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Abstract

Time operators for an abstract semi-bounded self-adjoint operator H with purely
discrete spectrum is considered. The existence of a bounded self-adjoint time operator
T for H is known as Galapon time operator. In this paper, a self-adjoint but unbounded
time operator T of H is constructed.

1 Introduction

We give the definition of time operators and conjugate operators.

Definition 1.1. Let H be a self-adjoint operator on a Hilbert space H and 17" an operator
on H. If H and T satisfy the canonical commutation relation

[H,T] = HT — TH = —il

on Dyr C D(HT)ND(TH) but Dy # {0}, then T is called a conjugate operator of H
and Dy 7 is called a CCR-domain. Here D(A) is the domain of the operator A. If T is a
symmetric operator on H, then 7' is called a time operator of H.

Time operators and/or conjugate operators for H are in general not unique. In the series
of papers [5, 4] we construct time operators and/or conjugate operators for 1D-harmonic
oscillator. It is known that the so-called Galapon time operator Tg for the 1D-harmonic
oscillator is bounded self-adjoint operator and the CCR-domain is dense.

We introduce Galapon operator. A self-adjoint operaotr H considering the Galapon
operator usually imposes the following conditions.

Assumption 1.2. An operator H on a separable Hilbert space H is positive, unbounded
and self-adjoint. The spectrum o(H) of H consists of only simple eigenvalues and H~! is
Hilbert-Schmidt.

Let H be an operator which satisfies Assumtion 1.2, e,, an eigenvector of H for an eigen-
value E,, for n € N. Note that
o
1
Z ﬁ < 0.
n=0

n
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Define the Galapon time operator T associated with the operator H by
D(T¢) = LH{e, € H |n € N},

[e.e]
. Em, P
Tgp =1 E E % en, @ € D(T).
n=0 \m#n " m

Here, for a subset A of H, LHA means the linear hull of A.

Proposition 1.3 ([3, 2]). Suppose that H satisfies Assumption 1.2. Then Tg is a densely
defined time operator of H with a CCR-domain LH{e,, — e, | n,m € N}.

It is established in [2, Theorem 4.5] that if
E, — Ep > C(n* —m?) (1.1)

for some constants C' > 0 and A > 1, then T is a bounded time operator of H, and hence it
is self-adjoint. In particular, if

E,=an*+b, neN, A>1

with some constants a,b > 0, then T is a bounded self-adjoint time operator.
Let
E,=an*+b, neN, 1/2<i<1

with constants a,b > 0. Then it can be shown that T is unbounded time operator. The
self-adjointness of T is however unknown. It is also pointed out in [1, Remark 4.7] that no
examples of unbounded self-adjoint time operator of the form T is constructed.

The purpose of this paper is to construct unbounded self-adjoint time operators for some
abstract self-adjoint operator H. We organize this paper as follows. In Section 2 we unitarily
transform T to an operator T on ¢*(N). Section 3 is devoted to constructing unbounded
self-adjoint time operators. The main results are stated in Theorems 3.11 and 3.13.

2 Galapon time operator on £2(N)

In this paper, the investigation of time operators is carried out on ¢?(N) instead of H. Then
we shall show first of all that T is unitarily equivalent to an operator T on ?%(N). Denote
by ¢2(N) the set of square summable functions on N and let &, € £2(N) be the function on N
defined by

gn(m) = 5nma m € N,

where 6y, is the Kronecker delta function. We write £2 (N) for the set of ¢ € ¢2(N) which
has a finite support, i.e., there exists m € N and (¢,)], € C™*+! such that ¢ is represented
by > cnén. Note that (2 (N) is dense in ¢%(N). Let L be the left shift operator on ¢*(N)
and L* the adjoint operator of L;

L*¢, = &pi1, neN.

Let N be the number operator on £2(N). Then N¢, = né, for n € N. It is well known that N
is a self-adjoint operator, ¢Z (N) is a core for N and N satisfies [N, L] = —L and [N, L*] = L*
on /2 (N).

We introduce notations K and K.



Definition 2.1 (I and £7). Let us denote by K the set of all real valued funtions on N
which satisfy the following conditions:

(1) £(0) >0,
(2) f(n) < f(n+1) for all n € N.
Write K~ = {f € K| 1/f € A(N)}.

To define T for f € K, we set

Ar(fon) = f(n+k) = f(n).
Lemma 2.2. Let f € K. Then (2 (N) C D(Ax(f,N)™1) for all natural number k > 1.

Proof. Since f is strictly increasing, Ag(f, N) is injective. Clearly ¢2 (N) € D(A(f,N))
and &, is an eigenvector of Ag(f, N):

Ag(f, N)én = Ak(f,1)En.
This implies that (2 (N) C D(Ax(f, N)™1). O
Remark 2.3. Note that inf,ey Ag(f,n) > 0 if and only if Ay(f, N)~! is a bounded operator.
Definition 2.4. Let f € K. We define operators Ty, and Ty on ¢*(N) by

Tf,m = Zi <L*kAk(f’ N)_l - Ak(f, N)_lLk> 5
k=1

D(Ty)=<q¢ e [ D(Trm) lim Ty exists in 2(N) 3,

m>1

Tftp = rr}gnoo Tf’mtp, (RS D(Tf)

Lemma 2.5. Suppose that f € K. Then (% (N) C D (T}).

Proof. It is sufficient to show that lim,, o T &, exists for all n € N. For any n < mj < ma,

2
m2

1@y~ Tr) &P = || S (L4801 0) !~ Ak (£.0) ' 1) &,
k=mi+1
e
T 2 Farh o

) VT 1
§<1 f(n+1)> 2 T O

as mi, mg — 00. Hence {T'f &, tmen is a Cauchy sequence. Therefore limy, o0 Tt m&n exists
and &, € D(T%). O



From Lemma 2.5, we see that T is a densely defined symmetric operator. The relationship
between Ty and T is given by the following theorem.

Theorem 2.6. Suppose that H satisfies Assumption 1.2. Then there exists a unitary operator
U: H — (3(N) and a function f € K~ such that f(N)=UHU* and T} is unitary equivalent
to T on 02 (N), i.e.,

UTcU* =Ty  on (3,(N).

Proof. Let f: N — R be a function such that f(n) = E,. Then f € K~. Let U: H — ¢*(N)
be the unitary operator defined by Ue,, = &, for any n € N. For arbitrary ¢ € D(T"), we see
that

UTG<P=ZZ< ém,_Ug? + Z §m,U<p )

m<n
_ "M, QD) (L M, USD)
—ZZ <m<n . —FE, +mz>:n E — L, )5"
= (LF&,Up) X (L**E,, Uyp)
ST (S e e
n=0 \k=1 k=1

Since f(N)&, = En&y, it follows that
(En — Epi) 'L"é, = Ap(f,N)'L*,
and

(En—i-k - En)_lgn = Ak(f, N)_lgn-

From Lemma 2.5, we see that &,, Uy € D(Tf). Thus

UTap =i Z <Z (Ak fN)ILE - L*kAk(f,N)—l) §n,U<p> £,

_ Z <§n,iz <L*kAk(f, Nyt - Ak(f,N)*lLk> ULp) En.
k=1

This shows that UTge = TyUgp for any ¢ € D(Tg) = U*(3 (N). Then the theorem is
proven. ]

Corollary 2.7. For all f € K~, the operator Ty is a time operator of f(N) with a CCR
domain (1 — L*)¢%2 (N).

Proof. By the definition of K™, the operator f(N) is a positive and unbounded self-adjoint
operator, and o(f(N)) consists of only simple eigenvalues and f(N)~! is Hilbert-Schmidt.
Thus T is a time operator of f(/N) by Theorem 2.6. O

By Theorem 2.6 and Corollary 2.7, the set {T | f € K~} includes Galapon time operators
Tg. So in what follows we consider time operator 1.



3 Self-adjointness of time operators
3.1 Bounded cases

Let us recall the case where the operator 7' is bounded.

Lemma 3.1. Let f € K. Suppose that 0 € o(Ax(f,N)) for all k > 1 and

D A, N < oo

E>1
Then the operator T is bounded. In particular, Ty is a self-adjoint operator.

Proof. For any ¢ € 2(N) and 1 < mq1 < ma,

s~ el < 3 (27800307 | a0 2] el

=m1+

<2l Y [Jak(s, N

k=mi+1

This shows that {T}m¢}men is a Cauchy sequence. Therefore D(Ty) = (*(N) and Ty is
bounded. O

A similar result to Lemma 3.1 is obtained in [2, Theorem 4.5].

Example 3.2. Let A > 1 and f(z) = 2* + 1. Then f € K~. Since A(f,n) > Ap(f,0) = &,
we have

SOAREN) T <D Tk < oo

k>1 k>1

Therefore T is bounded self-adjoint time operator of f(IV).

3.2 Unbounded cases

Next proposition is a sufficient condition for T to be unbounded.

Proposition 3.3. Suppose that f € K~ and 0 € o(Ay(f,N)). Then T} is unbounded.
Proof. See [2, Theorem 5.1]. O

Let f: dom(f) — C. In this paper, we denote by f2 the function f?: dom(f) — C,
f?(x) = f(x)? for each x € dom(f). In what follows we consider operators of the form
J(NYTps + Ty f(N).

Lemma 3.4. Let f € K~. Then (§ (N) C D (f(N)T}2) and

m—0o0

for all n € N.



Proof. Similarly to the proof of Lemma 2.5, for any n < m; < mo, we have

2 .- f(n+k)
[FON) (Tp2 gy = Tron) el = D (f(n+ k)2 — f(n)2)2

k=mi1+1
S TS
: (1 - f(n+1)> 2 TR

Therefore limy, ;o0 f(N)T}2 ,,&n exists. Since f(N) is a closed operator, we obtain desired
conclusion. O

The next lemma shows that T is identical to f(N)T2 + T2 f(N) on (3 (N).
Lemma 3.5. Let f € K=. Then
F(N)Tpo + T f(N) = Ty (3.1)
on (2 (N) and
[F(N), [(N)Tp2 + Tp2 f(N)] = —ill
on (1— L*)02 (N).
Proof. From Lemma 3.4, for any ¢ € /% (N),

(f(N)TfQ + Tfo(N)) = lim (f(N)TfQ,m + TfQ,mf(N)) ©.

m— o0

For each m, we obtain
(f(N)TfQ,m + Tf2,mf(N)) 2

(L5 (PN + )+ FON) A (72 N) 71 = Ay (7%, N)

NE

1

(F(N + k) + F(N) L)
k

=i (LA N = Al N) U LE)
k=1
= Tf7m(p'

1

3

Hence we sce that ¢ € D(Ty) and f(N)Ty2 + Tp2 f(N) = Ty on £ (N).
Since T is a time operator of f(N) with a CCR-domain (1 — L*)¢Z (N),

on (I — L*)€,(N). -

Intuitively it may be hard to show the (essentially) self-adjointness of f(N)T'y2+ T2 f(N)
or Ty themselves, since operators f(N)Ty2 + Ty f(N) and Ty are unbounded both from
above and below, and a CCR-domain (1 — L*)¢2 (N) is not a core of f(IN). So we add extra
term f(N)? to f(N)Ty2+Ts2 f(N). Note that [N, f(N)?] C 0. Hence we consider f(N)Tj2 +
Ty f(N)+7f(N)? instead of f(N)Ty2+Ty2 f(N) and show that f(N)Tp2+Tyz f(N )+ f(N)?
is self-adjoint by the fact that f(N)Ty2 + T2 f(N) is relatively small with respect to f(N )P,

We introduce classes M(3) and Mg(3) of functions on N.



Definition 3.6 (M(3) and Ms(3)). Let 8 > 0. Denote by M(B) the set of all functions
f € K~ such that there exist functions g: N — (0,00) and h € (N>, R) satisfying the
following conditions:

(1) f?/g € L}(N),
(2) for any n € Nand k> 1,

9(“) 2
Gy =M 32

Write M(5) the set of functions f € M(f) that, for the above function g, there exists a
constant C' > 0 such that

su Y 9(n) C. 3.3
"EE; (f(n— k)P (f(n)? = f(n—k)?))° ) 33

Lemma 3.7. Let f € M(1). Then T2 is bounded.
Proof. By (1) of Definition 3.6, sup,,cy f(n)?/g(n) is finite. From (3.2), we have

2052 M) 71 < sup A (7% m) ™ < sup (£)? ()" i),

Since h € (! (N>1,R), by Lemma 3.1, we see that Ty is bounded . ]

2,

Lemma 3.8. Let f € Ms(B) Then f(N)Ty2 is relatively bounded with respect to f(N)B, e,
there exists some constant a > 0 such that for all p € D(f(N)?)

o] <oy

Here A denotes the closure of the linear operator A.

Proof. It is sufficient to show that f(N)Tf2 f(N)=# is bounded. For any ¢ € ¢2_(N),

[T s = (sn,f<N>Tf2f<N>*%)2

<H<pHZHf T f(N)e|

o S{OH s
n=0

For all n € N, we see that
2

TS (LA N AN )

k>1

|1,

1 1
gf(n k)20 Ag (f2,m an— 2(f(n)? = fn—k)?)?

dfpe)



Thus we have
2 o0
[T r ()25 | < gl (IR + €) 3 Fn)gm) .
n=0

Therefore f(N)Ty2 f(N)~? is bounded. O

Remark 3.9. Let 8 > 1, f € M(8) and TJ? be bounded. Since the operator T is equal to
S(N)T 24Ty f(N) on ¢4 (N) by Lemma 3.5, it is easy to see that T is also relatively bounded
with respect to f(N)?, i.e., there exists a constant a > 0 such that for all ¢ € D(f(N)?)

[ Trell <[ £
Proposition 3.10. Let f € My(1). Then (1) and (2) follow.
(1) f(N)Ty2 + T2 f(N) +7f(N) is self-adjoint if |y > 1.
(2) f(N)Ty2 4+ Tp2 f(N) + 7 f(N)? is self-adjoint if v € R\ {0}.

Proof. (1) From Lemma 3.8, there exists a relative bound a of f(N)Tj2 + Ty f(N) with
respect to f(N). Thus if |y| > a, by the Kato-Rellich theorem, the operator is self-adjoint.
(2) From Lemma 3.8, we see that f(N)Tj2+Ty2 f(N) is relatively bounded with respect to
f(N). Since f(N) is infinitesimally small with respect to f(N)?, by the Kato-Relich theorem,
YF(N)? + f(N)Tj2 + T2 f(N) is a self-adjoint operator. O

We are in the position to state the main theorem in this paper.

Theorem 3.11. Let f € Mg(1). Then Ty +~vf(N)? is a self-adjoint time operator of f(N)
with a dense CCR-domain for all v € R\ {0}.

Proof. From (3.1), Lemma 3.7, Lemma 3.8 and Remark 3.9, we see that Ty + vf(N)? is
self-adjoint for all v € R\ {0} and [f(N),Tf +vf(N)?* = —il on (1 — L*)¢2 (N). O

Example 3.12. Let f(z) = 2* + 1 for A € (3/4,1). We show that f € My(1). Firstly, it is
immediate that f € K~. Let a € (1 4 2\, 6\ —2), g(z) =2*+ 1 and 6 = 6\ — 2 — a. Then
the condition (1) of M(1) is satisfied.

Secondly, by the mean value theorem, we have

Ak
- >
f(n+k) f(?’L) — (n—i—k)l_)‘
Thus we see that
« [ 2(1*>‘)
g(n) _ n®+1 - (n*+1)(n+k) o2

Fm)2A, (f2,n)*  f?(f(n+E)? = f(n)?)* = Xt +1)%(n+ k)E> — A2k

Thus the condition (2) of M(1) is satisfied and f € M(1).



Finally we see that

n

lim 9(n)

k=1
[n/2] n
. 9(n) ., o(n)
I\ & TR e~ r R k%;]ﬂ F(n =R (F(n)? — f(n— k)?)?
. A+ 1)n20N [n/Q] g1=A 1
< fm NEA ) | k: Ry o Z Fn—R2Z ) =

=[n/2]+1

Then the condition (3.3) is satisfied and f € Mg(1).
We see that T is unbounded by Proposition 3.3 and that, from Theorem 3.11, f(N) has
a self-adjoint time operator with a dense CCR-domain.

Similarly to Proposition 3.10 and Theorem 3.11, we can show the following statements.
We omit proofs.

Proposition 3.13. Let f € M(2) and Ty is bounded. Then f(N)Ty2+Tp2 f(N) +~f(N)?
is a self-adjoint time operator of f(N) if |y| > 1.

Theorem 3.14. Let f € M(2) and Ty2 is bounded. Then Ty +~f(N)? is a self-adjoint time
operator of f(N) with a dense CCR-domain for all v € R\ {0}.

Example 3.15. Let f(z) = 2* + 1 for A € (1/2,1). Then T2 is bounded by Lemma 3.1.
Similar to Example 3.12, we can see that f € Mg(2). Therefore f(N) has an unbounded
self-adjoint time operator with a dense CCR-domain by Theorem 3.14.

3.3 Extensions

In this section we consider the case that f? € K~ but not necessarily f € K.

Proposition 3.16. Let f € K. IfD(f(N)Ty2) ND(f(N)?) is dense and Ty> is bounded, then
J(N)Tp2 +Tp2 f(N) + vf(N)? of f(N) has a self-adjoint extension for all v > 1.

Proof. From
FN)Tp2 + Ty f(N) + 7 f(N)? € (F(N) +Tp2)? + (3 = 1) F(N)? = T,

we see that f(N)Ty2+Ty2f(N)+f(N)? is bounded from below. Thus it has the Friedrichs
extension. O

Lemma 3.17. Let f> € K=. Then (1 — L*)¢% (N) C D(f(N)*Ty2) ND(Ty2 f(N)) and the
operator f(N)Ty2 + Ty f(N) is symmetric.

Proof. From Lemma 3.5, T2 satisfies [f(N)?,Tj2] = —ill on (1 — L*)¢3 (N). This implies
that (1 — L*)(¢ (N) C D(f(N)*Ty2) ND(T= f(N)). O

Lemma 3.18. Let f € K. Then f(N)(1— L*)A1(f,N)~*(1 — L*)¢2_(N) C (1 — L*)¢2 (N).



Proof. On /% (N), we have
FIN)(@ =L)AL (f,N)"H (1~ L)
= (F(N)AL(f,N)"' = L*f(N + DA (f,N) ) (1 - L)
= (FMNALF,N) T = L = L f(N)Ay (£, N)7!) (1= L)
=1 —L") (f(N)AL(f,N) (L~ L) ~ L)
Therefore we obtain the desired result. O

Theorem 3.19. Let f> € K~. Then f(N)Ty2+ Ty f(N) and Ty are time operators of f(N)
with an infinite dimensional CCR-domain.

Proof. From Lemmas 3.5, 3.17 and 3.18, we see that
(1= L)AL(f, N) 7 (1 = LY, (N) € D(f(N)*Ty) N D(f(N)T7f(N)) N D(Tyf(N)?).
Therefore the symmetric operator f(N)Ty2 4 T2 f(NN) satisfies
[f(N), f(N)Tp2 + T2 f(N)] = —ill
on (1 — L*)Aq(f,N)~1(1 - L*)¢2_(N). By the proof of Lemma 3.5, we can see that
J(N)Tp2 +Tp2 f(N) =Ty

on (1 — L*)¢2 (N). Hence Ty is also a time operator of f(IN) with an infinite dimensional

CCR-doamin. O

Example 3.20. Let f(z) = /z + 1. Clearly, f2 € K~. From Theorem 3.19, we see that
S(N)Ty2 + Ty2 f(N) + f(N)? is a time operator of f(N). It is known that T2 is bounded
by [2, Theorem 4.6]. Since it has a self-adjoint extension by Proposition 3.16, f(N) has a
self-adjoint time operator with an infinite dimensional CCR-domain.
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