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Self-adjointness of unbounded time operators

Fumio Hiroshima∗and Noriaki Teranishi†

May 7, 2024

Abstract

Time operators for an abstract semi-bounded self-adjoint operator H with purely
discrete spectrum is considered. The existence of a bounded self-adjoint time operator
T for H is known as Galapon time operator. In this paper, a self-adjoint but unbounded
time operator T of H is constructed.

1 Introduction

We give the definition of time operators and conjugate operators.

Definition 1.1. Let H be a self-adjoint operator on a Hilbert space H and T an operator
on H. If H and T satisfy the canonical commutation relation

[H,T ] = HT − TH = −i1l

on DH,T ⊂ D(HT ) ∩ D(TH) but DH,T 6= {0}, then T is called a conjugate operator of H
and DH,T is called a CCR-domain. Here D(A) is the domain of the operator A. If T is a
symmetric operator on H, then T is called a time operator of H.

Time operators and/or conjugate operators for H are in general not unique. In the series
of papers [5, 4] we construct time operators and/or conjugate operators for 1D-harmonic
oscillator. It is known that the so-called Galapon time operator TG for the 1D-harmonic
oscillator is bounded self-adjoint operator and the CCR-domain is dense.

We introduce Galapon operator. A self-adjoint operaotr H considering the Galapon
operator usually imposes the following conditions.

Assumption 1.2. An operator H on a separable Hilbert space H is positive, unbounded
and self-adjoint. The spectrum σ(H) of H consists of only simple eigenvalues and H−1 is
Hilbert-Schmidt.

Let H be an operator which satisfies Assumtion 1.2, en an eigenvector of H for an eigen-
value En for n ∈ N. Note that

∞
∑

n=0

1

E2
n

< ∞.

∗Faculty of Mathematics, Kyushu University
†Faculty of Science, Department of Mathematics, Hokkaido University

1

http://arxiv.org/abs/2405.02851v1


Define the Galapon time operator TG associated with the operator H by

D(TG) = LH{en ∈ H | n ∈ N},

TGϕ = i
∞
∑

n=0





∑

m6=n

(em, ϕ)

En − Em



 en, ϕ ∈ D(T ).

Here, for a subset A of H, LHA means the linear hull of A.

Proposition 1.3 ([3, 2]). Suppose that H satisfies Assumption 1.2. Then TG is a densely

defined time operator of H with a CCR-domain LH{en − em | n,m ∈ N}.
It is established in [2, Theorem 4.5] that if

En − Em ≥ C(nλ −mλ) (1.1)

for some constants C > 0 and λ > 1, then TG is a bounded time operator of H, and hence it
is self-adjoint. In particular, if

En = anλ + b, n ∈ N, λ > 1

with some constants a, b > 0, then TG is a bounded self-adjoint time operator.
Let

En = anλ + b, n ∈ N, 1/2 < λ < 1

with constants a, b > 0. Then it can be shown that TG is unbounded time operator. The
self-adjointness of TG is however unknown. It is also pointed out in [1, Remark 4.7] that no
examples of unbounded self-adjoint time operator of the form TG is constructed.

The purpose of this paper is to construct unbounded self-adjoint time operators for some
abstract self-adjoint operator H. We organize this paper as follows. In Section 2 we unitarily
transform TG to an operator Tf on ℓ2(N). Section 3 is devoted to constructing unbounded
self-adjoint time operators. The main results are stated in Theorems 3.11 and 3.13.

2 Galapon time operator on ℓ
2(N)

In this paper, the investigation of time operators is carried out on ℓ2(N) instead of H. Then
we shall show first of all that TG is unitarily equivalent to an operator Tf on ℓ2(N). Denote
by ℓ2(N) the set of square summable functions on N and let ξn ∈ ℓ2(N) be the function on N

defined by

ξn(m) = δnm, m ∈ N,

where δnm is the Kronecker delta function. We write ℓ2fin(N) for the set of ϕ ∈ ℓ2(N) which
has a finite support, i.e., there exists m ∈ N and (cn)

m
n=0 ∈ C

m+1 such that ϕ is represented
by
∑m

n=0 cnξn. Note that ℓ2fin(N) is dense in ℓ2(N). Let L be the left shift operator on ℓ2(N)
and L∗ the adjoint operator of L;

L∗ξn = ξn+1, n ∈ N.

Let N be the number operator on ℓ2(N). Then Nξn = nξn for n ∈ N. It is well known that N
is a self-adjoint operator, ℓ2fin(N) is a core for N and N satisfies [N,L] = −L and [N,L∗] = L∗

on ℓ2fin(N).
We introduce notations K and K−.
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Definition 2.1 (K and K−). Let us denote by K the set of all real valued funtions on N

which satisfy the following conditions:

(1) f(0) > 0,

(2) f(n) < f(n+ 1) for all n ∈ N.

Write K− =
{

f ∈ K
∣

∣ 1/f ∈ ℓ2(N)
}

.

To define Tf for f ∈ K, we set

∆k(f, n) = f(n+ k)− f(n).

Lemma 2.2. Let f ∈ K. Then ℓ2fin(N) ⊂ D(∆k(f,N)−1) for all natural number k ≥ 1.

Proof. Since f is strictly increasing, ∆k(f,N) is injective. Clearly ℓ2fin(N) ⊂ D(∆k(f,N))
and ξn is an eigenvector of ∆k(f,N):

∆k(f,N)ξn = ∆k(f, n)ξn.

This implies that ℓ2fin(N) ⊂ D(∆k(f,N)−1).

Remark 2.3. Note that infn∈N∆k(f, n) > 0 if and only if ∆k(f,N)−1 is a bounded operator.

Definition 2.4. Let f ∈ K. We define operators Tf,m and Tf on ℓ2(N) by

Tf,m = i
m
∑

k=1

(

L∗k∆k(f,N)−1 −∆k(f,N)−1Lk
)

,

D(Tf ) =







ϕ ∈
⋂

m≥1

D(Tf,m)

∣

∣

∣

∣

∣

∣

lim
m→∞

Tf,mϕ exists in ℓ2(N)







,

Tfϕ = lim
m→∞

Tf,mϕ, ϕ ∈ D(Tf ).

Lemma 2.5. Suppose that f ∈ K−. Then ℓ2fin(N) ⊂ D(Tf ).

Proof. It is sufficient to show that limm→∞ Tf,mξn exists for all n ∈ N. For any n ≤ m1 ≤ m2,

‖(Tf,m2
− Tf,m1

) ξn‖2 =

∥

∥

∥

∥

∥

∥

m2
∑

k=m1+1

(

L∗k∆k (f,N)−1 −∆k (f,N)−1 Lk
)

ξn

∥

∥

∥

∥

∥

∥

2

=

m2
∑

k=m1+1

1

(f(n+ k)− f(n))2

≤
(

1− f(n)

f(n+ 1)

)−2 m2
∑

k=m1+1

1

f(n+ k)2
→ 0

as m1,m2 → ∞. Hence {Tf,mξn}m∈N is a Cauchy sequence. Therefore limm→∞ Tf,mξn exists
and ξn ∈ D(Tf ).
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From Lemma 2.5, we see that Tf is a densely defined symmetric operator. The relationship
between Tf and TG is given by the following theorem.

Theorem 2.6. Suppose that H satisfies Assumption 1.2. Then there exists a unitary operator

U : H → ℓ2(N) and a function f ∈ K− such that f(N) = UHU∗ and Tf is unitary equivalent

to TG on ℓ2fin(N), i.e.,
UTGU

∗ = Tf on ℓ2fin(N).

Proof. Let f : N → R be a function such that f(n) = En. Then f ∈ K−. Let U : H → ℓ2(N)
be the unitary operator defined by Uen = ξn for any n ∈ N. For arbitrary ϕ ∈ D(T ), we see
that

UTGϕ = i

∞
∑

n=0

(

∑

m<n

(ξm, Uϕ)

En − Em
+
∑

m>n

(ξm, Uϕ)

En − Em

)

ξn

= i

∞
∑

n=0

(

∑

m<n

(Ln−mξn, ϕ)

En − Em
+
∑

m>n

(L∗m−nξn, Uϕ)

En − Em

)

ξn

= i
∞
∑

n=0

(

∞
∑

k=1

(

Lkξn, Uϕ
)

En − En−k
−

∞
∑

k=1

(

L∗kξn, Uϕ
)

En+k − En

)

ξn.

Since f(N)ξn = Enξn, it follows that

(En −En−k)
−1Lkξn = ∆k(f,N)−1Lkξn

and

(En+k − En)
−1ξn = ∆k(f,N)−1ξn.

From Lemma 2.5, we see that ξn, Uϕ ∈ D(Tf ). Thus

UTGϕ = i

∞
∑

n=0

(

∞
∑

k=1

(

∆k(f,N)−1Lk − L∗k∆k(f,N)−1
)

ξn, Uϕ

)

ξn

=
∞
∑

n=0

(

ξn, i
∞
∑

k=1

(

L∗k∆k(f,N)−1 −∆k(f,N)−1Lk
)

Uϕ

)

ξn.

This shows that UTGϕ = TfUϕ for any ϕ ∈ D(TG) = U∗ℓ2fin(N). Then the theorem is
proven.

Corollary 2.7. For all f ∈ K−, the operator Tf is a time operator of f(N) with a CCR

domain (1l− L∗)ℓ2fin(N).

Proof. By the definition of K−, the operator f(N) is a positive and unbounded self-adjoint
operator, and σ(f(N)) consists of only simple eigenvalues and f(N)−1 is Hilbert-Schmidt.
Thus Tf is a time operator of f(N) by Theorem 2.6.

By Theorem 2.6 and Corollary 2.7, the set {Tf | f ∈ K−} includes Galapon time operators
TG. So in what follows we consider time operator Tf .
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3 Self-adjointness of time operators

3.1 Bounded cases

Let us recall the case where the operator Tf is bounded.

Lemma 3.1. Let f ∈ K. Suppose that 0 6∈ σ(∆k(f,N)) for all k ≥ 1 and

∑

k≥1

∥

∥∆k(f,N)−1
∥

∥ < ∞.

Then the operator Tf is bounded. In particular, Tf is a self-adjoint operator.

Proof. For any ϕ ∈ ℓ2(N) and 1 ≤ m1 < m2,

‖(Tf,m2
− Tf,m1

)ϕ‖ ≤
m2
∑

k=m1+1

(∥

∥

∥L∗k∆k(f,N)−1
∥

∥

∥+
∥

∥

∥∆k(f,N)−1Lk
∥

∥

∥

)

‖ϕ‖

≤ 2‖ϕ‖
m2
∑

k=m1+1

∥

∥∆k(f,N)−1
∥

∥ .

This shows that {Tf,mϕ}m∈N is a Cauchy sequence. Therefore D(Tf ) = ℓ2(N) and Tf is
bounded.

A similar result to Lemma 3.1 is obtained in [2, Theorem 4.5].

Example 3.2. Let λ > 1 and f(x) = xλ+1. Then f ∈ K−. Since ∆k(f, n) ≥ ∆k(f, 0) = kλ,
we have

∑

k≥1

∥

∥∆k(f,N)−1
∥

∥ ≤
∑

k≥1

k−λ < ∞.

Therefore Tf is bounded self-adjoint time operator of f(N).

3.2 Unbounded cases

Next proposition is a sufficient condition for Tf to be unbounded.

Proposition 3.3. Suppose that f ∈ K− and 0 ∈ σ(∆1(f,N)). Then Tf is unbounded.

Proof. See [2, Theorem 5.1].

Let f : dom(f) → C. In this paper, we denote by f2 the function f2 : dom(f) → C,
f2(x) = f(x)2 for each x ∈ dom(f). In what follows we consider operators of the form
f(N)Tf2 + Tf2f(N).

Lemma 3.4. Let f ∈ K−. Then ℓ2fin(N) ⊂ D
(

f(N)Tf2

)

and

lim
m→∞

f(N)Tf2,mξn = f(N)Tf2ξn

for all n ∈ N.
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Proof. Similarly to the proof of Lemma 2.5, for any n ≤ m1 ≤ m2, we have

∥

∥f(N)
(

Tf2,m2
− Tf2,m1

)

ξn
∥

∥

2
=

m2
∑

k=m1+1

f(n+ k)2

(f(n+ k)2 − f(n)2)2

≤
(

1− f(n)

f(n+ 1)

)−2 m2
∑

k=m1+1

1

f(n+ k)2
.

Therefore limm→∞ f(N)Tf2,mξn exists. Since f(N) is a closed operator, we obtain desired
conclusion.

The next lemma shows that Tf is identical to f(N)Tf2 + Tf2f(N) on ℓ2fin(N).

Lemma 3.5. Let f ∈ K−. Then

f(N)Tf2 + Tf2f(N) = Tf (3.1)

on ℓ2fin(N) and

[f(N), f(N)Tf2 + Tf2f(N)] = −i1l

on (1l− L∗)ℓ2fin(N).

Proof. From Lemma 3.4, for any ϕ ∈ ℓ2fin(N),
(

f(N)Tf2 + Tf2f(N)
)

ϕ = lim
m→∞

(

f(N)Tf2,m + Tf2,mf(N)
)

ϕ.

For each m, we obtain
(

f(N)Tf2,m + Tf2,mf(N)
)

ϕ

= i

m
∑

k=1

(

L∗k (f(N + k) + f(N))∆k

(

f2, N
)−1 −∆k

(

f2, N
)−1

(f(N + k) + f(N))Lk
)

ϕ

= i

m
∑

k=1

(

L∗k∆k(f,N)−1 −∆k(f,N)−1Lk
)

ϕ

= Tf,mϕ.

Hence we see that ϕ ∈ D(Tf ) and f(N)Tf2 + Tf2f(N) = Tf on ℓ2fin(N).
Since Tf is a time operator of f(N) with a CCR-domain (1l− L∗)ℓ2fin(N),

[

f(N), f(N)Tf2 + Tf2f(N)
]

= [f(N), Tf ] = −i1l

on (1l− L∗)ℓ2fin(N).

Intuitively it may be hard to show the (essentially) self-adjointness of f(N)Tf2 +Tf2f(N)
or Tf themselves, since operators f(N)Tf2 + Tf2f(N) and Tf are unbounded both from
above and below, and a CCR-domain (1l−L∗)ℓ2fin(N) is not a core of f(N). So we add extra
term f(N)β to f(N)Tf2 +Tf2f(N). Note that [N, f(N)β ] ⊂ 0. Hence we consider f(N)Tf2 +
Tf2f(N)+γf(N)β instead of f(N)Tf2+Tf2f(N) and show that f(N)Tf2+Tf2f(N)+γf(N)β

is self-adjoint by the fact that f(N)Tf2 + Tf2f(N) is relatively small with respect to f(N)β.
We introduce classes M(β) and Ms(β) of functions on N.
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Definition 3.6 (M(β) and Ms(β)). Let β ≥ 0. Denote by M(β) the set of all functions
f ∈ K− such that there exist functions g : N → (0,∞) and h ∈ ℓ1(N≥1,R) satisfying the
following conditions:

(1) f2/g ∈ ℓ1(N),

(2) for any n ∈ N and k ≥ 1,
g(n)

(f(n)β∆k(f2, n))
2 ≤ h(k)2. (3.2)

Write Ms(β) the set of functions f ∈ M(β) that, for the above function g, there exists a
constant C > 0 such that

sup
n∈N

n
∑

k=1

g(n)

(f(n− k)β (f(n)2 − f(n− k)2))
2 < C. (3.3)

Lemma 3.7. Let f ∈ M(1). Then Tf2 is bounded.

Proof. By (1) of Definition 3.6, supn∈N f(n)2/g(n) is finite. From (3.2), we have
∥

∥

∥
∆k

(

f2, N
)−1
∥

∥

∥
≤ sup

n∈N
∆k

(

f2, n
)−1 ≤ sup

n∈N

(

f(n)2/g(n)
)1/2

h(k).

Since h ∈ ℓ1(N≥1,R), by Lemma 3.1, we see that Tf2 is bounded .

Lemma 3.8. Let f ∈ Ms(β) Then f(N)Tf2 is relatively bounded with respect to f(N)β, i.e.,
there exists some constant a > 0 such that for all ϕ ∈ D(f(N)β)

∥

∥

∥
f(N)Tf2ϕ

∥

∥

∥
≤ a

∥

∥

∥
f(N)βϕ

∥

∥

∥
.

Here A denotes the closure of the linear operator A.

Proof. It is sufficient to show that f(N)Tf2f(N)−β is bounded. For any ϕ ∈ ℓ2fin(N),

∥

∥

∥
f(N)Tf2f(N)−βϕ

∥

∥

∥

2
=

∞
∑

n=0

(

ξn, f(N)Tf2f(N)−βϕ
)2

≤ ‖ϕ‖2
∞
∑

n=0

∥

∥

∥f(N)−βTf2f(N)ξn

∥

∥

∥

2

= ‖ϕ‖2
∞
∑

n=0

f(n)2
∥

∥

∥
f(N)−βTf2ξn

∥

∥

∥

2
.

For all n ∈ N, we see that

∥

∥

∥f(N)−βTf2ξn

∥

∥

∥

2
=

∥

∥

∥

∥

∥

∥

∑

k≥1

f(N)−β
(

L∗k∆k(f
2, N)−1 −∆k(f

2, N)−1Lk
)

ξn

∥

∥

∥

∥

∥

∥

2

=
∑

k≥1

1

f(n+ k)2β∆k (f2, n)2
+

n
∑

k=1

1

f(n− k)2β(f(n)2 − f(n− k)2)2

≤ 1

g(n)





∑

k≥1

h(k)2 + C



 .
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Thus we have

∥

∥

∥
f(N)Tf2f(N)−βϕ

∥

∥

∥

2
≤ ‖ϕ‖2

(

‖h‖2ℓ2 + C
)

∞
∑

n=0

f(n)2g(n)−1.

Therefore f(N)Tf2f(N)−β is bounded.

Remark 3.9. Let β ≥ 1, f ∈ Ms(β) and T 2
f be bounded. Since the operator Tf is equal to

f(N)Tf2+Tf2f(N) on ℓ2fin(N) by Lemma 3.5, it is easy to see that Tf is also relatively bounded
with respect to f(N)β, i.e., there exists a constant a > 0 such that for all ϕ ∈ D(f(N)β)

∥

∥Tfϕ
∥

∥ ≤ a
∥

∥

∥
f(N)βϕ

∥

∥

∥
.

Proposition 3.10. Let f ∈ Ms(1). Then (1) and (2) follow.

(1) f(N)Tf2 + Tf2f(N) + γf(N) is self-adjoint if |γ| ≫ 1.

(2) f(N)Tf2 + Tf2f(N) + γf(N)2 is self-adjoint if γ ∈ R \ {0}.

Proof. (1) From Lemma 3.8, there exists a relative bound a of f(N)Tf2 + Tf2f(N) with
respect to f(N). Thus if |γ| > a, by the Kato-Rellich theorem, the operator is self-adjoint.

(2) From Lemma 3.8, we see that f(N)Tf2+Tf2f(N) is relatively bounded with respect to
f(N). Since f(N) is infinitesimally small with respect to f(N)2, by the Kato-Relich theorem,
γf(N)2 + f(N)Tf2 + Tf2f(N) is a self-adjoint operator.

We are in the position to state the main theorem in this paper.

Theorem 3.11. Let f ∈ Ms(1). Then Tf + γf(N)2 is a self-adjoint time operator of f(N)
with a dense CCR-domain for all γ ∈ R \ {0}.

Proof. From (3.1), Lemma 3.7, Lemma 3.8 and Remark 3.9, we see that Tf + γf(N)2 is
self-adjoint for all γ ∈ R \ {0} and [f(N), Tf + γf(N)2] = −i1l on (1l− L∗)ℓ2fin(N).

Example 3.12. Let f(x) = xλ + 1 for λ ∈ (3/4, 1). We show that f ∈ Ms(1). Firstly, it is
immediate that f ∈ K−. Let α ∈ (1 + 2λ, 6λ − 2), g(x) = xα + 1 and δ = 6λ − 2 − α. Then
the condition (1) of M(1) is satisfied.

Secondly, by the mean value theorem, we have

f(n+ k)− f(n) ≥ λk

(n + k)1−λ
.

Thus we see that

g(n)

f(n)2∆k (f2, n)2
=

nα + 1

f(n)2(f(n+ k)2 − f(n)2)2
≤ (nα + 1)(n+ k)2(1−λ)

λ2(nλ + 1)2(n+ k)2λk2
≤ 2

λ2k2+δ
.

Thus the condition (2) of M(1) is satisfied and f ∈ M(1).

8



Finally we see that

lim
n→∞

n
∑

k=1

g(n)

f(n− k)2 (f(n)2 − f(n− k)2)2

= lim
n→∞





[n/2]
∑

k=1

g(n)

f(n− k)2 (f(n)2 − f(n− k)2)2
+

n
∑

k=[n/2]+1

g(n)

f(n− k)2 (f(n)2 − f(n− k)2)2





≤ lim
n→∞

4λ(nα + 1)n2(1−λ)

λ2(nλ + 1)2n2λ





[n/2]
∑

k=1

1

k2
+

41−λ

n2(1−λ)

n
∑

k=[n/2]+1

1

f(n− k)2



 < ∞.

Then the condition (3.3) is satisfied and f ∈ Ms(1).
We see that Tf is unbounded by Proposition 3.3 and that, from Theorem 3.11, f(N) has

a self-adjoint time operator with a dense CCR-domain.

Similarly to Proposition 3.10 and Theorem 3.11, we can show the following statements.
We omit proofs.

Proposition 3.13. Let f ∈ Ms(2) and Tf2 is bounded. Then f(N)Tf2 +Tf2f(N)+ γf(N)2

is a self-adjoint time operator of f(N) if |γ| ≫ 1.

Theorem 3.14. Let f ∈ Ms(2) and Tf2 is bounded. Then Tf +γf(N)3 is a self-adjoint time

operator of f(N) with a dense CCR-domain for all γ ∈ R \ {0}.

Example 3.15. Let f(x) = xλ + 1 for λ ∈ (1/2, 1). Then Tf2 is bounded by Lemma 3.1.
Similar to Example 3.12, we can see that f ∈ Ms(2). Therefore f(N) has an unbounded
self-adjoint time operator with a dense CCR-domain by Theorem 3.14.

3.3 Extensions

In this section we consider the case that f2 ∈ K− but not necessarily f ∈ K−.

Proposition 3.16. Let f ∈ K. If D(f(N)Tf2)∩D(f(N)2) is dense and Tf2 is bounded, then

f(N)Tf2 + Tf2f(N) + γf(N)2 of f(N) has a self-adjoint extension for all γ ≥ 1.

Proof. From

f(N)Tf2 + Tf2f(N) + γf(N)2 ⊂
(

f(N) + Tf2

)2
+ (γ − 1)f(N)2 − T 2

f2 ,

we see that f(N)Tf2 +Tf2f(N)+ γf(N)2 is bounded from below. Thus it has the Friedrichs
extension.

Lemma 3.17. Let f2 ∈ K−. Then (1l − L∗)ℓ2fin(N) ⊂ D
(

f(N)2Tf2

)

∩ D(Tf2f(N)) and the

operator f(N)Tf2 + Tf2f(N) is symmetric.

Proof. From Lemma 3.5, Tf2 satisfies
[

f(N)2, Tf2

]

= −i1l on (1l − L∗)ℓ2fin(N). This implies
that (1l− L∗)ℓ2fin(N) ⊂ D

(

f(N)2Tf2

)

∩D(Tf2f(N)).

Lemma 3.18. Let f ∈ K. Then f(N)(1l− L∗)∆1(f,N)−1(1l− L∗)ℓ2fin(N) ⊂ (1l− L∗)ℓ2fin(N).
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Proof. On ℓ2fin(N), we have

f(N)(1l− L∗)∆1(f,N)−1(1l− L∗)

=
(

f(N)∆1(f,N)−1 − L∗f(N + 1l)∆1(f,N)−1
)

(1l− L∗)

=
(

f(N)∆1(f,N)−1 − L∗ − L∗f(N)∆1(f,N)−1
)

(1l− L∗)

= (1l− L∗)
(

f(N)∆1(f,N)−1(1l− L∗)− L∗
)

.

Therefore we obtain the desired result.

Theorem 3.19. Let f2 ∈ K−. Then f(N)Tf2 +Tf2f(N) and Tf are time operators of f(N)
with an infinite dimensional CCR-domain.

Proof. From Lemmas 3.5, 3.17 and 3.18, we see that

(1l− L∗)∆1(f,N)−1(1l− L∗)ℓ2fin(N) ⊂ D(f(N)2Tf ) ∩D(f(N)Tff(N)) ∩D(Tff(N)2).

Therefore the symmetric operator f(N)Tf2 + Tf2f(N) satisfies
[

f(N), f(N)Tf2 + Tf2f(N)
]

= −i1l

on (1l− L∗)∆1(f,N)−1(1l− L∗)ℓ2fin(N). By the proof of Lemma 3.5, we can see that

f(N)Tf2 + Tf2f(N) = Tf

on (1l − L∗)ℓ2fin(N). Hence Tf is also a time operator of f(N) with an infinite dimensional
CCR-doamin.

Example 3.20. Let f(x) =
√
x+ 1. Clearly, f2 ∈ K−. From Theorem 3.19, we see that

f(N)Tf2 + Tf2f(N) + f(N)2 is a time operator of f(N). It is known that Tf2 is bounded
by [2, Theorem 4.6]. Since it has a self-adjoint extension by Proposition 3.16, f(N) has a
self-adjoint time operator with an infinite dimensional CCR-domain.
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