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ABSTRACT. The partial transposition from quantum information theory
provides a new source to distill the so-called asymptotic freeness with-
out the assumption of classical independence between random matrices.
Indeed, a recent paper [MP19] established asymptotic freeness between
partial transposes in the bipartite situation. In this paper, we prove al-
most sure asymptotic freeness in the general multipartite situation and
establish a central limit theorem for the partial transposes.

1. INTRODUCTION

The origin of free probability theory can be traced back to Voiculescu’s
works around 1985, and one of the key discoveries is the so-called as-
ymptotic freeness of independent random matrices with Gaussian entries
[Voi91]. This phenomenon extends beyond the Gaussian models and ap-
plies to various other models as well. Amongst them are non-Gaussian
Wigner matrices [Dyk93], independent Haar unitary random matrices [Voi98]
and random permutation matrices [Nic93], etc.

It is worth noting that all the results mentioned above are assuming in-
dependence between the random matrices, resulting in the phenomenon of
asymptotic freeness. A natural question arising from this perspective is
whether there are fundamentally different approaches to obtaining asymp-
totic freeness. A positive answer to this question is obtained from the par-
tial transposition [MP19], which plays a crucial role in quantum informa-
tion theory (QIT). Indeed, partial transposition is crucial in the problem
of entanglement of quantum states and quantum channels [Per96, HHH96,
Wor76, Cho82], as well as in computing the transmission rate of infor-
mation [Sho02, SS12], PPT2 conjecture [Chr, KMP18, RJP18, CMHW19,
CYT19] and so forth.

This paper focuses on partial transposes of Wishart random matrices,
which arise naturally in the context of QIT since the normalizations of
Wishart matrices are standard models for random quantum states [Bra96,
Hal98, ZS01, SZ04]. An important recent discovery is the asymptotic free-
ness between partial transposes of a Wishart matrix in the bipartite situ-
ation [MP19]. Let d1, d2 and p be natural numbers, and let Gd1d2,p be a

1

ar
X

iv
:2

40
5.

02
82

2v
1 

 [
m

at
h.

O
A

] 
 5

 M
ay

 2
02

4



2 GYUNAM PARK AND SANG-GYUN YOUN

d1d2 × p random matrix with independent complex Gaussian random vari-
ables whose mean and variance are 0 and 1 respectively. Then the Wishart
matrix Wd1d2,p is given by

Wd1d2,p =
1

d1d2
Gd1d2,pG

∗
d1d2,p

∈ Md1d2(C). (1.1)

Let us denote by Td or simply by T the transpose map A 7→ At on Md(C) if
there is no possibility of confusion. Then the partial transposes of Wd1d2,p ∈
Md1d2(C) ∼= Md1(C)⊗Md2(C) in the bipartite situation are given by

Wd1d2,p = (idd1 ⊗ idd2)(Wd1d2,p),

W Γ
d1d2,p

= (idd1 ⊗ Td2)(Wd1d2,p),

W Γ
d1d2,p

= (Td1 ⊗ idd2)(Wd1d2,p),

W t
d1d2,p

= (Td1 ⊗ Td2)(Wd1d2,p).

(1.2)

One of the main results of [MP19] is that the family{
Wd1d2,p,W

Γ
d1d2,p

,W Γ
d1d2,p

,W t
d1d2,p

}
(1.3)

is asymptotically free under the assumption lim d1 = ∞ = lim d2 with
lim

p

d1d2
= c ∈ (0,∞). From QIT perspective, it is natural to consider

a multipartite scenario of quantum communication. Indeed, the bipartite
setting is the standard framework to model interactions between two parties,
and it is standard to use a multi-fold tensor product to describe possible
interactions between multiple parties. In the general n-partite situation, we
have 2n types of partial transposes of

Wd1···dn,p =
1

d1 · · · dn
Gd1···dn,pG

∗
d1···dn,p ∈ Md1(C)⊗ · · · ⊗Mdn(C), (1.4)

given by
W σ

d1···dn,p = (T σ1
d1

⊗ · · · ⊗ T σn
dn

)(Wd1···dn,p), (1.5)
where σ = (σ1, σ2, · · · , σn) is an arbitrary element of {0, 1}n. This paper
focuses on two research questions for these partial transposes W σ

d1···dn,p. The
first main question is as follows.

Question 1. Is the family
{
W σ

d1···dn,p
}
σ∈{0,1}n of partial transposes asymp-

totically free in the general n-partite situation assuming lim dj = ∞ for
all j = 1, 2, · · · , n with lim p

d1···dn = c ∈ (0,∞)? What about almost sure
asymptotic freeness?

Note that a partial positive answer to the above Question 1 can be ob-
tained from a recent paper [MP22]. Indeed, [MP22, Corollary 4.15] pro-
vides an asymptotically free family consisting of 2n partial transposes out
of 2n choices. We establish the positive answer with full generality to this
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problem in Theorem 2.5 where we prove almost sure asymptotic freeness
for the whole family of partial transposes

{
W σ

d1···dn,p
}
σ∈{0,1}n . Then, an im-

portant advantage of this shift to the multipartite setting is that we have a
limitless number of asymptotically free partial transposes W σ

d1···dn,p, so it
becomes possible to discuss the following problem.

Question 2. If the partial transposes are asymptotically free, then is it pos-
sible to establish a natural analogue of the central limit theorem?

To do this, in Section 3, we denote by d = (d1, d2, · · · , dn), regard p =
p(d) and n = n(d) as functions of d, and consider the following averages
after centering

sd =
1

|Bd|
1
2

∑
σ∈Bd

(
W σ

d,p − c · Idd

)
(1.6)

for certain subsets Bd ⊆ {0, 1}n with lim |Bd| = ∞. Then, we prove that
(sd)d converges in moments to the semicircular element of the mean 0 and
the variance c, i.e.

lim(E⊗ tr)(smd ) =
∫
[−2c,2c]

tm

2πc2

√
4c2 − t2dt (1.7)

if lim |Bd|m
(

1
µ(d)

+
∣∣∣ p
d1d2···dn − c

∣∣∣) = 0 for all natural numbers m (Theo-
rem 3.6), where µ(d) = min

1≤j≤n
dj .

2. ASYMPTOTIC FREENESS OF PARTIAL TRANSPOSES

Let us begin with generalizing some notations and terminologies in [MP19]
to the multipartite setting. Let p and d1, d2, · · · , dn be natural numbers with
n ≥ 2, and let

G = Gd1d2,···dn,p (2.1)
be a d1d2 · · · dn × p random matrix whose entries are independent complex
Gaussian random variables with mean 0 and variance 1. We denote by
[d] = {1, 2, · · · , d} for any natural number d, and [d1d2 · · · dn] = [d1] ×
[d2]× · · · × [dn] for simplicity. Using a canonical linear isomorphism

Md1d2···dn,p(C) ∼= Cd1d2···dn−1 ⊗Mdn,p(C), (2.2)

let us write G =
∑

i∈[d1d2···dn−1]

ei⊗Gi and Gi =
dn∑
x=1

p∑
y=1

g(i)x,yex,y ∈ Mdn,p(C).

Then the Wishart matrix W = 1
d1···dnGG∗ ∈ Md1d2···dn(C) is given by

1

d1 · · · dn

∑
i,j∈[d1d2···dn−1]

ei1,j1 ⊗ ei2,j2 ⊗ · · · ⊗ ein−1,jn−1 ⊗GiG
∗
j . (2.3)
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Note that we should consider 2n-types of partial transpositions of W in
the n-partite situation. For any σ = (σ1, σ2, · · · , σn) ∈ {0, 1}n, we define
the associated partial transposition

W σ = (T σ1
1 ⊗ T σ2

2 ⊗ · · · ⊗ T σn
n ) (W ) ∈ Md1d2···dn(C) (2.4)

where Ti is the transpose operator on each Mdi(C).
To compute (non-commutative) joint moments of the partial transposes,

let us consider a Z2-valued m × n matrix ϵ = (ϵij)i∈[m],j∈[n]. Then there
exist m rows sequences ϵi = (ϵij)

n
j=1 ∈ {0, 1}n and their associated partial

transposes are given by

W ϵ1 ,W ϵ2 , · · · ,W ϵm . (2.5)

2.1. Joint moments of partial transposes. In this section, we discuss the
k-th moments E(Xk

ϵ ) of the following random variable

Xϵ = tr(W ϵ1W ϵ2 · · ·W ϵm) =
1

d1d2 · · · dn
Tr(W ϵ1W ϵ2 · · ·W ϵm). (2.6)

Here, tr = 1
d
Tr is the normalized trace on Md(C) and ϵ = (ϵij)i∈[m],j∈[n] is a

Z2-valued m× n matrix with ϵi = (ϵij)
n
j=1 ∈ {0, 1}n. It is unclear whether

Xϵ is a real-valued random variable for now, but it will be explained later in
Appendix A.

Recall that [MP19, Theorem 3.7] covers the case (n, k) = (2, 1), and our
focus is about the general cases of (n, k). For any natural numbers k and
m, let us introduce some elementary permutations on

[±km] = [km] ∪ [−km] = {1, 2, · · · , km} ∪ {−1,−2, · · · ,−km} (2.7)

as follows. Recall that the following permutations

∆ = (1,−1) ◦ (2,−2) ◦ · · · ◦ (m,−m) (2.8)

Γ = (1, 2, · · · ,m) (2.9)

on [±m] were introduced in [MP19] to prove asymptotic freeness of partial
transposes in the bipartite situation. We define their natural extensions ∆(k)

and Γ(k) on [±km] ∼= [k]× [±m] as the product maps

∆(k) =idk ×∆, (2.10)

Γ(k) =idk × Γ. (2.11)

Then, it is immediate to see that their cycle decompositions on [±km] are
given by

∆(k) =(1,−1) ◦ (2,−2) ◦ · · · ◦ (km,−km), (2.12)

Γ(k) =(1, · · · ,m)(m+ 1, · · · , 2m) · · · ((k − 1)m+ 1, · · · , km). (2.13)



A CENTRAL LIMIT THEOREM FOR PARTIAL TRANSPOSES 5

While the m row sequences ϵ1, · · · , ϵm of (ϵij)i∈[m],j∈[n] were used to
describe multiple partial transposes W ϵ1 ,W ϵ2 , · · · ,W ϵm , let us use the j-th
column ϵ′j = (ϵij)i∈[m] ∈ {0, 1}m to define a permutation Ej on [±m] by

Ej(x) =
{

x if ϵ|x|j = 0
−x if ϵ|x|j = 1

. (2.14)

Additionally, Ej extends to a permutation

E (k)
j = idk × Ej : [k]× [±m] → [k]× [±m] (2.15)

given by E (k)
j (s, s′) = (s, Ej(s′)).

Now, we are ready to provide an explicit formula for the following k-th
moments

E
(
Xk

ϵ

)
= E

(
[tr(W ϵ1W ϵ2 · · ·W ϵm)]k

)
, (2.16)

generalizing [MP19, Theorem 3.7] with full generality under the following
notations.

Notation 2.1. Note that any permutation σ ∈ Sm is associated to a partition
π of [m] using the cyclic decomposition of σ. We denote by ♯(σ) the number
of blocks of π, and denote by π ∨ π′ the supremum of two partitions π and
π′. When we regard σ ∈ Sm as a permutation on [±m], the extension is
considered the identity function on [−m] = {−m, · · · ,−1}.

Our proof for the following theorem is systematic but requires heavy use
of notations, so let us present the proof separately in Appendix A.

Theorem 2.2. Let ϵ = (ϵij)i∈[m],j∈[n] be a Z2-valued m × n matrix with
ϵi = (ϵij)

n
j=1 ∈ {0, 1}n for all i ∈ [m], and let Xϵ = tr(W ϵ1W ϵ2 · · ·W ϵm).

Then, for any natural number k, we have

E(Xk
ϵ ) =

∑
σ∈Skm

(
p

d1 · · · dn

)♯(σ) n∏
j=1

d
fk,j(ϵ,σ)
j , (2.17)

where the exponent fk,j(ϵ, σ) is given by

♯(E (k)
j Γ(k)∆(k)(Γ(k))−1E (k)

j ∨ σ∆(k)σ−1) + ♯(σ)− k(m+ 1) (2.18)

for all σ ∈ Skm and j ∈ [n].

Recall that we have

2 · ♯(π1 ∨ π2) = ♯(π1 ◦ π2) (2.19)

for any pairings π1, π2 ∈ P2(n) by [MP13, Lemma 2], and both the permu-
tations E (k)

j Γ(k)∆(k)(Γ(k))−1E (k)
j and σ∆(k)σ−1 are indeed pairings. Thus,
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our main focus from now is to analyze

2 · ♯(E (k)
j Γ(k)∆(k)(Γ(k))−1E (k)

j ∨ σ∆(k)σ−1) (2.20)

= ♯(E (k)
j Γ(k)∆(k)(Γ(k))−1E (k)

j σ∆(k)σ−1) (2.21)

= ♯(Γ(k)∆(k)(Γ(k))−1∆(k)E (k)
j ∆(k)σ∆(k)σ−1E (k)

j ). (2.22)

2.2. Almost sure asymptotic freeness in the multipartite setting. To es-
tablish the almost sure asymptotic freeness, our main technical question is
how to compute the exponents fk,j(ϵ, σ). Let us write fj = f1,j for simplic-
ity if there is no possibility of confusion. Recall that the case (n, k) = (2, 1)
was studied in [MP19] for the bipartite situation. To consider the general
cases of (n, k), it is necessary to develop a new framework to study the
general situation k ≥ 2.

Let us consider the following family of sets

Ak := {A1, A2, · · · , Ak}, (2.23)

for general k, where Aj = [jm] \ [(j − 1)m] = {(j − 1)m+ 1, · · · , jm}.
We also denote by ⟨Ak⟩ := {∪A∈SA : S ⊆ Ak}. Then the main theorem of
this section is stated as follows.

Theorem 2.3. Let σ ∈ Skm and let ϵ = (ϵij)i∈[m],j∈[n] be a Z2-valued m×n
matrix.

(1) Assume that k ≥ 2 and there exist non-empty disjoint subsets C1 ∈
⟨Ak⟩ and C2 ∈ ⟨Ak⟩ such that σ(C1) = C1, σ(C2) = C2 and
[km] = C1 ∪ C2. Let |C1| = k1m and |C2| = k2m and consider
bijective increasing functions c1 : [k1m] → C1 and c2 : [k2m] →
C2. Then we have

♯
(
E (k)
j Γ(k)∆(k)(Γ(k))−1E (k)

j ∨ σ∆(k)σ−1
)

(2.24)

=
∑
i=1,2

♯
(
E (ki)
j Γ(ki)∆(ki)(Γ(ki))−1E (ki)

j ∨ (c−1
i σci)∆

(ki)(c−1
i σci)

−1
)

(2.25)

for all j ∈ [n]. In particular, we have

fk,j(ϵ, σ) = fk1,j(ϵ, c
−1
1 σc1) + fk2,j(ϵ, c

−1
2 σc2). (2.26)

(2) Assume that k ≥ 2 and there are no non-empty disjoint subsets
C1 ∈ ⟨Ak⟩ and C2 ∈ ⟨Ak⟩ such that σ(C1) = C1, σ(C2) = C2 and
[km] = C1 ∪ C2. Then we have

fk,j(ϵ, σ) ≤ 2− 2k ≤ −2 (2.27)

for all j ∈ [n].
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A proof of the above Theorem 2.3 will be presented in the next subsec-
tion 2.3. In this section, let us focus on how this result is applied to prove
almost sure asymptotic freeness of the partial transposes {W σ}σ∈{0,1}n . To
proceed, let us recall an important lemma from [MP19]. For a function
x : [m] → Y , let us denote by

ker(x) = {x−1(t) : t ∈ Y }\{∅}. (2.28)

Lemma 2.4. Let σ ∈ Sm and let ϵ = (ϵij)i∈[m],j∈[n] be a Z2-valued m × n
matrix with ϵ′j = (ϵij)i∈[m] ∈ {0, 1}m.

(1) Then fj(ϵ, σ) = f1,j(ϵ, σ) < 0 holds unless ϵ′j is constant on the
cycles of σ.

(2) If ϵ′j is constant on the cycles of σ, then fj(ϵ, σ) ≤ 0 with equality
holds precisely when the associated partition of σ is non-crossing.

In particular, if fj(ϵ, σ) ≡ 0 for all j ∈ [n] and if π is the associated
partition of σ, then ker(ϵ) ≥ π holds, i.e. each block of π is contained in a
block of ker(ϵ).

Then, applying Theorem 2.3 with Lemma 2.4, we reach the following
almost sure asymptotic freeness for the general cases of (n, k).

Theorem 2.5. Suppose that lim dj = ∞ for all j ∈ [n] with the condition
lim

p

d1 · · · dn
= c ∈ (0,∞). Then the family {W σ}σ∈{0,1}n of the partial

transposes is almost surely asymptotically free.

Proof. As the first step, let us prove asymptotic freeness by showing that
all the mixed cumulants vanish as in [MP19]. Recall that the joint moment
(E⊗ tr)(W ϵ1W ϵ2 · · ·W ϵm) is given by

∑
σ∈Sm

(
p

d1 · · · dn

)♯(σ) n∏
j=1

d
fj(ϵ,σ)
j (2.29)

for any Z2-valued m × n matrix ϵ = (ϵij)i∈[m],j∈[n] by Theorem 2.2. Fur-
thermore, Lemma 2.4 tells us that

lim

[(
p

d1 · · · dn

)♯(σ) n∏
j=1

d
fj(ϵ,σ)
j

]
= c♯(σ) · 0 = 0 (2.30)

if the associated partition of σ ∈ Sm is crossing, so it is enough to consider
only the cases where the associated partitions are non-crossing in (2.29).
Let us denote by NC(m) the set of all non-crossing partitions on [m] and
by S(m,π) the set of all permutations σ ∈ Sm whose associated partition
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is π. Then we have

lim(E⊗ tr)(W ϵ1W ϵ2 · · ·W ϵm) (2.31)

=
∑

π∈NC(m)

c♯(π)
∑

σ∈S(m,π)

lim
n∏

j=1

d
fj(ϵ,σ)
j , (2.32)

and Lemma 2.4 implies

lim
n∏

j=1

d
fj(ϵ,σ)
j =

{
1 if ker(ϵ) ≥ π
0 otherwise (2.33)

for all σ ∈ S(m,π) where we regard i 7→ ϵi as a function from [m] into
{0, 1}n. Let V1, V2, · · · , Vr be the disjoint block decomposition of π ∈
NC(m), and write

δT (W
ϵ1 ,W ϵ2 , · · · ,W ϵm) =

{
1 if ϵt1 = ϵt2 = · · · = ϵtl
0 otherwise . (2.34)

for any subset T = {t1, t2, · · · , tl} ⊆ [m] with t1 < t2 < · · · < tl. Then
(2.32) can be written as∑

π∈NC(m)

r∏
i=1

c · (|Vi| − 1)! · δVi
(W ϵ1 ,W ϵ2 , · · · ,W ϵm). (2.35)

A crucial step here is to note that
r∏

i=1

c · (|Vi| − 1)! · δVi
(W ϵ1 ,W ϵ2 , · · · ,W ϵm) (2.36)

coincides with namely the free cumulant

κπ(W
ϵ1 ,W ϵ2 , · · · ,W ϵm) =

r∏
i=1

κVi
(W ϵ1 ,W ϵ2 , · · · ,W ϵm). (2.37)

Thus, the above (2.34) tells us that all mixed cumulants vanish, and this fact
allows us to conclude that the given family {W σ} is asymptotically free by
[MS17, Theorem 16] or [NS06, Theorem 11.20].

Now, our second step is to prove

Var(Xϵ) = O(d−2
1 · · · d−2

n ) (2.38)

to establish almost sure asymptotic freeness. Note that the following iden-
tity

E(Xϵ)
2 =

∑
σ∈S2m

σ([m])=[m]

(
p

d1 · · · dn

)♯(σ) n∏
j=1

d
f2,j(ϵ,σ)
j (2.39)
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is a direct consequence from Theorem 2.3 (1). Indeed, for any σ ∈ S2m

such that σ([m]) = [m] and j ∈ [n], we have

♯(E (2)
j Γ(2)∆(2)(Γ(2))−1E (2)

j ∨ σ∆(2)σ−1)

=
∑
i=1,2

♯(EjΓ∆Γ−1Ej ∨ (c−1
i σci)∆(c−1

i σci)
−1) (2.40)

and f2,j(ϵ, σ) = f1,j(ϵ, c
−1
1 σc1) + f1,j(ϵ, c

−1
2 σc2) by Theorem 2.3 (1). Here,

c1 : [m] → [m] is the identity map and c2 : [m] → [2m]\[m] is given by
c2(i) = m + i. Furthermore, since {σ ∈ S2m : σ([m]) = [m]} is naturally
identified with Sm × Sm via σ 7→ (c−1

1 σc1, c
−1
2 σc2), we can see that∑

σ∈S2m

σ([m])=[m]

(
p

d1 · · · dn

)♯(σ) n∏
j=1

d
f2,j(ϵ,σ)
j (2.41)

=
∑

σ∈S2m

σ([m])=[m]

(
p

d1 · · · dn

)♯(c−1
1 σc1)+♯(c−1

2 σc2) n∏
j=1

d
f1,j(ϵ,c

−1
1 σc1)+f1,j(ϵ,c

−1
2 σc2)

j

(2.42)

=
∑

τ1,τ2∈Sm

(
p

d1 · · · dn

)♯(τ1)+♯(τ2) n∏
j1=1

d
f1,j1 (ϵ,τ1)

j1

n∏
j2=1

d
f1,j2 (ϵ,τ2)

j2
= E(Xϵ)

2.

(2.43)

Then Theorem 2.2 and Theorem 2.3 (2) tell us that

Var(Xϵ) = E(X2
ϵ )− E(Xϵ)

2 (2.44)

=
∑

σ∈S2m

σ([m]) ̸=[m]

(
p

d1 · · · dn

)♯(σ) n∏
j=1

d
f2,j(ϵ,σ)
j (2.45)

with f2,j(ϵ, σ) ≤ −2 for all j ∈ [n]. Finally, since ( p
d1d2···dn )n∈N has a

uniform upper bound M > 1 from the assumption, we can conclude that

Var(Xϵ) ≤ (2m)!M2m(d1d2 · · · dn)−2. (2.46)

□

2.3. Proof of Theorem 2.3. Let σ ∈ Skm and let ϵ = (ϵij)i∈[m],j∈[n] be
a Z2-valued m × n matrix. Let us begin with a proof of the first part of
Theorem 2.3.

Theorem 2.3 (1). Let σ ∈ Skm with k ≥ 2 and suppose that there exist non-
empty disjoint subsets C1 ∈ ⟨Ak⟩ and C2 ∈ ⟨Ak⟩ such that σ(C1) = C1,
σ(C2) = C2 and [km] = C1 ∪ C2. Let |C1| = k1m and |C2| = k2m and
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consider bijective increasing functions c1 : [k1m] → C1 and c2 : [k2m] →
C2. Then we have

♯
(
E (k)
j Γ(k)∆(k)(Γ(k))−1E (k)

j ∨ σ∆(k)σ−1
)

(2.47)

=
∑
i=1,2

♯
(
E (ki)
j Γ(ki)∆(ki)(Γ(ki))−1E (ki)

j ∨ (c−1
i σci)∆

(ki)(c−1
i σci)

−1
)

(2.48)

for all j ∈ [n]. In particular, we have

fk,j(ϵ, σ) = fk1,j(ϵ, c
−1
1 σc1) + fk2,j(ϵ, c

−1
2 σc2) (2.49)

for all j ∈ [n].

Proof. Note that we have

2 · ♯(E (k)
j Γ(k)∆(k)(Γ(k))−1E (k)

j ∨ σ∆(k)σ−1) (2.50)

= ♯(E (k)
j Γ(k)∆(k)(Γ(k))−1E (k)

j σ∆(k)σ−1) (2.51)

for all j ∈ [n] thanks to (2.19), and the given condition σ(C1) = C1 and
σ(C2) = C2 implies(

E (k)
j Γ(k)∆(k)(Γ(k))−1E (k)

j σ∆(k)σ−1
)
(Ci ∪ (−Ci)) = Ci ∪ (−Ci) (2.52)

for both cases i = 1 and i = 2. Thus, we reach the following conclusion

2 · ♯(E (k)
j Γ(k)∆(k)(Γ(k))−1E (k)

j ∨ σ∆(k)σ−1) (2.53)

= ♯(E (k)
j Γ(k)∆(k)(Γ(k))−1E (k)

j σ∆(k)σ−1) (2.54)

=
∑
i=1,2

♯
(
E (k)
j Γ(k)∆(k)(Γ(k))−1E (k)

j σ∆(k)σ−1|Ci∪(−Ci)

)
(2.55)

=
∑
i=1,2

♯(E (ki)
j Γ(ki)∆(ki)(Γ(ki))−1E (ki)

j (c−1
i σci)∆

(ki)(c−1
i σci)

−1). (2.56)

Additionally, the last conclusion is immediate since ♯(σ) = ♯(c−1
1 σc1) +

♯(c−1
2 σc2) and k(m+ 1) = k1(m+ 1) + k2(m+ 1). □

From now on, let us suppose that k ≥ 2 and there do not exist non-empty
disjoint C1 ∈ ⟨Ak⟩ and C2 ∈ ⟨Ak⟩ such that σ(C1) = C1, σ(C2) = C2

and [km] = C1 ∪ C2. In this case, we can construct a sequence of elements
(xi)i∈[k−1] and a bijective function τ : [k] → [k] such that

• xi ∈ Aτ(1) ∪ · · · ∪ Aτ(i) for all i ∈ [k − 1],
• σ(xi) ∈ Aτ(i+1) for all i ∈ [k − 1].

For two disjoint subsets S and T of [±km], let us write S ∼ϕ T if there
exists an element x ∈ S such that ϕ(x) ∈ T or an element y ∈ T such that
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ϕ(y) ∈ S by a bijective function ϕ on [±km]. Note that ∼ϕ is a symmetric
relation.

Lemma 2.6. From the above notations, there exist subsets Vj,1, Vj,2, · · · , Vj,k

of [±km] such that
• Vj,i is one of Aτ(i) and −Aτ(i) for all i ∈ [k],
•
⋃
t∈[i]

Vj,t ∼ Vj,i+1 for all i ∈ [k − 1] by E (k)
j ∆(k)σ∆(k)σ−1E (k)

j .

Proof. Let us use the above sequence x1, x2, · · · , xk−1 to construct the sub-
sets Vj,1, Vj,2, · · · , Vj,k. Let us start with Vj,1 = Aτ(1). Then, the following
table of direct calculations tells us how to decide Vj,i+1 from Vj,1, · · · , Vj,i.

(1) E (k)
j :

xi 7→ xi

σ(xi) 7→ σ(xi)
⇒ E (k)

j ∆(k)σ∆(k)σ−1E (k)
j :

σ(xi) 7→ xi

−xi 7→ −σ(xi)

(2) E (k)
j :

xi 7→ xi

σ(xi) 7→ −σ(xi)
⇒ E (k)

j ∆(k)σ∆(k)σ−1E (k)
j :

−σ(xi) 7→ xi

−xi 7→ σ(xi)

(3) E (k)
j :

xi 7→ −xi

σ(xi) 7→ σ(xi)
⇒ E (k)

j ∆(k)σ∆(k)σ−1E (k)
j :

xi 7→ −σ(xi)
σ(xi) 7→ −xi

(4) E (k)
j :

xi 7→ −xi

σ(xi) 7→ −σ(xi)
⇒ E (k)

j ∆(k)σ∆(k)σ−1E (k)
j :

xi 7→ σ(xi)
−σ(xi) 7→ −xi

Indeed, if xi ∈ Aτ(i) and Vj,i = Aτ(i) (resp. Vj,i = −Aτ(i)), then we take
Vj,i+1 = Aτ(i+1) (resp. Vj,i+1 = −Aτ(i+1)) in the first or the fourth cases
and take Vj,i+1 = −Aτ(i+1) (resp. Vj,i+1 = Aτ(i+1)) in the second or the
third cases. □

Under the notations above, let us denote by Wj,i = −Vj,i, Vj =
⋃

i∈[k] Vj,i

and Wj =
⋃

i∈[k] Wj,i. Then we are ready to prove the second part of The-
orem 2.3. Our strategy is to adapt the proof of [MP19, Lemma 4.3] and to
divide the general situation into the case where Vj ∼ Wj and the other case
where Vj ≁ Wj by E (k)

j ∆(k)σ∆(k)σ−1E (k)
j .

Theorem 2.3 (2). Suppose that k ≥ 2 and there do not exist non-empty
disjoint C1 ∈ ⟨Ak⟩ and C2 ∈ ⟨Ak⟩ such that σ(C1) = C1, σ(C2) = C2 and
[km] = C1 ∪ C2. Then we have

fk,j(ϵ, σ) ≤ 2− 2k ≤ −2 (2.57)

for any Z2-valued m× n matrices ϵ = (ϵij)i∈[m],j∈[n].

Proof. (Case 1: Vj ∼ Wj by E (k)
j ∆(k)σ∆(k)σ−1E (k)

j ) In this case, the sub-
group generated by E (k)

j ∆(k)σ∆(k)σ−1E (k)
j and Γ(k)∆(k)(Γ(k))−1∆(k) acts on



12 GYUNAM PARK AND SANG-GYUN YOUN

[±km] transitively by Lemma 2.6 and the given assumption, so there exists
a non-negative integer g satisfying

2km+ 2(1− g)

= ♯(E(k)
j ∆(k)σ∆(k)σ−1E(k)

j ) + ♯(E(k)
j ∆(k)σ∆(k)σ−1E(k)

j Γ(k)∆(k)(Γ(k))−1∆(k))

ttttttttttttttttttttttttttttttttttttttttttttt+ ♯(Γ(k)∆(k)(Γ(k))−1∆(k)) (2.58)

= 2♯(σ) + ♯(E(k)
j ∆(k)σ∆(k)σ−1E(k)

j Γ(k)∆(k)(Γ(k))−1∆(k)) + 2k. (2.59)

See [MS17] for more details about the existence of g, and the second equal-
ity comes from direct calculations. Then we have

2 · ♯(E (k)
j Γ(k)∆(k)(Γ(k))−1E (k)

j ∨ σ∆(k)σ−1) (2.60)

= ♯(E (k)
j Γ(k)∆(k)(Γ(k))−1E (k)

j σ∆(k)σ−1) (2.61)

= ♯(Γ(k)∆(k)(Γ(k))−1E (k)
j σ∆(k)σ−1E (k)

j ) (2.62)

= ♯(Γ(k)∆(k)(Γ(k))−1∆(k)E (k)
j ∆(k)σ∆(k)σ−1E (k)

j ) (2.63)

= ♯(E (k)
j ∆(k)σ∆(k)σ−1E (k)

j Γ(k)∆(k)(Γ(k))−1∆(k)) (2.64)

= 2km+ 2(1− k − g)− 2♯(σ), (2.65)

where we used E (k)
j ∆(k) = ∆(k)E (k)

j at the third equality. Thus, we obtain

fk,j(ϵ, σ) = ♯(E (k)
j Γ(k)∆(k)(Γ(k))−1E (k)

j ∨ σ∆(k)σ−1) + ♯(σ)− k(m+ 1)

= (km+ (1− k − g)− ♯(σ)) + ♯(σ)− k(m+ 1) (2.66)
= 1− 2k − g ≤ 1− 2k ≤ 2− 2k. (2.67)

(Case 2: Vj ≁ Wj by E (k)
j ∆(k)σ∆(k)σ−1E (k)

j ) In this case, we have

E (k)
j ∆(k)σ∆(k)σ−1E (k)

j (Vj) = Vj (2.68)

and the subgroup generated by τ1,Vj
= E (k)

j ∆(k)σ∆(k)σ−1E (k)
j

∣∣∣
Vj

and τ2,Vj
=

Γ(k)∆(k)(Γ(k))−1∆(k)
∣∣∣
Vj

acts on Vj transitively by Lemma 2.6. As in the

case Vj ∼ Wj , there exists a non-negative integer g satisfying

km+ 2(1− g) = ♯(τ1,Vj
) + ♯(τ1,Vj

◦ τ2,Vj
) + ♯(τ2,Vj

) (2.69)

= ♯(τ1,Vj
) + ♯(τ1,Vj

◦ τ2,Vj
) + k, (2.70)

implying

♯(τ1,Vj
◦ τ2,Vj

) = km+ 2− k − 2g − ♯(τ1,Vj
). (2.71)
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On the other side, we define τ1,Wj
= E (k)

j ∆(k)σ∆(k)σ−1E (k)
j

∣∣∣
Wj

and τ2,Wj
=

Γ(k)∆(k)(Γ(k))−1∆(k)
∣∣∣
Wj

similarly. Then there exists a non-negative integer

g′ satisfying

♯(τ1,Wj
◦ τ2,Wj

) = km+ 2− k − 2g′ − ♯(τ1,Wj
). (2.72)

Thus, we obtain

2 · ♯(E (k)
j Γ(k)∆(k)(Γ(k))−1E (k)

j ∨ σ∆(k)σ−1) (2.73)

= ♯(E (k)
j ∆(k)σ∆(k)σ−1E (k)

j Γ(k)∆(k)(Γ(k))−1∆(k)) (2.74)

= ♯(τ1,Vj
◦ τ2,Vj

) + ♯(τ1,Wj
◦ τ2,Wj

) (2.75)

= 2(km+ 2− k)− 2(g + g′)− ♯(τ1,Vj
)− ♯(τ1,Wj

) (2.76)

= 2(km+ 2− k)− 2(g + g′)− ♯(E (k)
j ∆(k)σ∆(k)σ−1E (k)

j ) (2.77)

= 2(km+ 2− k)− 2(g + g′)− 2♯(σ), (2.78)

which leads us to reach the following conclusion

fk,j(ϵ, σ) =♯(E (k)
j Γ(k)∆(k)(Γ(k))−1E (k)

j ∨ σ∆(k)σ−1) + ♯(σ)− k(m+ 1)

= 2− 2k − (g + g′) ≤ 2− 2k. (2.79)

□

3. A CENTRAL LIMIT THEOREM FOR PARTIAL TRANSPOSES

Let us denote by d = (d1, · · · , dn) and by µ(d) = min
j∈[n]

dj ≥ 2 in this

section. Let p = p(d) and n = n(d) be functions of d. Recall that there
exist partial transposes {W ϵ}ϵ∈{0,1}n ⊆

⊗n
j=1 Mdj(C) of the multipartite

Wishart matrices W = Wd1···dn,p. In this section, the following product

D(ϵ, σ) =
n∏

j=1

d
fj(ϵ,σ)
j . (3.1)

will play a crucial role.
To establish a central limit theorem, we take a family {aϵ}ϵ consisting of

the centered partial transposes

aϵ = W ϵ − c · Id ∈
n⊗

j=1

Mdj(C). (3.2)

The main result of this section is that, if we take subsets Bd ⊆ {0, 1}n(d)

such that lim |Bd|m
(

1

µ(d)
+

∣∣∣∣ p

d1d2 · · · dn
− c

∣∣∣∣) = 0 for all m ∈ N and
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lim |Bd| = ∞, then the following random matrices

sd =
1√
|Bd|

∑
ϵ∈Bd

aϵ (3.3)

converge in moments to the semi-circular element of mean 0 and variance
c. To compute the limit of m-th moments lim(E ⊗ tr)(smd ), we will focus
on the following values

(E⊗ tr) (ax(1)ax(2) · · · ax(m)) (3.4)

where x : [m] → Bd is an arbitrary function. Our basic strategy is to
recover the arguments in [MS17, Section 2.1] with detailed analysis of as-
ymptotic bounds. Let us begin with the following lemma.

Lemma 3.1. For arbitrary functions ϵ : [m] → Bd and ϵ′ : [m] → Bd such
that ker(ϵ) = ker(ϵ′), we have∣∣(E⊗ tr)(aϵ(1) · · · aϵ(m))− (E⊗ tr)(aϵ′(1) · · · aϵ′(m))

∣∣ (3.5)

≤ 2m+1 ·m! · (1 + c)m

µ(d)

m∑
s=0

(
p

d1 · · · dn

)s

. (3.6)

Proof. Let us begin with the following formula

aϵ(1) · · · aϵ(m) (3.7)

= (W ϵ(1) − c · Id) · · · (W ϵ(m) − c · Id) =
∑

E⊆[m]

(−c)m−|E|
∏
t∈E

W ϵ(t),

(3.8)

and write l = |E| for simplicity. Consider ϵ|E as a function from [l] = [|E|]
into Bd. Then, since

(E⊗ tr)

(∏
t∈E

W ϵ(t)

)
=
∑
τ∈Sl

(
p

d1 · · · dn

)♯(τ) n∏
j=1

d
fj(ϵ|E ,τ)
j (3.9)

=
∑
τ∈Sl

(
p

d1 · · · dn

)♯(τ)

D(ϵ|E, τ) (3.10)

for each E ⊆ [m] by Theorem 2.2, we have∣∣(E⊗ tr)(aϵ(1) · · · aϵ(m))− (E⊗ tr)(aϵ′(1) · · · aϵ′(m))
∣∣ (3.11)

=

∣∣∣∣∣∣
∑

E⊆[m]

(−c)m−|E| ·
∑
τ∈Sl

(
p

d1 · · · dn

)♯(τ)

[D(ϵ|E, τ)−D(ϵ′|E, τ)]

∣∣∣∣∣∣ .
(3.12)
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Note that the given condition ker(ϵ) = ker(ϵ′) implies

D(ϵ|E, τ) = 1 ⇐⇒ D(ϵ′|E, τ) = 1. (3.13)

Indeed, any restriction ϵ|E can be considered a function which is of the form

ϵ|E(i) =
∑
z∈Bd

z · χEz(i) (3.14)

for all i ∈ [l] where Ez = (ϵ|E)−1(z) = {i ∈ [l] : ϵ|E(i) = z}. Then the
given assumption D(ϵ|E, τ) = 1 implies that the partition of τ is non-
crossoing by Lemma 2.4 (2), and ϵ|E is constant on each cycle of τ , i.e.
each Ez is a union of cycles of τ by Lemma 2.4 (1). Thus, we can write

ϵ|E(i) =
∑
z∈Bd

z · χEz(i) =
∑
z∈Bd

∑
p

z · χcz,p(i) (3.15)

where Ez =
⋃
p

cz,p and cz,p’s are the disjoint cycles of τ .

On the other hand, ϵ′|E is also written as

ϵ′|E(i) =
∑
w∈Bd

w · χE′
w
(i) (3.16)

where E ′
w = (ϵ′|E)−1(w) = {i ∈ [l] : ϵ′|E(i) = w}, and the given condition

ker(ϵ) = ker(ϵ′) forces E ′
w to be equal to one of Ez, which is a union

of cycles cz,p of τ . Hence, ϵ′|E is a linear combination of characteristic
functions on cycles of τ . In other words, ϵ′|E is constant on each cycle of
τ . This leads us to conclude that D(ϵ′|E, τ) = 1 by Lemma 2.4 since the
partition of τ is non-crossing.

Let us return to (3.11). Using the above conclusion

D(ϵ|E, τ) = 1 ⇔ D(ϵ′|E, τ) = 1, (3.17)

we obtain∣∣(E⊗ tr)(aϵ(1) · · · aϵ(m))− (E⊗ tr)(aϵ′(1) · · · aϵ′(m))
∣∣ (3.18)

≤
∑

E⊆[m]

cm−|E| ·
∑

τ∈Sl:D(ϵ|E ,τ)<1

(
p

d1 · · · dn

)♯(τ)

|D(ϵ|E, τ)−D(ϵ′|E, τ)| .

(3.19)
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Furthermore, since∑
τ∈Sl:D(ϵ|E ,τ)<1

(
p

d1 · · · dn

)♯(τ)

|D(ϵ|E, τ)−D(ϵ′|E, τ)| (3.20)

≤
∑

τ∈Sl:D(ϵ|E ,τ)<1

(
p

d1 · · · dn

)♯(τ)

D(ϵ|E, τ)

ttttttttt+
∑

τ∈Sl:D(ϵ′|E ,τ)<1

(
p

d1 · · · dn

)♯(τ)

D(ϵ′|E, τ) (3.21)

≤ 2 ·
∑

τ∈Sl:D(ϵ|E ,τ)<1

(
p

d1 · · · dn

)♯(τ)

· 1

µ(d)
≤ 2 ·m!

µ(d)

m∑
s=0

(
p

d1 · · · dn

)s

,

(3.22)

we can conclude that∣∣(E⊗ tr)(aϵ(1) · · · aϵ(m))− (E⊗ tr)(aϵ′(1) · · · aϵ′(m))
∣∣ (3.23)

≤
∑

E⊆[m]

cm−|E| · 2 ·m!

µ(d)

m∑
s=0

(
p

d1 · · · dn

)s

(3.24)

≤
∑

E⊆[m]

(1 + c)m · 2 ·m!

µ(d)

m∑
s=0

(
p

d1 · · · dn

)s

(3.25)

≤ 2m+1 ·m! · (1 + c)m

µ(d)

m∑
s=0

(
p

d1 · · · dn

)s

. (3.26)

□

The above Lemma 3.1 allows us to rely on ker(ϵ) whose structure is cat-
egorized into the following four distinct cases:

• (Case A) ker(ϵ) contains a singleton element
• (Case B) ker(ϵ) does not contain a singleton element, and ϵ is not a

pairing.
• (Case C) ker(ϵ) is a pairing and there exists i ∈ [m − 1] such that
{i, i+ 1} ∈ ker(ϵ)

• (Case D) ker(ϵ) is a pairing, and ϵ(i) ̸= ϵ(i+ 1) for all i ∈ [m− 1].

Our strategy is to prove Lemma 3.3, Lemma 3.4, Lemma 3.5 to cover
(Case A), (Case C), (Case D) respectively, and the following technical
Lemma 3.2 plays is an important ingredient to establish Lemma 3.3 and
Lemma 3.4.
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Lemma 3.2. (1) For any τ ∈ Sl, let us denote by τ1 = τ◦(l+1) ∈ Sl+1.
Then we have

♯(EΓ∆Γ−1E ∨ τ∆τ−1) = ♯(E ′
Γ

′
∆

′
(Γ

′
)−1E ′ ∨ τ1∆

′
τ−1
1 ). (3.27)

Here, E , ∆, Γ are acting on [±l], whereas E ′, ∆′, Γ′ are the analo-
gous permutations on [±(l + 1)].

(2) For any τ ∈ Sl, let us denote by τ2 = τ ◦ (l+1, l+2) ∈ Sl+2. Then
we have

♯(EΓ∆Γ−1E ∨ τ∆τ−1) + 1 = ♯(E ′′
Γ

′′
∆

′′
(Γ

′′
)−1E ′′ ∨ τ2∆

′′
τ−1
2 ) (3.28)

if sgn(E ′′(l + 1)) = sgn(E ′′(l + 2)). Here, E ′′,∆′′,Γ′′ are the anal-
ogous permutations on [±(l + 2)].

Proof. (1) First of all, it is straightforward to check the following facts:
(A) τ1∆

′τ−1
1 = τ∆τ−1 ◦ (−(l + 1), l + 1),

(B) (−E(l), E(1)) is one of the disjoint cycles in EΓ∆Γ−1E ,
(C) EΓ∆Γ−1E = E ′

Γ
′
∆

′
(Γ

′
)−1E ′ on [±l] \ {−E(l), E(1)},

(D) (−E ′(l + 1), E(1)) and (E ′(l + 1),−E(l)) are disjoint cycles of
E ′Γ′∆′(Γ′)−1E ′. In particular, we have

EΓ∆Γ−1E = E ′Γ′∆′(Γ′)−1E ′ ◦ τ1∆′τ−1
1 ◦ E ′Γ′∆′(Γ′)−1E ′. (3.29)

on {−E(l), E(1)}.
Let us suppose that {B1, B2, · · · , BN} is the disjoint decomposition of

blocks of EΓ∆Γ−1E ∨ τ∆τ−1, and we may assume that

B1 = {E(1),−E(l)} ∪ T ⊆ [±l] (3.30)

since (B) implies −E(l) ∼ E(1) by EΓ∆Γ−1E . Here, we may assume that
T is disjoint from {E(1),−E(l)}.

On the other hand, we now claim that

{B1 ∪ {±E ′
(l + 1)}} ∪ {B2, · · · , BN} (3.31)

is the disjoint decomposition of blocks of E ′
Γ

′
∆

′
(Γ

′
)−1E ′ ∨ τ1∆

′
τ−1
1 . In-

deed, (A) and (C) explain why B2, · · · , BN are the disjoint blocks, so the
only remaining part is to prove that

B1 ∪ {±E ′
(l + 1)} = {E(1),−E(l)} ∪ {±E ′

(l + 1)} ∪ T (3.32)

is a disjoint block of E ′
Γ

′
∆

′
(Γ

′
)−1E ′ ∨ τ1∆

′
τ−1
1 . Firstly, let us prove that

any elements x, x′ in T are connected by E ′
Γ

′
∆

′
(Γ

′
)−1E ′ and τ1∆

′
τ−1
1 . Our

assumption provides a sequence (xi)
t
i=0 such that x0 = x ∈ T , xt = x′ ∈ T

and xi = (EΓ∆Γ−1E)(xi−1) or xi = (τ∆τ−1)(xi−1) for each i ∈ [t]. If
(xi)

t
i=0 ⊆ T , then all the actions of EΓ∆Γ−1E and τ∆τ−1 coincide with

the actions of E ′Γ′∆′(Γ′)−1E ′ and τ1∆
′τ−1
1 by (A) and (C), so the conclu-

sion follows immediately. Now, if we suppose that xi = (τ∆τ−1)(xi−1) ∈
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{E(1),−E(l)} at the i-th step, then we may assume that the next two ele-
ments are given by

xi+1 = (EΓ∆Γ−1E)(xi) ∈ {E(1),−E(l)} ,
xi+2 = (τ∆τ−1)(xi+1) ∈ T.

(3.33)

Furthermore, the action EΓ∆Γ−1E at the (i+ 1)-th step can be replaced by

E ′Γ′∆′(Γ′)−1E ′ ◦ τ1∆′τ−1
1 ◦ E ′Γ′∆′(Γ′)−1E ′ (3.34)

as noted in (D), and the action τ∆τ−1 coincides with τ1∆
′τ−1
1 by (A). Thus,

we can conclude that x0 = x and xt = x′ are connected by the pairings
E ′Γ′∆′(Γ′)−1E ′ and τ1∆

′τ−1
1 . For example, if xi = −E(l), then the orig-

inal sequence · · · , xi−1, xi, xi+1, xi+2, · · · corresponds to the blue-green-
blue paths, and the green path from xi to xi+1 is replaced by the three red
paths in the following figure:

Furthermore, (A) and (D) tell us that all elements of {E(1),−E(l)} ∪
{±E ′(l + 1)} are connected by E ′

Γ
′
∆

′
(Γ

′
)−1E ′ and τ1∆

′
τ−1
1 . Lastly, if we

assume there is no element of T connected to {E(1),−E(l)}∪{±E ′(l + 1)},
then it implies that T is one of the disjoint blocks of EΓ∆Γ−1E ∨ τ∆τ−1,
which contradicts to the fact that T is a strict subset of B1.

(2) In this case, it is straightforward to check the following facts

(A) τ2∆
′′τ−1

2 = τ∆τ−1 ◦ (−(l + 2), l + 1) ◦ (−(l + 1), l + 2),
(B) (−E(l), E(1)) is one of the disjoint cycles in EΓ∆Γ−1E ,
(C) EΓ∆Γ−1E = E ′′

Γ
′′
∆

′′
(Γ

′′
)−1E ′′ on [±l] \ {−E(l), E(1)},

(D) (E(1),−E ′′(l+2)), (E ′′(l+1),−E(l)) are cycles of E ′′
Γ

′′
∆

′′
(Γ

′′
)−1E ′′ ,

and (−E ′′(l+2), E ′′(l+1)) is a cycle of τ2∆′′τ−1
2 . In particular, we

have

EΓ∆Γ−1E = E ′′
Γ

′′
∆

′′
(Γ

′′
)−1E ′′ ◦ τ2∆

′′
τ−1
2 ◦ E ′′

Γ
′′
∆

′′
(Γ

′′
)−1E ′′

(3.35)

on {E(1),−E(l)}.
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As in the proof of (1), let us suppose that {B1, B2, · · · , BN} is the dis-
joint block decomposition of EΓ∆Γ−1E ∨ τ∆τ−1, and we may assume that

B1 = {E(1),−E(l)} ∪ T ⊆ [±l] (3.36)

and T is disjoint from {E(1),−E(l)} since (B) implies −E(l) ∼ E(1) by
EΓ∆Γ−1E .

From now on, we will claim that there exist precisely N + 1 disjoint
blocks of E ′′

Γ
′′
∆

′′
(Γ

′′
)−1E ′′ ∨ τ2∆

′′
τ−1
2 . Indeed, (A) and (C) imply that

B2, B3, · · · , BN are N − 1 disjoint blocks and it is immediate to check that
(E ′′(l + 2),−E ′′(l + 1)) is a cycle of both E ′′

Γ
′′
∆

′′
(Γ

′′
)−1E ′′ and τ2∆

′′
τ−1
2 .

Thus, the only remaining part is to prove that all elements in

B1 ∪ {E ′′(l + 1),−E ′′(l + 2)} (3.37)

= T ∪ {E(1),−E(l)} ∪ {E ′′(l + 1),−E ′′(l + 2)} (3.38)

are connected by E ′′
Γ

′′
∆

′′
(Γ

′′
)−1E ′′ and τ2∆

′′
τ−1
2 . Firstly, all elements in

T are connected by (A), (C), (D), and all elements in {E(1),−E ′′(l + 2)} ∪
{E ′′(l + 1),−E(l)} are also connected by E ′′

Γ
′′
∆

′′
(Γ

′′
)−1E ′′ and τ2∆

′′
τ−1
2

thanks to (D) as in the proof of (1). Then, if we assume that there is no
element of T connected to

{E(1),−E ′′(l + 2)} ∪ {E ′′(l + 1),−E(l)} , (3.39)

then T should be one of the disjoint blocks of EΓ∆Γ−1E ∨ τ∆τ−1. This
contradicts to the fact that T is a strict subset of B1.

□

Now, let us present an estimate of (E⊗ tr)(aϵ(1) · · · aϵ(m)) for (Case A).

Lemma 3.3. Let ϵ : [m] → Bd be a function and suppose that ker(ϵ)
contains a singleton set. Then we have∣∣(E⊗ tr) (aϵ(1)aϵ(2) · · · aϵ(m))

∣∣
≤ 2m(1 + c)mm!

(
1

µ(d)
+

∣∣∣∣ p

d1d2 · · · dn
− c

∣∣∣∣) m∑
s=0

(
p

d1 · · · dn

)s

.

(3.40)

Proof. We may assume ϵ(i) ̸= ϵ(m) for all i ∈ [m− 1] thanks to the given
assumption and the traciality of E ⊗ tr. Let us begin with the following
formula

aϵ(1) · · · aϵ(m) = (W ϵ(1) − c · Id) · · · (W ϵ(m) − c · Id) (3.41)

=

 ∑
E⊆[m−1]

(−c)(m−1)−|E|
∏
t∈E

W ϵ(t)

 (W ϵ(m) − c · Id), (3.42)
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and write l = |E| for simplicity. Note that

(E⊗ tr)

([∏
t∈E

W ϵ(t)

]
·W ϵ(m)

)
=
∑

σ∈Sl+1

(
p

d1 · · · dn

)♯(σ)

D(ϵ|E∪{m}, σ)

(3.43)

(E⊗ tr)

(∏
t∈E

W ϵ(t)

)
=
∑
τ∈Sl

(
p

d1 · · · dn

)♯(τ)

D(ϵ|E, τ) (3.44)

for each E ⊆ [m − 1] by Theorem 2.2. Now, let us understand σ ∈ Sl+1

as a permutation acting on [l + 1] ∼= E ∪ {m}. Then the image of the map
τ 7→ τ1 = τ ◦ (l + 1) consists of the permutations σ ∈ Sl+1 satisfying
σ(l + 1) = l + 1. Furthermore, Lemma 3.2 provides the following identity

fj(ϵ|E∪{m}, τ1) = ♯(E ′

jΓ
′
∆

′
(Γ

′
)−1E ′

j ∨ τ1∆
′
τ−1
1 ) + ♯(τ1)− (l + 2) (3.45)

= ♯(EjΓ∆Γ−1Ej ∨ τ∆τ−1) + (♯(τ) + 1)− (l + 2) (3.46)

= ♯(EjΓ∆Γ−1Ej ∨ τ∆τ−1) + ♯(τ)− (l + 1) = fj(ϵ|E, τ), (3.47)

and we obtain

(E⊗ tr)

([∏
t∈E

W ϵ(t)

]
(W ϵ(m) − c · Id)

)
(3.48)

=
∑

σ∈Sl+1:

σ(l+1)̸=l+1

(
p

d1 · · · dn

)♯(σ)

D(ϵ|E∪{m}, σ) (3.49)

tttttt+
∑
τ∈Sl

(
p

d1 · · · dn
− c

)(
p

d1 · · · dn

)♯(τ)

D(ϵ|E, τ). (3.50)

In particular, for σ ∈ Sl+1 with σ(l + 1) ̸= l + 1, the given assumption
{m} ∈ ker(ϵ) implies that ϵ(t) ̸= ϵ(m) for any t ∈ E ⊆ [m− 1], i.e. there
exists j ∈ [n] such that ϵ(t)j ̸= ϵ(m)j . This means that [ϵ|E∪{m}(·)]j is not
constant on the cycle containing l + 1, so we should have fj(ϵ|E∪{m}, σ) ≤
−1 for some j and D(ϵ|E∪{m}, σ) ≤ µ(d)−1 by Lemma 2.4 (1). Then,
combining all the discussions above with the standard triangle inequality,
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we obtain

∣∣∣∣∣(E⊗ tr)

([∏
t∈E

W ϵ(t)

]
(W ϵ(m) − c · Id)

)∣∣∣∣∣ (3.51)

≤ m!
m∑
s=0

(
p

d1 · · · dn

)s

· 1

µ(d)
+m!

∣∣∣∣ p

d1 · · · dn
− c

∣∣∣∣ m∑
s=0

(
p

d1 · · · dn

)s

(3.52)

≤ m!

(
1

µ(d)
+

∣∣∣∣ p

d1 · · · dn
− c

∣∣∣∣) m∑
s=0

(
p

d1 · · · dn

)s

. (3.53)

Hence, we reach the following conclusion

∣∣(E⊗ tr)(aϵ(1) · · · aϵ(m))
∣∣ (3.54)

≤
∑

E⊆[m−1]

c(m−1)−|E|m!

(
1

µ(d)
+

∣∣∣∣ p

d1 · · · dn
− c

∣∣∣∣) m∑
s=0

(
p

d1 · · · dn

)s

(3.55)

≤ 2m(1 + c)mm!

(
1

µ(d)
+

∣∣∣∣ p

d1 · · · dn
− c

∣∣∣∣) m∑
s=0

(
p

d1 · · · dn

)s

(3.56)

□

Now, the following Lemma provides an estimate of (E⊗tr)(aϵ(1) · · · aϵ(m))
for (Case C).

Lemma 3.4. Let ϵ : [m] → Bd be a function and suppose that there exists
i ∈ [m− 1] such that {i, i+ 1} ∈ ker(ϵ). Then we have

∣∣∣∣∣∣(E⊗ tr)

∏
j∈[m]

aϵ(j)

− c · (E⊗ tr)

 ∏
j∈[m]\{i,i+1}

aϵ(j)

∣∣∣∣∣∣ (3.57)

≤ 2m(1 + c)m(2 + c)

(
1

µ(d)
+

∣∣∣∣ p

d1 · · · dn
− c

∣∣∣∣)m!
m∑
s=0

(
p

d1 · · · dn

)s

.

(3.58)
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Proof. As in the proof of Lemma 3.3, we may assume {m− 1,m} ∈ ker(ϵ)
using the traciality of E⊗ tr and we have following identity

aϵ(1) · · · aϵ(m) − caϵ(1) · · · aϵ(m−2) (3.59)

=
∑

E⊆[m−2]

(−c)m−(2+|E|)

[∏
t∈E

W ϵ(t)

]
(W ϵ(m−1) − c · Id)(W ϵ(m) − c · Id)

(3.60)

ttttttt− c
∑

E⊆[m−2]

(−c)m−(2+|E|)

[∏
t∈E

W ϵ(t)

]
(3.61)

Let us write l = |E|. Then similar arguments from the proof of Lemma 3.3
give us the following two identities:

(E⊗ tr)

([∏
t∈E

W ϵ(t)

]
W ϵ(m−1)W ϵ(m) − c ·

[∏
t∈E

W ϵ(t)

]
W ϵ(m−1)

)

(3.62)

=
∑

ρ∈Sl+2:
ρ(l+2)̸=l+2

(
p

d1 · · · dn

)♯(ρ)

D(ϵ|E∪{m−1,m}, ρ)

tttt+
∑

σ∈Sl+1

(
p

d1 · · · dn
− c

)(
p

d1 · · · dn

)♯(σ)

D(ϵ|E∪{m−1}, σ), (3.63)

(E⊗ tr)

([∏
t∈E

W ϵ(t)

]
W ϵ(m) − c ·

[∏
t∈E

W ϵ(t)

])
(3.64)

=
∑

τ∈Sl+1:
τ(l+1)̸=l+1

(
p

d1 · · · dn

)♯(τ)

D(ϵ|E∪{m}, τ)

tttttt+
∑
v∈Sl

(
p

d1 · · · dn
− c

)(
p

d1 · · · dn

)♯(v)

D(ϵ|E, v). (3.65)

Here, both the second sums of (3.63) and (3.65) are dominated by∣∣∣∣ p

d1 · · · dn
− c

∣∣∣∣ ·m!
m∑
s=0

(
p

d1 · · · dn

)s

, (3.66)
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and the first sum of (3.65) is dominated by
m!

µ(d)

m∑
s=0

(
p

d1 · · · dn

)s

as in the

proof of Lemma 3.3. Thus, it is straightforward to check that∣∣∣∣∣(E⊗ tr)

([∏
t∈E

W ϵ(t)

]
(W ϵ(m−1) − c · Id)(W ϵ(m) − c · Id)− c ·

∏
t∈E

W ϵ(t)

)∣∣∣∣∣ (3.67)

≤

∣∣∣∣∣∣∣∣
∑

ρ∈Sl+2:
ρ(l+2) ̸=l+2

(
p

d1 · · · dn

)♯(ρ)

D(ϵ|E∪{m−1,m}, ρ)− c ·
∑
v∈Sl

(
p

d1 · · · dn

)♯(v)

D(ϵ|E , v)

∣∣∣∣∣∣∣∣
tttttt+ (1 + c)

(
1

µ(d)
+

∣∣∣∣ p

d1 · · · dn
− c

∣∣∣∣)m!

m∑
s=0

(
p

d1 · · · dn

)s

(3.68)

Recall that the image of a function v ∈ Sl 7→ v2 = v◦(l+1, l+2) ∈ Sl+2

consists of the permutations whose one of the disjoint cycles is (l+1, l+2)
and that

fj(ϵ|E∪{m−1,m}, v2) (3.69)

= ♯(E ′′

j Γ
′′
∆

′′
(Γ

′′
)−1E ′′

j ∨ v2∆
′′
v−1
2 ) + ♯(v2)− (l + 3) (3.70)

=
(
♯(EjΓ∆Γ−1Ej ∨ v∆v−1) + 1

)
+ (♯(v) + 1)− (l + 3) (3.71)

= ♯(EjΓ∆Γ−1Ej ∨ v∆v−1) + ♯(v)− (l + 1) = fj(ϵ|E, v) (3.72)

by Lemma 3.2 (2). Let us write c /∈ ρ if c is not a disjoint cycle of ρ ∈ Sl+2.
Then we have∣∣∣∣∣∣∣∣

∑
ρ∈Sl+2:

ρ(l+2)̸=l+2

(
p

d1 · · · dn

)♯(ρ)

D(ϵ|E∪{m−1,m}, ρ)− c ·
∑
v∈Sl

(
p

d1 · · · dn

)♯(v)

D(ϵ|E , v)

∣∣∣∣∣∣∣∣
(3.73)

≤

∣∣∣∣∣∣∣∣∣∣∣
∑

ρ∈Sl+2:
ρ(l+2) ̸=l+2
(l+1,l+2)/∈ρ

(
p

d1 · · · dn

)♯(ρ)

D(ϵ|E∪{m−1,m}, ρ)

∣∣∣∣∣∣∣∣∣∣∣
sssssssssttttttttt+

∣∣∣∣∣∑
v∈Sl

(
p

d1 · · · dn
− c

)(
p

d1 · · · dn

)♯(v)

D(ϵ|E , v)

∣∣∣∣∣ . (3.74)

From the conditions (l+2) /∈ ρ and (l+1, l+2) /∈ ρ, there exists b0 ∈ [l]
such that ρ(b0) = l + 1 or ρ(b0) = l + 2. Note that

ϵ|E∪{m−1,m}(b0) ̸= ϵ|E∪{m−1,m}(l + 1) = ϵ|E∪{m−1,m}(l + 2) (3.75)
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from the given assumption, so there exists j ∈ [n] such that

[ϵ|E∪{m−1,m}(b0)]j ̸= [ϵ|E∪{m−1,m}(l+1)]j = [ϵ|E∪{m−1,m}(l+2)]j. (3.76)

This means that [ϵ|E∪{m−1,m}(·)]j is not constant on the cycle containing b0
in ρ, implying D(ϵ|E∪{m−1,m}, ρ) ≤ µ(d)−1 for such ρ by Lemma 2.4 (1).
Thus, we obtain∣∣∣∣∣∣∣∣

∑
ρ∈Sl+2:

ρ(l+2)̸=l+2

(
p

d1 · · · dn

)♯(ρ)

D(ϵ|E∪{m−1,m}, ρ)− c ·
∑
v∈Sl

(
p

d1 · · · dn

)♯(v)

D(ϵ|E , v)

∣∣∣∣∣∣∣∣
(3.77)

≤
(

1

µ(d)
+

∣∣∣∣ p

d1 · · · dn
− c

∣∣∣∣)m!

m∑
s=0

(
p

d1 · · · dn

)s

. (3.78)

Finally, combining (3.68) and (3.78), we can conclude that∣∣(E⊗ tr)
(
aϵ(1) · · · aϵ(m)

)
− c · (E⊗ tr)

(
aϵ(1) · · · aϵ(m−2)

)∣∣ (3.79)

≤
∑

E⊆[m−2]

cm−(2+|E|)(2 + c)

(
1

µ(d)
+

∣∣∣∣ p

d1 · · · dn
− c

∣∣∣∣)m!
m∑
s=0

(
p

d1 · · · dn

)s

(3.80)

≤ 2m(1 + c)m(2 + c)

(
1

µ(d)
+

∣∣∣∣ p

d1 · · · dn
− c

∣∣∣∣)m!
m∑
s=0

(
p

d1 · · · dn

)s

.

(3.81)

□

As of the last ingredient to reach the main conclusion, let us present an
estimate of (E⊗ tr)(aϵ(1) · · · aϵ(m)) for (Case D) in the following lemma.

Lemma 3.5. Let ϵ : [m] → Bd be a function and suppose that ϵ(i) ̸=
ϵ(i+ 1) for all i ∈ [m− 1]. Then we have∣∣(E⊗ tr)(aϵ(1) · · · aϵ(m))

∣∣ (3.82)

≤ 2mm!

(
1

µ(d)
+

∣∣∣∣ p

d1 · · · dn
− c

∣∣∣∣) (m+ 1)!

(
p

d1 · · · dn
+ c+ 1

)3m

.

(3.83)
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Proof. Recall that

(E⊗ tr)(aϵ(1) · · · aϵ(m)) =
∑

E⊆[m]

(−c)m−|E|(E⊗ tr)

(∏
t∈E

W ϵ(t)

)
(3.84)

=
∑

E⊆[m]

(−c)m−|E|
∑
σ∈Sl

(
p

d1 · · · dn

)♯(σ)

D(ϵ|E, σ)

(3.85)

where l = |E|, and

0 = lim
d′1,··· ,d′n→∞

(E⊗ tr)(aϵ(1) · · · aϵ(m)) (3.86)

=
∑

E⊆[m]

(−c)m−|E|
∑
σ∈Sl

c♯(σ) lim
d′1,··· ,d′n→∞

n∏
j=1

(d′j)
fj(ϵ|E ,σ) (3.87)

by the asymptotic freeness of {W σ}σ∈{0,1}n (Theorem 2.5). Thus,∣∣(E⊗ tr)(aϵ(1) · · · aϵ(m))
∣∣ = ∣∣(E⊗ tr)(aϵ(1) · · · aϵ(m))− 0

∣∣ (3.88)

≤
∑

E⊆[m]

cm−l
∑
σ∈Sl

∣∣∣∣∣∣
(

p

d1 · · · dn

)♯(σ)

D(ϵ|E , σ)− c♯(σ) lim
d′
1,···d′

n→∞

n∏
j=1

(d′j)
fj(ϵ|E ,σ)

∣∣∣∣∣∣
(3.89)

and the standard triangle inequality tells us∣∣∣∣∣
(

p

d1 · · · dn

)♯(σ)

D(ϵ|E, σ)− c♯(σ) lim
d′1,···d′n→∞

n∏
j=1

(d′j)
fj(ϵ|E ,σ)

∣∣∣∣∣ (3.90)

≤

∣∣∣∣∣
(

p

d1 · · · dn

)♯(σ)

− c♯(σ)

∣∣∣∣∣D(ϵ|E, σ) (3.91)

tttttt+ c♯(σ)

∣∣∣∣∣D(ϵ|E, σ)− lim
d′1,···d′n→∞

n∏
j=1

(d′j)
fj(ϵ|E ,σ)

∣∣∣∣∣ . (3.92)

Furthermore, the binomial theorem implies∣∣∣∣∣
(

p

d1 · · · dn

)♯(σ)

− c♯(σ)

∣∣∣∣∣ ≤
∣∣∣∣ p

d1 · · · dn
− c

∣∣∣∣ (m+ 1)!

(
p

d1 · · · dn
+ c+ 1

)2m

(3.93)

and it is immediate to see that∣∣∣∣∣D(ϵ|E, σ)− lim
d′1,···d′n→∞

n∏
j=1

(d′j)
fj(ϵ|E ,σ)

∣∣∣∣∣ ≤ 1

µ(d)
(3.94)
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for all permutations σ ∈ Sl. Thus we can conclude that∣∣∣∣∣
(

p

d1 · · · dn

)♯(σ)

D(ϵ|E, σ)− c♯(σ) lim
d′1,···d′n→∞

n∏
j=1

(d′j)
fj(ϵ|E ,σ)

∣∣∣∣∣ (3.95)

≤ c♯(σ)

∣∣∣∣∣D(ϵ|E, σ)− lim
d′1,···d′n→∞

n∏
j=1

(d′j)
fj(ϵ|E ,σ)

∣∣∣∣∣
tttttttttttttttt+

∣∣∣∣∣
(

p

d1 · · · dn

)♯(σ)

− c♯(σ)

∣∣∣∣∣D(ϵ|E, σ) (3.96)

≤ c♯(σ) · 1

µ(d)
+

∣∣∣∣ p

d1 · · · dn
− c

∣∣∣∣ (m+ 1)!

(
p

d1 · · · dn
+ c+ 1

)2m

(3.97)

≤
(

1

µ(d)
+

∣∣∣∣ p

d1 · · · dn
− c

∣∣∣∣) (m+ 1)!

(
p

d1 · · · dn
+ c+ 1

)2m

, (3.98)

and this implies the desired conclusion∣∣(E⊗ tr)(aϵ(1) · · · aϵ(m))
∣∣ (3.99)

≤
∑

E⊆[m]

cm−l
∑
σ∈Sl

(
1

µ(d)
+

∣∣∣∣ p

d1 · · · dn
− c

∣∣∣∣) (m+ 1)!

(
p

d1 · · · dn
+ c+ 1

)2m

(3.100)

≤ 2mm!

(
1

µ(d)
+

∣∣∣∣ p

d1 · · · dn
− c

∣∣∣∣) (m+ 1)!

(
p

d1 · · · dn
+ c+ 1

)3m

.

(3.101)

□

Finally, we are ready to establish a central limit theorem for partial trans-
poses by applying Lemma 3.3, Lemma 3.4, and Lemma 3.5.

Theorem 3.6. Let p = p(d) and n = n(d) be N-valued functions of d =

(d1, · · · , dn), and consider a sequence of subsets Bd ⊆ {0, 1}n(d). If

lim |Bd|m
(

1

µ(d)
+

∣∣∣∣ p

d1d2 · · · dn
− c

∣∣∣∣) = 0 (3.102)

for all natural numbers m and lim |Bd| = ∞, then the following random
matrices

sd =
1√
|Bd|

∑
x∈Bd

(
W x

d1···dn,p − c · Idd1···dn
)

(3.103)



A CENTRAL LIMIT THEOREM FOR PARTIAL TRANSPOSES 27

converge in moments to the semicircular element of the mean 0 and the
variance c, i.e. we have

lim(E⊗ tr)(smd ) =
∫
[−2c,2c]

tm

2πc2

√
4c2 − t2dt. (3.104)

Proof. It is enough to prove that

lim(E⊗ tr)(smd ) = c
m
2 |NC2(m)| (3.105)

where NC2(m) is the set of all non-crossing pairings on [m]. For any m
and d, we have

(E⊗ tr)(smd ) =
1√
|Bd|m

∑
x:[m]→Bd

(E⊗ tr)(ad,x(1) · · · ad,x(m)) (3.106)

=
1√
|Bd|m

∑
π∈P (m)

∑
x:[m]→Bd:

ker(x)=π

(E⊗ tr)(ad,x(1) · · · ad,x(m)).

(3.107)

Now let us take a representative function xd,π : [m] → Bd satisfying
ker(xd,π) = π for each d = (d1, · · · , dn) and π ∈ P (m). Then we have∣∣∣∣∣∣∣∣

∑
x:[m]→Bd

ker(x)=π

(E⊗ tr)

(
m∏
i=1

ad,x(i)

)
− kd,π · (E⊗ tr)

(
m∏
i=1

ad,xd,π(i)

)∣∣∣∣∣∣∣∣ (3.108)

≤
2m+1kd,πm!(1 + c)m

µ(d)

m∑
s=0

(
p

d1 · · · dn

)s

(3.109)

≤ 2m+1|Bd|mm!(1 + c)m

µ(d)

m∑
s=0

(
p

d1 · · · dn

)s

(3.110)

by Lemma 3.1, where kd,π = |Bd| · (|Bd| − 1) · · · (|Bd| − ♯(π) + 1). Thus,
the given condition |Bd|m = o(µ(d)) implies

lim(E⊗ tr)(smd ) (3.111)

=
∑

π∈P (m)

lim |Bd|−
m
2 kd,π(E⊗ tr)(ad,xd,π(1) · · · ad,xd,π(m)). (3.112)

As the first step, let us prove that

lim |Bd|−
m
2 kd,π(E⊗ tr)(ad,xd,π(1) · · · ad,xd,π(m)) = 0 (3.113)

for the following situation

(Case A) the partition π contains a singleton block.
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Indeed, Lemma 3.3 provides the following estimate

|Bd|−
m
2 kd,π

∣∣(E⊗ tr)(ad,xd,π(1) · · · ad,xd,π(m))
∣∣ (3.114)

≤ 2m|Bd|
m
2 (1 + c)mm!

(
1

µ(d)
+

∣∣∣∣ p

d1 · · · dn
− c

∣∣∣∣) m∑
s=0

(
p

d1 · · · dn

)s

,

(3.115)

and the given conditions imply

lim |Bd|
m
2

(
1

µ(d)
+

∣∣∣∣ p

d1 · · · dn
− c

∣∣∣∣) (3.116)

≤ lim |Bd|m
(

1

µ(d)
+

∣∣∣∣ p

d1 · · · dn
− c

∣∣∣∣) = 0. (3.117)

From now on, it is enough to suppose that the permutation π does not
contain a singleton set, implying ♯(π) ≤ m

2
. Furthermore, if we suppose

that π is in (Case B) i.e. ♯(π) < m
2

, then it is straightforward to see that

lim |Bd|−
m
2 kd,π(E⊗ tr)(ad,xd,π(1) · · · ad,xd,π(m)) (3.118)

≤ lim |Bd|♯(π)−
m
2 (E⊗ tr)(ad,xd,π(1) · · · ad,xd,π(m)) (3.119)

= 0 · lim(E⊗ tr)(ad,xd,π(1) · · · ad,xd,π(m)) = 0. (3.120)

Thus, let us focus on the cases where π is a pairing, i.e. all disjoint blocks
of π are given by cycles of length 2. In this case, we have ♯(π) = m

2
and

the representative function xd,π : [m] → Bd should be one of the following
two cases:

• (Case C) ker(xd,π) is a pairing, and there exists i ∈ [m − 1] such
that {i, i+ 1} ∈ ker(xd,π)

• (Case D) ker(xd,π) is a pairing, and xd,π(i) ̸= xd,π(i + 1) for all
i ∈ [m− 1].

If π is in (Case D), i.e. ker(xd,π) is a pairing satisfying

xd,π(i) ̸= xd,π(i+ 1) (3.121)
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for all i ∈ [m− 1], then we have

lim |Bd|−
m
2 kd,π

∣∣∣∣∣(E⊗ tr)

(
m∏
i=1

ad,xd,π(i)

)∣∣∣∣∣ (3.122)

≤ lim 2mm!|Bd|
m
2

(
1

µ(d)
+

∣∣∣∣ p

d1 · · · dn
− c

∣∣∣∣) (m+ 1)!

(
p

d1 · · · dn
+ c+ 1

)3m

(3.123)

≤ 2mm!(m+ 1)! lim |Bd|m
(

1

µ(d)
+

∣∣∣∣ p

d1 · · · dn
− c

∣∣∣∣)( p

d1 · · · dn
+ c+ 1

)3m

(3.124)
= 0 (3.125)

by Lemma 3.5. Now, for the last situation (Case C), there exists i0 ∈ [m−1]
such that xd,π(i0) = xd,π(i0 + 1) and Lemma 3.4 implies

lim |Bd|−
m
2 kd,π(E⊗ tr)

(
m∏
i=1

ad,xd,π(i)

)
(3.126)

= c · lim(E⊗ tr)

 ∏
i∈[m]\{i0,i0+1}

ad,xd,π(i)

 . (3.127)

Note that the restricted function xd,π|[m]\{i0,i0+1} defines a new pairing on
[m − 2], which should be in one of (Case C) and (Case D). Thus, we can
repeat the above arguments, leading us to conclude that

lim |Bd|−
m
2 kd,π(E⊗ tr)

(
m∏
i=1

ad,xd,π(i)

)
=

{
0, if π /∈ NC2(m)

c
m
2 , if π ∈ NC2(m)

.

(3.128)

Now, combining all the above discussions, we obtain

lim(E⊗ tr)(smd ) (3.129)

=
∑

π∈P (m)

lim |Bd|−
m
2 kd,π(E⊗ tr)

(
m∏
i=1

ad,xd,π(i)

)
(3.130)

=
∑

π∈NC2(m)

c
m
2 = c

m
2 |NC2(m)|. (3.131)

□
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APPENDIX A. PROOF OF THEOREM 2.2

Let us begin with generalizing [MP19, Lemma 3.2] to the multipartite
situation. More precisely, let us explain how to write the random variable

Xϵ = tr(W ϵ1W ϵ2 · · ·W ϵm). (A.1)

as a polynomial of Gaussian variables for arbitrary Z2-valued m× n matri-
ces ϵ = (ϵij)i∈[m],j∈[n]. Note that any ϵ = (ϵij)i∈[m],j∈[n] can be decomposed
to ϵ′[n−1] = (ϵij)i∈[m],j∈[n−1] and ϵ′n = (ϵin)i∈[m]. Then ϵ′[n−1] and ϵ′n define
the associated functions

E[n−1] : [n− 1]× [±m] → [n− 1]× [±m] and En : [±m] → [±m],
where E[n−1] is given by E[n−1](j, x) = (j, Ej(x)).

Notation A.1. We denote by A(ϵ) the set of all functions ι : [n − 1] ×
[±m] → ∪n−1

j=1 [dj] satisfying

(1) ι(j, ·) ∈ [dj] for each j ∈ [n− 1],
(2) ι = ι ◦ E[n−1] (idn−1 × Γ∆Γ−1) E[n−1],

and by B(ϵ) the set of all functions q : [±m] → [dn] satisfying

q = q ◦ EnΓ∆Γ−1En. (A.2)

Using the notations above, we explain how to express

Xϵ = tr(W ϵ1W ϵ2 · · ·W ϵm). (A.3)

as a polynomial of Gaussian variables in the following Lemma, which di-
rectly generalizes [MP19, Lemma 3.2] to the multipartite setting.

Lemma A.2. Let ϵ = (ϵij)i∈[m],j∈[n] be a Z2-valued m × n matrix with
ϵi = (ϵij)

n
j=1 ∈ {0, 1}n for all i ∈ [m], and let Xϵ = tr(W ϵ1W ϵ2 · · ·W ϵm).

Then we have

(d1 · · · dn)m+1Xϵ =
∑
ι∈A(ϵ)

∑
q∈B(ϵ)

∑
t:[m]→[p]

m∏
y=1

g
ιy
q(y),t(y)g

ι−y

q(−y),t(y). (A.4)

Proof. As the first step, in order to focus on an entrywise expression of

(d1 · · · dn)W ϵi =
∑

i,j∈[d1···dn−1]

[
n−1⊗
x=1

T ϵix(eix,jx)

]
⊗ T ϵin(GiG

∗
j ),

let us introduce two functions k = ki,j and ηi as follows.
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• Let us identify the following set

F (n− 1) = [dn−1]× · · · × [d1]× [d1]× · · · × [dn−1] (A.5)
∼= [d1d2 · · · dn−1]× [d1d2 · · · dn−1] (A.6)

with the set of all functions k : [±(n − 1)] → ∪n−1
j=1 [dj] satisfying

that k(±t) ∈ [dt] for all t ∈ [n − 1]. More specifically, each pair
(i, j) ∈ [d1d2 · · · dn−1]× [d1d2 · · · dn−1] is associated with

k = (k(−(n− 1)), · · · ,k(−1),k(1), · · · ,k(n− 1)) (A.7)

= (jn−1, · · · , j1, i1, · · · , in−1) ∈ F (n− 1). (A.8)

In this case, let us write k+ = i and k− = j as functions from [n−1]
into ∪n−1

j=1 [dj].
• For each i ∈ [m], we define ηi : [±(n− 1)] → [±(n− 1)] by

ηi(x) = (−1)ϵi|x| · x. (A.9)

Then ηi ◦ ηi is the identity function on [±(n− 1)], and we have

T ϵij(ek(j),k(−j)) =

{
ek(j),k(−j) if ϵij = 0
ek(−j),k(j) if ϵij = 1

(A.10)

= e(k◦ηi)(j),(k◦ηi)(−j), (A.11)

where T is the transpose operator.
Using the notations above, we obtain

(d1 · · · dn)W ϵi =
∑

k∈F (n−1)

[
n−1⊗
x=1

T ϵix
(
ek(x),k(−x)

)]
⊗ T ϵin (Gk+G∗

k−)

=
∑

k∈F (n−1)

[
n−1⊗
x=1

e(k◦ηi)(x),(k◦ηi)(−x)

]
⊗ T ϵin (Gk+G∗

k−) (A.12)

by (A.11). Furthermore, since k 7→ k◦ηi is a bijective function on F (n−1)
and ηi ◦ ηi = id[±(n−1)], we have

(d1 · · · dn)W ϵi =
∑

k∈F (n−1)

[
n−1⊗
x=1

ek(x),k(−x)

]
⊗ T ϵin

(
G(k◦ηi)+G

∗
(k◦ηi)−

)
.

(A.13)

Thus, the joint moment (d1 · · · dn+1)
m+1 Xϵ is written as∑

k1,··· ,km∈F (n−1)

Tr

(
n−1⊗
x=1

[
m∏

y=1

eky(x),ky(−x)

])
· Tr

(
m∏

y=1

T ϵyn(G(ky◦ηy)+G
∗
(ky◦ηy)−

)

)
,

(A.14)



32 GYUNAM PARK AND SANG-GYUN YOUN

and we have

Tr

(
n−1⊗
x=1

[
m∏
y=1

eky(x),ky(−x)

])
=

n−1∏
x=1

Tr

(
m∏
y=1

eky(x),ky(−x)

)
. (A.15)

To deal with the multiple functions k1, k2, · · · , km simultaneously, let us
define K0 : [m]× [±(n− 1)] → ∪n−1

j=1 [dj] by

K0(i, j) = ki(j) ∈ [d|j|], (A.16)

and its natural extension K on [±m]× [±(n− 1)] given by

K(i, j) = k|i|(sgn(i) · j) ∈ [d|j|]. (A.17)

Then it is straightforward to see that (A.15) is given by

n−1∏
x=1

Tr

(
m∏
y=1

eky(x),ky(−x)

)
(A.18)

=

{
1 if K(−i, j) = K(Γ(i), j), i ∈ [m], j ∈ [n− 1]
0 otherwise (A.19)

where Γ = (1, 2, · · · ,m) ∈ Sm. Now, let us define F0(m,n) as the set of
K0 = (k1,k2, · · · ,km) ∈ F (n− 1)m satisfying the condition

K(−i, j) = K(Γ(i), j) for all i ∈ [m] and j ∈ [n− 1]. (A.20)

Then the expression (A.14) is simplified to∑
(k1,··· ,km)∈F0(m,n)

Tr

(
m∏
y=1

T ϵyn(G(ky◦ηy)+G
∗
(ky◦ηy)−)

)
. (A.21)

On the other hand, any (k1,k2, · · · ,km) ∈ F (n− 1)m is associated to a
function ι : [n− 1]× [±m] → ∪n−1

j=1 [dj] given by

ι(j, i) = K(i, η|i|(j)) ∈ [dj]. (A.22)

Indeed, the above condition (A.20) is equivalent to that ι ∈ A(ϵ), i.e.

ι = ι ◦ E[n−1]

(
idn−1 × Γ∆Γ−1

)
E[n−1] (A.23)

on [n−1]×[±m], and the restricted functions ιy = ι(·, y) and ι−y = ι(·,−y)
satisfy

ιy(j) = K(y, ηy(j)) = ky(ηy(j)) = (ky ◦ ηy)(j) (A.24)

ι−y(j) = K(−y, ηy(j)) = ky(−ηy(j)) = ky(ηy(−j)) = (ky ◦ ηy)(−j)
(A.25)
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for all j ∈ [n − 1] and y ∈ [m]. Thus, combining (A.14) and (A.21), we
have

(d1 · · · dn)m+1 Xϵ =
∑
ι∈A(ϵ)

Tr

(
m∏
y=1

T ϵyn(GιyG
∗
ι−y

)

)
. (A.26)

Note that

T ϵyn
(
GιyG

∗
ι−y

)
(A.27)

= T ϵyn

 dn∑
r(y),r(−y)=1

 p∑
t(y)=1

g
ιy
r(y),t(y)g

ι−y

r(−y),t(y)

 er(y),r(−y)

 (A.28)

=
dn∑

r(y),r(−y)=1

 p∑
t(y)=1

g
ιy
r(y),t(y)g

ι−y

r(−y),t(y)

 e(r◦En)(y),(r◦En)(−y) (A.29)

=
dn∑

r(y),r(−y)=1

 p∑
t(y)=1

g
ιy
(r◦En)(y),t(y)g

ι−y

(r◦En)(−y),t(y)

 er(y),r(−y) (A.30)

for any y ∈ [m], and that the non-trivial terms of the trace of
m∏
y=1

T ϵyn(GιyG
∗
ι−y

)

arise only from the cases where we have

r(−1) = r(2), r(−2) = r(3), · · · , r(−m) = r(1). (A.31)

Furthermore, (A.31) is also equivalent to that q ∈ B(ϵ), i.e. q = r ◦ En :
[±m] → [dn] satisfies

q = q ◦ EnΓ∆Γ−1En. (A.32)
Finally, combining all the discussions above, we obtain

Tr

(
m∏
y=1

T ϵyn(GιyG
∗
ι−y

)

)
=
∑

q∈B(ϵ)

∑
t:[m]→[p]

m∏
y=1

g
ιy
q(y),t(y)g

ι−y

q(−y),t(y), (A.33)

which leads us to the following conclusion

(d1 · · · dn)m+1Xϵ =
∑
ι∈A(ϵ)

∑
q∈B(ϵ)

∑
t:[m]→[p]

m∏
y=1

g
ιy
q(y),t(y)g

ι−y

q(−y),t(y). (A.34)

□

A non-trivial fact from Lemma A.2 is that Xϵ is a real-valued random
variable and, moreover, the explicit expression (A.4) can be applied to com-
pute the following k-th moments

E
(
Xk

ϵ

)
= E

(
[tr(W ϵ1W ϵ2 · · ·W ϵm)]k

)
. (A.35)
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Let k be an arbitrary natural number and let ϵ = (ϵij)i∈[m],j∈[n] be a Z2-
valued m×n matrix with ϵi = (ϵij)j∈[n] ∈ {0, 1}n. Let us apply the explicit
formula (A.4) of

d1 · · · dnXϵ = Tr(W ϵ1W ϵ2 · · ·W ϵm) (A.36)

to find a suitable expression of the k-th powers

(d1 · · · dn)(m+1)k Xk
ϵ =

 ∑
ι∈A(ϵ)

∑
q∈B(ϵ)

∑
t:[m]→[p]

m∏
y=1

g
ιy
q(y),t(y)g

ι−y

q(−y),t(y)

k

(A.37)
where we need to consider the following multiple choices of functions:

ι(s) ∈ A(ϵ), q(s) ∈ B(ϵ), t(s) : [m] → [p] (1 ≤ s ≤ k). (A.38)

To deal with all these functions simultaneously, let us introduce the follow-
ing three multivariate functions:

• I : [k]× [±m] → [d1d2 · · · dn−1] given by

I(s, s′) = (I1(s, s
′), I2(s, s

′), · · · , In−1(s, s
′)). (A.39)

and each Ij : [k]× [±m] → [dj] is given by

Ij(s, s
′) = ι(s)(j, s′) ∈ [dj]. (A.40)

Then all ι(1), ι(2), · · · , ι(k) are in A(ϵ) if and only if

Ij = Ij ◦ E (k)
j Γ(k)∆(k)(Γ(k))−1E (k)

j (A.41)

for all j ∈ [n− 1]. We denote by A(ϵ, k) the set of such functions I.
• Q : [k]× [±m] → [dn] given by

Q(s, s′) = q(s)(s′). (A.42)

Then all q(1), q(2), · · · , q(k) are in B(ϵ) if and only if

Q = Q ◦ E (k)
n Γ(k)∆(k)(Γ(k))−1E (k)

n . (A.43)

Let us denote by B(ϵ, k) the set of such functions Q.
• T : [k]× [m] → [p] given by

T(s, s′) = t(s)(s′). (A.44)

Note that, for each (s, s′) ∈ [k]× [±m], the above I(s, s′) can be considered
a function from [n− 1] into ∪n−1

j=1 [dj] satisfying

[I(s, s′)](j) = Ij(s, s
′) ∈ [dj]. (A.45)
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Then all our discussions are summarized into the following form:

(d1 · · · dn)(m+1)k Xk
ϵ

=
∑

I∈A(ϵ,k)

∑
Q∈B(ϵ,k)

∑
T:[k]×[m]→[p]

k∏
s=1

m∏
s′=1

g
I(s,s′)
Q(s,s′),T(s,s′)g

I(s,−s′)
Q(s,−s′),T(s,s′) (A.46)

Now, let us present a proof of Theorem 2.2 using the above notations.
Our arguments are analogous to the proof of [MP19, Theorem 3.7].

Proof of Theorem 2.2. By (A.46), we have

(d1 · · · dn)(m+1)k E(Xk
ϵ ) (A.47)

=
∑

I∈A(ϵ,k)

∑
Q∈B(ϵ,k)

∑
T:[k]×[m]→[p]

E

(
k∏

s=1

m∏
s′=1

g
I(s,s′)
Q(s,s′),T(s,s′)g

I(s,−s′)
Q(s,−s′),T(s,s′)

)
.

(A.48)

For any I ∈ A(ϵ, k), Q ∈ B(ϵ, k), and T : [k]× [m] → [p], let us write

gα(s,s′) = g
I(s,s′)
Q(s,s′),T(s,s′) (A.49)

gβ(s,s′) = g
I(s,−s′)
Q(s,−s′),T(s,s′) (A.50)

for all (s, s′) ∈ [k]× [m] ∼= [km] to pursue simplicity. Then we have

E

(
k∏

s=1

m∏
s′=1

g
I(s,s′)
Q(s,s′),T(s,s′)g

I(s,−s′)
Q(s,−s′),T(s,s′)

)
(A.51)

= E

 ∏
x∈[k]×[m]

gα(x) ·
∏

y∈[k]×[m]

gβ(y)

 = |{σ ∈ Skm : β = α ◦ σ}|,

(A.52)

where the second equality comes from the Wick formula. Let us denote by
C(σ) the set of all triples (I,Q,T) satisfying β = α ◦ σ for σ ∈ Skm. Then
we have

(d1 · · · dn)(m+1)k E(Xk
ϵ )

=
∑
I,Q,T

∑
σ∈Skm: β=α◦σ

1 =
∑

σ∈Skm

∑
(I,Q,T)∈C(σ)

1 =
∑

σ∈Skm

|C(σ)|. (A.53)

Using the natural identification [±km] ∼= [k]×[±m], we can regard maps
from [k] × [±m] as maps from [±km]. Also bijections on [k] × [±m] can
be regarded as permutations on [±km]. Then (I,Q,T) ∈ C(σ) if and only
if the following conditions hold:

(A) Ij = Ij ◦ σ∆(k)σ−1 for all j ∈ [n− 1],
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(B) Q = Q ◦ σ∆(k)σ−1.
(C) T = T ◦ σ.

Since the conditions I ∈ A(ϵ, k) and Q ∈ B(ϵ, k) should be taken into
account, |C(σ)| is equal to the number of triples (I,Q,T) consisting of
general functions I : [k]× [±m] → [d1d2 · · · dn−1], Q : [k]× [±m] → [dn],
T : [k]× [m] → [p] satisfying

(A’) Ij = Ij◦E (k)
j Γ(k)∆(k)(Γ(k))−1E (k)

j = Ij◦σ∆(k)σ−1 for all j ∈ [n−1],
(B’) Q = Q ◦ E (k)

n Γ(k)∆(k)(Γ(k))−1E (k)
n = Q ◦ σ∆(k)σ−1.

(C’) T = T ◦ σ.
Thus the number of such triples (I,Q,T) is given by[

n∏
j=1

d
♯(E(k)

j Γ(k)∆(k)(Γ(k))−1E(k)
j ∨σ∆(k)σ−1)

j

]
· p♯(σ), (A.54)

which leads us to the following identity

(d1 · · · dn)(m+1)k E(Xk
ϵ ) (A.55)

=
∑

σ∈Skm

[
n∏

j=1

d
♯(E(k)

j Γ(k)∆(k)(Γ(k))−1E(k)
j ∨σ∆(k)σ−1)

j

]
· p♯(σ). (A.56)

This implies the following desired conclusion

E(Xk
ϵ ) =

∑
σ∈Skm

(
p

d1 · · · dn

)♯(σ) n∏
j=1

d
fk,j(ϵ,σ)
j . (A.57)

□
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