 but for the more weakly informed prior Set B.

At the 95% credibility level, we obtain:

n
(B)
0 ≈ 0.160± 0.005 fm−3 , (D12a)

E
(B)
0 ≈ −15.95± 0.29MeV , (D12b)

which is statistically consistent with the results for Set A
given in Eq. (D10) and those obtained in Sec. III A
but (as expected) more tightly constrained. Remov-
ing SQMC700 renders (n0, E0) anti-correlated, with the
Pearson correlation coefficient ρ ≈ −0.57 (intermediately
correlated) for Set A and ρ ≈ −0.44 (weakly correlated)
for Set B. To be more conservative in our inference, we
will keep SQMC700 in the data collection and treat it as
an outlier at the prior level.
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FIG. 9. Similar to Fig. 5 but for the more weakly prior Set B.
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FIG. 12. Similar to Fig. 11 but for prior Set B. Notice that the data point that sets the upper-right corner of the saturation
box constructed in Ref. [37] is ignored.
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