
A CAUSAL INFERENCE APPROACH OF MONOSYNAPSES FROM
SPIKE TRAINS

Zach Saccomano
School of Neuroscience, Virginia Tech

zachsaccomano@vt.edu

Sam McKenzie
Health Science Center, University of New Mexico

samckenzie@salud.unm.edu

Horacio G. Rotstein
Federated Department of Biological Sciences,

New Jersey Institute of Technology & Rutgers University

Asohan Amarasingham
Department of Mathematics, The City College of NY

Depts. of Biology and Computer Science, The Graduate Center
City University of New York

aamarasingham@ccny.cuny.edu

ABSTRACT

Neuroscientists have worked on the problem of estimating synaptic properties, such as connectivity
and strength, from simultaneously recorded spike trains since the 1960s. Recent years have seen
renewed interest in the problem, coinciding with rapid advances in the technology of high-density
neural recordings and optogenetics, which can be used to calibrate causal hypotheses about functional
connectivity. Here, a rigorous causal inference framework for pairwise excitatory and inhibitory
monosynaptic effects between spike trains is developed. Causal interactions are identified by sepa-
rating spike interactions in pairwise spike trains by their timescales. Fast algorithms for computing
accurate estimates of associated quantities are also developed. Through the lens of this framework, the
link between biophysical parameters and statistical definitions of causality between spike trains is ex-
amined across a spectrum of dynamical systems simulations. In an idealized setting, we demonstrate a
correspondence between the synaptic causal metric developed here and the probabilities of causation
developed by Tian and Pearl [1]. Since the probabilities of causation are derived under distinct
assumptions and include data from experimental randomization, this opens up the possibility of
testing the synaptic inference framework’s assumptions with juxtacellular or optogenetic stimulation.
We simulate such an experiment with a biophysically detailed channelrhodopsin model and show that
randomization is not achieved; strong confounding persists even with strong stimulations. A principal
goal is to ask how carefully articulated causal assumptions might better inform the design of neural
stimulation experiments and, in turn, support experimental tests of those assumptions.

Keywords functional connectivity · causal inference · spike trains · dynamical systems

1 Introduction

Various lines of experimental evidence suggest that, in some neuronal pairs, monosynaptic input can reliably produce a
postsynaptic spike response in vivo [2, 3] with a delay and precision that acts on millisecond timescales. Moreover, it
appears that the most plausible explanation for corresponding observations of appropriately-timed millisecond-timescale
correlations is the presence of a monosynaptic connection between the two cells. What is more, there is evidence
that the magnitude of such fine-timescale correlations co-vary with the synapse’s strength [4]. This suggests that a
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careful study of millisecond-timescale correlations in simultaneously-recorded spike trains might be a tool for studying
synaptic dynamics during behavior [5].

In practice, the hypothesis that monosynaptic effects can act on millisecond timescales is often incorporated into their
analysis by a statistical formulation of a separation of timescale hypothesis. This formulation can be appreciated
by looking at anecdotal examples of cross-correlograms (CCGs) from studies [2] that offer support for a causal
interpretation by juxtacellular and optogenetic stimulation of putative presynaptic neurons in vivo (see Figure 1).
Nevertheless, causal claims in highly connected systems ought to be treated delicately. It has been suggested that
isolating fine timescale effects might be a way to sidestep such concerns [6, 7]. While many methods have been
proposed for monosynaptic inference, relatively few have modeled causal relationships explicitly (but see [8, 7]).
Furthermore, many such methods operate on the CCG, and even under a timescale-separation assumption, the CCG is
insufficient to identify synaptic properties even in quite simple models (Figure 1) [9].

The primary focus of this study is to contribute to the development of robust and rigorous approaches to monosynaptic
inference in which the causal inference is explicit. We develop a causal inference framework for monosynaptic
interactions that is based on separation of timescale hypotheses that are robust to strong forms of nonstationarity
in the background dynamics (the concern we have most heavily emphasized in the context of spike train analysis
more generally [10, 11, 12]), among other forms of model misspecification. Unbiased estimators and confidence
intervals for causal quantities are derived under rigorously-articulated statistical assumptions, and we develop accurate,
efficient algorithms for computing these quantities. The performance of causal inference is then examined over broad
parameter ranges in simulations of increasing complexity, ranging from point process models to adaptive exponential
integrate-and-fire (AdEx) neuron models.

We also use simulations to examine the correspondence between the causal metrics for monosynaptic interaction
developed here and the probabilities of causation, as developed in Tian and Pearl [1] and elsewhere, which quantify
the necessity and sufficiency of causation probabilistically. While the correspondence is studied in a setting that relies
on strong idealizations, variations that are more finely tuned to experimental work that incorporates system-specific
constraints might use an analogous correspondence to test the model’s assumptions in vivo or calibrate its free parameters
via stimulation. Toward this goal, we use a biophysically detailed opsin model to simulate such an experiment in silico.
Using a theoretically motivated stimulation paradigm, we demonstrate that common input correlations might be difficult
to disentangle from common causal influences with current experimental technologies, motivating future research on
that point.

2 Preliminary considerations and general architecture

We begin with a general discussion of causal models to facilitate a uniform comparison between models and simulations
instantiated at different levels of abstraction. As has been widely discussed, the key motivation for explicitly modeling
causation is to distinguish association from causation. An intuitive model for doing so can be described by potential
outcomes [13, 14, 15, 16]. We write Y (X=x) as the ‘potential outcome’ of the random variable Y if the variable X is
‘forced’ to take the value x. The random variables X,Y , as well as those of the form Y (X=x) are presumed defined
on a common probability space. We distinguish observational from experimental trials in this way. In experimental
trials, the behavior of an agent external to the system (i.e., an agent that intervenes on the system) is explicitly-modeled;
in observational trials, there is no such intervention. For example, in a drug efficacy trial, let {Xk = 0} represent the
event that patient k takes the treatment and let {Xk = 1} represent the event that patient k takes a placebo. Then, if
Yk represents the measured outcome (mortality, for example) for patient k in an observational trial, then Y

(Xk=1)
k

represents the measured outcome for patient k in an experimental trial, such as a randomized control trial (RCT), in
which patient k has been assigned to take the treatment by a mechanism or agent external to the modeled system.
Potential outcomes represent answers to questions of the form ‘What would happen if an external agent intervened on
the system?’ and are used to define causal relations. In this case, the causal effect of the drug on the measured outcome,
for patient k, is Y (Xk=1)

k − Y
(Xk=0)
k . It is commonly pointed out that the challenge of causal inference is that one of

Y
(Xk=1)
k and Y

(Xk=0)
k is unobservable. The potential outcomes notation makes it straightforward to demonstrate that

an RCT is designed to infer average causal effects across a population, e.g., E
[
Y

(XR=1)
R − Y

(XR=0)
R

]
, where R is a

patient chosen in a simple random sample. (The latter demonstration assumes consistency, which is the assumption that
the events {Yk = y,Xk = x} and {Y (Xk=x)

k = y} are identical.)

A constructive way to model potential outcomes is by explicitly modeling interventions in terms of how a structural
causal model [17] is simulated. In this approach, the structure of a system is modeled via the relationships among its
variables, specified by a set of functions, as in a dynamical system. This set of functions can be put in correspondence
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with a directed graph by associating each variable with a vertex: a source vertex and a target vertex has a directed
edge if one of the functions has the source in its domain and the target in its range. It is required that the directed
graph is acyclic, which is equivalent to requiring that there is a consistent (sequential) method of simulating the system,
whose ordering respects the graph. The background variables (noise variables) – those variables whose corresponding
vertices do not have incoming edges – are instantiated as independent random variables and represent the influence of
the world external to the system, in the absence of interventions. We can then think of the simulation as a closed system.
Random variables can be sampled by simulation. The background variables are sampled as noise terms. Probability
propagates via the functional relationships to induce a joint probability distribution on the entire system of variables.
This joint distribution specifies all probability distributions (conditional and marginal distributions) of interest. All such
probability distributions can then, in principle, be estimated by simulation. This is a more or less standard probabilistic
point of view. The language of association is the language of conditional distributions. The association between random
variables X and Y describes the distribution P (X|Y ); there is no association if P (X|Y ) = P (X).

We can describe interventions explicitly in the sequential simulation just identified. In this description, intervening on
some variables means explicitly resetting their values before the functions that call them are evaluated (in the sequential
method of simulation). These resets are the interventions; interventions model the action of agents external to the
system. The random variables sampled in simulating the intervened system are potential outcomes. The Y (X=k)

encodes the outcome for variable Y but in the intervened system in which X is reset to the value k before its use in
function calls. As before, the probabilities propagate via the functional relationships and the interventions to induce a
new joint probability distribution on the entire system. This joint distribution specifies all probability distributions of
interest in the intervened system. All such probability distributions can again, in principle, be estimated by simulation.
Causal language can then be understood as a vocabulary for discussing how interventions modify probabilities of
interest. Pearl [17] uses the term do(·) to specify probability distributions for intervened systems. P (Y |do(X = x),Z)
represents the conditional distribution P (Y |Z) when the system is intervened upon by assigning random variable X to
the value x, where assigning is taken in the sense of ‘resetting’ above. Thus P (Y |do(X = x),Z) is another way of
writing P (Y (X=x)|Z(X=x)). In what follows, we use either notation freely, for convenience.

Where does this language – in which interventions by agents are explicitly modeled – improve upon more familiar
statistical modeling? A textbook example is “Simpson’s Paradox”, a phenomenon where the observed statistical
association between variables in a population is the opposite of that observed within each subgroup of a partition
of the population (see [16, 18] for more explanation). In neurophysiology, perhaps the most familiar object used in
the laboratory for synaptic inference is the cross-correlogram (CCG). To motivate the framework of this article, we
construct examples where the CCG and presynaptic ACG [19, 20] are insufficient for causal inference. The CCG hides
information about time-dependent background correlations and presynaptic bursts that produce associations in the CCG
that are not causal. The situation is analogous to Simpson’s Paradox where statistical associations must be isolated in
strata of confounders that have specific properties. The CCG collapses over these strata of the confounders. Figure 1
illustrates these ideas in some point process examples, with a detailed mathematical explanation of the simulations
given in Appendix 6.1.
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Fig 1: Toy examples of confounding in monosynaptic interactions. Simulations for examples are explained in detail
in Appendix 6.1. A: A CCG from a hippocampal pyramidal cell and interneuron in vivo from the study of English
et al. [2]. The pyramidal neuron (hypothesized to be presynaptic) spontaneously spikes (black) or spikes in response to
experimental juxtacellular stimulation (green). Data like these motivate timescale separation assumptions. B: CCG
from Example 2 for Situation A where ϵA = 0.2, λR,A = 0.2, λT,A = 0.7. Left panel is a simulation, right panel is
analytic for all rows. C: Situation B in Example 2 where ϵB = 0.8, λR,B = 0.8, λT,B = 0.1. Note the observed CCGs
are the same in B and C but the causal stories generating the data are quite different. D: Situation A in Example 3 E:
Situation B in Example 3. For D-E the parameters are σ2

A = 10 ms, σ2
B = 90 ms, σ2

s = 2.5 ms, d = 4 ms, α = 0.005,
ω = 20 Hz. The observed CCGs in the left panels of D and E are quite different but in the right panels the number of
causal spikes (the areas of the green regions) are identical and the presynaptic trains, and thus their ACGs, are also
identical.
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Table 1: Description of symbols and notation in monosynaptic causal inference model

Symbol Description

(Ak)k∈Z∗ An ordered sequence (A0, A1, ...)
A A set of numbers {A1, A2, ...}
A⃗ A matrix
a⃗ A vector
|A| The cardinality of a set A or A’s absolute values if A is a scalar
1{A} The indicator function of the event A
A[n] The set of all subsets of cardinality n from a set A
X,Y Generic sets of points (e.g., spike times) often reused
NA(X) Number of spikes from X in the temporal regions A
γ(t) The ∆ coarse temporal interval containing t
Γ(X) An abbreviation for (Nγ(∆k)(X))k∈Z∗

S(X, δ, τ) The union of all δ length intervals centered around the τ shifted elements of X
δ, τ,∆ The synaptic timescale and lag, and background timescale (model parameters)
δd The Dirac delta function
Y (x) The potential outcome of a spike train Y if a spike train X is forced to be x
R,B, I,T The reference, background, interaction, and target events, respectively
θsyn The number of interactions caused by a synapse
q(R, x) The conditional probability some x ∈ B will be found in S(R, δ, τ)
q(R,T (R)) The collection (q(R, x))x∈T (R)

G The set of reference spikes with no target spike found in their interaction regions
K An index set for T
J The indices of K labeling which elements of T equal B when θsyn ≥ 0
L The indices of K labeling synchronous elements of T when θsyn ≥ 0
Uh, Vh Indices of L corresponding to two limiting cases for the hypothesis θsyn = h ≥ 0
α One minus the confidence level
J−
h , J+

h Hypotheses for J given the hypothesis θsyn = h ≥ 0
Z Candidate points that might be near inhibitory events T (∅) \ T (R)

K̃ An index set for Z
J̃ The indices in K̃ for points in Z near T (∅) \ T (R)

J̃−
h , J̃+

h Hypotheses for J̃ given the hypothesis θsyn = h
χ(ℓ,X,Y ) The sample cross-correlation function between spike trains X and Y
C(R,T , α) 1− α confidence interval for θsyn ≥ 0

3 Monosynaptic causal inference model

3.1 Formulation for primary model

Let X be a finite set of spike times for an experiment of duration D. For any A = ∪i[ai, bi), let NA(X) := |X ∩A|,
termed the increment of the point process X in A [21, 22]. Assuming the time origin is randomized in the experimental
sense, implicitly define a partition ofR+ into ∆ length intervals with a function that for any time point t ∈ R+ retrieves
the unique coarse interval containing t,

γ(t) :=

{
I ∈ {[k∆, k∆+∆) : k ∈ Z∗} : t ∈ I

}
. (1)

Thus the k-th interval will frequently be written by taking t at its left endpoint, γ(k∆). However, in future sections, it
will be equally convenient to access interval k by letting t equal any spike time in interval k. Abbreviate the sequence
of spike counts for some spike times X in the coarse intervals with the special symbol

Γ(X) := (Nγ(k∆)(X))k∈Z∗ = (N[0,∆)(X), N[∆,2∆)(X), ...) (2)

and for any X denote the union of all δ length intervals centered around the τ shifted elements of X as

S(X, δ, τ) :=
⋃
x∈X

{
s : |x+ τ − s| ≤ δ

2

}
(3)
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where the second two arguments will often be suppressed from the notation when the context is clear, i.e., S(X). Let
Y (x) be the potential outcome of a spike train Y if a spike train X is forced to spike at a set of times x with otherwise
fixed background conditions. That is, introduce the counterfactual notion that Y (x) would have been the set of times Y
spiked if X had been x [15]. As previewed above, we will work with a reference spike train, R, and a target train, T ,
and the scientific question is to ask if R acts on T with a monosynapse. Further suppose the target train is constructed
from latent point processes B and I , termed background events and interactions, respectively. A causal model is then
defined with the deterministic relation,

∀r,T (r) :=

{
B ∪

(
I(r) \ ∪r∈r{S(r) : NS(r)(B) > 0}

)
, excitatory model

B \ ∪r∈r{S(r) : NS(r)(I
(r)) > 0}, inhibitory model

(4)

where T (r) references the intervention do(R = r). Notice, by construction, the background events B are invariant
to any action do(R = r). While one might argue this is a strong simplification, it is appropriate to compare it to
the assumption that smooth features in the CCG are non-causal [23] which, for Poisson-based models, is necessarily
a subset of the simplification just made (Figure 1C-D). We will be concerned with estimation of the parameter
θsyn = NS(R)(T ) − NS(R)(T

(∅)) where θsyn > 0 for excitatory interactions, θsyn < 0 for inhibitory interactions,
and θsyn = 0 for non-interacting neurons. In the following, it will be useful to define,

q(R, x) :=
1

∆

∫
t∈R+

1{t ∈ S(R) ∩ γ(x)} dt. (5)

That is, q(R, x) is the proportion of times t ∈ γ(x) that are within a distance δ/2 of a point in {r + τ : r ∈ R}.
Constructing confidence intervals for θsyn will require some additional notation. First, let us set up objects that will be
used for an exact excitatory confidence interval. Denoting Tk = f0(k), fix any bijective mapping f0 : K 7→ T (R) that
satisfies

q(R, T1) ≤ q(R, T2) ≤ ... ≤ q(R, T|T |). (6)

We will write

q(R,T (R)) = (q(R, T1), q(R, T2), ..., q(R, T|T |)). (7)

Let J denote the subset of K indexing the true background events, B, in the sense that J satisfies {Tj : j ∈ J and J ⊆
K} = B.

With this notation fresh in mind, we define a background model using the principle of conditional uniformity, which
has been motivated and developed as a canonical assumption in previous work [24, 25]. For our purposes here, the
following technical definition is sufficient (see [22] for more on point processes and their characterization).
Definition 1. Conditionally uniform point process: Define g(Y , A) = |Y ∩ γ(inf A)|, where Y is a point process
and A is a subset of R. A point process Y is conditionally uniform, conditioned on Γ(Y ) and X , if

P (∩mk=1{|Y ∩Ak| = nk}|Γ(Y ),X) =

m∏
k=1

(
g(Y , Ak)

nk

)(
|Ak|
∆

)nk
(
1− |Ak|

∆

)g(Y ,Ak)−nk

, (8)

if nk ≤ g(Y , Ak) for all k ∈ {1, 2, ...,m}, for any disjoint finite collection A1, A2, ..., Am of subsets of R that satisfies:
i) for each j, Aj ⊆ [kj∆, kj∆+∆) for some integer kj and ii) γ(inf Aj1) ̸= γ(inf Aj2) whenever j1 ̸= j2.

A common way of modeling point processes is with conditional intensity functions [21]. While the formulation just
outlined does not make use of them, later we will simulate from conditional intensity function models to demonstrate
this formulation is compatible. In continuous time, the conditional intensity function λX(t) for a point process X is,
λX(t) := lim∆t→0E[N[t,t+∆t)(X)|Ht]/∆t whereHt is the history of the system prior to time t.
Remark 1. In neuroscience, the term “rate” might refer to one of several ideas [12]. In the current work, we use the
word rate with regard to samples of a conditional intensity function and highlight the normalization when used.

3.2 Assumptions

Assumption 1. Conditional uniformity: B is a conditionally uniform point process, conditioned on Γ(B) and J .

Assumption 2. Timescale separation: For some τ , δ, and ∆, I(r) ⊂ S(r), for all r, where δ < ∆. (τ , δ, and ∆ are
model parameters.)

6



Assumption 3. Positivity: 0 < q(R, k∆) < 1, for all k ∈ Z∗.

Assumption 4. Consistency: I = I(R) and T = T (R).

Assumption i will be abbreviated as A.i. There have been debates about whether A.4 (consistency) is an assumption
or axiom of causal inference [26, 27, 28]. Here, we take it as an assumption in the sense of highlighting where it is
invoked or self-evident. Similarly, one can view A.3 (positivity) as an identifiability condition, and in our case, its
validity can be determined with observational data. For this reason, one could simply define θsyn in terms of regions
of an experiment that provide identifiable causal information. However, following the causal inference literature [29]
and for full conceptual clarity, we make it an assumption which more easily accommodates an explanation of both
perspectives, leaving scientists to make their own judgment within the context of specific questions. In particular, the
assumption interrelates with various other issues, including choosing free parameters, which will be discussed at length.
For this purpose, the following will be useful.
Definition 2. Synchrony saturation: Synchrony saturation refers to an observation of the model whereA.1 (conditional
uniformity) and A.2 (timescale separation) are true but A.3 (positivity) is violated. That is, we say an observation is
synchrony saturated if there is an interval identified by k ∈ Z∗ such that q(R, k∆) = 1.

The primary motivation for A.2 (timescale separation) is empirical [3, 5, 2, 4] although this assumption will be
investigated in simulations of dynamical systems in later sections. Finally, A.1 (conditional uniformity) is motivated by
the observation that in vivo spike trains are nonstationary [30, 31], and likely rapidly-varying. Hence, distinct points
in time cannot be averaged to estimate conditional intensity functions or their variants, such as the cross-correlation
function [12, 24], a matter made worse by confounding. As discussed in past work [25], the particular use of uniformity
is motivated by the fact that the uniform distribution is the maximum entropy distribution on a finite interval.

3.3 Point estimation

Perhaps the key task of causal inference is to identify confounders and adjust for them. In the assumptions just put forth,
it is conceived that the processes B, R, and I(R) may have non-trivial correlations that confound θsyn on a ∆ timescale.
In causal inference, adjustment often ensues by stratifying the probability of the outcome variable conditioned on the
treatment variable into different levels of the confounder. Similarly, here, the key to estimation will be to stratify time
into ∆ length neighborhoods and perform statistical adjustments locally (i.e., in time) via conditioning on the spike
counts in those intervals. Note that a quite different approach would be to use the CCG for estimation where the spiking
activity has already been averaged across levels of confounding. Figure 1, and its associated examples, essentially
demonstrated that the decomposition of the CCG into causal parts is an ill-posed problem since information about
confounding is hidden after averaging. Notice in the formulation section no assumptions were made about R and
no assumptions were made about I(R) except for A.2 (timescale separation). In the following theorem, an unbiased
estimator is provided for θsyn. This precise deconfounding of the synaptic effect comes at the cost of not modeling the
time-dependent shape of the synaptic gain onto the postsynaptic neuron. Instead, A.2 (timescale separation) simply
requires interactions I(R) to be a subset of S(R). This does not require that no shape exists, it is simply not inside the
model. Another potential source of confusion is that the idealization that there exist two processes B and I(R) does
not mean there are two levels of synaptic efficacy. Since the events B are invariant under all the actions do(R = r),
they indeed have zero effective synaptic weight. However, every event in I(R) may be generated from a different
state-dependent effective synaptic weight. That is, A.2 (timescale separation) is a statement about timescale, and no
assumptions about synaptic gain were made or its dependence on other factors in the model.
Theorem 1. Under A.1 (conditional uniformity), A.2 (timescale separation), A.3 (positivity) and A.4 (consistency) an
unbiased point estimate of θsyn in the excitatory and inhibitory models Eq. (4) is given by one expression,

θ̂syn =
∑
k∈Z∗

Nγ(k∆)∩S(R)

(
T
)
− q(R, k∆)Nγ(k∆)

(
T
)

1− q(R, k∆)
. (9)

Proof Idea: The observed (confounded) synchrony in ∆-length temporal intervals can be expressed as a function of the
hidden variables for each outcome. An appropriate conditional expectation yields calculations that isolate the causal
effect as a function of observational data. Linearity of expectation across temporal intervals then recovers θsyn (see
Appendix 6.2).

Under violations of the identifiability assumption A.3 (positivity), one can easily salvage estimates from segments of
the observation from which causal information is available.
Corollary 1. Suppose synchrony saturation occurs such that q(R, k∆) = 1 where k ∈ X,X ⊆ Z∗. Define the set,
ν = ∪k∈Xγ(k∆) and the parameter θ′syn = NS(R)∩ν(T )−NS(R)∩ν(T

(∅)). Then,

7



θ̂′syn =
∑

k∈Z∗\X

Nγ(k∆)∩S(R)

(
T
)
− q(R, k∆)Nγ(k∆)

(
T
)

1− q(R, k∆)
(10)

is unbiased under A.1 (conditional uniformity), A.2 (timescale separation), and A.4 (consistency).

Proof Idea: The proof (not shown) is exactly as before while highlighting the use of linearity of expectation mentioned
in the previous proof idea.

3.4 Confidence intervals

The intuition behind the confidence intervals proposed here can be understood by explaining a naive algorithm for
computing them. The algorithm’s task is to explain the monosynaptic synchrony in a spike train pair in terms of the
model. Consider the classical technique of obtaining a confidence interval by inverting a hypothesis test [32]. Intuitively,
a confidence interval for θsyn is the set of hypotheses for which we fail to reject the null hypothesis H0 : θsyn = j.
A naive algorithm for calculating this interval would be to start with the hypothesis H0 : θsyn = 0. In this case, we
assume all the observed spikes in the target train arise from the process B. Taking monosynaptic synchrony as our test
statistic, the test might reject the null hypothesis that is placed under the supposition that all spikes are non-causal and
thus conditionally uniform (A.1). In that case, for an excitatory interval, we proceed to conduct more hypothesis tests
j = (1, 2, 3, ...). Computationally, one can imagine that before each new hypothesis test, we delete synchronous target
spikes from the target train, subtract away their contribution to the test statistic, and calculate the null distribution of the
test statistic under the supposition that the remaining data are conditionally uniform (A.1). We continue this process
until we fail to reject the null (i.e. until the observed synchrony is explained).

The key question is, which spikes should be iteratively deleted from the target spike train in this naive algorithm? As
will be shown analytically, we want to iteratively select synchronous target spikes that minimize or maximize the change
in the tail probability of the test statistic. Under the model’s assumption, this corresponds to removing synchronous
target spikes that occur when the reference neuron’s spike counts are either lowest or highest. Intuitively, suppose
confounding events, B, tend to occur when the reference neuron’s firing is highest; the confounding synchrony will
be maximal. In that case, θsyn needs to be minimal to explain the synchrony. At the other extreme, if confounding
events, B, tend to occur when the reference neuron’s firing is lowest, the confounding synchrony will be minimized,
and thus θsyn needs to be maximal to explain the synchrony. This is how θsyn is bounded. We will now proceed to a
more formal explanation of these intervals and prove they are exact. While the naive algorithm just described was for
the purpose of intuition, a more sophisticated algorithm will also be developed for implementation later.

3.4.1 Formulation and derivation for exact excitatory confidence interval

Define L := {l ∈ K : Tl ∈ S(R)} and let Uh be any set that satisfies Uh ⊂ L such that |Uh| = NS(R)(T ) − h
and maxi{q(R, Ti) : i ∈ Uh} ≤ mini{q(R, Ti) : i ∈ L \ Uh}. Similarly, let Vh be any set that satisfies Vh ⊂ L
such that |Vh| = NS(R)(T )− h and mini{q(R, Ti) : i ∈ Vh} ≥ maxi{q(R, Ti) : i ∈ L \ Vh}. Uh and Vh identify
NS(R)(T )− h indices (specified by f0) of the synchronous target spikes with the smallest and largest q(R, ·) values,
respectively. Then define

J−
h := Uh ∪ (K \L) (11)

J+
h := Vh ∪ (K \L). (12)

The conditional pmf for NS(R)(T )− θsyn = NS(R)(B), conditioned on q(R,T ) and J , is

P

(
NS(R)(B) = n

∣∣∣∣q(R,T ),J

)
=
∑

Q∈J [n]

∏
i∈Q

q(R, Ti)
∏

k∈J\Q

(1− q(R, Tk)). (13)

Let c−(q(r, t), j) specify a lower (conditional) critical threshold for NS(R)(B) in the sense,

c−(q(r, t), j) := max
k

{
k : P

(
NS(R)(B) ≤ k

∣∣∣∣q(R,T ) = q(r, t),J = j

)
≤ α/2

}
(14)

= max
k

{
k :

k∑
n=0

∑
Q∈j[n]

∏
i∈Q

q(r, ti)
∏

m∈(j\Q)

(1− q(r, tm)) ≤ α/2

}
. (15)
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In the same sense, let c+(q(r, t), j) specify an upper (conditional) critical threshold for NS(R)(B),

c+(q(r, t), j) := min
k

{
k : P

(
NS(R)(B) ≥ k

∣∣∣∣q(R,T ) = q(r, t),J = j

)
≤ α/2

}
. (16)

We now develop confidence intervals for θsyn.
Lemma 1. Let

D(R,T ) =

{
j : |j| = |J |, (K \L) ⊆ j

}
. (17)

Abbreviate D(R,T ) as D. Under A.1 (conditional uniformity)

J−
θsyn
∈ argmin

j∈D

{
c−(q(r, t), j)

}
(18)

and

J+
θsyn
∈ argmax

j∈D

{
c+(q(r, t), j)

}
. (19)

Proof Idea: The cdf corresponding to the critical regions can be explicitly differentiated with respect to the labeling.
Proving that J−

θsyn
minimizes Eq. (18) follows from contradiction. Eq. (19) is shown in the same way (see Appendix

6.2).

An elementary idea embedded in Lemma 1 above is that if X1, X2, ..., Xn are independent Bernoulli random variables
with parameters q1, q2, ..., qn, respectively, and those parameters satisfy qi ≥ ri, for all i ∈ {1, 2, ..., n}, then
P(
∑N

i=1 Xi ≤ c) is a lower bound for the same tail probability derived from a sum of independent Bernoulli random
variables with parameters r1, r2, ..., rn, respectively. All of these Bernoulli random variables are presumed to be
mutually independent. In fact, there is a more general result [33] which implies that the confidence intervals developed
are robust to certain violations of A.1 (conditional uniformity).
Lemma 2. Denote X1, X2, ..., Xi−1, Xi+1, ..., Xn as iX. Then suppose X1, X2, ..., Xn are Bernoulli random vari-
ables (not necessarily independent) satisfying

P(Xi = 1|iX,Z) ≥ pi(Z), (20)

for all i ∈ {1, 2, ..., n}, and for some random variable Z. Then

P

(
n∑

i=1

Xi ≤ k

∣∣∣∣Z
)
≤ P

(
n∑

i=1

Yi ≤ k

)
,∀k (21)

if Y1, Y2, ..., Yn are conditionally independent Bernoulli random variables, conditioned on Z, with parameters
p1(Z), p2(Z), . . . , pn(Z) respectively, and X1:n and Y1:n are conditionally independent, conditioned on Z.

Proof Idea: The proof is by induction (see Appendix 6.2).

First we first demonstrate that an exact hypothesis test for H0 : θsyn = h follows from the previous results.
Proposition 1. Under A.1 (conditional uniformity), A.2 (timescale separation), and A.4 (consistency) {NS(R)(T )−
h ≤ c−(q(R,T ),J−

h )} and {NS(R)(T ) − h ≥ c+(q(R,T ),J+
h )} are α/2-level critical region for all P in H0 :

θsyn = h. That is, for all P in H0 : θsyn = h,

P
(
NS(R)(T )− h ≤ c−(q(R,T ),J−

h )
)
≤ α/2 (22)

and
P
(
NS(R)(T )− h ≥ c+(q(R,T ),J+

h )
)
≤ α/2. (23)

Proof: Appendix 6.2.

Finally, an exact confidence interval is constructed by inverting the hypothesis tests established in Proposition 1.
Theorem 2. [Confidence interval for θsyn.] Define

C(R,T , α) :=

{
h : c−(q(R,T ),J−

h ) ≤ NS(R)(T )− h ≤ c+(q(R,T ),J+
h )

}
. (24)
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Then under A.1 (conditional uniformity), A.2 (timescale separation), and A.4 (consistency) C(R,T , α) is a (1− α)-
level confidence interval for θsyn ≥ 0. That is,

P(θsyn ∈ C(R,T , α)) ≥ 1− α. (25)

Proof. By construction,

{θsyn ∈ C(R,T , α)} =
{
c−(q(R,T ),J−

θsyn
) ≤ NS(R)(T )− θsyn ≤ c+(q(R,T ),J+

θsyn
)
}
. (26)

Therefore,

P(θsyn ∈ C(R,T , α)) = P
(
c−(q(R,T ),J−

θsyn
) ≤ NS(R)(T )− θsyn ≤ c+(q(R,T ),J+

θsyn
)
)
≥ 1− α. (27)

The final inequality follows, under the model, from Proposition 1. ■

3.4.2 Sketch of inhibitory confidence interval and computational implementation

In Section 3.1, we modeled inhibition as a process that censors the elements of B where B is given the same properties
as in the excitatory case. This approach is inspired in part by Spivak et al. [19] and, because of the superposition
principle of Poisson processes [22], similar models are implied by CCG-based methods with heuristic reliance on
Poisson assumptions that identify inhibition via short-latency troughs in the CCG [34, 35, 23]. However, we should
regard this model with much greater skepticism, as inhibitory neurons may play a greater role in regulating downstream
spike timing [36, 37] and few experimental studies exist that include causal manipulations of inhibitory neurons [38]
in a manner relevant to functional connectivity. Nonetheless, we will sketch an algorithm for computing a bound for
inhibition, particularly since it has been hypothesized that axo-axonic cells may function to precisely censor principal
cell output in vivo [38]. Since the problem has a tenuous empirical foundation, we forgo any rigorous probabilistic
interpretation of the algorithm’s output. Hence, we prioritize assumptions here that permit the simplest, rather than the
most precise, articulation of a concept. Perhaps experimentalists who wish to provide ground truth data for this problem
may find this sketch useful while designing their experiments. Varying assumptions and comparing the resulting bound
with measurements taken under experimental interventions might help to refine the assumptions needed for an inhibitory
model (see Section 5.1). We emphasize that, for now, this sketch is wholly supported by intuition and simulation,
guided by the philosophy that mathematical precision should yield to scientific constraints, which, as just explained, are
scarcely available for inhibition.

As in Section 3.4.1, we must again consider what beliefs about B reasonably explain how the data were generated for
inhibition. In particular, here we will suppose some elements of B are censored in empty synchrony regions and we
must calculate null distributions corresponding to those suppositions and identify limiting cases to bound θsyn < 0.
The problem is not directly analogous to before because, in the excitatory case, the candidate hypotheses for B include
all possible subsets of T . However, for inhibition, the candidate hypotheses for inhibition include all possible subsets of
S(G) where G := {r : r ∈ R, NS(r)(T ) = 0}; that is, all time points in empty synchrony regions in the observed
train T . It is here that we will make a significant simplification and suppose, by assumption, that censored elements of
B are simply a subset of G, and compute intervals in simulation thinking of this as an approximation. Inherent in this
approximation is we ignore edge effects and assume that no more than one event of B is censored per synchrony region.

Define Z := T ∪G. Z now represents approximate candidate locations of background events for the excitatory and
inhibitory models simultaneously (no generality is lost for the excitatory case in this notation). As earlier let an index
set be K̃ = {1, 2, ..., |Z|} and define a bijective mapping f1 : K̃ 7→ Z as follows. Referring to f1(k) as Zk, let f1 be
any such mapping that satisfies,

q(R, Z1) ≥ q(R, Z2) ≥ ... ≥ q(R, Z|G|)︸ ︷︷ ︸
Zk∈G for 1≤k≤|G|

q(R, Z|G|+1) ≤ q(R, Z|G|+2) ≤ ... ≤ q(R, Z|G|+NS(R)(T ))︸ ︷︷ ︸
Zk∈T∩S(R) for |G|+1≤k≤|G|+NS(R)(T )

.
(28)

Notice there are no constraints on the mapping for the largest |T | −NS(R)(T )− 1 elements of K̃ which f1 maps to
the (non-synchronous) points in T \ S(R). (A mapping such as f1 always exists since G and T ∩ S(R) are mutually
exclusive.) With these simplifications, we can once again imagine two limiting cases of how the data might have been
generated given a hypothesis that θsyn = h,

10



J̃−
h :=


( |G|+NS(R)(T )−h⋃

i=|G|+1

i
)
∪
( |G|+|T |⋃
i=|G|+NS(R)(T )+1

i
)
, if h > 0

|G|+|T |⋃
i=|G|+h+1

i, if h ≤ 0

(29)

J̃+
h :=


|G|+|T |⋃

i=|G|+h+1

i, if h ≥ 0

( −h⋃
i=1

i
)
∪
( |G|+|T |⋃
i=|G|+1

i
)
, if h < 0.

(30)

For a hypothesis of the form θsyn = h we will posit the existence of some censored background events, with associated
probabilities that will then need to be convolved with a function representing a proposal about the distribution of
NS(R)(B). As before, these hypotheses are made at limiting cases where the spike counts of R on ∆ timescales are
either minimal or maximal (this is builtin to Eqs. (11)-(12)). Noting that we give no rigorous interpretation of these
probability statements, let us use the notation (∗i∈Nv⃗i)(k) = v⃗1 ∗ v⃗2 ∗ v⃗3... to denote the convolution of many vectors
where k runs over the support of the resulting vector. In particular, consider the vectors v⃗i = (1− q(Zi), q(Zi)) for
i ∈ K̃ and define,

c̃−(q(r, z), j) := max
k

{
k :

k∑
j=0

(∗i∈j v⃗i)(j) ≤ α/2

}
(31)

c̃+(q(r, z), j) := min
k

{
k :

|j|+1∑
j=k+1

(∗i∈j v⃗i)(j) ≤ α/2

}
. (32)

Then let an approximate bound be,

C̃(R,Z, α) :=

{
h : c̃−(q(R,Z), J̃−

h ) ≤ NS(R)(T )− h ≤ c̃+(q(R,Z), J̃+
h )

}
. (33)

While presented under distinct notation to incorporate inhibition, this set is identical to the rigorous confidence
interval derived previously for excitation when θsyn ≥ 0. Using this notation, we present two algorithms for efficient
computation of these confidence intervals. The algorithms use various tricks to minimize redundant computations and
leverage state-of-the-art methods for fast and accurate tail probability computations for a sum of independent random
variables. A detailed description of this approach, along with its rationale, is provided in Appendix 6.4. For the reader
interested in direct application, we state Algorithm 1 and 2 immediately without explanation. Algorithm 2 is the main
algorithm that computes, as an example, the lower bound for θsyn in the excitatory case. For clarity, Algorithm 1 is
separated but repeatedly called from Algorithm 2 and houses machinery for accurately computing tail areas for sums of
independent random variables.
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Algorithm 1 Hybrid convolution power with shift plus sparse exceptions

Input: Scalar Ldiv for Ldiv-fold convolution power, p⃗ = (p0, p1, ..., pN ) probability vector to apply Ldiv-fold
convolution power, g⃗ = (g0, g1, ...gM ) residual probability vector, y0 the observed test statistic

1: function SDPNT(s, p⃗, g⃗)
2: κ

′

p⃗(s), κ
′

g⃗(s)← the derivatives of the CGFs of p⃗ and g⃗ evaluated at s
3: ▷ Note: CGF stands for cumulant generating function
4: return Ldivκ

′

p⃗(s) + κ
′

g⃗(s)− y0
5: end function
6: ŝ← compute s such that Sdpnt(s, p⃗, g⃗) = 0
7: for all x ∈ {0, . . . , N} do ▷ apply exponential tilts
8: p⃗ŝ(x)← exp [ŝx− Ldivκ

′

p⃗(ŝ) + κ
′

g⃗(ŝ)]p⃗(x)
9: end for

10: for all x ∈ {0, . . . ,M} do
11: g⃗ŝ(x)← exp [ŝx− Ldivκ

′

p⃗(ŝ) + κ
′

g⃗(ŝ)]⃗g(x)
12: end for
13: Nb⃗ ← 2⌈log2(K(N−1)+(M−1)+1)⌉

14: p⃗ŝ ←Concat(p⃗ŝ, 0⃗Lp⃗
) pad with zero vector of dimension Lp⃗ = Nb⃗ − (N + 1)

15: g⃗ŝ ←Concat(g⃗ŝ, 0⃗Lg⃗
) where Lg⃗ = Nb⃗ − (M + 1)

16: b⃗ŝ ← D−1((Dg⃗ŝ)⊙ (Dp⃗ŝ)
⊙Ldiv ) ▷ computed via FFT, IFFT

17: ▷ D, D−1, & ⊙ are the DFT, IDFT, and pointwise product respectively
18: for all x ∈ {0, . . . , Nb⃗} do ▷ reverse tilt
19: b⃗(x)← exp [κ

′

p⃗(ŝ) + κ
′

g⃗(ŝ)− ŝx]⃗bŝ(x)
20: end for
21: pval←

∑N
b⃗

i=y0
bi

Output: pval

Algorithm 2 Coarse-to-fine lower confidence bound computation

Input: Spike trains R and T , α (1-desired confidence level), z0 (the measured value of NS(R)(T )), Ldiv

(hyperparameter)
1: (q(Z1), q(Z2), ...)← compute from R & T for an arbitrary G ∈ G
2: Implement BinarySearch for the case J̃+

h on h ∈ (1, 2, ..., z0) with search query:
h∗ = minh

{
h :
[
f(h) + 1{

∑
i∈J̃+

h
q(Zi) > y} (1− 2f(h))

]
> α/2

}
where f(h) = exp

[
−
∑

i∈J̃+
h
q(Zi) + y + y ln( 1y

∑
i∈J̃+

h
q(Zi))

]
& y = z0 − h

3: CFL ← h∗ the result of BinarySearch
4: CFU ← h∗∗ the result of analogous BinarySearch for the case J̃−

h

5: u⃗ = (u1, u2, ...)← {q(Zi) : i ∈ J̃+
CFU
} ▷ Unique probabilities for i ∈ J̃+

CFU

6: for all i ∈ {1, 2, ...,dim(u⃗)} do
7: ni ←

∑
j∈J̃+

CFU

1{q(Zj) = ui}
8: mi ← ⌊ni/Ldiv⌋
9: wi ← ni −miLdiv

10: end for
11: p⃗← apply DC to binomials with n = mi & p = ui for i ∈ {1, 2, ...,dim(u⃗)}
12: a⃗← apply DC to binomials with n = wi & p = ui for i ∈ {1, 2, ...,dim(u⃗)}
13: Implement BinarySearch on h ∈ (CFL, CFL + 1, ..., CFU ) with search query:

h∗∗∗ = minh
{
h : P(NS(R)(T )− h ≥ z0 − h|(q(X1), q(X2), ...), J̃ = J̃+

h ) > α/2
}

where given each h tested the tail probability is computed via sub-steps:
(13.1) y0 ← z0 − h
(13.2) g⃗ ← apply DC to a⃗ and the distributions w/ success prob. q(Zi) for i ∈ J̃+

h \ J̃
+
CFU

(13.3) tail probability← Pass p⃗, g⃗, y0, and Ldiv to Algorithm 1
14: Lower confidence bound← h∗∗∗ the result of BinarySearch

Output: Lower confidence bound
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4 Causal inferences in simple simulated systems

In the following sections, we will study the monosynaptic causal inference model in simulation. The non-parametric
nature of the model possesses some features that may seem foreign to those accustomed to modeling point processes
with objects such as conditional intensity functions and generalized linear models (GLMs). For example, to define a
background timescale, we partitioned time into arbitrarily phased intervals, each of duration ∆. The model makes
no use of conditional intensity functions and few assumptions were made about the interaction process I(R). At
first, we will demonstrate the features just mentioned are appropriate in a conditional intensity model ensuring the
process follows the monosynaptic causal inference model’s assumptions only at the level of analogy. Later, we will test
inferences in neural dynamical systems where it is much less clear if the assumptions are appropriate, and thus, various
validations will be necessary.

4.1 Causal inferences in a conditional intensity function model

The conditional intensity model here will exhibit rapid nonstationarities with random phases, but the nonstationary
fluctuations will have timescales with ∆ as a lower bound. This will suggest the idealized construction of γ(t) with fixed
∆ is scientifically appropriate. One can also find theoretical arguments supporting this construction in past work [39].
The conditional intensity functions are made smooth by generating them from normalized Ornstein-Uhlenbeck processes
with non-stationary means that define the background timescales. The synaptic coupling is generated by convolving the
presynaptic spike trains with a truncated exponential kernel. The notion of a synapse with finite strength at infinite decay
time will be abstracted out now and will naturally reenter the study of dynamical systems models later. In addition
to confounding background excitability fluctuations, here, the synaptic kernel has a private background excitability
function, modeling a situation where the postsynaptic dendritic compartment may have its own excitability fluctuations,
confounding the causal relationship. These are all ways to confound the relationship between spike trains while
maintaining a type of separation of timescale.

Motivated by the observation that populations of neurons have downstates and upstates [40, 41], let us introduce
nonstationary fluctuations between neurons on coarse timescales with varying degrees of skew. Furthermore, consider
that monosynaptically-interacting neurons might be at different phases of an oscillation in the local field potential (e.g.,
hippocampal gamma oscillations [42]). This example is concrete and empirical, but it is easy to imagine complex
neural computations generate other types of confounding in pairwise interactions. Coarse timescale nonstationarities
with complex dependence structure can then generate confounding in the CCG even when a separation of timescales
assumption is true.

To generate some limiting cases in simulation, consider a sequence of multivariate skew random variables,

M⃗n,k =


m0,k

m1,k

...
mn−1,k

 ∼ 2ϕn(m⃗n,k; Ω⃗)Φ(α⃗⊤m⃗n,k), m⃗n,k ∈ Rn, k ∈ Z∗ (34)

where ϕn(m⃗n,k; Ω⃗) is a zero mean n-dimensional normal density with correlation matrix Ω⃗, Φ(·) is the standard normal
distribution function, and α⃗ is an n-dimensional vector that controls skewness [43]. Let Li ∼ U(∆, a∆) ms, a > 1 and
partitionR+ into contiguous disjoint intervals {[xk−1, xk)}∞k=0 such that xk = xk−1 +Lk and x0 = 0. Associate with
each Lk a sample from the multivariate skew distribution, M⃗i,k, with dimension n = 3 and define a set of background
excitability functions as,

bi(t) =
∑
k∈Z∗

mi,k1{t ∈ [xk−1, xk)}, for i = 0, 1, 2. (35)

In simulation, we thus imagine that the excitability of the reference neuron, b0(t), target neuron, b1(t), and dendritic
compartment of a synapse between them, b2(t), might have arbitrary confounding fluctuations on coarse timescales
generated from a multivariate skew. That is, b0(t), b1(t), b2(t) might be skewed - i.e., rare up or down states [44] - and
these states may have positive or negative correlations with each other.

Define τd as a conduction delay, τs as a phenomenological synaptic relaxation time, and υ(τ) = exp(−τ/τs)1{0 ≤
τ < τmx} as a synaptic kernel zero everywhere but τ ∈ [0, τmx). The model is then defined by the conditional intensity

13



functions,

λR(t)|U0(t) = ρ0U0(t) (36)

λT (t)|U1(t), U2(t), do(R = r) = ρ1U1(tj) + ϵU2(t)

∫ ∞

−∞
υ(t− τ − τd)

∑
r∈r

δd(t− r)dτ (37)

where ρ0, ρ1 are normalization factors, ϵ is a coupling constant,

τI
dIi(t)

dt
= −Ii(t) + bi(t) + σI

√
2τIξi(t), ξi(t) ∼ N (0, 1) (38)

is used to obtain Ui(t) = aiIi(t) + bi, ai and di are chosen to min-max normalize Ui(t), and σ2
I and τI are the variance

and timescale of the smoothing agent, respectively. For clarity, we restate the causal interpretation of the model in Eqs.
(36)-(37) in relation to the general model stated in Section 2 and Example 1. The system is governed by a common
probability space and under the subcausal model induced by do(R = ∅) Eq. (37) reduces to its first term.

The model is simulated in Figure 2. Figure 2A depicts the coupled conditional intensity model in a cartoon fashion.
Each point in Figure 2B represents a distinct simulation as follows. For each simulation, the Vine Beta method, with its
parameter fixed to 0.1, is used to generate a random covariance matrix with strong correlations [45] scaled to set Ω⃗ and
we sample α⃗ ∼ U([0, 100(2a−1))n]) where a ∼ Be(0.5). We then sample the sequence of independent and identically
distributed (within but not across simulations) multivariate skew vectors M⃗n,k and construct the background excitability
functions. As mentioned previously, the motivation for the particular form and parameters of the simulation is to induce
confounding background fluctuations between the simulated neurons, with skewed up and down states, and confounded
state-dependent synaptic efficacy as well. Normalization factors ρ0 and ρ1 are all sampled so that the average firing
rates of all spike trains in the absence of coupling are uniformly distributed between 50 and 200 spikes/second. Finally,
spike are simulated from λR(t)|U0(t), λT (t)|U1(t), U2(t),R, and λT (t)|U1(t), U2(t), do(R = ∅). From these we
obtain the spike trains R,T , and T (∅). We then compute the simulated ground truth θsyn, along with θ̂syn. Here we
assume τmx is known, and so the statistical free parameter δ was made one time bin larger. We also assume knowledge
of ∆ and hence set the statistical parameter equal to the value used to simulate the process (which is a lower bound).
For each simulation a point estimate is then computed with Eq. (9) and 95% confidence intervals are computed with
Algorithms 1 & 2. For 101 simulations the empirical coverage probability of the confidence intervals is 0.98.

4.2 Mapping the statistical model onto a dynamical system

Thus far, it has been assumed that a postsynaptic spike train is derived from a latent mixture of background events, B,
and interactions, I(R). It should be clear from the assumptions and from the demonstration in a conditional intensity
model that the division into two classes does not at all mean a constant synaptic weight; the model houses conditional
intensity models where events analogous to I(R) might arise from different state-dependent probabilities. Rather, the
idealization lies in positing that there exist some events B that may be assumed to have zero effective causal weight,
and both classes have timescale assumptions that make θsyn identifiable. This might be described as a type of causal
coarsening. However, despite its clear merits in terms of analytic tractability, the clean division of the postsynaptic train
into two classes gave rise to three free parameters δ, τ , and ∆. By assumption, all interaction points are confined to
be members of the set S(R, δ, τ) whereas ∆ defines the background timescale. While constructed from conditional
intensity functions, the simulated model of the previous section more or less ensured by construction that causal spikes
would be confined to a set S(R, δ, τ) and non-causal spikes would possess no temporal structure for timescales smaller
than ∆ where δ < ∆.

It is now natural to challenge aspects of that idealization in some settings even more foreign to the one in which the
model was derived. A sensible choice is dynamical neuron models, which well-capture features of cortical neurons [46]
and where ground truth causal information is available by recycling the concept of frozen noise to be applied to
stochastic input currents. We first must ask if a τ and δ can be chosen such that the simple division of a postsynaptic
train into events B and I(R) might approximate the causal action of a presynaptic input through a dynamical system.
The second question to consider is if, given knowledge of δ and τ , a ∆ can be chosen to recover causal counterfactual
quantities in the midst of confounding.

We do not provide a method to choose δ, τ , and ∆ from first principles with observational data and are skeptical that the
task is even possible, particularly in the case of ∆. Rather, we regard them as free parameters in the physicist’s sense.
So the task here is bent toward understanding the qualitative mapping of these free parameters onto some mechanistic
features. As such, in contrast to our previous work [7], as a matter of interpretation and robustness, we study commonly
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(rescaled)

A

B
Point estimate

95% CI (misses true)
95% CI (covers true)

B

Fig 2: Point process demonstration. A: A cartoon depiction of the conditional intensity model described in Eqs.
(36) - (37). λR(t) and λT (t)|do(R = ∅) are denoted in black. The synaptic excitability function b2(t) is not depicted
but modulates the height of the synaptic gain (the green gain on top of λT (t)|do(R = ∅)). To generate confounding,
the coarse timescale amplitudes of background rates and synaptic efficacy are generated from a multivariate skew
distribution with strong correlations. The synaptic gain modulation is represented as the gray colormap. B: One hundred
and one simulations from the model of Eqs. (36) - (37) with empirical coverage probability 0.98. Point estimates are
always shown, whereas confidence intervals are not drawn if the null hypothesis H0 : θsyn = 0 fails to reject.
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used dynamical mechanisms (e.g., LIF, EIF, AdEx) throughout future sections. This will demonstrate that the statistical
framework’s validity is also a matter of qualitative considerations. For example, when one asserts that the synaptic
process I(R) is fast, the word fast clearly has meaning only relative to the background timescale and hence what is of
true theoretical interest is the ratio of the effective synaptic and background input timescales. The reader should make
judgments about the quantitative plausibility from real data, for example, by consideration of the fine-timescale effects
studied by English et al. [2], for which standard integrate-and-fire type models might be insufficient [7].

4.2.1 System of feedforward leaky integrate-and-fire (LIF) neurons

Consider first a system of standard leaky integrate-and-fire (LIF) neurons with instantaneous conduction delay driven
by background input currents and a synaptic conductance from a presynaptic neuron (i = 0) into a postsynaptic neuron
(i = 1),

Cm
dVi

dt
= −gl(Vi − El)− gsg0(Vi − Esyn)1{i = 1}+ Ii, for i = 0, 1 (39)

τsyn
dgs
dt

= −gs +
∑
r∈R

(1− gs)δd(t− r) (40)

where Vi is the voltage (mV) of neuron i, gl and gs are the leak and synaptic conductances (mS/cm2), El and Esyn are
the leak and synaptic equilibrium potentials (mV), Cm is the specific capacitance (µF/cm2), g0 and τsyn are the peak
synaptic conductance (mS/cm2) and timescale (ms), and Ii is the background input (µA/cm2) to neuron i.1 If at time
t0, V (t0) = VT , a spike is tabulated followed by the reset condition lim{ϵ→0:ϵ>0} V (t0 + ϵ) = El and clamped there
for a refractory period of τr. We map the system Eqs. (39)-(40) onto the monosynaptic causal model by identifying
R = {t : V0(t) = VT }, T = {t : V1(t,R) = VT }, and T (∅) = {t : V1(t, do(R = ∅)) = VT } where the last line refers
to the trajectory V1(t) under the deterministic modification of Eq. (40) do(R = ∅) =⇒ gs = 0,∀t ∈ R in the sense
that the voltage trajectories may change but the Ii remain constant (i.e., frozen) for all realizations of the stochastic
input current. In other words, unlike in Remark 1, here, the probability space is defined directly over the background
input current, and the dynamical system determines the functional relationship between the reference and target train.
To study the interpretation of the monosynaptic causal inference model in terms of dynamical mechanisms, here we
simplify the form of the background model while maintaining confounding common input,

Ii = Ui + U2, for i ∈ {0, 1} (41)

τI,i
dUi

dt
= Ui + µi + σi

√
2τI,iξi(t), for i ∈ {0, 1, 2} (42)

where ξi(t) ∼ N (0, 1) and U0, U1, U2 are all independent Ornstein-Uhlenbeck processes with means µi, variances
σ2
i , and timescales τI,i. It is not entirely clear from Eq. 40 where one ought to look for spiking events that may

be well-attributed to a synaptic process like I(R). Certainly, we may first assume that they tend to occur after and
not before the spikes R. Furthermore, we would imagine that their tendency to occur decreases as a function of
distance from the spikes R given the exponential decay model of synaptic conductances. These are elementary and
routinely applied assumptions but do not yet appeal to causal inference concepts. Let us make the simplification of
instantaneous biophysical conduction delay, τd = 0, and measure counterfactual spike counts in the spectrum of sets,
{S(R, 2δ, δ) : δ ∈ [0,∞)}. For this purpose define the function,

g(δ) = NS(R,2δ,δ)(T )−NS(R,2δ,δ)(T
(∅)). (43)

Assume for now g(δ) is monotone and that
β̄ = lim

δ→∞
|g(δ)| (44)

exists. Then for any 0 ≤ β0 < 1 let,

δ0 =

minδ
{δ
2
:
|g(δ)|
β̄

= β0

}
if ∃δ ∈ R+ s.t.

|g(δ)|
β̄

= β0

0 otherwise.
(45)

Intuitively, δ0 describes how large the time interval after the reference spikes must be to capture some proportion, β0, of
the causal difference in spike counts between the counterfactuals relative to the causal difference at some long-term
value β̄.

1We continue to work in these units throughout.
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Fig 3: Mapping the statistical monosynaptic causal inference model onto a leaky integrate-and-fire (LIF) system.
Functions g(δ) and NS(R,2δ,δ)(T ) normalized by a factor |R| · dt for δ ∈ [0, 20] msec are plotted in green lines and
black lines respectively. Vertical lines are δ0 for β0 = 0.95. Different line styles correspond to three variations of
one postsynaptic parameter per plot. Each biophysical parameter setting corresponds to a long simulation of 27.77
simulated hours. The left column is for an excitatory synapse (Esyn = 0 mV), and the right is for an inhibitory synapse
(Esyn = −70 mV). A: The synaptic decay time constant τsyn ∈ {1, 5, 9} msec. B: The peak synaptic conductance
g0 ∈ {0.01, 0.02, 0.03} mS/cm2. C: The membrane time constant τm ∈ {6, 10, 14} msec. D: The postsynaptic noise
amplitude σI,post ∈ {0.5, 1, 2} µA/cm2 (referred to as σI,post in the figure but defined as σ1 in the text).
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4.2.2 Simulations validating the mapping

Figure 3 shows simulations of Eq. (39)-(40) and plots NS(R,2δ,δ)(T ) and g(δ) for δ ∈ [0, 20] ms. Both these functions
are normalized by a factor |R| · dt. Each panel displays six lines: NS(R,2δ,δ)(T ) and g(δ) for three different values of
a dynamical parameter. Vertical lines mark δ0, which is obtained by setting β0 = 0.95 and where β̄ is approximated by
taking |g(δ)| at δ = 1000 ms. Plots are shown for both excitatory (Esyn = 0 mV) and inhibitory (Esyn = −70 mV)
synapses. In the LIF neuron, g(δ) tends to rise roughly monotonically and saturate quite quickly, although different
dynamical parameters have a significant impact, particularly the synaptic timescale τsyn.

Figure 3A demonstrates simulations of the LIF model system with τsyn ∈ {1, 5, 9} ms. For both the excitatory and
inhibitory synapses, at τsyn = 19, δ0 ≈ 2 ms whereas at τsyn = 9, δ0 ≈ 12 ms. That long synaptic decay times
increase the timescale of causal action on the postsynaptic neuron coincides with intuition. Figure 3B shows the
effect of peak synaptic conductance, g0, on δ0; the effect on δ0 is less dramatic than τsyn. For g0 ∈ {0.01, 0.02, 0.03}
mS/cm2, δ0 clusters around δ0 ≈ 7 ms for an excitatory synapse and δ0 ≈ 6 ms for an inhibitory synapse. Figure 3C
shows the analogous plots for membrane time constant, τm. The effect on δ0 is slightly more pronounced than peak
synaptic conductance but still less than synaptic decay time. In the excitatory case, for τm = 6 ms, δ0 ≈ 4 ms whereas
for τm = 14 we observe δ0 ≈ 6.6 ms. In the inhibitory case δ0 is clustered around δ0 ≈ 6 ms with a slight positive
trend with τm. Figure 3D again shows the analogous plots for the postsynaptic Gaussian noise amplitude which is
known to influence postsynaptic response dynamics [47]. A negative trend is seen between the postsynaptic noise
σ1 ∈ {0.5, 1, 2} µA/cm2 (refered to as σI,post in the figure) and δ0. No trend is detected in the inhibitory case.

Figure 4 plots monosynaptic point estimates and confidence intervals for the LIF system varying the same parameters
as the previous plot. To make sensible comparisons across plots, here parameters are normalized as g(δ0)/(|R| · dt),
termed causal rate in the figure. Estimates are θ̂′syn/(|R| · dt) For each plot, different levels of causal rate are produced
by varying g0 ∈ [0, 0.1] mS/cm2 with eleven equally spaced values for both excitatory (Es = 0 mV) and inhibitory
(Es = −70) synapses. For estimation, we must also choose a value for the statistical parameter ∆. Recall that A.2
(timescale separation) requires that some τ , δ, and ∆ exist such that I(r) ⊂ S(r), for all r. In simulation δ0 is chosen
such that β0 = 0.95 to approximate this assumption. On the other hand A.3 (positivity) requires 0 ≤ q(R, k∆) < 1,
for all k ∈ Z∗. Once δ is chosen to be δ0, an observer can choose some ∆0 and at least verify 0 ≤ q(k∆0) < 1, for
all k ∈ Z∗ because this condition only requires access to the observed data to verify. This is not as useful as it may
seem, however, because, of course, ∆ is unknown, and an appropriate selection of it determines the validity of A.1
(conditional uniformity) which cannot be assessed from observational data. Furthermore, A.2 and A.3 are orthogonal
assumptions: one can be true while the other is false. In these simulations, the common background input timescale
was chosen to be rather large (τI,2 = 50 ms) so that a simple heuristic might automate the choice of ∆0 given δ0 which
strongly biases this inquiry toward assessing c. In this figure, without too much thought, we choose ∆0 = δ0 + 4 ms,
which typically well-approximates the A.3 (positivity) in the regimes explored here, although some misestimation
arises from violations. To study causal identifiability, in all plots to follow, we use θ̂′syn from Corollary 1 as an estimate
and always define θsyn as the ground truth value.

It is worth reminding the reader that ∆ is unknown, and perhaps unknowable, in these simulations. The timescales of
the membrane, background input, and synapse likely interact and might even produce a statistical background timescale
that is smaller than the timescales of the physiological variables involved. Similarly, the assumption that the inequality
δ < ∆ can be true while satisfying the other assumptions cannot be known in the simulation and, in fact, is one of the
primary motivations for testing estimation in dynamical systems models while varying physiological parameters. That
is, good estimation is regarded as evidence for the fulfillment of the assumptions.

The qualitative results of Figure 4 can, for the most part, be predicted by the results of the previous figure. That is, the
estimation procedure provides highly accurate estimates to the degree that the model’s assumptions are approximated in
the sense of the mapping proposed earlier. Figure 4A shows point and interval estimates for τsyn ∈ {1, 5, 9} ms. As
Figure 3A predicts, as τsyn increases δ0 also increases which puts stress both on A.1 (conditional uniformity) and A.3
(positivity). One ought to heed the point just made about ∆ being unknown in dynamical simulations.

Even at an unrealistically small synaptic timescale of τsyn = 1 ms, the magnitude of the inhibitory causal rate is
slightly underestimated with empirical coverage probability 0.82 for the confidence intervals. As τsyn increases, both
the magnitude of excitatory and inhibitory causal rates are underestimated, however, the confidence intervals behave
more conservatively in this regime and have empirical coverage probability 1 for τsyn ∈ {5, 9} across all simulations.

In 4B we observe that the qualitative behavior of estimation with respect to synaptic timescale τsyn is recapitulated
for membrane timescale τm although to a less pronounced degree. That is, Figure 3C indicates δ0 will increase as
membrane timescale τm increases and accordingly in 4B the magnitude of causal rate is slightly underestimated for
excitatory and inhibitory interactions as τm increases.
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A notable feature of Figure 3 was that all else being equal, increasing τsyn or τm increased the causal rate for all
δ and for the most part trended positively with δ0. More intuitively, as the temporal scale of causal effect (i.e., δ0)
increased more spikes were causal, naturally. But this appears not to be the case for σ1 (termed σI,post in the figure).
For excitatory interactions, in Figure 3D increasing σ1 increased δ0, however, the magnitude of causal rate decreased as
δ0 increased unlike in the case of synaptic timescale τsyn and membrane timescale τm. Yet, like the case with τsyn and
τm, Figure 3D and Figure 4C in combination show that estimation is accurate to the degree δ0 is made small by a small
σ1. This all suggests, not at all in conflict with intuition, that the model’s validity has some mechanistic independence
so long as the causal behavior at the level of spiking abides by the formal assumptions proposed earlier.

The idea that causal effects of inhibitory synapses can be estimated from spike trains has far less existing support from
in vivo experiments. Furthermore, here, the estimation of inhibitory synapses is only highly accurate for unrealistic
parameters for inhibitory synapses [48]. For these reasons, the latter figures primarily focus on the study of excitatory
interactions, except in a few idealized settings where the math quickly implies an inhibitory solution. In that case, this
cautionary statement still applies. However, it should be noted that physiological parameters interact, and they are
typically measured in settings where the interactions may not be present, such as in vitro studies. Thus one cannot rule
out the possibility that, at the level of spiking, the temporal scale of causal action for inhibitory synapses is still small in
vivo, meaning the deficiency resides in the biophysical models. However, until more basic evidence of such mechanisms
exists, we must remain skeptical that the inhibitory model proposed in this study has any relevance to neuroscience.

Table 2: LIF base circuit parameters

Parameter Name Symbol Unit Value/Distribution

Cellular Properties

Membrane Capacitance Cm µF/cm2 1
Leak Reversal Potential El mV -65
Leak Conductance gl mS/cm2 0.1
Spike Threshold VT mV -50
Voltage Reset VR mV El

Refractory Period τr ms 2

Synapse

Peak Synaptic Conductance g0 mS/cm2 0.04
Synaptic Reversal Potential Esyn mV 0
Synaptic Time Constant τsyn ms 3
Conduction Delay τd ms 0

Background Input

Input Timescale τIi * ms 50
Input Mean µi * µA/cm2 0
Input SD σi * µA/cm2 1
* : for i ∈ {0, 1, 2}

4.3 Causality and spike history in feedforward adaptive exponential (AdEx) integrate-and-fire neurons

After developing a causal inference model in Section 3.1, we proceeded to test the model in a series of numerical
experiments that challenged the model’s assumptions. The point process experiments of Section 4.1 challenged aspects
of how we constructed the background process to account for confounding; namely, the definition of γ(t) and A.1
(conditional uniformity). The LIF system experiments of Section 4.2, with intrinsic dynamics and conductance-based
synapses, challenged aspects of how we constructed the interaction process to account for coupling effects; namely,
the definition of I(R) and A.2 (timescale separation). In this final subsection, we take this challenge further and
try to identify a case where the causal effect of synaptic input is perhaps more complex than a transient increase in
postsynaptic spiking probability followed by exponential decay (Section 4.2).
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Fig 4: Causal inferences in the LIF model as a function of various dynamical parameters. Inference of postsynaptic
parameters studied in the previous figure. δ0 is assumed to be known. The true causal rate is defined as g(δ0)/(|R| · dt)
and the estimate θ̂′syn/(|R| · dt) for δ0. For each plot, different levels of causal rate are generated by varying
g0 ∈ {0, 0.01, 0.02, ..., 0.1} mS/cm2 both for excitation (Esyn = 0 mV) and inhibition (Esyn = −70 mV). Across all
panels, the empirical coverage probability equals 0.9894. Parameters sweep left to right. A: τsyn ∈ {1, 5, 9} ms. B:
τm ∈ {6, 10, 14} ms. C: σI,post ∈ {0.5, 1, 2} µA/cm2 (referred to as σ1 in the text).

Consider a system of AdEx model neurons [49]. As before, let a presynaptic neuron (i = 0) drive a postsynaptic neuron
(i = 1),

Cm
dVi

dt
= −gl(Vi − El) + glka,i exp

(
Vi − VT,i

ka,i

)
− gsg0(Vi − Esyn)1{i = 1} − Iw,i + Ii (46)

τw
dIw,i

dt
= −Iw,i + ai(Vi − El) + 1{i = 1}

∑
y∈T(R)

biδd(t− y) + 1{i = 0}
∑
r∈R

biδd(t− r) (47)

τsyn
dgs
dt

= −gs +
∑
r∈R

δd(t− r) (48)

where the LIF model has been embellished with a nonlinearity with activation slope ka and with an adaptation current
Iw with subthreshold adaptation coupling parameter a and spike-triggered adaptation parameter b. A spike is triggered
when V (t) obtains the value VT +5ka at which time the voltage V (t) is as before reset to El for a refractory period of τr.
The counterfactual interpretation of the system Eqs. (46)-(48) is exactly analogous to the LIF system of Eqs. (39)-(40)
as already discussed noting that under the intervention do(R = ∅) the spike-triggered adaptation trigger times become
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T (∅). As alluded to in the previous section, here we focus on excitatory synapses only. Parameters were chosen
separately for each neuron so that the presynaptic and postsynaptic cells emulate a neocortical pyramidal neuron and
fast-spiking interneuron, respectively [50]. Technically, under these parameters, the AdEx model for the postsynaptic
neuron reduces to the exponential integrate-and-fire neuron (EIF), as it is a special case of the former.

As earlier with the LIF model, the synaptic conduction delay is set at τd = 0 and Figure 5A plots normalized versions
of NS(R,2δ,δ)(T ) and g(δ) for δ ∈ [0, 20] ms. The AdEx system produces an apparent non-monotonic behavior in this
regime in g(δ). This observation should be examined in the context of functional connectivity methods that use the
CCG as the primary object of inference. For example, Spivak et al. [19] argues that presynaptic autocorrelation can
produce secondary oscillations in the CCG and should be corrected for by a deconvolution procedure. We plot the CCG
from the simulation of Figure 5A in Figure 5B. The secondary oscillations seen here are characteristic of those thought
to arise from presynaptic autocorrelation. Under the assumption g(δ) is monotonic, secondary oscillations in the CCG
would indeed be an artifact manifesting when finely-timed presynaptic bursts coincide with finely-timed postsynaptic
spikes arising causally from one of the presynaptic spikes in the burst (see Example 3). The causal postsynaptic spike
then contributes to the mass of the CCG in at least two places: the large primary short-latency CCG peak [2] as well as
in one of the secondary oscillations. Whether the causal postsynaptic spike arises from the first or second spike in the
presynaptic burst dictates whether it contributes to the duplicate mass in the secondary oscillation residing in the region
of negative or positive lag.

Here, we have observed that g(δ) is not monotonic, indicating, by this fact alone, that part of the secondary oscillations
is causal and not an artifact due to duplicate mass in the CCG. Yet, the model neocortical pyramidal neuron does have
regular bursting as well. To tease apart the contribution of each factor, we append another simulation to the AdEx
system simulation as follows. Let us reuse the AdEx simulated presynaptic train R to keep presynaptic autocorrelation
constant and reuse T (∅) to keep confounding partially constant. We take the counterfactual target spike train T (∅) and
add |T | − |T (∅)| spikes to it via a conditional intensity model of synaptic gain, taking the union of spikes induced by
that model synapse with T (∅) (this is termed “artificial synapse" for short). More precisely, define the synaptic gain
function

λA(t)|do(R = r) = ϵ

∫ ∞

−∞
υ0(t− τ − τd)

∑
r∈r

δd(t− r)dt (generates spikes I(R))

where making a modification from before the kernel is not truncated in the direction of positive infinity: υ0(τ) =
exp(−τ/τs)1{τ ≥ 0}. Here, τs is chosen to maximize the correlation of the resulting CCG with the CCG obtained
from the initial AdEx simulation. ϵ is also chosen to produce approximately |T | − |T (∅)| spikes (from the initial
simulation) and then some interactions, I(R), simulated from this gain function are randomly omitted so the number of
causal spikes in the second simulation exactly equal |T | − |T (∅)| from the initial AdEx simulation. The resulting CCG
from the artificial synapse is also displayed in Figure 5B. Secondary oscillations persist in the CCG due to presynaptic
autocorrelation which is confirmed by the fact that for the artificial synapse g(δ) is now monotone in Figure 5C as
expected. However, this does not capture the whole behavior of the initial AdEx system CCG with a biophysical
synapse in Figure 5B. This indicates that these secondary oscillations are not pure epiphenomena but instead include
some causal effect that is, in fact, confounded by presynaptic autocorrelation. This was already clear by the definition
of g(δ) as well, which indicates that some fraction of the causal spikes contributing to the secondary oscillations is, in
fact, comprised of “first spikes” in response to presynaptic input (i.e., not “second spikes” in a rapid burst).

While the synapse is excitatory, the non-monotonic behavior of g(δ) in the AdEx system also implies some negative
gain at some points on the curve. This is likely due to a combination of the refractory periods and bias selection that
causes some spikes not to occur that would have happened if the synapse had not existed. This highlights several
reasons why unbiased causal effects cannot be obtained from correlation functions, including deconvolution of the CCG
with the presynaptic auto-correlogram (ACG) outside neatly controlled cases. Furthermore, it must be stressed that
there might exist many other causes, including network oscillations, that give rise to secondary oscillations in CCG, and
so spiking correlation functions, in general, fail to address the fundamental problem of causal inference: confounding.

Estimation of the AdEx system ensues exactly as before. In Figure 5D-F point and interval estimates are plotted for all
simulations just explored using eleven equally-spaced values for g0 ∈ [0, 0.1] mS/cm2 to generate different levels of
causal rate. Figure 5A displays estimates for the full AdEx system defining θsyn as g(δ0). While all the confidence
intervals still cover the true parameter, there is a clear underestimation. However, Figure 5E is obtained from the
artificial synapse with the same presynaptic spike trains as Figure 5D and the bias vanishes. Thus, we may deduce that
the bias observed in Figure 5A is not due to presynaptic autocorrelation. This is expected, as no assumptions were
made about R in the theoretical development of the monosynaptic causal inference model. One possibility is that the
monosynaptic causal inference model does not best approximate this dynamical system using δ0. Instead, we tried
using δ1 = argmaxδ g(δ). While the resulting estimates are not as precise as in the LIF, it appears in this model that
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Fig 5: Causality and spike history effects in an AdEx system of a neocortical pyramidal cell driving a fast-spiking
interneuron. The model neurons exhibit strong spike history effects. A: g(δ) and NS(R,2δ,δ)(T ) are plotted for the
AdEx system in a simulation lasting 27.77 simulated hours. Note the non-monotone fluctuations in g(δ). B: The green
CCG is the observation χ(R,T ) from the same simulation. The gray-filled CCG is χ(R,T (∅)) from the corresponding
frozen noise simulation with the synapse removed. The black line is a CCG constructed by adding synchronous spikes
to T (∅) (termed “artificial synapse”) such that the total spike count equals |T |; the synchronous spike times are added
with a time constant chosen to maximize correlation with χ(R,T ). Note that secondary oscillations persist in the black
CCG due to presynaptic autocorrelation, but the full behavior remains unexplained by assuming independence of the
causal spikes in the postsynaptic train. C: g(δ) for R and T is plotted in green. Plotted in black are g(δ) for R and the
modified target train constructed by adding the artificial synapse to T (∅). Note the non-monotone fluctuations vanish.
D: Estimates are biased for g(δ0). E: The bias vanishes with the artificial synapse. F: Bias is also slightly reduced by
estimating g(δ) at δ1 = argmaxδ g(δ), however perhaps at the cost of less precision and a Type 1 error for g(δ1) = 0.
Different levels of causal rate are generated by varying g0 ∈ {0, .01, ..., 0.1} mS/cm2 as before.

g(δ1) is better identified than g(δ0) for most coupling strengths as shown in Figure 5F. As a tangential point, this also
shows that estimation, in general, might be reasonable across some range of δ.
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Table 3: AdEx Circuit Parameters

Parameter Name Symbol Unit Value

Cellular Properties

Leak Conductance gl mS/cm2 1/15
Refractory Period τr ms 5
Membrane Capacitance Cm µF/cm2 1
Leak Reversal Potential El mV -65
Voltage Reset VR mV El

Adaptation Current Timescale τw ms 500
Spike Threshold VT mV -50

Synapse

Peak Synaptic Conductance g0 mS/cm2 0.05
Synaptic Reversal Potential Esyn mV 0
Synaptic Time Constant τsyn ms 3
Conduction Delay τd ms 0

Pyramidal Neuron

Activation Slope ka,0 mV 2
Adaptation Conductance a0 mS/cm2 2.04
Adaptation Increment b0 µA/cm2 0.02
Reset Condition VT,0 mV VT + 5ka,0

Interneuron

Activation Slope ka,1 mV 0.5
Adaptation Conductance a1 mS/cm2 0
Adaptation Increment b1 µA/cm2 0
Reset Condition VT,1 mV VT + 5ka,1

Background Input Currents

Input timescales τI,i * ms 50
Input Mean µi * µA/cm2 0
Input SD σi * µA/cm2 1
* : for i ∈ {0, 1, 2}

5 Neural perturbations for testing assumptions and fitting free parameters

The frequently invoked separation of timescales hypothesis in monosynaptic inference [3, 10, 2, 51, 19] to some degree
suggests we may learn something useful by studying a toy model of instantaneously coupled Bernoulli processes in
discrete time. Importantly, this setting possesses the feature that presynaptic and postsynaptic spikes can be thought
of as sequences of binary treatment and outcome variables. When the synaptic effect is very fine-timescale, as is
often observed in vivo [7], and when firing rates are sparse, this might be a reasonable approximation. Of course,
the analogy breaks in obvious ways including long synaptic decay times, temporal summation of PSPs, spike history
effects, etc. But the toy model can clarify issues about causality and, fortunately for neuroscience, well-developed
causal inference concepts for binary treatment and outcomes variables can then be applied to pairwise spike trains in a
fairly straightforward way. In this section, we make this simplification to discuss how perturbation experiments (e.g.,
optogenetics) could test the monosynaptic model’s assumptions or fit free parameters.

5.1 Monosynaptic model calibration in an ideal neural perturbation experiment

For simulations in this setting, we will also retreat back to point process simulations that are even simpler than the one
of Section 4.1. As building blocks, piecewise constant excitability functions will be used for various purposes,

bi(tj) =
∑
k∈Z∗

mi,k1{(k − 1)∆ ≤ tj < k∆}, for i = 0, 1 (49)
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where the mi,k are repurposed from a multivariate skew of dimension n = 2 (see Eq. 34), with discrete time points
{tj}j∈{0,1,...,D} for an experiment of duration D, and where ∆ is the bandwidth of the amplitudes chosen as a constant
equal to the statistical free parameter of the same name defined in previous sections. This will be used to construct
conditional intensity functions in an idealized monosynapse model. Working in discrete time, sets of spike times in this
section will be defined as sets of integers.

Here the relationship between θsyn and the probabilities of causation of Tian and Pearl [1] is demonstrated in simulation.
This provides an alternative set of assumptions to identify causal effects that utilize observational and experimental data.
As before we work in the toy case of instantaneously coupled Bernoulli processes in simulation. For 0 ≤ j ≤ D, define
the conditional intensity functions,

λR(tj)|b0(t) = ρ0b0(tj) (50)
λT (tj)|b1(t), do(R = r) = ρ1b1(tj) + ϵ1{tj ∈ r} (51)

where ρ0 and ρ1 are normalization factors and ϵ is a fixed instantaneous coupling constant chosen such that λT (tj)|R
remains a proper intensity function. We map this toy model onto the monosynaptic causal model by identifying R and
T (R) as the sets of spike times generated from λR|b0(t), λT (tj)|b1(t),R respectively.

We implement the model structurally by extending the analogy of Example 1, with R and T conditionally independent
given knowledge of the (causal) conditional intensity functions (51). Expanding on that, define an idealized neural
intervention of the presynaptic neuron as one that causally induces a new reference train r0; do(R = r0) is imple-
mented by independently sampling the reference train from a constant intensity function λopto(tj) = λ0 inducing an
experimental version of the postsynaptic intensity, λT (tj)|b1(t), do(R = r0) = ρ1b1(tj)+ ϵ1{tj ∈ r0} with outcomes
T (r0). Here (in discrete time) this is effectively the common notion of experimental randomization whereby every time
bin is assigned to spike by mechanisms that act independently and homogeneously across time.

Returning to probabilities of causation, in the general case of Bernoulli random variables X and Y , respectively, Tian
and Pearl [1] define these probabilities as follows,

PN = P

(
Y (X=0) = 0|X = 1, Y = 1

)
(probability of necessity) (52)

PS = P

(
Y (X=1) = 1|X = 0, Y = 0

)
(probability of sufficiency) (53)

PNS = P

(
Y (X=1) = 1, Y (X=0) = 0

)
(probability of necessity & sufficiency). (54)

For example, probability of necessity (PN) is the probability that {X = 1} is a necessary cause of the effect {Y = 1}. It
is the probability that, given the event that {X = 1} and {Y = 1} both occur, Y is 0 when X is forced (via intervention)
to be 0. More loosely, X would be 0, were it not that Y is 1; that is, X is the necessary cause of Y . PS and PNS have
similar interpretations. We refer the interested reader to Ch. 9 of Pearl [17] for a fuller review.

To map these probabilities into our experiments (e.g., spikes simulated from the structural causal model in the
specification above, including Eqs. (50)-(51)), let V be a random time: V ∼ Uniform{1, 2, ..., D}. Then X :=
1{V ∈ R}, and Y := 1{V ∈ T } and apply Eqs. (52-54). Hence, in simulation, we will identify the ground truth of PN
with its intervention-inferred numerical estimate PN = θsyn/|R ∩ T |. This is the true proportion of causal synchrony
to observed synchrony. (Note that the noise processes are not iid, so there is an additional, implicit assumption that the
noise processes are mixing quickly enough to make the error in this identification negligible. We do not analyze this
error, or incorporate a variability assessment.)

Pearl identifies several ways to identify PN from observational and experimental data [17]. For our purposes, an
acceptable assumption is monotonicity, which here simply requires a synapse to be strictly excitatory (ϵ > 0) or strictly
inhibitory (ϵ < 0). Let us explain the excitatory case. The inhibitory case follows precisely the same logic but redefines
the outcome variable as silence rather than a spike. We follow Pearl [17] and for finite data assert by hypothesis an
alternative estimate for PN = θsyn/|R ∩ T | as,

ˆPNexp :=

(
|T ∩R|

D

)−1( |T |
D
− |T

(r0) \ r0|
D − |r0|

)
, if ϵ ≥ 0 (55)

where as defined earlier D is the duration of the experiment. The estimator uses spontaneous and perturbation data as just
outlined. Under the monosynaptic causal inference model, the analogous estimator is denoted ˆPNobs = θ̂syn/|R ∩ T |
requiring only observational data under its assumptions. Likewise, we suggest PNS = ϵ in the toy model with the
alternative estimator,

ˆPNSexp :=
|T (r0) ∩ r0|
|r0|

− |T
(r0) \ r0|
D − |r0|

, if ϵ ≥ 0. (56)
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The monosynaptic causal inference model’s corresponding estimate will be ˆPNSobs = θ̂syn/|R|. Notice this gives a
more principled account of what neurophysiologists often call efficacy [52] or spike transmission gain [53], which are,
loosely, the excess probability of a postsynaptic spike given that a presynaptic spike occurred. We use the word loosely
because the word excess has no universal interpretation (see excellent review in Stevenson [20]), and to our knowledge,
none have formally interpreted excess in terms of counterfactuals and potential outcome random variables. Finally, for
the ground truth numerical probability of sufficiency let ι := (Z∗ ∩ [0, D)) \ (R ∪ T ). Then, PS = |T (ι) ∩ ι|/ι with
alternative estimate,

P̂Sexp :=

(
D − |T ∪R|

D

)−1( |T (r0) ∩ r0|
|r0|

− |T |
D

)
, if ϵ ≥ 0 (57)

and estimated from observational data only by the monosynaptic causal inference model as,

P̂Sobs =

(
D − |T ∪R|

D

)−1(
ˆPNSobs −

(
|T ∩R|

D
ˆPNobs

))
. (58)

As mentioned before, these quantities can be obtained for inhibition in the exact same way where the queried postsynaptic
outcome variable is silence. For visualization purposes, in the inhibitory case, we define the probabilities of causation
through multiplication by −1 so that an estimate of inhibition can be plotted simultaneously with excitation and
compared with θsyn on its negative support. For example, in the inhibitory case, we will have,

ˆPNsyn = −1
(
|R \ T |

D

)−1(
D − |T |

D
− D − |T (r0) ∪ r0|

D − |r0|

)
, ϵ < 0. (59)

The significant observation is that the probabilities of causation are obtained from experimental and observational data
without appeal to some of the assumptions that make θsyn identifiable from observational data alone. Namely, A.1
(conditional uniformity) and A.2 (separation of timescales) are not required to identify the probabilities of causation.
For this reason, if these idealized concepts could be extended to fit more realistic aspects spike trains recorded in vivo,
we have here provided an experimental test of A.1 and A.2 that could be conducted in the laboratory. Essential in this
endeavor would be confidence limits, say for PN , with finite data, which is research currently being pursued [54].
However, the final section of this study will argue that such an experiment is not easily achieved by current experimental
technologies (e.g., optogenetic stimulation). These alternative estimators also might provide a route to estimate the free
parameter δ, τ , and ∆.

We conclude this section by simulating spike trains from the toy model in Eqs. (50)-(51). Simulation details are exactly
analogous to those in Figure 2. Figure 6 shows the results of forty-two simulations (twenty-one for excitatory and
inhibitory estimates) as just described and each plot shows the corresponding point estimates for PNS (Figure 6A), PS
(Figure 6B), and PN (Figure 6C). In each case, a tight correspondence is shown between the θsyn-derived estimates,
which come from observational data, and the alternative estimates, which use a combination of experimental and
observational data.
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A B C

Fig 6: An idealized experimental test of the monosynaptic model’s assumptions. In sparse firing conditions where
presynaptic and postsynaptic spikes can be approximated as binary treatment and outcome variables, the monosynaptic
model can be related to the probabilities of causation of Tian and Pearl [1] in a toy spiking model. ˆPNSexp, P̂Sexp,
and ˆPNexp are derived directly from Tian and Pearl [1] and provide alternative estimates for monosynaptic causal
effects by combining neural intervention data with spontaneous data and thus require fewer assumptions on the
background processes, providing an experimental test of the monosynaptic causal inference model’s assumptions.
ˆPNSobs, P̂Sobs, and ˆPNobs are different normalizations of θ̂syn obtained from observational data as described in

the text. A: Probability of necessity and sufficiency (PNS) corresponds to ϵ in the toy model. B: Probability of
sufficiency (PS). C: Probability of necessity (PN ).

5.2 Even strong perturbations might quite strongly fail as randomized experiments.

In the previous section, we explored conceptually the notion of an ideal neural intervention in a toy spiking model. The
purpose of this was to highlight connections between θsyn and more well-established causal inference concepts and to
speculate about avenues for future research that might make the interventions suitable for more realistic dynamical
models. Another concern persists, which is the degree to which current experimental technologies actually achieve
the theoretical notion of an intervention in causal inference. Recently, Lepperød et al. [8] fruitfully analyzed the
confounding that arises from optogenetic stimulation activating many neurons that may be unobserved. However,
while it is well-understood that stimulation often increases the empirical rate of the presynaptic neuron on a coarse
timescale [2], it is not clear in a dynamical system how much deconfounding occurs at the level of voltage and hence
what the proper interpretation of juxtacellular or optogenetic stimulation is. In this section, we caution against simple
interpretations (and thus show the difficulty of obtaining the ideal intervention we proposed in the previous section)
by injecting stochastic input currents into correlated but unconnected LIF neurons, as well as stimulating them with a
biophysically detailed channelrhodopsin model [55].

A simple example to consider is two unconnected LIF neurons with common input that produces structure in the CCG.
An ideal intervention, where each point in time is randomly assigned a presynaptic spike or not (see Section 5.1) should
destroy all structure in the cross-correlogram during stimulation, yielding a flat histogram. Consider two LIF neurons,

Cm
dVi

dt
= −gl(Vi − El) + Ic(t) + Ii(t) + Ip(t){i = 1}, for i = 0, 1 (60)

where as before if at time t0, V (t0) = VT , the voltage is reset to El. With the same form as Eq. 42 but with a slight
change in notation, Ic(t) is common OU noise to both neurons, Ii(t) for i = 0, 1 is independent OU noise for each
neuron. Ip(t) is either an injected current identical to the stimulus to be described momentarily or the same stimulus
filtered by the channelrhodopsin (ChR2) model of Williams et al. [55].

Let S(t) be the stochastic stimulus, then

Ip(t) = S(t) (for current stimulation) (61)
Ip(t) = gChR2G(V )(O1 + γO2)(V0 − EChR2) (for optogenetic stimulation) (62)

where in the notation of Williams et al. [55] gChR2 is the max conductance of the photocurrent, EChR2 is the reversal
potential for channelrhodopsin, G(V ) is a voltage-dependent rectification function, O1, O2 are open state probabilities,
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and γ is a normalization factor. Eq. (62) is identical to Eq. 1 in Williams et al. [55], and we replace what in their
notation is termed S0(θ) in their Eq. 11 with our stimulus S(t). We refer the reader to the rest of that study since
the channelrhodopsin model is rather complicated and has various state variables and parameters. We used identical
parameters from the original study for channelrhodopsin.

In simulation, we take S(t) to be a special discrete construction of a Gauss-Markov process with Hurst or Hölder
parameter H ∈ [0, 1]. The motivation for this is to generate repeatable spike patterns in the presynaptic neuron
regardless of the level of other sources of noise [56], constituting the notion of experimental intervention. The parameter
H plays the same role as in fractional Brownian motion, intuitively describing how rough (small H) versus smooth
(high H) the trajectory is, however the process used here is colored (i.e., its power spectrum is not flat). The process
was developed as an injected current in previous work to suggest that more reliable spiking patterns can be induced into
a LIF neuron to the degree that H is small regardless of the neuron’s level of independent noise [57]. The construction
of the process is described in Appendix 6.3. In this setting, it is simply being employed as technology to produce
reliable spiking responses to stimulation [58, 59], although the tenability of this very statement in this setting is what is
being tested in the simulation. Consider that if a spiking pattern were perfectly reliable to a repeated stimulus, then an
experimentalist would know that they are deconfounding in the sense of the do(·) operator of causal inference.

Figure 7 simulates the system in Eq. (60) for different parameters of the stochastic input current or light stimulus; the
timescale τH and Hölder parameter H . In each simulation, the timescales of the intrinsic processes I0(t), I1(t), and
Ic(t) were set to 10 ms, and their amplitudes to unit variance. The amplitudes of the stimulations were then adjusted so
that the reference neuron’s empirical rate during stimulation was approximately 470% greater than the spontaneous rate
as in the experiment of English et al. [2]. Equalizing firing rate across experimental conditions in this way, surprisingly
quite strong common input correlations persist for current injection and optogenetic stimulation. Furthermore, varying
the input parameters H and τH leads to hardly detectable differences in the deconfounding as measured through the
CCG. If current or optogenetic stimulation fulfilled the notion of do(·) as applied to spike trains in Section 5.1, the
CCG during stimulation should be flat.
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τH = 5 msec
H = 0.1

τH  = 5 msec
H = 0.5

τH  = 5 msec
H = 0.9

τH  = 50 msec
H = 0.1

τH  = 50 msec
H = 0.5

τH  = 50 msec
H = 0.9

Fig 7: Strong juxtacellular or optogenetic stimulation might fail to be randomized experiments. Two LIF neurons
are driven by common inputs, and their CCG is plotted (black plots). With the same frozen noise input, the model
system is subjected to either (1) current injection in the pattern of a Gaussian process (gray plots) or (2) photocurrent
stimulation in the same pattern on a biophysically detailed opsin model affixed to one of the LIF neurons (green plots).
A special Gaussian process is utilized from a theory that predicts reliable spike patterns to be produced to the degree
that a parameter H ∈ [0, 1] is small. The timescale of the stimulus, τH , is also split into two conditions, 5 ms and
50 ms simulations. The variance of the stimulations was adjusted for electric current injection or photostimulation
such that the stimulated firing rate was approximately 470% greater than the spontaneous rate [2]. Even for this strong
perturbation, confounding common synaptic input correlations persist and do not significantly differ given the character
of the input when the variance of the stimulation is adjusted to produce equal firing rates across conditions.
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6 Appendix

Table 4: List of abbreviations

Abbreviation Definition

ACG Auto-correlogram
AdEx Adaptive exponential integrate-and-fire neuron
CCG Cross-correlogram
cdf Cumulative distribution function
CGF Cumulant generating function
ChR2 Channelrhodopsin-2
DC Direct convolution
DFT/IDFT Discrete-Fourier transform and its inverse
FFT/IFFT Fast-Fourier transform and its inverse
iid Independent and identically distributed
INT Interneuron
LIF Leaky integrate-and-fire neuron
OU Ornstein–Uhlenbeck process
pmf Probability mass function
PSP Postsynaptic potential
PYR Pyramidal neuron
SD Standard deviation

6.1 Examples of confounding and non-identifiability in the CCG

To prepare for examples that demonstrate this issue, let R and T be a finite set of spike times (a point process) for an
experiment of fixed duration. We will, in general, consider a reference spike train R hypothesized to be presynaptic,
and a target spike train T , hypothesized to be postsynaptic. A goal is to quantify the evidence for that hypothesis and for
a number of its characteristics. We are thus interested in the potential outcome random variable, T (R=r), abbreviated
T (r), which is the target train, in a causal model, induced by do(R = r). That is, we are interested in the causal
influence of R on T . For any spike trains X and Y define the unnormalized sample cross-correlation function (sample
CCF) as,

χ̂(X,Y , τ) :=

∫ ∞

−∞

∑
x∈X

δd(t− x)
∑
y∈Y

δd(t− y + τ) dt (63)

where δd is the Dirac delta function. We will also write χ(X,Y , τ) = E[χ̂(X,Y , τ)] and will occasionally assume
the spike trains are discrete, reinterpreting the notation accordingly when specified. The term unnormalized cross-
correlogram (CCG) likewise refers to a binned version of χ̂(X,Y , τ).

The following examples motivate the approach of this article. Figure 1 illustrates their simulation and the causal
decompositions described in the examples. Example 1 presents an example of a causal model in terms of point process
models, and subsequent simulations will utilize this definition of causality.

We start with the simplest model one might imagine.
Example 1 (Instantaneously-coupled Bernoulli processes with fixed coupling constant ϵ). Define a probability space
which contains ω = (ω1, ..., ω2N ), a vector of 2N independent uniform [0,1] random variables. Then consider the
following potential outcomes model: R(ω) = {tj : ωj ≤ λR} and T (R=r)(ω) = {tj : ωj+N ≤ λT + ϵ1{tj ∈
r}}. By independence, there is no confounding (of R and T ). The average causal effect of the coupling at time t,
E[1{t ∈ T } − 1{t ∈ T (R=∅)}], is ϵ. Consider, for example, the intervention do(R = ∅): T (R=∅)(ω) = {tj :

ωj+N ≤ λT + ϵ1{tj ∈ ∅}} = {tj : ωj+N ≤ λT }. T (R=∅)(ω) is defined as a function on the same probability space
as the functions R(ω) and T (ω) = T (R)(ω). (ω1, ω2, ..., ω2N ) are so-called ‘background’ variables. We think of a
particular realization of ω as encoding the state(s) of the ‘external’ world. Interventions modify the relations between
R and T to define potential outcomes for T , given that the state(s) of the world (i.e., the background variables ω) are
fixed (i.e., ‘frozen’) over potential outcomes.

Example 2 now examines the behavior of the CCF for Example 1 demonstrating that ϵ is not identifiable.
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Example 2 (Identical CCGs with different coupling strength). One can verify from the independence relations that
a normalized CCF for the model in Example 1 is χ(R,T (R), τ)/N = E[

∑N
t=1 1{t − τ ∈ R}1{t ∈ T (R)}]/N =

λR(λT + ϵ)1{τ = 0} + (λRλT + λ2
Rϵ)1{τ ̸= 0} dismissing edge effects. Since in this model the CCF is flat

everywhere but the coupling lag at τ = 0, the CCF peak, ρ = χ(R,T (R), τ = 0) − χ(R,T (R), τ = z) for any
z ̸= 0, can be related to the average causal effect as ϵ = ρ/(λR − λ2

R) where we have normalized the peak by λR

which is standard in functional connectivity studies. ϵ and ρ are not equal. Consider two situations. In Situation A
the model has parameters λR,A, ϵA, λT,A. In Situation B, an identical λR-normalized CCF is obtained by setting
λR,B = 1− ϵA, ϵB = 1− λR,A, λT,B = λT,A + λR,AϵA − λR,BϵB . For example, we can have the average causal
effects be ϵA = 0.2, in Situation A, and ϵB = 0.8, in Situation B, and yet their CCFs are identical.

In the previous example, ϵ is identifible if supplemented by one additional unknown, λR. Here that is trivial if the
process is stationary, however neural data is known to be highly nonstationary [31, 30] leading to extreme difficulty in
estimating analogous time-varying quantities [12]. When λR is unknown, one can verify through level set analysis
that the model parameters in the example can vary widely for fixed ϵ, suggesting large relative bias if λR is slightly
misestimated, even when λR is small.

Related to the observation that λR confounds estimation in Example 2, it has long been understood that presynaptic au-
tocorrelation might in some way influence the CCG between two neurons [60] leading to suggestions that deconvolution
of the CCG with the presynaptic ACG might help in deconfounding, particularly under stationarity assumptions [19].
In the next example, we examine the nature of this confounding in a nonstationary setting. Two neurons are given
confounding oscillatory backgrounds. In addition, the presynaptic cell emits a burst of three spikes approximately every
second. As a thought experiment, imagine these bursting events alternate such that the spike times in the bursts are
either generated by a Gaussian with small variance or large variance. Causal conclusions from the CCG vary widely
in their dependence on whether the causal interactions tend to occur among the bursts with small or large variances,
highlighting the non-identifiability of causal inference from correlation functions altogether. Later, we use this intuition
to construct confidence intervals by supposing causal events occur at these limiting cases of presynaptic firing, thus
bounding the estimate over this uncertainty (Section 3.4.1).
Example 3 (Different CCGs with identical coupling strength). Consider the following generative model for
an experiment of duration D. Let background intensity functions be λR(t) = λT (t) = α cos(ωt) + α for
t ∈ [0, D), α ∈ [0, 1/2) both generating sets of real-valued points R0 and T0, respectively. Define a sequence
of latent events 0 ≤ ℓ1, ℓ2, ..., ℓK ≤ D such that ℓk − ℓk−1 ∼ Uniform(0.8, 1.2) seconds. Let these latent events be
the center of a burst of three spikes, Xk,i ∼ N (lk, σA1{k is even}+ σB1{k is odd}) for i ∈ {1, 2, 3}. Collect these
events in a set R1 = ∪k∈N∪3i=1Xk,i and define the presynaptic spike train as R = R0∪R1. Also, let Yk,i ∼ N (Xk,i+

d, σs1{k is even}+
√
2σ2

A + σ2
s1{k is odd}) for i ∈ {1, 2, 3} and X = ∪{k even}∪3i=1Yk,i and Y = ∪{k odd}∪3i=1Yk,i.

Now consider two situations. In Situation A, T (∅) = T0 and T (R) = T0 ∪X . Since cross-correlation is a linear
operator and the constituent processes are in superposition, the unnormalized CCF can be expressed in approximate
closed-form as χA(R,T , τ) = χ(R0,T0, τ) + χ(R1,T0, τ) + χ(R0,X, τ) + χ(R1,X, τ) ≈ Dα2/2 cos(ωt) +

α2 + D−1(E[|R1|]E[|T0|] + E[|X|]E[|R0|]) + 1
2 E[|R1|]N (τ |d, σs) +

3−1
2 E[|R1|]N (τ |d,

√
2σ2

A + σ2
s) where

we have dismissed edge effects. In Situation B, T (∅) = T0 and T (R) = T0 ∪ Y and by the same logic
χB(R,T , τ) ≈ Dα2/2 cos(ωt)+α2 +D−1(E[|R1|]E[|T0|] +E[|Y |]E[|R0|]) + 1

2 E[|R1|]N (τ |d,
√
2σ2

A + σ2
s)+

3−1
2 E[|R1|]N (τ |d,

√
2σ2

B + 2σ2
A + σ2

s). In both cases, we write 3−1
2 E[|R1|] to highlight that there are three causal

events per burst, we subtract one as it has already been counted in the penultimate term, and such a scenario occurs for
half of the presynaptic bursts contributing to the unnormalized CCF. If σA and σS are both small and not appreciably
different and σA << σB , the penultimate term of χA(R,T , τ) will appear as a monosynaptic feature and the penulti-
mate term of χB(R,T , τ) will appear as a background feature, leading to very different causal conclusions in both
situations although the causal effects - in the sense of |X|/|R| = |Y |/|R| - and presyaptic spike trains are exactly
equal in each situation, demonstrating that mere knowledge of the CCG and presynaptic ACG would be insufficient for
causal inference.

These examples are intentionally dramatic to be instructive and often exceed plausible neurophysiological behavior.
Namely, the firing rates are often quite high, and we used Gaussian functions for analytic tractability, although they
allow for some causality to occur in reverse time. However, if the examples are understood in mathematical detail, it’s
straightforward to see that the degeneracy is quite general, especially if we are concerned with the relative error of
estimates. Moreover, the regime of nonstationary, high presynaptic bursting coinciding with information transfer is
perhaps the most biologically relevant [61, 47, 62]. A common way presynaptic bursting manifests in the CCG is as
secondary oscillations visually distinct from the primary monosynaptic peak because of the refractory periods [19].
We explore this in Section 4.3 and Figure 5. Note, however, that in Example 3 the influence of bursting on the CCG
depends on how the temporal resolution of bursting interacts with the temporal resolution of the causal interactions
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they associate with; a concept that should generalize beyond the idealizations made here. So it is not guaranteed that
refractory periods will dissolve the issue. In fact, statistical dependence between the temporal resolution of bursting
and the causal interactions (e.g., from short-term plasticity) might likely make the interpretation even more subtle,
leading to multiple sources of estimation error at different lags of the CCG (that is, a combination of Example 2 and
Example 3). Complex dependencies between background input currents and other forms of nonstationarity suggest that
the toy examples here may paint a forgiving picture of the confounding present in real neural data [6].

6.2 Monosynaptic causal inference model proofs

Theorem 1. Under A.1 (conditional uniformity), A.2 (timescale separation), A.3 (positivity) and A.4 (consistency) an
unbiased point estimate of θsyn in the excitatory and inhibitory models Eq. (4) is given by one expression,

θ̂syn =
∑
k∈Z∗

Nγ(k∆)∩S(R)

(
T
)
− q(R, k∆)Nγ(k∆)

(
T
)

1− q(R, k∆)
. (9)

Proof.

Case 1: Excitation, θsyn ≥ 0.

For an arbitrary k ∈ Z∗ we have from the definition of the model Eq. (4) we have, for all r,

Nγ(k∆)∩S(r)

(
T (r)

)
= Nγ(k∆)

(
I(r) \

⋃
r∈r

{S(r) : NS(r)(B) > 0}
)
+Nγ(k∆)∩S(r)

(
B
)

(64)

where S(r) has been excluded from the subscript of the increment in the first term of the RHS by
A.2. Taking conditional expectations with respect to (Γ(T ),R), and applying A.4 (consistency) and
linearity, we have

E

[
Nγ(k∆)∩S(R)

(
T
)∣∣∣∣Γ(T ),R

]
(65)

= E

[
Nγ(k∆)

(
I(r) \

⋃
r∈R

{S(r) : NS(r)(B) > 0}
)∣∣∣∣Γ(T ),R

]
(66)

+E

[
Nγ(k∆)∩S(R)

(
B
)∣∣∣∣Γ(T ),R

]
.

By A.1 (conditional uniformity),
E[Nγ(k∆)∩S(R)

(
B
)
|Γ(T ),R] = q(R, k∆)E[Nγ(k∆)(B)|Γ(T ),R]. (67)

Furthermore, Eq. (4) under A.2 gives Nγ(k∆)

(
I(r) \ ∪r∈r{S(r) : NS(r)(B) > 0}

)
=

Nγ(k∆)(T
(r))−Nγ(k∆)(T

(∅)), for all r. Eq. (65) then becomes,

E

[
Nγ(k∆)∩S(R)

(
T
)∣∣∣∣Γ(T ),R

]
(68)

= E

[
Nγ(k∆)(T )−Nγ(k∆)(T

(∅))

∣∣∣∣Γ(T ),R

]
+ q(R, k∆)E

[
Nγ(k∆)(B)

∣∣∣∣Γ(T ),R

]
(69)

= E

[
Nγ(k∆)(T )−Nγ(k∆)(T

(∅))

∣∣∣∣Γ(T ),R

]
(70)

+ q(R, k∆)E

[
Nγ(k∆)

(
T
)
−
(
Nγ(k∆)(T )−Nγ(k∆)(T

(∅))

)∣∣∣∣Γ(T ),R

]
(71)

where the substitution of Nγ(k∆)(B) inside the expectation of the last term again results from Eq. (4)
under A.2. Rearranging, we obtain

E

[
Nγ(k∆)(T )−Nγ(k∆)(T

(∅))

∣∣∣∣Γ(T ),R

]
(72)

= E

[
Nγ(k∆)∩S(r)

(
T
)
− q(R, k∆)Nγ(k∆)

(
T
)

1− q(R, k∆)

∣∣∣∣Γ(T ),R

]
, (73)
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using the general fact that E[f(Y )E[X|Y ]] = E[E[f(Y )X|Y ]] = E[Xf(Y )] for (measurable)
random variables X,Y, and functions f . Summing over k and taking expectations on both sides of
the above gives

E

[
θ̂syn

]
= E

[ ∑
k∈Z∗

Nγ(k∆)∩S(r)

(
T
)
− q(R, k∆)Nγ(k∆)

(
T
)

1− q(R, k∆)

]
(74)

= E

[ ∑
k∈Z∗

Nγ(k∆)(T )−Nγ(k∆)(T
(∅))

]
(75)

= E

[
NS(R)(T )−NS(R)(T

(∅))

]
= θsyn. (76)

Case 2: Inhibition, θsyn ≤ 0.

By Eq. (4) and A.2 the following invariant holds for all realizations of the inhibitory model and every
r,

Nγ(k∆)\S(r)(T
(r)) = Nγ(k∆)\S(r)(T

(∅)). (77)

In the inhibitory model, Eq. (4) under A.2 gives Nγ(k∆)\S(r)(T
(∅)) = Nγ(k∆)\S(r)(B),∀r. Using

this substitution and applying similar steps as in Case 1, including A.4 and A.1, we have

E

[
Nγ(k∆)\S(R)(T )

∣∣∣∣R,Γ(T )

]
=

(
1− q(R, k∆)

)
E

[
Nγ(k∆)(B)

∣∣∣∣R,Γ(T )

]
. (78)

In the inhibitory model, we again have from Eq. (4) under A.2 Nγ(k∆)(T
(r)) = Nγ(k∆)(B) −

Nγ(k∆)(B ∩ ∪r∈r{S(r) : NS(r)(I
(r)) > 0}). Using this relation to substitute Nγ(k∆)(B) in

Eq. (78) and again using A.4 for terms inside the expectation,

E

[
Nγ(k∆)\S(R)(T )

∣∣∣∣R,Γ(T )

]
(79)

=

(
1− q(R, k∆)

)
E

[
Nγ(k∆)(T ) +Nγ(k∆)(B ∩

⋃
r∈R

{S(r) : NS(r)(I) > 0})
∣∣∣∣R,Γ(T )

]
(80)

=

(
1− q(R, k∆)

)
E

[
Nγ(k∆)(T )−

(
Nγ(k∆)(T

(R))−Nγ(k∆)(T
(∅))

)∣∣∣∣R,Γ(T )

]
(81)

where the change of sign inside the expectation of the last line results from the fact that under A.2
Nγ(k∆)(T

(R))−Nγ(k∆)(T
(∅)) ≤ 0 in the inhibitory model. Rearranging and following analogous

steps as used in Case 1,

θsyn = −
∑
k

E

[
Nγ(k∆)\S(R)

(
T
)
− (1− q(R, k∆))Nγ(k∆)

(
T
)

1− q(R, k∆)

]
. (82)

Setting this expression equal to Eq. (74) all terms cancel.

■

Lemma 1. Let

D(R,T ) =

{
j : |j| = |J |, (K \L) ⊆ j

}
. (17)

Abbreviate D(R,T ) as D. Under A.1 (conditional uniformity)

J−
θsyn
∈ argmin

j∈D

{
c−(q(r, t), j)

}
(18)
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and

J+
θsyn
∈ argmax

j∈D

{
c+(q(r, t), j)

}
. (19)

Proof. We will establish (18). (19) can be established in the same way.

P

(
NS(R)(B) ≤ c

∣∣∣∣q(R,T ),J

)
(83)

=

c∑
n=0

∑
Q∈J [n]

∏
i∈Q

q(R, Ti)
∏

k∈(J\Q)

(1− q(R, Tk)) (84)

=

c−1∑
n=0

∑
Q∈{J\x}[n]

∏
i∈{Q∪x}

q(R, Ti)
∏

k∈(J\(Q∪x))

(1− q(R, Tk))

+

c∑
n=0

∑
Q∈{J\x}[n]

∏
i∈Q

q(R, Ti)
∏

k∈{J\Q}

(1− q(R, Tk)), (85)

using {Q ∈ J [n] : x ∈ Q} = {Q ∪ x : Q ∈ {J \ x}[n−1]}. For an arbitrary x ∈ J , this implies

∂

∂q(R, Tx)
P

(
NS(R)(B) ≤ c

∣∣∣∣q(R,T ),J

)
= (86)

=

c−1∑
n=0

∑
Q∈{J\x}[n]

∏
i∈Q

q(R, Ti)
∏

k∈J\(Q∪x)

(1− q(R, Tk))

−
c∑

n=0

∑
Q∈{j\x}[n]

∏
i∈Q

q(R, Ti)
∏

k∈J\(Q∪x)

(1− q(R, Tk)) (87)

= −
∑

Q∈{J\x}[c]

∏
i∈Q

q(R, Ti)
∏

k∈J\(Q∪x)

(1− q(R, Tk)) ≤ 0, (88)

because q(R, Ti) ∈ [0, 1] for all i ∈ K. Note that ∂/∂q(R, Tx)[P
(
NS(R)(B) ≤ c|q(R,T ),J

)
] is independent of

q(R, Tx).

(Proof by contradiction.) Suppose J−
θsyn
̸∈ argminj∈D{c−(q(R,T ), j)}. Fix any J∗ ∈ argminj∈D c−(q(R,T ), j).

Accordingly, assume there exists an x∗ ∈ J−
θsyn

such that x∗ ̸∈ J∗ so that q(R, Tx∗) < q(R, Tm) for some m ∈ J∗ by
the definition of J−

θsyn
. (If such an x∗ does not exist, then c−(q(R,T ),J∗) = c−(q(R,T ),J−

θsyn
) by construction.) By

Eq. 88, this implies c−(q(R,T ),J∗) > c−(q(R,T ),J∗∪{x∗}\{m}). This is a contradiction as J∗∪{x∗}\{m} ∈ D.
■

Lemma 2. Denote X1, X2, ..., Xi−1, Xi+1, ..., Xn as iX. Then suppose X1, X2, ..., Xn are Bernoulli random vari-
ables (not necessarily independent) satisfying

P(Xi = 1|iX,Z) ≥ pi(Z), (20)

for all i ∈ {1, 2, ..., n}, and for some random variable Z. Then

P

(
n∑

i=1

Xi ≤ k

∣∣∣∣Z
)
≤ P

(
n∑

i=1

Yi ≤ k

)
,∀k (21)

if Y1, Y2, ..., Yn are conditionally independent Bernoulli random variables, conditioned on Z, with parameters
p1(Z), p2(Z), . . . , pn(Z) respectively, and X1:n and Y1:n are conditionally independent, conditioned on Z.
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Proof. The proof is by induction. The case n = 1 is self-evident. Observe that

P

(
n∑

i=1

Xi ≤ k|Z

)
= P

(
n−1∑
i=1

Xi ≤ k

∣∣∣∣Z,Xn = 0

)
(1−P(Xn = 1|Z)) (89)

+P

(
n−1∑
i=1

Xi ≤ k − 1

∣∣∣∣Z,Xn = 1

)
P(Xn = 1) (90)

and

P

(
n∑

i=1

Yi ≤ k

)
= P

(
n−1∑
i=1

Yi ≤ k

)
+P

(
n−1∑
i=1

Yi ≤ k − 1

)
pn. (91)

Conditioning on Xn = 0, the induction hypothesis is satisfied for X1, X2, ..., Xn−1. Therefore,

P

(
n−1∑
i=1

Xi ≤ k|Z,Xn = 0

)
≤ P

(
n∑

i=1

Yi ≤ k

)
(92)

and analogously,

P

(
n−1∑
i=1

Xi ≤ k

∣∣∣∣Z,Xn = 1

)
≤ P

(
n−1∑
i=1

Yi ≥ k − 1

)
. (93)

Also note,

{ n∑
i=1

Yi ≤ k

}
⊆
{ n∑

i=1

Yi ≤ k − 1

}
=⇒ P

(
n−1∑
i=1

Yi ≤ k

)
≤ P

(
n−1∑
i=1

Yi ≤ k − 1

)
(94)

and,

P(Xn = 1) =
∑
iX

P(Xn = 1|Z,i X)P(iX) ≤
∑
iX

pnP(iX) = pn. (95)

From this reasoning we obtain,

P

(
n∑

i=1

Yi ≤ k

)
= P

(
n−1∑
i=1

Yi ≤ k

)
(1− pn) +P

(
n−1∑
i=1

Yi ≤ k − 1

)
pn (96)

≥ P

(
n−1∑
i=1

Yi ≤ k

)
(1−P(Xn = 1)) +P

(
n−1∑
i=1

Yi ≤ k − 1

)
P(Xn = 1) (97)

≥ P

(
n−1∑
i=1

Xi ≤ k

∣∣∣∣Z,Xn = 0

)
(1−P(Xn = 1)) +P

(
n−1∑
i=1

Xi ≤ k − 1

∣∣∣∣Z,Xn = 1

)
P(Xn = 1)

(98)

= P

(
n∑

i=1

Xi ≥ k

∣∣∣∣Z
)
. (99)

■

Proposition 1. Under A.1 (conditional uniformity), A.2 (timescale separation), and A.4 (consistency) {NS(R)(T )−
h ≤ c−(q(R,T ),J−

h )} and {NS(R)(T ) − h ≥ c+(q(R,T ),J+
h )} are α/2-level critical region for all P in H0 :

θsyn = h. That is, for all P in H0 : θsyn = h,

P
(
NS(R)(T )− h ≤ c−(q(R,T ),J−

h )
)
≤ α/2 (22)

and
P
(
NS(R)(T )− h ≥ c+(q(R,T ),J+

h )
)
≤ α/2. (23)
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Proof. We will prove the first inequality Eq. 22. Eq. 23 can be proved in the same way.

Note that

P

(
NS(R)(T )− h ≤ c−(q(R,T ),J)

∣∣∣∣q(R,T ),J

)
≤ α/2, (100)

by the definition of c−(·), and symmetry. Thus, by the fact that J ∈ D(R,T ), under H0 and by Lemma 1,

c−(q(R,T ),J−
h ) ≤ c−(q(R,T ),J) (101)

for all realizations of the model. We have,

P

(
NS(R)(T )− h ≤ c−(q(R,T ),J−

h )

∣∣∣∣q(R,T ),J

)
(102)

≤ P
(
NS(R)(T )− h ≤ c−(q(R,T ),J)

∣∣∣∣q(R,T ),J

)
≤ α/2, (103)

(almost surely). Therefore

P

(
NS(R)(T )− h ≤ c−(q(R,T ),J−

h )

)
(104)

= E
[
P

(
NS(R)(T )− h ≤ c−(q(R,T ),J−

h )

∣∣∣∣q(R,T ),J

) ]
(105)

≤ α/2. (106)
■

Remark 2. We found the following intuition useful regarding the conditional inference in Proposition 1. It is not
necessary that the critical region’s boundary term, c−(q(R,T ),J−

h ), be (q(R,T ),J)-measurable, because of the
inequality Eq. 101. Yet, a key feature is that it is (R,T )-measurable, so that, speaking informally, its evaluation does
not require “knowledge” of J .

6.3 Construction of multivariate Ornstein-Uhlenbeck process

To try to create reliable spike patterns, we utilize the Ornstein-Uhlenbeck construction of Taillefumier and Magnasco
[57] as an injected current or light stimulus. We describe a multivariate version of the process because it is far more
efficient to sample a multivariate version and then concatenate the dimensions into a longer trial. The process used
for the former task is easily recovered in the one-dimensional case. These authors construct the Ornstein-Uhlenbeck
process U(t) from discrete Haar-like basis functions. We focus on the discrete representation since the primary goal is
to simulate the process. The whole process is divided into dyadic segments, with the following basis functions tiling the
dyadic segments at various resolutions,

λn,k(t) :=



σH · sinh (|αH |(t− 2k · 2−n))√
αH sinh (αH21−n)

if (2k)2−n ≤ t < (2k + 1)2−n

σH · sinh (|αH |(2(k + 1)2−n − t))√
αH sinh (αH21−n)

if (2k + 1)2−n ≤ t < 2(k + 1)2−n

0 otherwise,

(107)

for 0 ≤ 2k < 2n with timescale τH , scaling parameters σH and αH , and where

λ0,0(t) =
σH · exp(−αH/2) sinh(|αH |t)√

αH · sinh (αH)
. (108)

A parameter H ∈ [0, 1] describes how the amplitude of these basis functions scale with the resolution of the support,
∆H . For a multi-dimensional version, for 1 ≤ i ≤ 2n− 1 and 1 ≤ j ≤ n, define the matrices,

M⃗n(i, j) = 1{i = 2j − 1}+ 1{i/2 = j}+ 1{i/2 = j − 1} (109)

U⃗n(i, j) = 1{i is even} (110)

V⃗n(i, j) = 1{i is odd}. (111)
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For a multivariate process of dimension M and 2N time points, let the value of the process at each time point be
x⃗t ∈ Rm. For a resolution n, arrange the values of the process at the dyadic points (0 ·2N/2n, 0 ·2N/2n, ..., 2n ·2N/2n)
into distinct matrices indexed by n,

X⃗n =


x⃗0·2N/2n

x⃗1·2N/2n

...
x⃗2n·2N/2n

 . (112)

For numerical reasons, the endpoints are clamped such that X⃗0 = [0]2,m and the full process X⃗N can then be computed
for 0 ≤ n ≤ N − 1 efficiently by the recursive matrix operations,

X⃗n+1︷ ︸︸ ︷
x⃗0·2N/2n+1

x⃗1·2N/2n+1

x⃗2·2N/2n+1

...
x⃗2n+1·2N/2n+1

 =

(
1

2
cosh−1 (∆H/2τH)U⃗n+1 + V⃗n+1

)
⊙ M⃗n+1

X⃗n︷ ︸︸ ︷
x⃗0·2N/2n

x⃗1·2N/2n

x⃗2·2N/2n

...
x⃗2n·2N/2n

 (113)

+ αH [τH tanh (∆H/2τH)]H
√

1

τH



0⃗m
ξ⃗1·2N/2n+1

0⃗m
ξ⃗3·2N/2n+1

...
ξ⃗(2n+1−1)·2N/2n+1

0⃗m


︸ ︷︷ ︸

Ξ⃗n+1

(114)

where for fixed n Ξ⃗n contains in its odd rows iid normal random vectors, ξ⃗t, obeying N (⃗0m, Σ⃗m,m(n)) and zeros
otherwise. That is, each resolution n has a characteristic dependence structure parameterized by the covariance matrices
Σ⃗m,m(n) for 1 ≤ n ≤ N . Σ⃗m,m(0) is not defined since the endpoints are clamped. For background inputs into the
HH-type model system, we used a constant covariance matrix for all n. As was previously done in the text, the Vine
Beta method, with its parameter fixed to 0.1, was used to generate a random covariance matrix with strong positive and
negative associations in three dimensions. Sampling is made much more efficient by the following. First, for a process
of dimension M sample Eq.(114) instead for a process of M ·Ntrial with the covariance matrix for the M -dimensional
process replaced with the block matrix Σ⃗Ntrialm,Ntrialm(n) = I⃗ ⊗Σm,m(n) where ⊗ is the Kronecker product and I⃗
the identity matrix. Implementing Eq.(114) recursively is efficient up to matrices of moderate size, and finally, then
every j-th column for j ∈ {1, 2, ...m} of X2N can be concatenated together Ntrial times.

When we used the above process as a stimulus in the simulated neural perturbation experiments, both H and τH were
varied as indicated in Section 5.2.

6.4 Rationale for monosynaptic confidence interval algorithm

Synaptic inference is commonly performed on low-dimensional and easy-to-visualize objects, the CCG in particular, and
the most immediate objection to the theory outlined in previous sections is that it may be computationally prohibitive.
Point estimation via Eq. (9) is quite simple, but for confidence intervals, this objection may be reasonable because
inference is performed on the sequence of spike counts and synchrony in small temporal intervals, which is of much
higher dimension and grows with the duration of the spike trains. Earlier, this objection was neutralized via a principled
algorithm. Here, we describe the algorithms in prose and highlight their rationale.

Given an observation R and T all the probabilities in Eq. (28) can be obtained as well as J̃−
h and J̃+

h for any h. As
mentioned in the main text, a naive but easy-to-grasp strategy to compute confidence intervals would be to begin with
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the two-tailed hypothesis H0 : θsyn = 0 enacted through convolution of the distributions with success probabilities
q(R, Zi) for i ∈ J̃−

0 and then evaluation of tail areas given the observed value of NS(R)(T ). Then, if we reject the
null hypothesis at the upper tail proceed to test positive values for H0 : θsyn = h in the sequence h ∈ (1, 2, 3, ...)

recomputing the tail probability each time for distributions arising from J̃−
h until we fail to reject. If, instead, we fail to

reject the null hypothesis at the left tail, proceed to test negative values h ∈ (−1,−2,−3, ...) until we fail to reject. The
process then needs to be repeated for J̃+

h except for the case h = 0. Each value h tested is expensive because we must
compute a sum of independent random indicators and a central question is how to reuse computations most effectively
across these tests. For most data of reasonable size a much faster strategy is to apply standard binary search [63] to
the sequence (0, 1, 2, ..., NS(R)(T )) (i.e., the values of h to test) with the search query being the location of adjacent
values in the sequence for which one and not the other fails to reject the null hypothesis H0 : θsyn = h.

The next question is how exactly to convolve the distributions that emerge from every step of binary search so that the
tail area can be evaluated; that is, we must compute the cdf of a sum of independent but not necessarily identically
distributed indicators. While in practice this is often computed with the Fast-Fourier transform (FFT), FFT can have
very large relative errors for small tail probabilities [64]. In contrast, direct convolution (DC) is the most accurate
method and uses only the convolution definition of the distribution function of a sum of random variables. While its
runtime complexity is O(N2), typically motivating the use of FFT, Biscarri et al. [65] observe that DC is still most
efficient when convolving a small number of vectors or many vectors of small dimensions (e.g., Bernoulli vectors)
suggesting DC and FFT can work in concert in a divide-and-conquer scheme. Through both theoretical considerations
and experimentation, we adopt a similar mixed approach, also taking inspiration from Peres et al. [66]. These studies
address the general problem of convolving independent indicators, while the problem here is to construct confidence
intervals, and there are various other domain-specific constraints that we can exploit. For example, a special feature of
our problem is we may assume many of the random indicators to be convolved will have equal success probabilities [67].

The overview is as follows. First, as a first pass, we compute a conservative confidence interval using Chernoff bounds
to estimate tail probabilities at every iteration of binary search. Then, in a second pass of binary search, we refine the
Chernoff confidence interval on a much-narrowed search space by computing tail probabilities with a mix of DC and
FFT accompanied by a method for recovering the relative accuracy of FFT via exponential tilting [68]. The strategy
also exploits redundant structure in various ways to minimize computations. We digress to quickly introduce Chernoff’s
bound to those unfamiliar.
Remark 3. The following is a well-known result. Let Xi ∼ Be(pi) for i ∈ {1, 2, ...n}. Consider the condition the sum
is above some bound t, ∑

i

Xi ≥ t. (115)

By multiplying through by a constant λ, exponentiating, and applying Markov’s inequality the generic Chernoff bound
is obtained,

P

(∑
i

Xi ≥ t

)
≤ exp(−λt)E[exp(λ

∑
i

Xi)]. (116)

In the case of sums of independent indicators a bit more work can yield the result,

P

(∑
i

Xi ≥ t

)
≤ (µe/t)te−µ (117)

such that ln(t/µ) = λ and µ =
∑

i pi [69].

Denote C̃CF as confidence intervals for θsyn obtained by using Chernoff’s bound as a tail probability estimate. If
we substitute computation of the exact cdf with Chernoff’s bounds, it is guaranteed that C̃CF ⊇ C̃. Furthermore,
unlike the exact cdf, iterative computation of Chernoff’s bound is very cheap for binary search on the sequence
(1, 2, ..., NS(R)(T )) relative to its imprecision.

After C̃CF is calculated, the search space is significantly reduced and we can now choose a more accurate method to
implement a second pass of binary search on the sequence (CFL, CFL + 1, ..., CFU − 1, CFU ) where CFL and CFU

are the lower and upper confidence bounds for θsyn obtained via Chernoff’s bound. The first pass with Chernoff’s
bound also guarantees that we need the lower confidence interval to be at least CFL, meaning we are assured that at
least CFL random variables will not need to be convolved in the second pass. On the other hand, the first pass assures
that at least NS(R)(T )− CFU + |T \ S(R)| random variables will need to be convolved and hence we can design an
algorithm that only computes those convolutions once then reuses the result.
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We will describe the process for computing exact confidence intervals that ensues for the case of h > 0 and for the
tail corresponding to J̃+

h . The other cases are analogous, and we will conclude by highlighting alterations. For the
remainder of this section, we will describe the strategy in words to supplement the description with rationale. Where
ambiguity might be present here, the reader can refer to the precise description as summarized in Algorithm 1 and
Algorithm 2.

Given CFL and CFU , the NS(R)(T )− CFU + |T \ S(R)| random indicators that Chernoff tells us must be summed
are those with success probabilities q(Zi) for i ∈ J̃+

CFU
. The second pass of binary search will test values for h in

(CFL, CFL + 1, ..., CFU − 1, CFU ) and, for each new value h, the distributions with success probabilities q(Zi) for
i ∈ J̃+

h \ J̃
+
CFU

will need to be appended to previous computations to obtain the tail probability.

Let us now ask how we can efficiently compute the initial convolution that Chernoff tells us must contribute to the
final result and is quite likely to comprise the bulk of the final result, with the foresight that subsequent iterations will
need to reincorporate this bulk into various distinct new tail probability computations until the second pass of binary
search halts. We may ask if we can choose a number Ldiv such that the success probabilities q(Zi) for i ∈ J̃+

CFU
can be

divided into Ldiv groups. In particular, we wish to divide them into Ldiv groups such that each group contains precisely
the same mixture of constituent success probabilities. To reiterate once more, we require that each group is an identical
mixture of perhaps unequal Bernoulli vectors. If we then calculate the sum of the random indicators within each of
Ldiv groups, the result will be Ldiv iid distributions as an intermediary step. This strategy has three advantages that
easily compensate for the additional overhead of determining the Ldiv groups. First, we only need to compute the
within-group sum of indicators once, not Ldiv times, since each group is iid. Second, this one convolution needed will
contain a small number of random variables of low dimensions to the extent Ldiv is large, and thus, we can exploit DC
in the regime it is efficient [65] with great payoff. Third, since the Ldiv groups are iid, to obtain the distribution for the
sum over groups, we can use highly efficient Ldiv-fold convolution power, meaning we need only compute one FFT
rather than Ldiv FFTs to obtain the final result (Ldiv also cannot be too large to avoid numerical errors in FFT but the
algorithm has robust performance for a significant range, say Ldiv ∈ [22, 26]).

Finding Ldiv iid groups is easy and useful to the extent that the initial mixture of success probabilities contains a small
number of unique values relative to the total number of indicators. This condition is highly applicable to the scientific
context. Clearly, if every initial success probability were unique, it would be impossible to divide them into Ldiv groups
giving rise to Ldiv iid intermediary sums. Even if there are many repeated success probabilities in the initial mixture, it
is unlikely to find a Ldiv in a helpful range to achieve the objective since that requires the frequencies of each unique
occurring Bernoulli vector to have Ldiv as a common divisor. In contrast, it is easy to split the initial mixture into Ldiv

iid groups if we tolerate one group of “residual” success probabilities to be triaged and dealt with as a special case. This
is the approach we take.

From the probabilities q(Zi) for i ∈ J̃+
CFU

, compute the unique success probabilities and the frequency of occurrence
for each unique vector. Then divide each of the frequencies by Ldiv and round down. The resulting numbers will be
how many random indicators of each unique success probability will contribute to one of Ldiv intermediary sums.
Rather than using DC to convolve all the Bernoulli vectors in this one group, instead firstly directly compute binomial
distributions for the underlying unique groups of iid Bernoulli vectors with the number of trials for each binomial as the
frequency of the unique occurring Bernoulli vectors divided by Ldiv rounded down. Then, use DC on the resulting
binomial vectors; at this stage, DC will still be efficient if Ldiv is large enough. Denote p⃗ as this resulting probability
vector that will be the input to Ldiv-fold convolution downstream. In the steps just described, the operation of dividing
the frequency of each unique vector in the initial mixture by Ldiv and rounding down produces “leftovers” - to become
the triaged group - because of rounding. Denote the probability vector of the triaged convolution sum as a⃗. This
concludes the preparation for the second pass; the distributions with success probabilities q(Zi) for i ∈ J̃+

CFU
are now

encoded in a⃗, p⃗, and Ldiv .

During the second pass of binary search, a⃗ is itself immutable but convolved per iteration with distributions that
arise from new hypotheses H0 : θsyn = h producing as a result a temporary vector g⃗. Specifically, for each new
h, g⃗ is obtained by convolving a⃗ with distributions with success probabilities q(Zi) for i ∈ J̃+

h \ J̃
+
CFU

. These new
distributions are convolved with a⃗ using DC since the dimensions are likely to still be small to the extent Chernoff’s
bound is close to the exact answer.

Finally, for each h tested on the second pass, p⃗ and g⃗ are sent to an FFT-based step with an exponential tilt to correct
for the errors typically induced by FFT. Denote the exponentially tilted versions of p⃗ and g⃗ as p⃗ŝ and g⃗ŝ, respectively.
Specifically, the convolution for each h occurs via Ldiv-fold convolution power for p⃗ŝ and point-wise multiplication
of the result with g⃗ŝ in the frequency domain (each embedded in the dimension of the final result). It is important to
mention that one might argue we only need to compute the FFT of p⃗ŝ once after the first pass, and hence p⃗ŝ can then
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sit idly in the frequency domain during the second pass waiting to be point-wise multiplied with new versions of g⃗ŝ
for each new test h encountered by the second pass of binary search. However, this does not work because every new
convolution requires a new exponential tilting parameter. That is, p⃗ŝ is a temporary vector that changes each iteration
because a new tilting parameter is required. While this prohibits such reuse [68], it offers extraordinarily large increases
in accuracy in return. We prioritize accuracy over this decrease in speed at this juncture. Overall, the algorithm is still
competitively fast.

The iterative FFT convolution with exponential tilting is detailed and given its own description in Algorithm 1. The
overall procedure is then summarised in Algorithm 2 for an excitatory lower confidence bound. There are three more
cases: the excitatory upper bound as well as inhibitory lower and upper bounds. The other cases are very similar but we
quickly remark here on the differences. First, a lower bound of θsyn corresponds to the right tail probability of the test
statistic whereas an upper bound for θsyn corresponds to a left tail probability of the test statistic. Exponential tilting is
suitable for computing right tail probabilities, but for any random variable X the left tail probability can be obtained by
computing the right tail probability of −X . Last, the initial implementation of binary search using Chernoff’s bound
for excitatory intervals searches h on the sequence (1, 2, ..., NS(R)(T )) but for inhibition the sequence searched is
(1, 2, ..., |G|).
Algorithm 2 begins with the assumption that the null hypothesis H0 : θsyn = 0 has already been rejected and code
posted online tests H0 : θsyn = 0 and breaks if it fails to be rejected. The philosophy behind this decision is that in
large-scale neural recordings, most neurons will be unconnected, and computing confidence intervals for all pairwise
interactions will be expensive and not insightful. A very rapid approximation, such as the normal approximation, can
be used for the test H0 : θsyn = 0, and a p-value can be calibrated for the precision a specific question requires. The
confidence intervals can then be applied to significant pairs and still may include 0 when the exact method is employed.
Code posted online also gives the option to return confidence intervals computed with p-values obtained from the
normal approximation which is much faster for large spike trains. Preliminary numerical experiments suggest spike
trains of moderate size will yield normal approximations very close to the exact solution. However, the proximity to the
exact solution depends upon many factors and the tolerance for error depends on the scientific question, necessitating
specific use case evaluations.

6.5 Simulation software and hardware

To ensure careful handling of frozen noise inputs, all numerical simulations of dynamical systems were programmed
from scratch and integrated with modified Euler’s method in Python. Long simulations were optimized often through
parallelization and concatenation. This was done in Google Colab using the NVIDIA T4 GPU.
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