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Inner Functions and Laminations

Oleg Ivrii and Mariusz Urbanski

Abstract

In this paper, we study orbit counting problems for inner functions using
geodesic and horocyclic flows on Riemann surface laminations. For a one
component inner function of finite Lyapunov exponent with F(0) = 0, other
than z — 2%, we show that the number of pre-images of a point z € D\ {0}

that lie in a ball of hyperbolic radius R centered at the origin satisfies

1 1

S &R o
|zl [yplog | F"|dm’ o >

1
N(z,R) ~ ﬁlog
For a general inner function of finite Lyapunov exponent, we show that the
above formula holds up to a Cesaro average. Our main insight is that itera-
tion along almost every inverse orbit is asymptotically linear. We also prove

analogues of these results for parabolic inner functions of infinite height.
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1 Introduction

A finite Blaschke product F(z) is a holomorphic self-map of the unit disk
which extends to a continuous dynamical system on the unit circle. Loosely
speaking, an inner function is a holomorphic self-map of the unit disk which
extends to a measure-theoretic dynamical system of the unit circle. More
precisely, we require that for a.e. § € [0,27), the radial boundary value
F(e"?) := lim,_,1 F(re®) exists and has absolute value 1.

If the Denjoy-Wolff point of F' is in the unit disk, then without loss of
generality we may assume that F'(0) = 0, so that 0 is an attracting fixed point
of F and the normalized Lebesgue measure m = |df|/27 is invariant under F.
(In this case, we say that F is centered.)

Let z € D\ {0} be a point on the unit disk, other than the origin. For
R > 0, we may count the number of repeated pre-images w which lie in the

ball of hyperbolic radius R centered at the origin:
N(z, R) = #{w € Byyp(0, R) : F°"(w) = z for some n > 0}.
Our first main theorem states:

Theorem 1.1. Let F' be an inner function of finite Lyapunov exponent
Xm = / log | F'(re')|dm < oo,
oD

with F(0) = 0 which is not a rotation. If z € D\ {0} lies outside a set of

Lebesgue zero measure, then

1 [ 11 1
lim / NS g Lygg Lo 1 (1.1)
R—too R Jg e 2 7zl [oplog |F'|dm

According to the original definition of W. Cohn in [Coh82], an inner func-
tion F(z) is a one component inner function if the set {z € D : |F(2)| < p}
is connected for some 0 < p < 1. For applications to dynamical systems, it is
more useful to say that an inner function is a one component inner function if
the set of singular values is compactly contained in the unit disk. This implies
that backward iteration along every inverse orbit is asymptotically linear.

Our second main theorem states:



Theorem 1.2. Let F' be a one component inner function of finite Lyapunov
exponent with F(0) = 0, other than z — 2% for some d > 2. Suppose z € D\{0}
lies outside a set of countable set. Then,

1 1 "

I S 1.2
|| faDlog|F’|dm €5 (1.2)

1
N(z,R) ~ §log

as R — oo.

We also obtain analogous results for finite Lyapunov exponent parabolic
inner functions of infinite height (in this case, the Denjoy-Wolff point lies on

the unit circle). Precise statements will be given in Part of the paper.
Remark. (i) Theorems and may not hold for every point z € . For

instance, the inner function
z+1
f(2) = exp<z & 1)

omits the value 0. Post-composing with a Mdbius transformation, we get an
inner function F' with F(0) = 0 which omits a value p # 0. For z = p, the set
of repeated pre-images of z is empty.

(ii) For z — 2%, d > 2, repeated pre-images of a point come in packets, so
N(z,R) is a step function.

(iii) For an alternative approach to orbit counting using thermodynamic
formalism, see [Ivr15l Section 7] and [[U23]. The results in this paper are
somewhat stronger because they only require the minimal hypotheses on the
inner function F'; however, the techniques are specific to inner functions.

(iv) For an analytic characterization of inner functions of finite Lyapunov

exponent, we refer the reader to the works [Ivr19, Tvr20, TK22].

1.1 An overview of the proofs

To prove Theorems and we study the geodesic flow on the Riemann
surface lamination Xp associated to F, which was described in [McMO8] for
finite Blaschke products. (Definitions will be given in Section [3}) McMullen’s
construction generalizes to one component inner functions without much dif-
ficulty. According to Sullivan’s dictionary, the Riemann surface lamination is

analogous to the unit tangent bundle of a Riemann surface. McMullen showed



that the geodesic flow on X F is ergodic by relating it to a suspension flow over
the solenoid. Applying the ergodic theorem to a particular function on the
lamination shows Theorem up to taking a Cesaro average.

To give a full proof of Theorem (1.2}, one needs to show that the geodesic flow
on X F is mixing. As in the case of the geodesic flow on a finite area hyperbolic
surface, this is done by first showing that the horocyclic flow is ergodic. The
main step is to show that the horocyclic flow on X r has a dense orbit. This
uses an argument of A. Glutsyuk |Glul0] which involves examining horocycles
on a special leaf of X F associated to a repelling fixed point on the circle.
From here, the ergodicity of the horocyclic flow follows from an argument of
Y. Coudene [Cou09].

Theorem [I.1] requires more work because one has to manually construct the
natural volume form df and the geodesic flow g; on the lamination X F for a
general inner function F of finite Lyapunov exponent. To do this, we first show
that iteration along almost every inverse orbit is asymptotically linear. The
proof uses a number of concepts from differential geometry such as Gaussian

and geodesic curvatures.

Remark. In [McMO09, Section 10], one learns that inner functions are close to
hyperbolic isometries away from the critical points. Consequently, a generic

inverse orbit stays away from the critical points.

2 Inner functions

As is well known, any inner function F' can be factored into a Blaschke product

and a singular inner function:

B(z):ewH—ai Z_ﬁi , a; € D,

la;| 1—az

- [ £

In this decomposition, the Blaschke product records the zero set of F', while

du(C)>, p=>0, plm.

the singular factor records the zeros of F' “dissolved” on the unit circle.
The above decomposition privileges the set of pre-images of 0. To view an

inner function from the perspective of a point a € D, we consider the Frostman



shift
B F(z)—a
1—aF(2)

A point a € D is called exceptional if F, has a non-trivial singular factor. Frost-

Fu(z)

man showed that the set of exceptional points in the unit disk has logarithmic
capacity 0, while Ahern and Clark [AC74] observed that for inner functions of
finite Lyapunov exponent, the exceptional set is at most countable.

The following identity will play an important role in this work:
Lemma 2.1. Suppose F is an inner function with F(0) = 0. For a non-
exceptional point z € D\ {0},
1 1
Z log — =log —. (2.1)
7wl ]
F(w)

The < inequality holds for every z € D.

A proof can be found in [Ivr20, Lemma A.4]. A holomorphic self-map of the
unit disk F' has an angular derivative in the sense of Carathéodory at ( € 9D
if

F(¢) :=lim F(r¢) € oD and F'(¢) := lim F'(r¢) < oc.
r—1 r—1

We will use the following two lemmas on angular derivatives from [ACT4]:

Lemma 2.2. If we decompose F' = BS,, into a Blaschke product with zero set

{a;} and a singular inner function with singular measure u, then

— |a;|? z
IF’(C)\=ZW+/8 2dp(2) ¢ € a.

¢ —ail* * Jop ¢ — 2

In particular, if F(0) = 0 and F' is not a rotation, then |F'({)| > ¢ > 1.

Lemma 2.3. If an inner function F' has an angular derivative at { € 0D,
then
[F'(rQ)l <4|F/(Q),  0<r<L (2.2)

The following lemma is a simple consequence of the Schwarz lemma and

the triangle inequality:



Lemma 2.4. Suppose F' is an inner function with F(0) = 0, which is not a
rotation. There exists a number v = y(F) > 0 so that for any z € D with
dp(0, z) > 1, the hyperbolic distance

dD(Ov f(z)) < d]D)(Oa Z) - 4’7'

The above lemma shows that any ball Z of hyperbolic radius y contained in
{w €D :dp(0,w) > 1} does not intersect its forward orbit, i.e. F°"(A)N A =
(), which implies that its inverse images {F~" ()} are disjoint.

Lemma 2.5. Let F(z) be an inner function with F(0) = 0 that is not a
rotation. For a point z € D in the unit disk with dp(0,z) > 1, we have:

N(z,R—1,R) := N(z,R) —N(z,R—1) < Celt=®(0:2), (2.3)

In particular,

N(z,R) < Celt=®(0:2), (2.4)
albeit with o slightly larger constant C'.
Proof. Since F is not a rotation, by Lemma [2.4
(0, F(w)) < dp(0,w) — 7, (2.5)

for any w € D with dp(0,w) > 1. Repeated use of Lemma [2.1| shows that for
any R > 1,

1 1

Z log — < log —, (2.6)

|w] 2|

where the sum is over N'(z, R — 7, R) repeated pre-images w of z for which
R—~ < dp(0,w) < R.
In terms of hyperbolic distance from the origin, (2.6|) says that
Nz R= 7, R) - e g om0,

which shows (2.3) with M(z, R — v, R) in place of N (z, R — 1, R). To obtain

the original statement, one just needs to partition the annulus
{weD:R-1<dp(0,w) < R}

into 1 + [1/v] concentric annuli of hyperbolic widths < ~. O
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Part 1
Centered One Component

Inner Functions

We say that an inner function F' is singular at a point ¢ € JD if it does not
admit any analytic extension to a neighbourhood of (. Let ¥ C 0D be the
set of singularities of F'. It is clear from this definition that X is a closed set.
While one usually thinks of inner functions as holomorphic self-maps of the
unit disk, one may also view F' as a meromorphic function on C \ 2.

In this work, we say that an inner function F' is a one component inner
function if there is an annulus A = A(0; p,1/p) such that F : C\X — C is
a covering map over A. For the equivalence of this definition with the two
definitions from the introduction, we refer the reader to [IU23].

Throughout Part [[, we assume that F' is a centered one component inner
function of finite Lyapunov exponent that is not a rotation. We denote the
class of all such inner functions by A.

In Section [3| we define the Riemann surface lamination X associated to F ,
as well as the geodesic and horocyclic flows on X. In Section Ul we discuss
almost invariant functions on the unit disk and explain how one can derive
orbit counting results from ergodicity and mixing of the geodesic flow.

In Section [5, we show that the horocyclic flow is ergodic and deduce that

the geodesic flow is mixing.

3 Background on Laminations

The solenoid associated to an inner function F' € A is defined as the inverse
limit

St = lim (F: 8" = §%) = {(w) oo Flu;) = uis1}.

i=—00

In other words, a point on the solenoid is given by a point ug on the unit circle

together with a consistent choice of pre-images u_, = F~"(ug).



Similarly, we can form the space of backwards orbits of F' on the unit disk
D = lim(F:D— D)\ {0} = {(20)f-_oo : F(2) = 21} \ {0},

where 0 = - -+ < 0 < 0 < 0 is the constant sequence. As we have removed the
constant sequence 0, each backward orbit tends to the unit circle, i.e. |z;| — 1
as ¢ — —00.

For both ST and D, we write m_, for the projection onto the (—n)-th

coordinate, i.e. the map (z;)%__

— 2.
Let F : D — D be the map which applies F' to each coordinate. Its inverse
()9 > (2i—1))__ is often called the shift map. The quotient

i=—00
R—B\F
is called the Riemann surface lamination associated to F.

The term Riemann surface lamination refers to the fact that X is locally
homeomorphic to D x C, where C is some topological space. By contrast,
the solenoid ST is locally homeomorphic to (—1,1) x C. When F is a finite
Blaschke product, the fiber C is a Cantor set, while if F' is an infinite-degree
one component inner function, then C is homeomorphic to the shift space
on infinitely many symbols {1,2,... }N. In particular, the lamination X is
a Polish space, that is, a separable completely metrizable topological space.
A particular complete metric compatible with the topology will be given in
Section [B.11

We now describe a particularly convenient collection of local charts or flow
bozes for X. Take a ball B = B(a,r) contained in the annulus A(0; #, 1)
such that F°"(#)N %A = () for any n > 1. Under this assumption, the sets
{F7™™(%)}n>0 are disjoint. Furthermore, by Koebe’s distortion theorem, for
any n > 0, the connected components of F'~" (%) are approximately round
balls that are conformally mapped onto & by F°". Let

B =1, (B) c X,

i.e. Z is the collection of all inverse orbits z = ()9 with zp € %. For a

i=—00
finite Blaschke product, one needs finitely many such flow boxes to cover X
but for one component inner functions, which are not finite Blaschke products,

one needs countably many.
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3.1 Transverse measures

For a point z € D, the transversal T'(z) is defined as the collection of inverse
orbits w with wy = z. If w is a repeated pre-image of z, we write T'(w, z) C
T(z) for the subset of inverse orbits which pass through w. We define the
Nevanlinna counting measure on T'(z) by specifying it on the “cylinder” sets

T(w, z) C T(z), where w ranges over repeated pre-images of z:

¢ (T(w, z)) = log \tlu\

We also define the normalized counting measure by

If z € D is not a repeated pre-image of an exceptional point, then ¢, is a
probability measure on T'(z). By Frostman’s theorem, this holds for all but a

logarithmic capacity zero set of points in the unit disk.

3.2 Linear structure

We now show that each connected component or leaf of D associated to a one
component inner function from the class A is conformally equivalent to (H, oo),
while leaves of the solenoid ST are homeomorphic to the real line R = 0H.
The marked point at infinity provides H with a sense of an upward direction:
one can define the upward-pointing vector field v4(z) =y - 8% on H. Indeed, vy

is well-defined since it is invariant under
Aut(H,00) = {z— Az+ B: A>0, B € R}.

As backward iteration is essentially linear near the unit circle, one may

define an action of the half-plane H on X by

L(z,w); = lim F(Zj (), (3.1)
where
Zi zi \w
o= e (5 )"
! |21 oyl )

11



With this definition, L(z,i) = z while the leaf £ of X containing z is given by
{L(z,w) : w € H}.

By restricting w to the imaginary axis, we obtain the geodesic flow on D:
gi(z) := L(z, "), t eR. (3.2)

By instead restricting w to the line {Imw = 1}, we obtain the horocyclic flow
on D:

hs(z) := L(z,i + s), s eR. (3.3)
The two flows satisfy the relation
g—ths(z) = hetsg—1(2), s,t € R. (3.4)

The leaves of X are hyperbolic Riemann surfaces covered by (H, o). In
fact, most leaves are conformally equivalent to (H, oo). The only exceptions
are leaves associated to repelling periodic orbits on the unit circle. In this
case, one needs to quotient (H, co) by multiplication by the multiplier of the
repelling periodic orbit. See Section for details.

It is easy to see that the geodesic and horocyclic flows descend to the
Riemann surface lamination X. In Section|5| we will see that unless F(z) = 24
for some d > 2, the geodesic flow on X is mixing, while the horocyclic flow on
X is ergodic. In the exceptional case, the geodesic flow will be ergodic but not

mixing.

3.3 Natural measures

We endow the solenoid with the probability measure m obtained by taking the
natural extension of the Lebesgue measure on the unit circle with respect to
the map F : S' — S'. The measure m which is uniquely characterized by the
property that its pushforward under any coordinate function ; : St St
1 € —Np, is equal to m. Equivalently, 7 is the unique F-invariant measure
on ST whose pushforward under 7y is equal to m. As the Lebesgue measure
m on the unit circle is ergodic for ' : S' — S, the measure m is ergodic for
We define a natural measure on the Riemann surface lamination X by

~ dxdy
d¢ = mx (dy/y) = c, X 2

12



of total mass | g1 log |F'| dm, where z+ iy is an affine parameter on each leaf of
X. Note that dy/y is a well-defined 1-form on the Riemann surface lamination
since it is invariant under Aut(H, co). By construction, d¢ is invariant under
the geodesic and horocyclic flows on X.

For a measurable set A contained in the unit disk, we write A for the

collection of inverse orbits z with zg € A. By Koebe’s distortion theorem, we

have:
Lemma 3.1. For a measurable set A contained in the annulus A(O; HTp, 1),
~ dA(z
e = [ AEL
Al—17]

In fact, for any € > 0, there exists an % < p <1 so that

(1—€>'217T/A o < £(A) < (1+€>‘2177/Aff(|?!

for any measurable set A C A(0;p',1).

3.4 Exponential coordinates and the suspension flow

In order to show that the geodesic flow gs : X - X is ergodic, McMullen
[McMO8, Theorem 10.2] relates it to a suspension flow over the solenoid. Let

p(z) =log |F'(2)|. The suspension space
Sh = ST R/ ((5,1) ~ (F(2),e") - 1))

carries a natural measure m, = m x (dt/t) that is invariant under the suspen-
sion flow o5 : S} — S} which takes (z,1) — (2,e° - 1).
Theorem 3.2. The geodesic flow ()?, d€, gs) on the Riemann surface lamina-

tion is equivalent to the suspension flow (5’;, My, 0s) on the suspension of the

solenoid with respect to the roof function p = log|F’|.

—

Sketch of proof. The isomorphism between S x R, and D is given by the
exponential map
E(u,t) = lim F"(uj—pn + vi—p), (3.5)

n—oo

13



where

Viep =
By Koebe’s distortion theorem,

E(u,t); = u; +v; + o(|vi)). (3.6)
In these exponential coordinates, the geodesic flow g : D — D takes the form

9s(E(u,t)) = E(u,e’® - t). (3.7)

As a result, the exponential map descends to an isomorphism between S; and

X and intertwines the geodesic and suspension flows. O

Since m is ergodic under F' on the unit circle, m is ergodic under F' on
the solenoid and m, is ergodic under the suspension flow on S;. The above

theorem then implies that the geodesic flow on X is ergodic.

Remark. The presentation of this section is inspired by [McMO8, Section 10].
In Part [[TI] we will give another perspective on the measure { and the geodesic
and horocyclic flows on X , in the context of general inner functions of finite

Lyapunov exponent (which may not be one component).

4 Almost Invariant Functions
We say that a function h : D — C is almost invariant under F if

limsup |h(F"(2)) — h(z)| = 0.
[Fom (2)| =1

0

In particular, for every backward orbit z = (z;);__ € Iﬁ), lim;_,_~ h(z;) exists

and defines a function on the Riemann surface lamination:

/ﬁ(z) = lim h(z).

1——00

4.1 Consequences of ergodicity and mixing

In the following two theorems, we use ergodicity and mixing of the geodesic

flow on X to study almost invariant functions. The first theorem is a slight

14



generalization from [McMO8, Theorem 10.6], which was originally stated for
finite Blaschke products. For the convenience of the reader, we describe its

proof in the setting of one component inner functions.

Theorem 4.1. Let F € A be a one component inner function for which the
geodesic flow on X is ergodic. Suppose h : D — C is a bounded almost invariant
function that is uniformly continuous in the hyperbolic metric. Then for almost

every ¢ € S, we have

1 r ds —~
lim ——— h . = hdg€.
e} |log(1 — )] /0 (5C) 1—s ]{2 ¢

In particular,

‘ 1 dA(2) >
rol 27| log(1 — )] /D,, (=) 1— 2| ]{2 ‘

Proof. The ergodic theorem tells us that for almost every u € 3\1, the backward

time averages

lim — /ﬁ@mw)ﬁ—fﬁﬁ
Tlglo]logﬂ T ’ t Jg
Write z(t) = E(u,t). By almost-invariance, we have
(E(u,t)) = h(z0(t)) +o(1),  ast— 0T,
while
h(zo(t)) = h((1 — t)up) + o(1), ast— 07T,

by (3.6) and the uniform continuity of A in the hyperbolic metric. Conse-
quently,

nmllfau4m)ﬁ—fﬁ%
T—0 |logT| /1 A

The proof is completed after making the change of variables s = 1 — ¢ and
relabeling ( =up and T'=1 —r. O

Theorem 4.2. Let F € A be a one component inner function for which the
geodesic flow on X is mixing. Suppose h : D — C is a bounded almost invariant

function that is uniformly continuous in the hyperbolic metric. Then,

1 ~
lim h(z)dm = / hd€.
r—1 |z|=r ( ) fsl log\F’|dm X é-

15



Proof. Consider a thin annulus
A= Ahyp(O;Ro,R(] +5) = {w ' Ry < dD(O,w) < Ry +(5} cD

of hyperbolic width . Let A C X be the collection of backwards orbits that

pass through A. Since the geodesic flow is mixing, we have that

1 1 ~
lim —— - (x40 ,h:/hd. 41
o0 é.(A) <XA gt > fS1 log|F’]dm ),(\_ 5 ( )

In view of Lemma [3.1] when Ry > 0 is large,

~ 1 dA(z)
A) ~ — ~ = X
é( ) 27T/A].—|Z| ) XAOgt XAta
where A; = Ay (0; Ry +t, Ry +t+0). Therefore, by the almost invariance of
h, the left hand side of (4.1)) is approximately

1 dA(z)
om0 /4, M) T

When § > 0 is small, by the uniform continuity of h, this is approximately

/ h(z)dm
OBhyp (0,Ro+t)

as desired. 0

4.2 Orbit counting in presence of mixing

For a point z € D sufficiently close to the unit circle and 0 < 0 < 1, we
construct an almost invariant function h, 5 concentrated on a hyperbolic O(4)-

neighbourhood of the inverse images of z:

1. By a boz in the unit disk, we mean a set of the form
O={web: b6 <argw < b, r1 < |w| < ra}.

For a point z with |z| > 1/2 and § > 0 small, we write O = 0(z, ) for
the box centered at z of hyperbolic height § and hyperbolic width 6.

16



2. Recall that a one component inner function F' acts as a covering map over
an A = A(0;p,1/p). In particular, when |z| is close to 1 and & is small,
the repeated pre-images F'~"(0J) consist of disjoint squares of roughly the
same hyperbolic size as the original, albeit distorted by a tiny amount.
Define hpougn(w) = 1 if w € F~™(0) for some n > 0 and hygugn(w) = 0

otherwise.

3. We now smoothen the function from the previous step. To that end,
consider a slightly smaller box Oy = 0(z, —n) with << §. Define h, 5
to be a smooth function on [ which is 1 on [y, 0 on dL, and takes values
between 0 and 1. Extend h, s to |J,,~; F'~"(0) by backward invariance.
Finally, extend h, s by 0 to the rest of the unit disk. Using the Schwarz
lemma, it is not hard to see that h,s is uniformly continuous in the

hyperbolic metric.

Theorem 4.3. Let F € A be a one component inner function for which the
geodesic flow on X is mizing. Suppose z € D\{0} lies outside a set of countable

set. Then,
1 1 1 R

Nz R) ~ =log— - ——————— ™",
(2, R) |2 faDlog|F’|dm

: (4.2)

as R — oo.

Proof. We will show (4.2)) for any point z € D\ {0} which does not belong to
a forward orbit of an exceptional point of F'. From the results of Ahern and
Clark discussed in Section [2] it is easy to see that this set is at most countable.

Below, we write A ~. B if
1-Ce < A/B < 1+C¢,

for some constant C' depending only on the inner function F' (and not on z or

R). More generally, we use the notation A ~. 5 r B to denote that
(1—0(1))(1=Ce) < A/B < (1+0(1))(1+Ce)
as d — 07 and R — oo.

Step 1. Suppose z € A(0;1 — ,1) where £ > 0 is sufficiently small so the
function h, s is defined. In this step, we show that

1.1 1 R

R) ~ep slog — .
Nz R) ~zr 2 Og\z\ faDlog]F’|dm €

(4.3)
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To this end, we apply Theorem with A = h,s. In view of Lemma

1 52 1

N
=0 Jq1 log|F'ldm 2w og‘

2,0 df ~ .
z|

1 N
_— h
fsl log|F’|dm/)}

Since hyperbolic distance ¢ along the circle 0By (0, R) corresponds to Eu-
clidean distance of roughly (2/ef?)s,

1 20
/ hz75dm ~e,6,R f-fR'N(Z,R*(S,R),
8Bhyp(ovl%) 271' €

where
Nz, R—0,R) = #{w € Anyp(0; R =96, R) : F°"(w) = z for some n > 0}.

Comparing the two equations above, we see that

1) 1 el

— 6. R) ~ T g 108 T o
N(z,R—0,R) ~5r o log[F/ldm %12 2

Integrating with respect to R and taking § — 0 shows (4.3)).

Step 2. Let z € D\ {0} be an arbitrary point in the punctured unit disk,
which is not contained in the forward orbit of an exceptional point. In view of
Lemma for any € > 0, one can find an integer m > 0, so that any m-fold

pre-image of z is contained in A(0;1 —¢,1).
By Lemma [2.T]
1 1
Z log — = log —.
jw] ||

Fom(w)=z

We choose a finite set of m-fold pre-images G, so that
1 1
Z log — > log — — €.
A BT TR
By Step 1, there exists a constant C' > 0 (depending on F') so that

1 1 R

1
N(z,R) > Z N(w,R) > (1—05)510gm'm'@

wGGm

for any R > Ry(F), z) sufficiently large, depending on the inner function F' and
the point z € D\ {0}.
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Step 3. It remains to prove a matching upper bound. We use the same
m > 0 as in the previous step. For any 0 < k < m, let T} denote the set of

repeated pre-images of z of order k. Since
1 1
Z log — = log —
2 B TR
k
is finite by Lemma [2.1] one can find a finite set G C T} so that
1
Z log 0] <e/m. (4.4)
wETk\Gk w

Let G = U, Gr and B = ;- (Tx \ Gk). A somewhat crude estimate shows
that
N(zR) < |G+ > Nw,R)+ > N(w,R).

wEGm weB
By Step 1,
1 1 1
N(w,R) < (1+Ce)- Zlog— el
wez(;m 2 |z’ faD10g|F/|dm
while Y~ -5 N(w, R) can be estimated using (4.4) and Lemma O

4.3 Orbit counting in presence of ergodicity

We now explain how to use the ergodicity of the geodesic flow to show orbit

counting up to a Cesaro average:

Theorem 4.4. Let F € A be a one component inner function for which the
geodesic flow on X is ergodic. If z € D\ {0} lies outside a countable set, then
1 [BN(z,9) 1. 1 1

li — dS=-log— - ————.
R R 0 e’ 9 8 2| [yplog | F'|dm

(4.5)

As the proof follows the same pattern as that of Theorem we only
sketch the differences.

Sketch of proof. Step 0. The theorem boils down to showing

1 W 11 1
— e ]D(O:w) - — log — =, (46)
RFn(w)Zz:z,nzo 2 2] faDlog]F’|dm

’wGB},yp(O,R)
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as R — oo. Indeed, once we show (4.6]), the theorem follows from the following

computation:

1 RN(Z,S) —S'
- dS:— dsS
RA e R (w) AD 0,w)

=z, n>0
wEBhyp(O R)

_ % Z (e_dJD)(O,w) _ e—R)

F™(w)=2z,n>0
W€ Bpyp(0,R)

1
== D e Pom o),
F™(w)=2z,n>0
W€ Bryp(0,R)

where in the last step we have used the a priori bound (2.3]) to estimate the
number of terms.
Step 1. Suppose z € A(0;1 — ,1) where £ > 0 is sufficiently small so the
function h. s is defined. In this step, we show that
1

1 1
_d]D) (va) 1
g e og (4.7)
R Frmy n30 faD log |F’|dm’

WE Bhyp (0,R)

Applying Theorem to the almost invariant function h = h, 5, we get

. 1 dA(x) } 1 / ~
lim / h(x = hdg. 4.8
R—>oo{27rR Buyp(0,R) (z) 1 — |z Jop log |[F'|dm. [J3 (48)
The left hand side of (4.8]) is approximately

1 dA(z)

F™(w)=z,n>0
wEBhyp(O R)

1 4 dA(x)
~ N E e p(0,w) / h(x) ——m~——— .
“OR TR O(w,d) (=) (1—[z[*)?

F™(w)=2z,n>0
wGBhyp (O,R)

Meanwhile, by Lemma the right hand side of (4.8) is more or less

1 dA(x)
5 7 )
27 [op log [F'|dm Jo..s) 1 — |z

1 log ! / h(x dA(z)
6 . —_— T i asa e
2m [oplog|F'ldm 2] Joes) (1 [2)?

20



As h is almost invariant, we have

dA(x) N . dA(x)
/D(w,5> M) T JaE e /Dw) o) T e

for any repeated pre-image w of z. Putting the above equations together and
taking § — 07, we get (4.7)).

Step 2. Let z € D\ {0} be an arbitrary point in the punctured unit disk,
which is not contained in the forward orbit of an exceptional point. Arguing
as in Step 2 of Theorem one can show that for any € > 0,

1 1

log— +———
|| f(mlog\F’ldm

1 — w
= > e O > (1-Ce)- (4.9)

F™(w)=2,n>0
’LUGBhyp (O,R)

1
2

provided that R > Ry(F,z) is sufficiently large, which may depend on the
inner function F' and the point z € D\ {0}.

Step 3. Arguing as in Step 3 of Theorem it is not difficult to find a
matching upper bond

1 1

1 —dp(0,w) 1
R Z ¢ < (1+Ce) o 8 2| [yplog|F'|dm’

F"(w)=z,n>0
wEBhyp(O,R)

(4.10)

for R > Ry(F, z) is sufficiently large. As e > 0 was arbitrary in Steps 2 and 3,
the proof is complete. O

5 Mixing of the Geodesic Flow

In this section, F' € A will be a centered one component inner function of finite
Lyapunov exponent, which is not z — 2% for some d > 2. We will show that
the horocyclic flow on X is ergodic and the geodesic flow on X is mixing. The

proof proceeds in four steps.

1. One first shows that the multipliers of the repelling periodic orbits are
not contained in a discrete subgroup of R*. This step has been completed

in [IU23, Section 5]. This provides a large supply of homoclinic orbits.
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2. We use an argument of Glutsyuk |Glul0] to show that the horocyclic flow

has a dense trajectory.

3. We use an argument of Coudeéne [Cou09] to promote the existence of a

dense horocycle to the ergodicity of the horocyclic flow.

4. Finally, we use the ergodicity of the horocyclic flow to show the mixing
of the geodesic flow. This can be done as in the case of a hyperbolic toral

automorphism.

5.1 A metric on the lamination

In order to discuss uniformly continuous functions on X , we endow X with
a metric that is compatible with the topology described in Section For

Z,W € ]13), we define
ds (2, w) == 21161% {max(1 — |2_n|,1 — [w_p|) + dp(z—n, w_p) }.

To define a metric on the lamination, we try to align the indices as closely as
possible:

dg(z,w) = mindA(z,F\om(W)).

)A(( meZ D
As the above metric is complete and separable, X is a Polish space, but it is

not locally compact unless F' is a finite Blaschke product.

Lemma 5.1. Any leaf L is dense in X.

Proof. Suppose z € £ and we want to show that w € X lies in the closure of
L. For all n > 0 sufficiently large, the points z_, and w_,, lie in the annulus
A(0; p,1). Connect z_,, and w_,, by a curve ~ that lies in A(0; p, 1). Following
the inverse orbit z along the curve 7, we come to a point z’ € £ which agrees
with w up to 2/, = w_,. From the definition of dg, it is clear that as n — oo,

these inverse orbits converge to w. O

5.2 Finding a dense horocycle

Pick a repelling fixed point £ on the unit circle. Let » = F’(£) be its multiplier;
it is real and positive. The leaf £ which consists of all backwards orbits that
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tend to & is conformally equivalent to H/(-r). Let z € L¢ be a point in this
leaf and consider the horocycle H(z) = {hs(z) : s € R} passing through z.
The horocycle is just a horizontal line in £¢ = H/(-r). Lifting to the upper

half-plane H, we get countably many horizontal lines.

Lemma 5.2. The horocycle H(z) is dense in the leaf L¢ and hence dense in

the lamination X.

We may view Im H(z) as a number in RT/(-r). Glutsyuk’s idea was to
modify the backward orbit z € L¢ to obtain a new orbit w € L¢ with d¢(z, w)
small, so that Im H(w) is close to any given number in R /(- r).

By a &-homoclinic orbit x € S1, we mean an inverse orbit
s —> T3 —> T_9 — T_1 — X0, x_neSl,
on the unit circle so that

xo =&, nlirgox_nzf.

We can view the “multiplier”

m(x) = lim 7(F0n)/<m_n)

n—oo rn

as an element of R /(- 7).

Lemma 5.3. The multipliers of &-homoclinic orbits are dense in RT /(- 7).

Proof. As explained in [IU23|, if ' € A is a centered one component inner
function of finite Lyapunov exponent, which is not z — 2% for some d > 2,
then the multipliers of repelling periodic orbits on the unit circle span a dense
subgroup of RT.

For simplicity of exposition, assume that there is a single repelling periodic
orbit F°¥(n) = 1 on the unit circle such that (F°*)(n) and 7 span a dense
subgroup of R™. As the inverse iterates of a point are dense on the unit circle
[[U23] Lemma 3.4], for any € > 0, one can find a {-homoclinic orbit x which

passes within € of n:

cee—= X3 > T_o — T_1 — X, ‘x—n_n‘<€'
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We can form a new &-homoclinic orbit x(®) which starts with
Topy > —>T_3 —>T_9—>T_1— X,

then follows the periodic orbit F°*(n) = 7 for pk steps, where p > 1 is a

positive integer, and then follows the tail of x:
> T3 7 Tp—2 > T_p-1 —>T_p —> ....

Above, “to follow an inverse orbit” means to use the same branches of F~!
defined on balls B((,1 — p), centered on the unit circle. By construction, for
any given p > 1, we can make m(x®)) as close to (F°F)(n)? - m(x) as we want
by requesting £ > 0 to be small. By the assumption on the multiplier of 7, the
numbers (F°F) (n)P - m(x) are dense in R* /(7). O

Proof of Lemma[5.3 Let z € L¢ be a backward orbit in the unit disk. We can

form a new backward orbit w by keeping
Zeptl —7 7 23 722721720
and approximating
> 2 p-3 7 2Z-p—92 > Z_p—-1"—"2-n
with a &-homoclinic orbit
e XT3 = T2 = T_1 — X.

In other words, for m > 0, we replace z_,_,, with a point close to z_,,. By
choosing n > 0 sufficiently large and the £-homoclinic orbit appropriately, this
construction produces inverse orbits w &€ Eg as close to z € /35 as we want

with Im H(w) prescribed to arbitrarily high accuracy in R™ /(- 7). O

5.3 Ergodicity of the horocyclic flow

Lemma 5.4. Suppose F' € A is a centered one component inner function of
finite Lyapunov exponent, other than F(z) # 2% with d > 2. The horocyclic

flow hs on the Riemann surface lamination X is ergodic.
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Following Coudene, for ¢t > 0, we define the operators

1
mezéﬂmmmwmw (5.1)

on the space of uniformly continuous functions UC ()? ). Let

&ﬂ@—%ﬂmwws

denote the integral along the trajectory of the horocyclic flow up to time ¢.
The motivation for the operators (5.1)) is the relation

Sif(z)
t

which follows from ([3.4) and a change of variables.

= Mtf(glogt(z)),

Lemma 5.5. Suppose F' € A is a centered one component inner function of
finite Lyapunov exponent, other than F(z2) # 2% with d > 2. If f is a bounded
uniformly continuous function on X, then the functions { M f}i+>0, defined on

X , form a uniformly equicontinuous family.

Sketch of proof. The point is that if we do not change the point z much, we also
do not change the horocycle of length ¢ from the point g_ 1o +(z) much. While
the length of the horocycle is increasing (we are running it for time t), we are
also starting it from the point g_iog¢(z). Koebe’s distortion theorem implies
that the horocycles of length t started at points g_1og¢(W), with d¢(z, w) <,

are within O(¢) of one another. O

Proof of Lemmal5.4 In view of Lemmal5.5] the Arzela-Ascoli theorem tells us
that any sequence of functions My, f with ¢;, — oo contains a subsequence that
converges uniformly on compact subsets of X to a function in UC ()? ). Our
goal is to show that for a positive function f € UC ()? ), any accumulation point
f of Myf ast — o0, is a constant function ¢ = ¢(f), which would necessarily
be f)? fd&. Once we have done this, the Eest is easy: as the functions My f
converge uniformly on compact subsets of X to c as t — oo, they also converge
to ¢ in L? ()2' ,d€). Here we are using that the metric space X is Polish, which

implies that the measure £ is inner regular on open sets and so there exists
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an increasing sequence of compact sets K,, C X such that E(Ky) — 5()? ).
Consequently, S¢(f)/t — ¢ in LQ()A(, d¢) and the flow hy is ergodic.

Let {tx } be a sequence of times tending to infinity for which M, f converges
uniformly on compact subsets to an accumulation point f € UC ()A( ). Using

the invariance of the measure £ under geodesic flow, we see that

klig.lo H(l/tk)stk (f) - f O Jlog ty, H[ﬁ()?,d&) =0.

According to von Neumann’s ergodic theorem, there is an h-invariant L2
function P f on X such that

tllglo H(l/t)st(f) - PfHLZ()?,dS) =0.

From these two observations and the g;-invariance of &, we get:

HT_ Pfog—logtkHLz()’f’dg) = H?O.glogtk — PfHLQ()?7d£) — 0, ask — occ.

The commutativity property of the geodesic and horocyclic flows (3.4) shows
that Pf o g_iogy, is invariant under the horocyclic flow hs. Therefore, f must
also be invariant under hy. As f is a continuous function with a dense h,-orbit,

it must be constant. The proof is complete. O

5.4 Mixing of the geodesic flow

We now deduce the mixing of the geodesic flow from the ergodicity of the

horocyclic flow:

Lemma 5.6. If F € A is a centered one component inner function of finite
Lyapunov exponent, other than F(z) # 2% with d > 2, then the geodesic flow
g—+ on the Riemann surface lamination X with respect to the measure & is

MiTIng.

Proof. For t € R, the Koopman operator [g_;Ju = uo g_; acts isometrically on
L2(X). For r > 0, let S,(u) be the average of u o hg over s € [—r,7], i.e.

S, (u) (@) = — / " w(hy(2))ds.

:ﬂ .
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This defines a bounded linear operator S, : L2(X) — L2(X). The commuta-
tion relation (3.4)) tells us that

Sr[g*t] = [gft]setr (52)

as operators on L2(X).

Let u,v € C*(X) be two bounded continuous functions of zero mean with
respect to the measure £. Since ¢ is invariant with respect to both the horo-
cyclic flow hg and the geodesic flow g_¢, by using Fubini’s Theorem, we get for
every r > 0 and t € R that

<S7”u’ [g—t}v> = <u’ Sr[g—t]v> = <U, [g—t]Setrv> = <[gt]u) Setrv>' (53)

As [ s vd€ =0, it follows from the ergodicity of the horocyclic flow and von
Neumann’s Ergodic Theorem that S.:,v — 0 in Lz()?) as t — +o00. Since the
set {[gi]u : t € R} is bounded in L2(X), (5.3) tells us that

lim (S,u,[g—]v) =0,

t—+o00

for any r > 0. As
Yim [lw = Srull g2y = 0,
we also have

lim (u,[g—¢]v) = 0.

t—4o00

The result now follows from the density of Cb()? ) in L2()? ). O

Part II
Background in Geometry and

Analysis

In this part of the manuscript, we gather some facts from differential geometry
and complex analysis that will allow us to study the dynamics of inner functions

with finite Lyapunov exponent.
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In Section we see use (hyperbolic) geodesic curvature to estimate how
much a curve in the unit disk deviates from a radial ray [0,(). In Section m
we define the Mobius distortion of a holomorphic self-map F' of the unit disk
and use it to estimate the curvature of F([0,()).

In Section [§] we give another interpretation of the Mobius distortion in
terms of how much F~! expands the hyperbolic metric and define the linear
distortion of F. Finally, in Section [0 we give a bound on the total linear
distortion of F along [0,¢) in terms of the angular derivative |F’(¢)|, from
which we conclude that if F'is an inner function with finite Lyapunov exponent

then the total linear distortion of F' on the unit disk is finite.

6 Curves in Hyperbolic Space

We first recall the definition and basic properties of geodesic curvature in the
Euclidean setting. Suppose v : [a,b] — R? is a C? curve, parameterized with

respect to arclength. Its curvature

kEuc(7; 1) = [V (1)l

measures the rate of change of the tangent vector of «. The signed curvature
Ks,Buc(7;t) = £ KEuc(7;t) also takes into account if « is turning left or right.
It is well known that a curve is uniquely determined (up to an isometry) by

its signed curvature, e.g. see [Prel(, Theorem 2.1].

Ezample. A circle of radius R has constant curvature 1/R. The signed curva-

ture is either —1/R or 1/R depending on the orientation of ~.

We now turn our attention to the hyperbolic setting. Let 7 : [a,b] — D be a
C? curve, parametrized with respect to hyperbolic arclength. The hyperbolic
geodesic curvature kpyp(7y;t) measures how much v deviates from a hyperbolic
geodesic at y(t).

We now describe a convenient way to compute kpyp(7;t). Suppose first v
passes through the origin, e.g. v(tp) = 0 for some t(y € [a,b]. As the hyperbolic
metric osculates the Euclidean metric to order 2 at the origin, but is twice
as large there, the hyperbolic geodesic curvature of ~ is half the Euclidean
geodesic curvature of y. One may compute the hyperbolic geodesic curvature

at other points by means of Aut(H) invariance.
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Ezample. (i) Hyperbolic geodesics have zero geodesic curvature.

(ii) To compute the curvature of a horocycle, we may assume that the
horocycle passes through the origin and compute its curvature there. Since
a horocycle which passes through the origin is a circle of Euclidean radius
1/2, its Euclidean geodesic curvature at the origin is 2. Consequently, every
horocycle has constant hyperbolic geodesic curvature 1.

(iii) Curves of constant hyperbolic geodesic curvature x € (0, 1) are circular
arcs which cut the unit circle at two points at an angle 6 € (0,7/2) with

Kk = cosf.
The following two lemmas are well-known:

Lemma 6.1. If v : [a,b] — D is a C? curve with hyperbolic geodesic curvature

Khyp(7;t) < 1, then v is a simple curve.

Lemma 6.2. If v : [a,b] — D is a C? curve with hyperbolic geodesic curvature
khyp(75t) < ¢ < 1, then v lies within a bounded hyperbolic distance of some

geodesic.
We also record the following comparison theorem:

Theorem 6.3. Suppose 7 : [a,00) — D is a C? curve with hyperbolic geodesic
curvature knyp(v;t) < k < 1. Let 1,72 @ [a,00) — D be curves with constant
signed geodesic curvatures k and —k respectively that have the same tangent

vector at t = a, 1.e.

v1(a) = 2(a) =7(a),  m(a) =75(a) =~'(a).

Then, v lies between 1 and s.

6.1 Inclination from the Vertical Line

We now switch to the upper half-plane model of hyperbolic geometry. In this
section, we assume that 7 : [a,00) — H is a C? curve of curvature x < 0.2,
parametrized with respect to arclength. For any a < ¢t < oo, we can look at
the tangent vector 7/(¢) to 7y at the point y(t). We define a(t) € [0, 7] to be the
angle that /() makes with the downward pointing vector field v; = —y - a%.
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oL ()

Figure 1: Inclination from the vertical line

We first describe the behaviour of a(t) when + is a hyperbolic geodesic in
the upper half-plane. Inspection shows that the derivative /() < 0, where
equality holds if and only if v is a vertical line, pointing straight up or straight

down. If v is not a vertical line, then «(t) satisfies the differential equation

for some non-negative differentiable function G : [0,7] — R, which vanishes
only at the endpoints. (The function G does not depend on the geodesic 7
since any two non-vertical geodesics in the upper half-plane are related by a
mapping of the form z — Az+ B with A > 0 and B € R.) For future reference,
we note that G'(0) > 0.

Lemma 6.4. Suppose v : [a,b] — H is a piece of a hyperbolic geodesic. If
ala) < 2m/3, then

b
[ et 5a. 6.1)

where the implicit constant is independent of b.

Proof. From the discussion above, it follows that «a(t) satisfies the differential
inequality
d(t) < —cra(t), t € [a,00),

for some ¢; > 0. In view of Gronwall’s inequality, «(t) decreases exponentially

quickly, which clearly implies (6.1)). O

We now turn to investigating «(t) for general curves  with small geodesic

curvature. We begin with the following preliminary observation:
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Lemma 6.5. If v : [a,00) — H is a C? curve parametrized with respect to

hyperbolic arclength with curvature k < 0.2. If a(a) < 2m/3, then
at) < 2w/3
for allt € [a,0).

Sketch of proof. From the discussion above, a straight line in the upper half-
plane with a(t) = 27/3 has constant curvature x = /3/2 > 0.2. By Theorem
if a(t) = 27/3 then o/(t) < 0. Consequently, a(t) cannot rise above
27/3. O

Lemma 6.6. If v C H is a C? curve parametrized with respect to hyperbolic

arclength, with curvature < 0.2, then
o/(t) < —G(a(t) + 4 fnygp (75 1)

Sketch of proof. We have seen that at the origin, the hyperbolic metric is twice
as large as the Euclidean metric. As a result, the parametrization with respect
to the hyperbolic arclength is twice as fast as with Euclidean arclength. In
addition, the Euclidean geodesic curvature is twice as large as the hyperbolic
geodesic curvature. Consequently, the instrinsic change in the direction of the
tangent vector +/(t) is four times the signed hyperbolic geodesic curvature.
However, in hyperbolic geometry, we must also account for the fact that
geodesics naturally change direction with respect to the vertical, which is de-

scribed by the first term in the equation above. O

To conclude this section, we extend Lemmal6.4] to the case of small geodesic

curvature:

Lemma 6.7. Suppose vy : [a,b] — H has geodesic curvature at most 0.2. If
ala) < 2m/3, then

b b
[ ety sata)+ [ o,
Proof. From the lemma above, it follows that
o (t) < —cro(t) + 4 knyp (75 1), (6.2)
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for some c; > 0. Gronwall’s inequality shows that

¢
at) < e—cit (a(a) + 4/ e+ Knyp (7 s)ds),

for all ¢t € [a,b]. Integrating over ¢ proves the result. O

7 Mobius Distortion

Let A\p = ﬁ be the hyperbolic metric on the unit disk. A holomorphic
self-map F' of the unit disk naturally defines the pullback metric

2|F'(z
With the above definition, if v C D is a rectifiable curve, then the hyperbolic
length of F'(v) is f7 AF.

By the Schwarz lemma, pup(z) := 1—(Ap/Ap)(2) is zero if and only if F'is a
Mobius transformation. In general, for any a € D, the Mébius distortion pp(a)
measures how much F deviates from being a Mobius transformation near a.
A normal families argument shows that when pp(a) is small, F' is close to a
Mobius transformation m € Aut(D) near a. The following lemma provides a

more quantitative estimate:

Lemma 7.1. Let F be a holomorphic self-map of the unit disk. For any
R,e > 0, there exists a § > 0, so that if pr(a) < 0, a €D, then on By, (a, R),
F is univalent and dp (F(z), m(z)) < € for some Maobius transformation m €
Aut(D) which takes a to F(a). Furthermore, for a fited R > 0, § can be taken

to be comparable to .

The argument below is taken from [McMO09, Proposition 10.9]:

Proof. By Mobius invariance, we may assume that a = F(a) = 0 and 0 <
F’(0) < 1. For convenience, we abbreviate u = up(0) =1 — F’(0). Applying
the Schwarz lemma to F'(z)/z shows that the hyperbolic distance

dp(F(2)/z, F'(0)) = O(1), for z € Byyp(0, R+ 1).
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Taking note of the location of F’(0) € D, this implies that |F(z) — z| = O(u)
on By, (0, R+ 1). Cauchy’s integral formula then tells us that

F'(2) =1/ = 0(w),  |F"(:) =O(u),  for = € Byyp(0, R).
From here, the lemma follows from the definition of the Mébius distortion and

some arithmetic. O

Lemma 7.2. Suppose v is a hyperbolic geodesic in the unit disk passing through
z € D. Let F(v) be the image of v under a holomorphic self-map F of the unit
disk. Then the geodesic curvature of F(vy) at F(z) is bounded by

min(L, k() (F(2))) S ul2).

Proof. By Mobius invariance, one can consider the case when v = [—1,1],

z=0, F(0) =0 and F’(0) > 0. Arguing as in the proof of Lemma[7.1] we get

|F"(0)| = O(p) where p =1 — F’(0). Therefore, F(v) lies in a wedge
{z+iy: |y < Cpz?}

near z = 0, which gives the desired curvature bound. ]

The same argument shows:

Lemma 7.3 (Stability of p under perturbations). There ezists a constant
K > 0 so that any holomorphic self-map F of the unit disk,

[Viypi(a)| < Kpu(a),  a€D.
In particular, for any two points a,b € D, we have
e—KdD(a,b)u(a) < u) < eKdD(a’b),u(a).

For a finer estimate, we refer the reader to [BMO7, Corollary 5.7].

Hyperbolic expansion factor. Suppose F' is a holomorphic self-map of
the unit disk. By the Schwarz lemma, the hyperbolic expansion factor E(a) :=
| E” (a)HHylp > 1. The hyperbolic expansion factor could be infinite if a is a
critical point of F'. The hyperbolic expansion factor is related to the Mobius

distortion via .

C1—p(a)
As a result, the two quantities are essentially interchangeable.

E(a)
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8 Linear Distortion

Recall that the downward pointing vector field v = —y- 8% assigns each point
in H a vector of hyperbolic length 1 which points toward the real axis. By the
Schwarz lemma, the quotient

Foy(2)
vy (F(2))

We consider the following quantities:

p(z) = e D.

e Mobius distortion: p = 1 — [p|.
e Linear distortion: § = |1 — p|.
e Vertical inefficiency: n = Re(1 — p).

Vertical inclination: a = |argp| € [0, 7).

Figure 2: Notions of distortion

In practice, estimating d(a) directly is rather difficult. From the picture
above, it is clear that a(a) + n(a) > d(a), which allows us to estimate lin-
ear distortion by estimating the vertical inefficiency and vertical inclination
separately.

For a holomorphic self-map of the upper half-plane F', the linear distortion
0r(a) measures how much F' deviates from the unique linear map L,_, F(a) €
Aut(H, co) which takes a to F'(a). Evidently, the linear distortion is zero if
and only if F'= L,_,p(g). Similarly to Lemma we have:
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Lemma 8.1. Let F' be a holomorphic self-map of the upper half-plane. For
any R,e > 0, there exists a 6 > 0, so that if dp(a) < 6, a € H, then on
ng(a, R), F is univalent and dH(F(w),Laﬁp(a) (w)) < e. Furthermore, for
a fired R >0, § can be taken to be comparable to .

Proof. By Aut(H, co) invariance, we may assume that a = F(a) = i. In view
of Lemma F is injective on the ball Bf%,p(a, R), where it resembles an
elliptic M6bius transformation in Aut(H) which fixes i € H. We need to show
that F' is close to the identity mapping.

Let mp_m be a Mobius transformation which maps D to H and takes the
tangent vector (0/0x)(0) to vy (i). As dp(i) < J, the composition

G =mygpo Fomp,py

defines a holomorphic self-map of the unit disk with G(0) = 0 and |G'(0)—1| =
O(6p(i)). Following the proof of Lemmal7.1], we see that |G(2) —z| = O(6p (7))
for z € Byyp(0, R), which in the upper half-plane translates to

|F(w) —w| = O(0p(1)), for w € B}Hj;p(i,R), (8.1)

as desired. 0

Lemma 8.2. In the lemma above, we may choose 6 < € so that

L PP
Imw — ImF(w)

(1—-¢) <(+e) —

Imw’

(8.2)

for any w € B}Hg,p(a, R).

Proof. We continue to use the normalization a = F'(a) = i. In view of
and Cauchy’s integral formula, there exists a constant C' > 0 depending only
on R so that

1—-Cop(i) < |F'(w)] < 1+ Cp(i),

for any w € Bl%p (a, R —1). Together with 1D this shows

/w 2
.Iniw < 51;()“‘}) < (1+C’5F(i))-%

mw’

(1—C'6p(i))

for some constant C’ > 0 which also only depends on R. To obtain the corollary
as stated, we work with R + 1 in place of R and divide § by a constant if
necessary so that €' < e. O
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Lemma 8.3 (Stability of 6 under perturbations). There exists a constant

K > 0 such that for any holomorphic self-map F of the upper half-plane,
|Viypd(a)| < Ké(a), a € H.
In particular, for any two points a,b € H, we have
e Kdn@h) 5(q) < §(b) < KDB@b)g(q),

Proof. Since we have already estimated |Vpypp(a)| in Lemma it remains
to control the gradient of the angular inclination |Vyypa(a)|. By Aut(H, co)
invariance, we may assume that a = F(a) = i. We may also assume that
0(i) < 1/2, otherwise the lemma is trivial, in which case, |F’(i)| < 1 and the
gradient |Va(i)| = |V arg F'(4)| is controlled by the second derivative |F" ().

As in the proof of Lemma we have |F(w) — w| = O(0(i)) for w €

Bﬁp(i, 1). An application of Cauchy’s integral formula gives the desired esti-
mate |F”(i)| = O(6(2)). O

Working in the unit disk. For a centered holomorphic self-map F of
the unit disk, one can define the notions of J,7,a using the radial vector
field veaq(z) = 132 . %, which assigns each point in D \ {0} an outward

pointing vector of hyperbolic length 1. Note that d,n, a are only defined when

a, F(a) # 0 and as a result are somewhat awkward to work with. Nevertheless,
near the unit circle, d,7, @ resemble their counterparts in the upper half-plane.

Assuming that a, F'(a) # 0, the radial distortion dr(a) measures how much
F deviates from m,_,p(,) near a, the “straight” Mobius transformation which
takes

a F(a) a F(a)
O TR Tl T TR@)
To ensure that F' is close to the linear map /,_, p(,) which takes a — F(a) and
i % on Byyp(a, R), we will often ask that 1 —|F(a)| < §/e? in addition
to dp(a) < 0.

9 Distortion Along Radial Rays

Suppose F is a holomorphic self-map of the unit disk. Recall that F' has
an angular derivative at ¢ € 0D in the sense of Carathéodory if F({) :=
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lim,_,1 F(r¢) belongs to the unit circle and F'({) := lim,_,; F'(r() is finite.
The following theorem says that the logarithm of the angular derivative at ¢

controls the total linear distortion along the radial geodesic [0, {):

Theorem 9.1. Suppose F' is a holomorphic self-map of the disk with F'(0) = 0.
If F' has an angular derivative at ¢ € 0D, then

¢
/0 5dp < log | F/(C)]. (9.1)

In particular, if F' is an inner function with finite Lyapunov exponent,

dA(z) 1o
/Dé(z) gy < /aD log |F' (re')|dm. (9.2)

In view of the inequality a(z)+n(z) > §(z), we may split the proof Theorem

[9.1] into two lemmas:

Lemma 9.2. Suppose F' is a holomorphic self-map of the disk with F(0) = 0.
If F has an angular derivative at ¢ € 0D, then

¢
/0 ndp < log|F'(C)]. (9.3)

Lemma 9.3. Suppose F' is a holomorphic self-map of the disk with F'(0) = 0.
If F' has an angular derivative at { € 0D, then

¢
/0 adp S log | F/(C)]. (9.4)

9.1 Bounding the radial inefficiency

We first estimate the radial inefficiency:

Proof of Lemma[9.3. Let ¢ be a point on the unit circle where F has an angular
derivative. Join the points 0 and ¢ by a hyperbolic geodesic v = [0,(). The
image F(7) is a curve which connects 0 to F'(¢) € 9D. From the definition of

the radial inefficiency, it is clear that
¢
| ndp <l o 0.70) = do(0. F(r€))} = oz | P/l
as desired. 0
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In view of the elementary estimate p < 1 and Lemma the total Mobius

distortion and geodesic curvature are finite along F ([0, ()):

Corollary 9.4. Suppose F' is a holomorphic self-map of the disk with F(0) =
0. If F has an angular derivative at ( € 0D, then

¢
| o < 10g P01

and

¢
/0 min(L, £ (0.0 (F(2))) dp(z) < log [F'(C)].

Below, we will use the following lemma which follows from compactness:

Lemma 9.5. There exists a d > 0 so that for any holomorphic self-map F of
the unit disk and any point z € D with dp(0,2) > 1, we have

n(z) < 0.1 — n(w) < 0.15,  w € Byyp(2,9).

9.2 Bounding the radial inclination

To complete the proof of Theorem [9.1] it remains to estimate the radial in-
clination. We parametrize the radial geodesic v(t) = [0,() with respect to
arclength. We break up (y(1),7(o0)) into a union of thick and thin intervals.
By a thin interval (v(p;),v(qi)) C (7v(1),7(c0)), we mean a maximal interval
for which n(v(p;)) < 0.1 and n(y(g;)) < 0.2. The thick intervals are then
defined as the connected components of the complement of the thin intervals.

In view of Lemma [9.5] the hyperbolic length of a thin interval is bounded
from below. Therefore, by Lemma the number of thin intervals n(¢) <
log |F’(¢)|. As thin and thick intervals alternate, the number of thick intervals
is also < log | F'(¢)|.

Proof of Lemmal9.3 Since n(¢t) > 0.1 on any thick interval, by Lemma
the sum of the hyperbolic lengths of the thick intervals is < log |F”(¢)|, so that

3 / adp < log|F'(O)]
~; thick ¥ 1%

From the definitions of the radial inclination and the radial inefficiency, it
follows that on a thin interval a(t) < |arg(0.8 +0.24)| ~ 0.644 < 27/3, so that
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Lemma is applicable (see the remark below). Together with Corollary [9.4]

this shows

~; thin ¥ Vi

adp S 0(Q)+ Y [ wdp S log|F(Q)]
i=177

The proof is complete. O

Remark. Actually, one needs to be a bit more precise in the proof above since
Lemma is stated on the upper half-plane. On the unit disk, one can only
apply Lemma [6.7] as long as one is working sufficiently close to the unit circle.
As n(z) < 0.2 on a thin interval, F(z) moves towards the unit circle at a
definite rate, so after O(1) time, Lemma will indeed be applicable. The
waiting time contributes at most O(1) to each integral f% adp over a thin

interval ;.

Part 111
General Centered Inner
Functions of Finite Lyapunov

Exponent

In this part, ' will denote an arbitrary centered inner function of finite Lya-
punov exponent, other than a rotation. In Section we define the Mobius
and linear laminations )?mob and )?hn associated to F' and describe the geodesic
and horocyclic flows on )ffhn. To be fair, the term “lamination” is not entirely
accurate here as )?hn and )?mob may not locally be product sets.

In Section we construct a natural volume form d§ on X. According
to Theorem the total volume of X is just the Lyapunov exponent of
F'. From the finiteness of volume, it follows that iteration along almost every
backward orbit is asymptotically Mobius, i.e. £ ()? \ Xmob) = 0. In Section
we improve this to asymptotically linearity, i.e. £ ()? \ X’lin) =0.
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In Section we study how the trajectories of the geodesic flow foliate ]IADHH
and conclude that the geodesic flow on )A(hn is ergodic. Finally, in Section
we apply the ergodic theorem to a slight modification of the almost invariant
function from Section [4.2] to prove Theorem

10 Mobius and Linear Laminations

For a general centered inner function, the lamination X=D / F defined in

Section |3| has limited use. In this section, we describe two subsets
Xmob = ]D)mob / F and Xijin = Diin / F7

which we refer to as the Mébius and linear laminations of F' respectively. Here,

Dyop C D is the collection of inverse orbits z = (2-n)2%, on which backward

iteration is asymptotically Mdbius:
ppom (Z—m—n) — 0, as m,n — 0o,

while ]IA)lin C D consists of inverse orbits on which backward iteration is asymp-
totically linear:

dpom (2—m—n) — 0, as m,n — oo.

(As Opom (2_m—n) is small, F°™ is close to a straight Mdbius transformation
near z_m,—n. Asymptotic linearity follows from the fact that |z_,| — 1.) Since
u < 6, it is clear that X’hn - X’mob cX.

On the set )?mob cX , one can define a leafwise hyperbolic Laplacian and
study mixing properties of hyperbolic Brownian motion, but we will not pursue
this here. On )?hn c X , one can define geodesic and horocyclic flows as in
Section [Bl

10.1 Rescaling along inverse orbits

Inspection shows that a backward orbit z = (z_,,)5%, € D belongs to ]IA)mob if
and only if there exists a sequence of Mdbius transformations m_y € Aut(D),
N e N, with

m_n(0) =z_n
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for which the sequence
(FN om_n)R_q

converges uniformly on compact subsets of the unit disk as N — oo. In this
case, we denote the limiting map by Fj . In fact, when F} ( exists, so does

Fppn= A}gnoo FON=) 6 m_ N, for any n € N,

and (Fy _p(w))>2, defines an inverse orbit in Dy, for any w € D.
We say that a backward orbit w = (w_y)32 lies in the same leaf of ]ﬁ)mob

as z = (z_p)0% if there is a w € D such that
W—p = z,—n(w)>

for all integers n € N.
For a point p € D\ 0, we write M, for the conformal map from H to D

which takes
p

mv

Similarly, a backward orbit z = (2_,)22, € D belongs to Iﬁ)hn if and only if for

1 —p, 00— —L

0— .
Ip|

some (and hence any) n € N, the sequence of rescaled iterates

FO(N—TL) o M

Z_N>

converges uniformly on compact subsets of H as N — co. We denote the
limiting maps by
Fy = lim FPN" oM, .

N—oo

We partition I[A)hn into a union of leaves analogously to H/)\)mob.

Lemma 10.1. Two inverse orbits z = (2_,)5%, and z' = (2,)22, in Diin
belong to the same leaf £ C Dy, if and only if (dp(z—n,2",))2 is uniformly
bounded. In this case, the leafwise hyperbolic distance

T /
de(2,2') = lim dp(z-n,2_,).

We define the geodesic and horocyclic flows on ]ﬁ)lin by the following for-

mulas:
9t(z)—p, = z7,n(et 1), teR
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and
he(z)—pn = Fy—n(i+s), seR.

Clearly, the (—n)-th coordinates of geodesic trajectories which foliate the leaf
L(z) C Dy containing z are images of vertical geodesics {w € H : Rew = x}
under F;, .

The choices of basepoints 0 € D and i € H in the definitions above are of

course arbitrary.

Remark. For a general centered inner function, the laminations Xmob and )?hn
could be empty. For instance, there exists a centered inner function F' whose
critical set forms a net, i.e. there exists an R > 0 so that any point in the unit
disk is within hyperbolic distance R of a critical point. However, in view of

Jensen’s formula, F' does not have a finite Lyapunov exponent.

10.2 Cumulative distortion

We now introduce some notions which allow us to check whether an inverse
orbit z lies in Dy, or Dyjn.

We denote the cumulative hyperbolic expansion factor by
E(w, 2) = [|(F") (w) 5y
if FF°"(w) = z and

B(w) = E(w,2) = lim [[(F*) (w_)[ly,

if w= (w_pn)2, € D is an inverse orbit with wy = z. It is easy to see that
w € ]IA)mOb if and only if F(w) < occ.

We denote the cumulative linear distortion along an inverse orbit z € D by
N o0

op(z) == 6p(z_p). (10.1)
n=1

Lemma 10.2. Suppose F' and G are holomorphic self-maps of the unit disk.
For a point a € D such that a,G(a), F(G(a)) # 0, we have

droc(a) < 0p(G(a)) + dr(a).
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In particular, if a, F(a),...,F°" Y(a) # 0, then

n—1
Spen(a) <Y 0p(F*(a)).

k=0

Proof. Notice that if p,q € D, then

1—pgl=1—-p|l+Ip—pg <|1—p[+[1—q|

The lemma follows from the above identity, with

_ G*vrad(a) and q= F*'Urad(G<a))
Urad (G(a)) Urad(F(G(a)))’
as 0g(a) = [1 = p|, 6p(G(a)) = [1 — ¢| and dpoc(a) = |1 — pql. O

From the lemma above, it is clear that if gp(z) < 00, then z € Dy

11 Area on the Lamination

Throughout this section, F' will be a centered inner function with finite Lya-
punov exponent. For a measurable set A compactly contained in the unit disk,
we write A for the collection of inverse orbits z with zo € A. We define an
F-invariant measure & on D by specifying it on sets of the form AcDina

consistent manner:

n—oo 27 ’z’

¢(A) = lim 1/Fn<,4) log — d Ay (2). (11.1)

In order to show that the limit in (11.1]) exists, we check that the numbers

1
/ log T dAhyp
F-1(A) 2|

are increasing and uniformly bounded above. This follows from Lemma [11.1
and Theorem [11.2] below:

Lemma 11.1. For a measurable subset E of the unit disk,

1 1
/ lOg — dAhyp > / log — dAhyp-
FuE) |2 [
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Proof. A change of variables shows that

1
Lo o8 g ot = {3 1P 1 tom o b2

F(w)=z
By the Schwarz lemma and Lemma 2.1} this is

/ { Z log (o~ }dAhypU /E logé‘dAhyp

as desired. O
Theorem 11.2. The total mass £(X = [g1log |[F'(z)|dm.

Proof. Since F has an angular derivative a.e. on the unit circle, for any € > 0,
there is a Borel set A. C S with m(A4.) > 1—¢ and an 0 < rp = ro(¢) < 1 so
that

|F(re'?) — F(e?) — (1 — r)F'(e?)]| < e(1 —7),

for all e € A, and r € [rg,1). Consider the set

T i ; 1—r
— 0 . 10 0
AE—{TEZ E]D).ez EAE,Toﬁrgl—’F,(ew)’_g},
where we use the convention that |F’(e?)| = oo if the angular derivative does
not exist. By construction, the image F(A.) is contained in the ball B(0,rg)

so that A, does not intersect any of its forward iterates. Therefore, by Lemma

LT ~ . .
E&X) > 277/ log’ ‘dAhyp > /A (log |[F' ()| — &)dm.

£

Taking € — 0 proves the lower bound.
For the upper bound, suppose that F is a subset of the unit disk which is

disjoint from its backward iterates. We want to show that

1

1
o ST

P dAhyp /S1 log | F'(z)|dm.

Truncating E if necessary, we may assume that E is contained in a ball B(0, )
for some 0 < rg < 1. Consider the set E* = F~1(B(0,79)) \ B(0,79). By

construction,
/ log| |dAhyp / log| |dAhyp
E
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By Lemma [2.3] the set E* is contained in the union of

i ; 1—r
* 0 .0 0
El—{rel e : ¢ GAE,TOSTSI—WQ)’H}
and )
* _ i0 . i —To
EQ—{Tez E]D) : 62 ¢A87 rOSTSl_W}’
so that
! 1 dA ! / I dA ! / 1 dA
-_— 0] 0]
o €1 ’ ‘ hyp < o €10 ’ ‘ hyp + o o 081 ‘ | hyp-
The theorem follows after taking ¢ — 0. O

11.1 Mobius structure

We will deduce the following theorem from the finiteness of the area of the

Riemann surface lamination:

Theorem 11.3 (Moébius structure). Backward iteration along & a.e. inverse

orbit is asymptotically close to a Mébius transformation, i.e. 5(]1/]\) \ ]ﬁmob) =0.

Suppose z € D is a point in the unit disk, which is not contained in the
forward orbit of an exceptional point so that ¢, is a probability measure on
T(z), see Section [3.1] for the relevant definitions. We fix a constant 0 < v < 1

for which Lemma [2.4] holds. Then for any ball # = Bhyp(z ) with dp(0, z) >
1 + ~, the natural projection from D— X is injective on B

Proof. From the definition of the measure £, we have

() = /Q V() log o ,dAhyp< )
where

e I () g
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is the average area expansion factor. Since ¢ is a finite measure, ¥(z') < co
for Lebesgue a.e. 2/ € B and E(w',2') < oo for £ a.e w' € B. As discussed in
Section |7, this implies that W’ € Dyyop.

The theorem follows from the observation that countably many sets of the
form % cover X. O

11.2 Mobius decomposition theorem

We say that a repeated pre-image w of z is e-(Mobius good) if the hyperbolic

expansion factor
1< H(FO")'(w)Hgylp <l+e, where F°"(w) = z.

In view of Lemma [7.1] when ¢ > 0 is sufficiently small, the connected compo-
nent of FF~"(4) containing w maps conformally onto % under the dynamics
of F'. Naturally, we call it 4,,. By shrinking € > 0 further, we may assume
that

1< ||(F°")'(q)|]ﬁ;p <2, for any q € %,

Similarly, we say that an inverse orbit w € T'(z) is e-(Mobius good) if
1< [[F) (W)l < 1+,

for any integer n € N. We define

rgg‘s—M.good = U B

weTE—M.good (Z)

where w ranges over T..\good(2), the set of e-(Mobius good) inverse orbits

with wg = 2. On . Mgood; the measure & is comparable to the product

measure 1
log — dApyp(q) % c . 11.2
P vp(2) 2 (11.2)
- on Ts—Mgood(z)
on #

Remark. In the one component case, the Riemann surface lamination X is
locally a product space. The “charts” @E_M.good may be viewed as substitutes

of the product sets 2 from the one component setting.
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We say that a point z € D is e-(Mdobius nice) if most inverse branches
w € T'(z) are e-(Mobius good):

Ez(Te—M.good(Z)) >1-—g¢,

which is the same as asking that

1 1

Z log — > (1 —¢)log —,

pone g Tl E
w S-M.good_

for any n > 0.

Theorem 11.4 (Mobius decomposition theorem). For a centered inner func-
tion F with finite Lyapunov exponent, the following two assertions hold:
(a) For any € > 0 and almost every point z € D, there exists an n > 0 so
that
1 1
Z logﬁ > (1—¢)-log— (11.3)
w

Fom(w)=z ’Z’ '
w s e-M.nice

(b) For any € > 0, one can find finitely many e-(Mdbius nice) points
Z1,29,...,2N, So that the sets

'%i,s—M.gooda 1= 1,2,...,N,

cover X up to E-measure €, i.e.

N
f(i \ U @i,g-M.good> <e.
i=1

Proof. (a) Suppose w € T'(z) is a backward orbit. By the Schwarz lemma,
the numbers E(w_,, z) increase to E(w, z) as n — oo, which may be infinite.
Consequently, if fails at a point z € D for all n > 0, then for at least ¢,
measure ¢ backward orbits w € T'(z), the area expansion factor E(w, z) = 0.
In this case, the average area expansion factor U(z) = oco. However, in the
proof of Theorem we saw that U(z) < oo a.e., so can only fail on
a set of Lebesgue measure zero.

(b) If z € D is not e-(M&bius nice), then
1

g(éhyp(za 7)) > 0 lOg T dAhypa
Bhyp(zv"/) |Z’
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for some O(e) > 1. An examination of the proof of Theorem shows that
for any n > 0,

1
[, o8 Sy = (=) [ 10| e)lam.

where E* = F~1(B(0,7)) \ B(0,79) and 0 < r¢ < 1 is sufficiently close to 1.
Therefore, by asking for ry to be sufficiently close to 1, we can make the
log it dApyp(2) area of

2|

S ={z € E*: zis not e-M. nice}

as small as we wish. We may choose finitely many e-(Md&bius nice) points
{2}, in E*\ S such that the balls of hyperbolic radius 7 centered at these
points cover E* \ S up to small log ﬁ dAnyp(2) measure. Consequently, the
sets

Buyp(2:,7),  i=1,2,...,N,

cover X up to small measure. ]

12 Linear structure

In this section, we show that backward iteration along almost every inverse

orbit is asymptotically linear:

Theorem 12.1 (Linear structure). For & a.e. inverse orbit z = (2_;);2, € D,

the cumulative linear distortion g(z) < o0. Consequently, f(]ﬁ) \ ]]/]\)hn) =0.

Proof. In view of Theorem we may show that g(w) < oo for a.e. inverse
orbit w € QE—M.good where % = Byyp(2,7) is a ball centered at an e-(Mobius
nice) point z € D.

Let ,ée_M.good C DD be the union of topological disks %#,,, where w ranges
over the repeated pre-images of z with E(w,z) < 1+ . We may assume that
e > 0 is sufficiently small so that E(w, z) < 1+ ¢ implies that E(w, Z) < 2 for
any w € %, and z € . By Theorem we have

/f S(w)de < 4ﬁ~ d(w) - log % dAyyp(w)

dgs—M.good js-MAgood ‘ ’
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< / 5(2) - log — dApyp(w)
D lw]

,S/ 10g|F'(rei9)|dm
oD

< 00,

~

which shows that §(w) is finite £ almost everywhere. By the discussion in
Section & gives full mass to ﬁ)hn c D. ]

Corollary 12.2. Letz = (2—;)°, € D be a generic backwards orbit. For any
R,e > 0, there ezists an ng = ng(z,e, R) > 0 sufficiently large so that for any
n > m > ng, the inverse branch gmy of F™ ™" 1 z_y, — z_y is well-defined
on Byyp(2—m, R), where it is within hyperbolic distance O(e) of the linear map
U € Aut(C) which takes

Z—m Z_n

|2—m| ‘Z—n|.

Zem —> Z—n and

~

Proof. For an inverse orbit z = (2_;)72, with d(z) < oo, we choose ny =

no(z, e, R) sufficiently large so that

Z d(z—i) <€ and 1 — |2 p,| < g/e®.

n=ng+1

In view of Lemma Gm,n is well-defined on Bhyp(2—m, R), where it is within
hyperbolic distance O(e) of the straight Mébius transformation in Aut(D)
which takes z_,, — z_,. The second condition 1 — |z_,,| < /et ensures that

Gm.n is within hyperbolic distance O(e) of £y, p, on Bpyp(2—m, R). O
A similar argument involving Lemma [8.2] shows:

Corollary 12.3. In the above corollary, we can select ng = ng(z,e,R) > 0

sufficiently large so that

1 1
/ log — dApyp(2) ~e / log — dAnyp(2),
gmn(E) 2| E |2|

for any measurable set E C Buyp(2—m, R), where the notation A ~. B indicates
that (1 — Ce)A < B < (1 + Ce)A for some constant C > 0, which depends
only on R.
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12.1 Linear decomposition theorem

We say that a point z € D is e-(linear nice) if 1 — |z| < ¢/e” and for most

inverse branches, backward iteration is close to a linear mapping;:

Cz({WET(Z)ZA( )<e})>(1—e¢)- log;’,

where g(w) is the cumulative linear distortion defined in Section m

Theorem 12.4 (Linear decomposition theorem). (a) For any ¢ > 0 and al-

most every point z € D, there exists an n > 0 so that

1 1
Z logm > (1—¢)-log — (12.1)

Fom(w)=z ’z‘ .
w 1s e-L.nice
(b) For anye > 0, one can find finitely many e-(linear nice) points z1, za, . . .
so that
N o~
§<X\ U %i,s—L.good> <e.
i=1
Proof. (a) For a point 2’ € D, let A,/ denote the set of inverse orbits w' € T'(2')
for which the cumulative linear distortion (5 = 00. If - fails at 2’ € D,
then ¢,/ (A,) > e.
For the sake of contradiction, assume that (12.1)) fails on a set of positive
Lebesgue measure A in the unit disk. However, by the Schwarz lemma, this

would imply that

s ZN

o d w:// o E(W,2)?dey lo dA
/gx{w.a(w)_oo} §w) =/, T(Z,)X{w‘a(w)_oo} (w',2)? der(w') g| T 2)

z/Acz«A >log| Ay ()

> 0,

contradicting Theorem which says that g(z’ ) < oo for Lebesgue a.e. 2’ € D.
(b) The proof is similar to that of part (b) in Theorem [11.4] O
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13 The Geodesic Foliation Theorem

In this section, we show the following theorem which describes the structure

of geodesic trajectories in Dy,

Theorem 13.1. (i) For & a.e. backward orbit z € ]ﬁhn and n > 0, the limit

Cnl2) = lim (g_4(2))_s

t—00
exists and ((_,(z)) belongs to the solenoid.
(ii) Let y(t) = (9—¢(2))o- If Y(t) is the radial geodesic that connects 0 with
Co = Co(z) parametrized with respect to unit hyperbolic speed, then

1 T
T/ min{l,dm(v(t), F(to + t))}dt — 0, as T — oo,
0

for some offset tg € R depending on z.
(iii) For m a.e. x € S1, there exists a unique backward orbit in ]]S)hn that
lands at x.

(iv) If E C S has m measure zero, then (~Y(E) C Dy has € measure zero.
As a consequence, we deduce that the geodesic flow is ergodic:

Corollary 13.2. The geodesic flow on the Riemann surface lamination )?hn

s ergodic.

Proof. Suppose A C )?hn is a g;-invariant set. Lifting to HA)hn, we get a (gq, ﬁ)—
invariant set g, which is a necessarily a union of geodesic trajectories. The
endpoints of these trajectories under the backward geodesic flow form an F-
invariant set (o(A) in the solenoid. Since the action of F' on the solenoid
is ergodic, either Cg(ﬁ) or its complement has m measure 0. By Theorem
13.1{(iv), either A or its complement has £ measure 0, and thus the same is
true of A. O

13.1 Trajectories land on the solenoid

For 0 < r < 1, we define the function gr : )A(lin — R by

o, () = max{l, 25(2—k)}a
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where we sum over the part of the inverse orbit contained in the annulus
A(0;7,1). For any 0 < r < 1, the function Sr(z) belongs to LQ()?hn), and the
functions gr(z) decrease pointwise a.e. to 0 as r — 1.

By the ergodic theorem for invariant measures, for £ a.e. z € )?hn, the

backward time average

~ 1 [T
S (2) = Jim /0 5,(g-i(2))dt

is the orthogonal projection of /5\,,, onto the subspace of gi-invariant functions
in L2()?hn). This implies that for £ a.e. z € )?hn, we have

T—oo 1

R Y _
lim /0 0(g-¢(z)) =0,

which implies (i) and (ii) by Theorem |A.1

13.2 Uniqueness

Suppose z,z’ € ﬁlin are two generic inverse orbits with respect to the measure
¢ for which ((z) = ((2'). By part (ii), we know that for each n > 0, the
trajectories g_¢(z)_, and g_¢(z’)_,, both weakly shadow the same radial ray
[0,(—n]. By Lemma the trajectories g_t(z) and g_.(z’) belong to the

same leaf, which means that there exists a vertical geodesic
Ve ={2€H:Rex=¢}CH

so that {g,(z")—n : t € R} = F, _,(Ver). Weak shadowing forces & = 0, i.e. z
and z’ belong to the same geodesic trajectory, which proves the uniqueness

statement in (iii).

13.3 Rescaling limits and measures

Aset AC %?E_L.good is naturally decomposed as a union of slices:
A= U A
ZETEfL.good(z)

with the slice A, C %, consisting of inverse orbits w which follow z, i.e. w_j,

lies in the same connected component of F~" (%) as z_,, for any n € N.
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Via rescaling maps, we may view the slices of A as subsets of the upper

half-plane. More precisely, for z € 1.1, go0d(2), Wwe may define the sets
Ay C By = F,j(#) C H.

Theorem 13.3. The following equalities hold:
A
=[] T
TE-L.good(Z) A; Imw

m(C(A)) = /T JLSERITS

and

where Iy _r is the orthogonal projection onto the real line and ¢ is the Lebesque

measure on the real line.

The proof of the above theorem is somewhat involved and will be given in
Appendix [C]

13.4 Abundance of landing points

We now show that the landing points of backward trajectories of the geodesic
flow cover a positive m measure of the solenoid S1. Since 7 is ergodic with
respect to the action of ﬁ, it will then follow that landing points of back-
ward trajectories cover the solenoid up to measure zero, proving the existence
statement in (iii).

For this purpose, we take A = f@a_L_good in Theorem By the Schwarz
lemma, each A} with z € T,y g00d(2) contains the ball B}Hg,p(z',’y), while by
e-linearity, A} is contained in the larger ball B}Hf;p(i, 27). Consequently,

m(C(A)) = /T T (AD)des 2 cx(Tor,gooa(2),

e-L.good (Z)

which is certainly positive if z € D is e-(linear nice).

13.5 Non-singularity

Finally, we show that if a set A C D has positive £ measure, then its projection

C(A) to the solenoid has positive m measure. As the intersection of A with
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some set of the form %1, go0d4 has positive { measure, we may assume that A

is contained in a single %1, go0d. Since

/ A) < i1y p(K)),
K

Imw

H
hyp

£(4) < m(C(A)),

so m(¢(A)) > 0 as well, which proves (iv).

for any measurable set K C By (i,2v) C H, we have

14 Orbit Counting

In this section, we prove Theorem on averaged orbit counting for centered

inner functions of finite Lyapunov exponent.

Theorem 14.1. Let F be an inner function of finite Lyapunov exponent with
F(0) =0 for which the geodesic flow is ergodic on the Riemann surface lami-

nation Xyy. Suppose z € D\ {0} lies outside a set of measure zero. Then,

1 [BN(z09) 1. 1 1

lim — dS=_-log— .
Etee R Jy €S 2 B2 [oplog [F'dm

(14.1)

We say that a function h : D — C is weakly almost invariant under F' if for
0

a.e. every backward orbit z = (2;);__ € IB), lim; o h(z) exists and defines

a function on the Riemann surface lamination:
h(z) = lim h(z).
1—— 00
Theorem 14.2. Let F' be a centered inner function of finite Lyapunov expo-
nent for which the geodesic flow on )A(hn is ergodic. Suppose h : D — C is a
bounded weakly-almost invariant function that is uniformly continuous in the
hyperbolic metric. Then for almost every ¢ € S', we have

d :]éﬁd{.

. 1 r s
P—%]log(l—rﬂ/o As6) - 1—s
Az ~
h(z) dA(z) —]éhdg

'1—\z|_

In particular,

lim —mMmM——
e} 27| log(1l —7)| Jp,
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Proof. For simplicity, we first consider the case when h : D — C is eventually

invariant under F', i.e. there exists a 0 < p < 1 such that
h(FT(2)) = h(z),  [F"(2)] > p.

By the ergodic theorem, for £ a.e. inverse orbit z € )A(hn, we have
1 T . ~
lim / h(g—i(z))dt = ][ hdg. (14.2)
T—oo T /o b

By Theorem [13.1(ii), for & a.e. z € Dy, {g_i(2)o : t > 0} weakly shadows a
radial ray [0,(p(z)]. Since h is eventually invariant and {g_.(z)o : ¢ > 0} is

eventually contained in the annulus A(0; p, 1),

T—o0 T—o0

T T
lim 1/0 h(g—¢(z))dt = lim 1/0 h(g—¢(z)o)dt. (14.3)

By the weak shadowing and the uniform continuity of A in the hyperbolic

_ 1 " ds ~
};n% |10g(1—7“)|/0 h(s-Co(z)) - 15— ]{? hdg. (14.4)

According to Theorem [13.1(iv), endpoints ((z) of inverse orbits z € Dy;, sat-
isfying cover the solenoid up to a m measure zero set. Projecting onto
the 0-th coordinate, we see that holds for m-a.e. ¢ € S*.

We now turn to the general case when h is only a weakly almost invariant
function. The missing step is to show that holds for ¢ almost every
inverse orbit z € ]ﬁhn.

Givene > 0and 0 < p < 1, let E(e, p) C )?hn be the complement of the set

metric,

of the inverse orbits z = (2,,)52 _, for which

[h(zn) = h(z)| <&,

for all n € Z with |z,| > p. By the definition of a weakly almost invariant
function, for any fixed ¢ > 0, {(E(e,p)) — 0 as p — 1. We may therefore
choose p = p(e) so that £(E(eg,p)) < e.

By the ergodic theorem, a generic backward trajectory {g_«(z) : ¢ > 0}
spends little time in E(e, p), i.e.

1T
Jim o /0 XE(e,p) (9-t(2)) dt <e.
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As {g-4(z)p : t > 0} is eventually contained in the annulus A(0;p, 1), the
difference

T o~
limsup / {Rg-1() — hlo-1(2)o) bt < =+l

T—o00

which can be made arbitrarily small by requesting that € > 0 is small, thereby

justifying (14.3]). O

14.1 A weakly almost invariant function

To prove Theorems [14.1] we will use a slight modification hpice of the almost
invariant function hgmeotn from Section [4.2] which was constructed by first
defining Agmooth on a box O = (2, d) and then extending it to the repeated
pre-images of [J = [J(z,d) by invariance.

On the box O = (z,9), we set hAnice = hAsmooth- Let w be a repeated
pre-image of z, i.e. F°"(w) = z for some n > 0. Recall that w is an e-(linear

good) pre-image if €7(1 — |z]) < € and

o(w,z) =Y §(F(w)) < e.
=0

When e > 0 is sufficiently small, the connected component
Oy = F1(0O(z,9))

containing w is a topological disk which has roughly the same hyperbolic size
and shape as [J. On each such good box [,,, we define hpj.e by invariance.
Outside the good boxes, we set hpice to be zero.

In view of Theorem [12.4] hpice is a weakly almost invariant function on
the unit disk. Recall from Section that Anice = hsmooth Was chosen to be
uniformly continuous in the hyperbolic metric on . By the Schwarz lemma,
hnice is uniformly continuous in the hyperbolic metric on D. We denote its
natural extension to the Riemann surface lamination by Enice.

The proof of Theorems [14.1]is nearly the same as that of Theorem [1.4] We
therefore point out the differences: In Step 1, we assume that z € A(0;1—¢,1)
is an e-(linear nice) point and we show that

% Z e~ 0w o %log Lo 1 (14.5)

. 7 ,
[ |2| faD log |F'|dm
wE Byyp (0,R), e-good
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where we only count the number of e-(linear good) pre-images. Steps 2 and
3 proceed as before for e-(linearly decomposable) points, i.e. points satisfying
(12.1)).

Part IV

Parabolic Inner Functions

By a parabolic inner function, we mean an inner function F' whose Denjoy-Wolff
fixed point p € D with F'(p) := lim,_; F'(rp) = 1.

We view parabolic inner functions as holomorphic self-maps of the upper
half-plane, with the parabolic fixed point at infinity. In this case, Lebesgue
measure £ on the real line is invariant, e.g. see [DM91]. We say that a parabolic

inner function F': H — H has finite Lyapunov exponent if

Xe = / log | F'(x)|dl < .
R

By Julia’s lemma, for any point zo € H, the imaginary parts {Im F°"(zo)}
are increasing. We say that F has finite height if {Im F°"(zp)} are uniformly
bounded and infinite height if Im F°"(zp) — oo. In view of the Schwarz lemma,
this definition is independent of the choice of the starting point zg € H.

In this final part of the paper, we discuss orbit counting theorems for
parabolic inner functions of infinite height. As the proofs are essentially the
same, we only give a brief description of the results and leave the details to

the reader.

15 Statements of Results

For a bounded interval I C R and a real number R > 0, consider the counting

function

Ni(z,R) = #{w eI x e % 1] : F°"(w) = z for some n > 0}.
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Theorem 15.1. Let F': H — H be an infinite height parabolic inner function

of finite Lyapunov exponent. Suppose z € H lies outside a set of zero measure.

Then,
1 [ 1
/ Mds ~ || - ————
R J, e’ [ log | F"|d¢

as R — oo.

When a parabolic inner function F' : D — I is holomorphic in a neighbour-
hood of the Denjoy-Wolff point p € JD, we can classify it as singly parabolic

or doubly parabolic depending on whether the Taylor expansion is
F(z)=p+(z—p)+as(z=p)°+..., az#0

F(z)=p+(z—p)+az(z—p)>+..., as # 0.

Singly and doubly parabolic inner functions on the upper half-plane are defined
by conjugating with a Mobius transformation that takes D to H. For example,
z — z—1/z+ T is doubly-parabolic for T'= 0, while singly-parabolic for T" €
R\ {0}. Singly parabolic functions have finite height, while doubly parabolic

functions have infinite height.

Theorem 15.2. Let F' : H — H be a doubly-parabolic one component inner
function of finite Lyapunov exponent. For all z € H lying outside a countable

set, we have

1
Ni(z,R) ~ [I|- m,

as R — oo.

15.1 Background on parabolic inner functions

In the upper half-plane, Lemmas and read as follows:

Lemma 15.3. Suppose F is a parabolic inner function with the parabolic fixed

point at infinity. For a non-exceptional point z € H,

Imz= Z Imw. (15.1)
F(w)=z
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An inner function viewed as self-mapping of the upper half-plane can be

expressed as

dp(w),

for some constants a > 0, 5 € R and a finite positive singular measure p on

F(z):az—i-ﬁ—i-/ Lt zw

R W—Z

the real line, e.g., see [Tsuh9]. Differentiating, we get

P o [ ST )

w? +1
:OH_/R(w—z)QdM(w)'

Since o = limy_,, F’(it), an inner function has a parabolic fixed point at

infinity if and only if @« = 1. The following two lemmas are straightforward

consequences of the above formula:

Lemma 15.4. If F is a parabolic inner function with the parabolic fixed point
at infinity, then for a bounded interval J in the real line, there exists a constant
cy > 1 such that F'(¢) > ¢y for all ¢ € J.

Lemma 15.5. If F(z) is an inner function, viewed as a map of the upper
half-plane to itself, then

|F'(z +iy)| < [F'(x)] (15.2)

for all x + iy € H.

15.2 Riemann surface laminations
For a parabolic inner function F', we may form the space of backward orbits
H = l(in(F H—H) = {(Zi)'?:—oo D F(2) = i1 }-

The Riemann surface lamination is then defined as X = ]ﬁl/ﬁ In view of

Lemma m the natural measure d¢ on X is now given by the formula

&%) = lim ldzf*

n—=00 [pn(g Imz’

(15.3)

Adapting the proof of Theorem to the current setting shows that
£%) = [ tog P (o)t
R
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Remark. (i) The infinite height condition guarantees that every inverse orbit

passes through a backward fundamental domain of the form
FH(Hy) \ H,

where Hy = {z € H: Im 2z > t}.

(ii) Without the infinite height condition, the Riemann surface lamination
X may not have finite volume. For instance, for the singly parabolic Blaschke
product z — z — 1/z + T with T € R\ {0}, the volume of X is infinite, even

though
1
/ﬂ{log(l + Z2>d€(z) = 2.

(iii) By Lemma a generic inverse orbit (z;) does not converge to in-
finity, and therefore Im z; — 0.

As in Section one can show:

Lemma 15.6. For a finite Lyapunov exponent inner function F : H — H with
a parabolic fized point at infinity,

dxd
/5(x+z'y)-xy<oo.
H Y

The above lemma implies that iteration along a.e. inverse orbit is essentially
linear and therefore a.e. leaf of X is covered by (H,o0), which allows one to
define geodesic and horocyclic flows on X.

The following theorems are analogues of Theorems and respectively:

Theorem 15.7. For an infinite height parabolic inner function F: H — H of
finite Lyapunov exponent, the geodesic flow on X is ergodic. In particular, if
h:H — C is a bounded almost invariant function that is uniformly continuous

in the hyperbolic metric, then for almost every x € R, we have
1 ! dy 1
lim —— h iy) - — = ———
150 | log t| /t (z+iy) Yy leog]F’\dﬁ/)?

Theorem 15.8. For a doubly parabolic one component inner function F :

hde.

H — H of finite Lyapunov exponent, the geodesic flow on X is mixing. In par-
ticular, if h : H — C is a bounded almost invariant function that is uniformly

continuous in the hyperbolic metric and I C R is a bounded interval, then

. | 1 /A
lim [ h di(w) = ———— [ .
oy J, M ) = e [
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Again, the proofs are similar to the case when the Denjoy-Wolff point
is inside the disk. (To show the mixing of the geodesic flow, we use that
for doubly parabolic one component inner functions, the multipliers of the
repelling periodic orbits on the real line do not belong to a discrete subgroup
of R, for a proof, see [[U23] Section 9.4].)

Part V

Appendices

A A Shadowing Lemma

The following theorem roughly says that if you drive a car in the upper half-
plane with the desire to reach the real axis, and you are able to steer the car
for most of the time, then on average, your path will be close to a vertical

geodesic:

Theorem A.1. Let v :[0,00) — H be a C' parametrized curve in the upper
half-plane with ||y (t)||nyp < 1. Suppose [0,00) = GUB is partitioned into good
and bad times such that at good times, v'(t) = v| = —y-a%, while at bad times,
~'(t) can point in any direction.

(i) If the upper density of bad times

O<t<T:teB
limsup‘{ sr< < }’2

0, Al
T—o0 T ( )

then the limit ¢ = limy_,o y(t) exists and lies on the real axis.

(ii) Furthermore, if ¥(t) is the vertical geodesic to (, then

1 T
T/ min{1, du(y(t),7)} dt — 0, as T — 0. (A.2)
0

Remark. The above the theorem remains true if during a good time, we allow
7'(t) to be only approximately equal to v, rather than exactly equal: it is
enough to require that ||7/(t) — v}|| < ¢ for some ¢ < 1/2.

The proof of Theorem is based on the following simple observation:
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Lemma A.2. Suppose o > 0 is a locally finite singular measure on [0,00)
such that o([0,T])/T — 0 as T — oco. The function

As(t) = / e " Ddo(7)
t
is sub-linear: Aoo(T)/T — 0 as T — oco.

The above lemma easily follows from Fubini’s theorem. In the proof below,

we will also use the function

Ar(t) = /t L (),

Proof of Theorem[A.1. Step 1. For clarity, we first examine the case when
during a bad time, v'(t) = v =y - a%. Consider the map ¢ : [0,00) — [0, 00)

which “collapses” the set of bad times:
q(t) =0 <s<t:s¢B}.

and let o = ¢, (x5 df) be the push-forward of the part of the Lebesgue measure
supported on B. By assumption (A.1]) on the bad set, we have

([0, T7])
e —1 and — 7

From the definitions, is clear that Ap(q(t)), with 0 < ¢t < T < oo, is
the hyperbolic length of the horizontal segment between ~(t) and the vertical

— 0, asT — oc.

geodesic 7 which passes through «(7"). Lemma prevents the geodesic ¥p
from moving too much, so it converges as T — oco. We denote the limiting
vertical geodesic by 7. Lemma also shows that restricted to good times,

the average distance from ~y(¢) to 7 is small.

Step 2. We now assume that during a bad time

") = v +v, =y- g—l—é

which is worse than the worst case scenario allowed in Theorem [A.Il Let
B* D B be the set of s > 0 for which there exists ¢ > s so that

Hs,t]ﬂB}zé-\t—sL
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In view of the Hardy-Littlewood Maximal Theorem,
[[0,TInB*| < C|0,T)NB|, for some C' > 0,
and therefore,

t<T:t *
{0 < <T EB}|—>0.

This time, we define
qt) ={0<s<t:s¢ B}

and o = q.(xp+ d¢). Inspection shows that Ar(q(t)) provides an upper bound
for the hyperbolic length of the horizontal segment between ~(t) and the ver-
tical geodesic 7. The proof is completed by Lemma as in Step 1. O

B A Criterion for Angular Derivatives

In this appendix, we show the following theorem, answering a question posed
in [BKR24]:

Theorem B.1. A holomorphic self-map of the unit disk F' has a finite angular
derivative at ¢ € D in the sense of Carathéodory if and only if

[y G EBIFEN 2
/0 ,LL(Z) d,O _ /O <1 _ = ‘F(z)|2 )1 — ’2‘2 < Q. (B.l)

By composing with a Mobius transformation, we may assume that F(0) =

0. By the Schwarz lemma, the function
L(r)= {dD(O,TC) — dD(O,F(rC))}, 0O<r<l,
is increasing. The limit
lim L(r) < o0
r—1
is finite if and only if F' has an angular derivative at (, in which case,

T Z(r) = log | F'(¢)].

In other words, F' possesses an angular derivative at ( if when moving from

0 to ¢ along the radial geodesic ray v = [0,() at unit hyperbolic speed, the
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image point efficiently moves toward the unit circle. Expressed infinitesimally,

this says that F' has a finite angular derivative at { € 0D if and only if

¢
/0 n(z)dp < oc. (B.2)

The main difficulty in proving Theorem is replacing the radial inefficiency
n with the Mobius distortion pu.

Proof of Theorem [B.1 Since u <n < u+ «, it is enough to show that

/Ocu(z)dp<oo = /Oca(z)dp<oo.

Step 1. A compactness argument shows that for every € > 0, there is a
d > 0 so that if (z) < 6 then pu(w) < € for all w € Bpyp(z, 1).
As a result, the Mobius distortion p(r¢) — 0 as r — 1. Lemma tells us

that the geodesic curvature
nF(v)(F(rC)) — 0, r— 1.

Therefore, by Lemma F() lies within a bounded hyperbolic distance of
the geodesic ray [0, F'(¢)). In particular, this shows that F' possesses a radial

boundary value at ¢ somewhere on the unit circle.

Step 2. By Lemma the total geodesic curvature of F'() is finite:

¢
/0 ki) (F(2)) dp < oo.

Since F'(y) lies within a bounded hyperbolic distance of the geodesic ray
[0, F(C)), there is a sequence of r,,’s tending to 1 so that ap(,¢) < 27/3.
(It is not possible for F() to approach the unit circle if the tangent vector
always points away from the unit circle.)

Therefore, there exists an 0 < 7, < 1 so that

¢
Ap(r,c) < 27/3 and / ) Kp@y) (F(2))dp < 0.1.

Lemma tells us )
| atrap=oq),
7'n<

which is what we wanted to show. O
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C Integrating over Leaves

In this appendix, we prove Theorem [13.3] which describes the measures &
and m in terms of integration along leaves, similar to McMullen’s original

definitions of these measures given in Section [3.3

C.1 The case of D

We define a o-finite measure £jear on the solenoid X so that its restriction to

any “chart” of the form @E_L.good c Xis given by

dA
fleaf(A) = / {/ I(w)}dcz,
Te»L.good(Z) A; mw

while the set of points not contained in any chart have &q.¢ measure zero. After
lifting to ]13), we obtain an F-invariant measure on ]ﬁ), which we also denote by

Eleat- Our objective is to show that & = §ear :
Theorem C.1. The measures & and Ejear 0N D are equal.
We begin by checking that the measure £eqr is well-defined:

Lemma C.2. If #' = Buyy(2',7) is another ball of hyperbolic radius v which
intersects B and A C BN B then

/ {/ dA(w)}ch:/ {/ dA(w)}dcz,‘
Te—L.goOd(Z) A; Imw Te»L.good(Zl) A; Imw

Proof. Given an inverse orbit z € T'(z), we can select an inverse orbit z’ €
T(z") which follows z by using the same inverse branches. As the dynamics is
asymptotically linear, the limit

1— ‘Z/—n|

Pz,z = lim

n—oo 1 — |z_p]

exists. Inspection shows that p,, = dc, /dc. is just the Radon-Nikodym
derivative of the transverse measures ¢, and c,.

Recall from Section (10| that when we define the slice A; C H, we rescale
by a Mobius transformation so that z_,, € D maps to ¢+ € H, while when

we define the slice A}, C H, we rescale so that 2/, € D maps to ¢ € H.
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dA(w)

Tow decreases
mw

Consequently, when changing from z to 2/, the integrand [ A
by the factor p, ., compensating for the Radon-Nikodym derivative. As a

result, the expression for &ear(A) remains unchanged. O
Lemma C.3. The measure &ear 15 absolutely continuous with respect to &.

Proof. To prove the lemma, it is enough to show that é]eaf(;{) = 0 for any
Borel set A C D with £ (j) = 0, as sets of this form generate the o-algebra of
Borel subsets of D. From the definition of the measure & given in Section
it is easy to see that one has “¢ (ﬁ) = 0" if and only if “A has 2-dimensional
Lebesgue measure zero.” As a result, we need to show that §1eaf(2) = 0 for
any measurable set A C D with 2-dimensional Lebesgue measure zero.

For this purpose, consider a chart @a_L_good where % = DBpyp(2,7). As
the slice (A N @s_L‘good); C H along any inverse orbit z € T'(z) also has
zero 2-dimensional Lebesgue measure, §1eaf(2 N @E_L,good) = 0. Since the chart

~

PBe1,.g00d Was arbitrary, fleaf(;{) = 0 as desired. d
For a measurable set A contained in a ball # = Byyp(2,7), we write
A\a—L.good = An QE—L.gOOd-
Perhaps, the main difficulty in showing that & = &ear is that the measure &

was defined in terms of the “full” cylinders A while the measure Eleas 18 given

~

in terms of the “partial” cylinders A..1, good-

~ ~

In the following two lemmas, we evaluate {(A.1, good) and leaf(Ae-1..good)

up to multiplicative error . As before, we use A ~. B to denote that
1-Ce< A/B< 1+4Ce¢,
for some constant C' > 0 depending only on the inner function F'.

Lemma C.4. We have

—~ . 1
((ergor = Jim, 32 /o g (©1)
w e-L.good
1
~e CZ(TE—L.good(Z))/AIngdAhyp' (02)
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Proof. Step 1. We may write F~7(A) = G; U Bj, where G; is the union of
the e-(linear good) pre-images of A of generation j and B; be the union of the

“bad” pre-images. Then,
—~ ~ > —~
Ae—L.good = A\ |_| B
j=1

where we are slightly abusing notation by Viewing Ej as a subset of A. (We

should really be writing Fei (B i) in place of B .) Consequently,
g ( Aa L. good Zg E

Step 2. From the definition of the measure £ on the cylindrical sets A and
Ej and Lemma it follows that for any n € N, we have

A) =D &(By) = Z /log dApyp, (C.3)
j=1

FO’VI
we- L good
where A, = F~"(A) N A, ranges over the e-(linear good) pre-images of A of

generation n. In Section 11, we saw that the error

-~

Err(n, A) = &( )—/ log dApyp-
a7

decreases to 0 as n — co. As Err(n, G,) < Err(n, A),

E(A) — Z{ ) < Err(n, A) + Z / log dAhyp (C.4)
j=1 Fon
w e- L good

Taking n — oo in (C.3]) and (C.4]), we obtain (C.1J).

Step 3. For j > 1, let T(]Iz s00d(?) C T(2) denote the set ofAinverse orbits
w € T'(z) which are e-(linear good) for the first j steps, i.e. d(w_j,2) < e.

Since
o0

5 L. good m e- L good

is a decreasing intersection, EZ(T(n) (2)) decreases to € (T%1..g00d(2)). With

e-L.good
this in mind, (C.2) follows from (C.1)) and e-linearity. O
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Lemma C.5. For a measurable set A contained in % = Byyp(2,7),
~ 1
{leaf(As-L.good) ~e CZ(TE-L.gOOd(z))/ logmdAhyp'
A
Proof. The lemma follows from the definition of the measure &ens and e-

linearity. O

With help of Theorem [12.4] one may express a cylinder set as a countable

union of partial cylinders:

Lemma C.6. For any measurable set A in the unit disk and ¢ > 0, there
exists countably many disjoint partial cylinders gk e-L.good Which cover A up
to a set of & measure zero:
A= |_| Ak,s—L.good LIV,
k

We are now ready to show that the measures & and &.¢ are equal:

Proof of Theorem|[C-1l To show that the measures & and &er are equal, it
is enough to show that they agree on sets of the form {21\ : A C D Borel}
as these generate the Borel o-algebra of Borel subsets of D. For a cylinder
Ac HAJD, examine the decomposition given by Lemma As Elear is absolutely
continuous with respect to &, we also have £je¢(INV) = 0. Lemmas and
imply that
(A, e 1.good) ~e Eleat (Af, 1. good)

for any k. Summing over k shows that 5(121\) ~e gleaf(le\). Since € > 0 was
arbitrary, £(A) = &ear(A) as desired. O

C.2 The case of g\l

We define a measure mjeas on the solenoid S! so that its restriction to any

~

“chart” ((%e-1,g00d) C St is given by
et (E) = / 0(E)de,
Ts—LAgood(z)

while the set of points in the solenoid which are not contained in any chart
have Mjear measure zero. As in the case of &eap considered previously, Miear 1S

a o-finite F-invariant measure. Our objective is to show:
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Theorem C.7. The measures Mieas and m on ST are equal.
We begin by noticing;:
Lemma C.8. The measure Mieas 15 absolutely continuous with respect to m.

The proof below uses Léwner’s lemma which says that if ¢ : (D,a) — (D, b)
is a holomorphic self-map of the unit disk then for any measurable set £ C S,
wa(p 1 (E)) < wy(E), where w, and wj, are harmonic measures on the unit
circle as viewed from a and b respectively. Evidently, Lowner’s lemma also

applies to maps between arbitrary simply-connected domains.

Proof. Let E C S! be a Borel set with m(E) = 0. Consider a chart C(@&L.good)
where # = Buyp(z,7). For any inverse orbit z € T..1,g00d(2), We can apply
Léwner’s lemma to the map F, : (H,7) — (D, z) to conclude that

£(<E\ N C(‘%/?E—L.good))Z) = 0.

As the chart ¢ (QE—L.good) and inverse orbit z € Ty, go0d(2) Were arbitrary, we

~

have Myeat(E) = 0. O

Since Mieaf 1S F-invariant and 7 is ergodic, the above lemma tells us that:

Corollary C.9. The measure Mieas 95 finite. In fact, Mieas = c - M for some
c>0.

To complete the proof of Theorem it remains to show that ¢ = 1.
Unfortunately, we do not have a simple proof of this fact and the argument

below is somewhat involved.

Step 1. We say that a trajectory of the geodesic flow {g;(z) : t € R} is
generic if

IRAEIPN
lim — [ 6(F*"[g—s(w)])ds =0, for any n € Z.

t—oo t Jg

Let Gy be the set of generic trajectories. Recall that in Section [I3.1] we used
the ergodic theorem to show that Gy foliates D up to & measure zero. We also
saw that under the backward geodesic flow, a generic trajectory lands on the

solenoid.
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We define the measure Mmgen as the restriction of Mmjear to the set ((Gy) of
landing points of generic trajectories. Since Gy is F-invariant (by definition), so
are ((Go) and Mgen. Notice that Mijear — Mgen L Mgen as the two measures are
supported on different sets: Mgen gives full mass to ((Gp), while Micar — Mgen
gives full mass to St \ ¢(Go).

Lemma C.10. The measure Mgen is a probability measure.

Once we prove the above lemma, ¢ = 1 follows almost immediately: As m
is ergodic and Mmgen << M, the two measures must be equal: M = Mgen. As
the difference Myeaf — Mgen << M = Mygen, it must be zero. Hence, m = Mgen =

Meas as desired.

Step 2. For 0 < € < 0.1, we define A, C D as the set of inverse orbits
w = (w_p)5%, which satisfy the following three conditions:

1. 5(w) <e.

2. For any t > 0, the hyperbolic distance dp(g—¢(z)o,0) > dp(z0,0).

3. The geodesic trajectory passing through w is generic.

For each 1 —e/e? < r < 1, we define the auxiliary measure
Mg = Mieat|¢(A,..)»

where A, . = A. N {|z| = r}. From Condition 3, it is clear that
Mye < Mgen < Mieaf-

Recall from Section that the set of points z € I for which ¢, is not a
probability measure has logarithmic capacity zero. In particular, the intersec-
tion with any circle {|z| = r} has zero 1-dimensional Lebesgue measure. The
main difficulty towards proving Lemma is to show that the measures m, .

exhaust Mgen as r — 1:

Lemma C.11. For any 0 < e < 0.1,

lim e.(ASNT(2))|dz| = 0. (C.5)

r—1 |2|=r
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We now explain how to derive Lemma (and Theorem |C.7)) from
Lemma By Condition 2 above, for each non-exceptional 0 < r < 1,
¢ is injective on A, .. By e-linearity, the mass of m,.. is approximately

o~ 1

(ST ~e 5o [ 2 (AN T(:)|dz].

|z[=r

Together with Lemma this implies that

o~

T/T\lr,a(Sl) F\Ja ]_ (06)
Since any generic geodesic trajectory participates in “density 1”7 measures
ﬁls,a, i.e.
1 ' ds
|10g(1—7“)\/0 XAE(QS(Z))?—)L asr — 1,
we have:

Lemma C.12. For any 0 < e < 0.1,

1 " ds
Meen = lim ———— Mg e+ — C.7

Meen = 14 |log(1—7)| /0 Mae g (©.7)
in the sense of strong limits of measures.

Combining (C.6) and (C.7), we see that Mge, is a probability measure.

Step 3. By Lemmas and there exists a universal constant 0 < vy <
7 so that if z € D is an inverse orbit with 4(z) < 0.1 then 6(w) < 246(z) < 0.2
for any inverse orbit w € @E—L.good which follows z with dp(z,wo) < 79. In

particular,
dp(9-1(2)—n,0) > dp(z—y,0), t € (0,7 (C.8)

and
dD(gf’yo (Z)*nv O) > dD(szh 0) + 0'8707 (Cg)

for any n > 0.
We define the set .ZE Cc A C ]13), where Condition 2 is replaced with a

slightly stronger condition (2 + 2'), where we additionally require

2. For any t > 79, we have dp(0, g—+(w)o) > dp(0,wo) + 70/2.
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In view of the buffer provided by (2), we have:

Lemma C.13. Suppose 0 < € < 0.05. There exists 0 < v1 < 9 so that if z €
A, then any generic orbit z' € jg_L_good which follows z with dp(zo, 2)) < M
belongs to As..

Step 4. The following lemma says that from some point on, almost every

inverse orbit belongs to fL :

Lemma C.14. For ¢ a.e. inverse orbit w € ]IA)), there exists an N(w) > 0 such
that F~"(w) € A. for all n > N(w).

Proof. Recall that by T heorem for £ a.e. inverse orbit, we have g(w) < 00
and therefore, g(ﬁ*"(w)) — 0 asn — 0o. Consequently, for n sufficiently large,
5(F~"(w)) < ¢ and Condition 1 holds.

Condition 3 is also easy to check since ¢ a.e. inverse orbit is generic and the
property of an inverse orbit belonging to a generic trajectory is Flinvariant by

definition. To verify Condition (2 4 2’), we examine three cases:

1. For t € (0,7], Condition 2 for F~"(w) follows from Condition 1 for
F="(w) and (C.8).

2. By the definition of a generic trajectory, there exists a T' = T'(w) > 0
sufficiently large so that

RPN
t/ d(g—s(w))ds < 1/2, t>T.
0
As a result, for t > T, we have
dD(Ov g*t(w)*n) > dD(()?gO(W)*n) + t/2

3. Finally, to handle the case when ¢ € [y, T], we use that the sequence of

functions

An(t) = 0(F "[g—e(wW)) = Y d(g-e(W))—s,
k=n+1

decreases pointwise to 0.

The proof is complete. O
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For an inverse orbit w = (w,)22_ € Dand 0 < r < 1, we write w, for

the last point of the orbit that lies in the annulus A(0;r, 1), that is, w, = W (r)
where n(r) € Z is the largest integer for which wy,) € A(0;r,1). One may

interpret Lemma, as saying that
/A X {u ch}df(w) — 0, as r — 1. (C.10)
X T

With the above preparations, we are now ready to prove Lemma

Proof of Lemma[C-11]. Suppose that one could find a sequence of r’s tending
to 1 so that

/ e (A5 N T(2))|dz| > 6,
|z|=r

for some § > 0. By Lemma we would also have
[ eEnT@)e =4
|z|=s

for any 0 < s < 1 with dp(r, s) < 71/2. Consequently,

1 2dA(z
— | (ASNT(z)) -
ol R (2)) EE

> 4, (C.11)

where A = {z € D : dp(|2|,7) < 71/2} is an annulus of hyperbolic width ~;.
Since we requested that v; < -y, the quotient map = : D— X is injective on A

and (C.11)) contradicts (C.10|) if r is sufficiently close to 1. O
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