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The discrete tone radiated from tip vortex cavitation (TVC), known as ‘vortex
singing’, was recognized in 1989, but its triggering remains unclear for over thirty
years. In this study, the desinent cavitation number and viscous correction are applied
to describe the dynamics of cavitation bubbles and the dispersion relation of cavity
interfacial waves. The wavenumber-frequency spectrum of the cavity radius from the
experiment in CSSRC indicates that singing waves predominantly consist of the
stationary double helical modes (kθ = 2- and -2+) and the breathing mode (kθ = 0-),
rather than standing waves as assumed in previous literatures. Moreover, two trigger
mechanisms, expressed by two triggering lines, are proposed: the twisted TVC,
initially at rest, is driven into motion through the corrected natural frequency (fn) due
to the step change of the far-field pressure. Subsequently, the frequency associated
with the zero-group-velocity point (fzgv) at kθ = 0- is excited through fi, the frequency
at the intersection of dispersion curves at kθ = 0- and -2+, or fj, the frequency at the
intersection of dispersion curves at kθ = 0- and 2-, corresponding to two types of the
vortex singing triggering. These solutions, without empirical parameters, are validated
using singing conditions provided by CSSRC and G.T.H., respectively. Furthermore,
the coherence and the cross-power spectral density spectrum indicates a large-scale
breathing wave propagating along the singing cavity surface and travelling from
downstream to hydrofoil tip, providing us a comprehensive understanding for the
triggering of vortex singing.
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1. Introduction
Cavitation has been an attractive topic in the field of hydraulic machinery and

ocean engineering for over one hundred years (Arndt et al. 1991; Brennen 2014; Luo
et al. 2022). Among various types of cavitation, the tip vortex cavitation (TVC) is the
first one to appear on propellers or axial-flow turbines, acting as a crucial source for
underwater noise and vibrations (Posa et al. 2022; Qian et al. 2022; Ji et al. 2023).
Consequently, many studies focused on forecasting TVC’s inception (Arndt & Keller
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1992; Amini et al. 2019; Chen et al. 2019), capturing general features such as the
vortex trajectory, vapor core radius and roll-up kinematics (Asnaghi et al. 2020; Xie
et al. 2021; Cheng et al. 2021; Russell et al. 2023), with few discussions concerning
the cavity dynamics and noise generation mechanisms (Pennings et al. 2016a; Liu &
Wang 2019; Klapwijk et al. 2022; Wang et al. 2023).

A representative noise enhancement phenomenon, excited by the TVC’s interfacial
instability, is the emission of a relatively higher amplitude and discrete tone from the
fully developed TVC under certain operation conditions, which was firstly reported
by Higuchi (1989) and named as ‘vortex singing’ by Maines & Arndt (1997). They
tested different hydrofoils by varying the velocity, angle of attack and water quality in
two facilities, one in Obernach, Germany and one at St. Anthony Falls Laboratory
(SAFL), USA. The vortex singing was triggered within a distinct range of singing
cavitation number, σs, and the standing wave along the cavity surface appeared to
oscillate in phase with the sheet cavity at the tip. Furthermore, the singing frequency,
fs, typically changes from 400 Hz to 1.1 kHz and induces an intense peak of 20 dB to
30dB above the background in the noise spectrum (Arndt et al. 2015). Briançon-
Marjollet and Merle (1996) described their observations on the singing vortex over
the hydrofoil with a NACA 0020 cross-section in a larger cavitation tunnel, G.T.H.,
however the available conditions deviated from the narrow range of both  s and fs
defined for singing points by SAFL and Obernach.

One of the elliptical foil geometries, with NACA 662-415 section, was tested in
Delft University of Technology by Pennings et al. (2015a). Although the vortex
singing did not appear in the experiment, the property of TVC dynamics agrees well
with that in SAFL and Obernach. The same foil has been tested in a smaller cavitation
tunnel, CSSRC, by Peng et al. (2017a). They developed a reliable experiment process
to trigger the vortex singing by varying the cavitation number, , with a step change
until it approaches s. Song et al. (2018) also regenerated the TVC-singing in CSSRC
and further pointed out that the inflow dissolved gas (DO) imposed a significant and
similar effect on both the singing cavitation number,  s, and the desinent cavitation
number, d. Recently, Ye et al. (2021, 2023) found the travelling of breathing waves
along the TVC at Zhejiang University (ZJU), similar to the travelling waves of vortex
singing at CSSRC. However, no vortex singing could be heard. Due to the higher
dissolved gas content and d in their experiments, it could be inferred that the vortex
singing is sensitive to the distance between  and d. Because the triggering theories
of vortex singing remains unclear, neither experiment nor numerical simulation can
accurately excite the intense cavity resonance and the discrete emitted noise from a
developed TVC (Simanto et al. 2023; Klapwijk et al. 2022).

To find the trigger mechanism for a vortex singing from TVC, two-dimensional (2-
D) cavitation bubble kinematics and dynamics were examined theoretically and
numerically (Choi & Ceccio 2007; Choi et al. 2009; Bosschers 2018a). The self-
excited frequency fn, known as the natural oscillation frequency, seems to be a
primary resonance source for the singing frequency fs. However, the 2-D analytical
prediction with acceptable accuracy for fn becomes extremely challenging (Bosschers
2009b). Therefore, the three-dimensional (3-D) dispersion relation was further applied
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to solve the fn. As suggested by Keller & Escudier (1980), the standing wave is
possibly generated if the vortex is superimposed on the uniform axial flow. Using this
idea, Maines & Arndt (1997) explained the determination of  s and fs in SAFL and
Obernach, but the agreement between their results and that in G.T.H. is poor and not
acceptable. The dispersion relation for predicting deformations over a TVC was
proposed by Pennings et al. (2015a, 2015b), applying the Lamb-Oseen vortex model.
Based on the same consideration, Bosschers (2009a) introduced the semi-empirical
viscous correction and left the criterion of zero-group-velocity point on breathing
waves as the most likely hypothesis for stimulating fs, with other criteria, for instance,
the crossing points of dispersion lines for breathing waves and double helical waves
(Bosschers 2018a). The main issue with his model is its inability to predict  s for
vortex singing (Pennings et al. 2015b). Furthermore, it also fails to interpret the
absence of singing signal in Delft and ZJU (Bosschers 2018b).

On the other hand, Peng et al. (2017a) emphasized that vortex singing requires a
closed sheet cavity at the tip and a twisted shape of the column cavity before singing.
This suggests that either a helical mode wave is involved or there is an interaction
between the sheet cavity and breathing waves propagating along TVC with the
negative phase velocity at the zero-group-velocity condition. Determining these
mechanisms requires more analysis of the dispersion relation in viscous flows.

In the exploration of vortex singing over the past thirty years, the greatest obstacle
for both experiment and numerical simulation is the unclear triggering theory (Arndt
2002). Therefore, in this paper, the 2-D and 3-D resonance frequencies for TVC are
proposed. Furthermore, the viscous corrections and analytical triggering criteria are
given to explain how and where the TVC’s singing should be triggered.

2. Theoretical analysis
2.1. Resonance frequency of a vortex cavity in 2-D viscous flow

In the study of resonance frequency for a vortex cavity in 2D viscous flow, the far-
end of the TVC exhibits a fully developed interface, which can be characterized as a
2D axisymmetric cavitation bubble. Under isothermal conditions, the pressure within
the bubble, pv, is assumed constant. As the radius, R, of bubble increases, the bubble’s
wall displaces the surrounding liquid from the axis, leading to a decrease in tangential
velocity due to the conservation of angular momentum and an increase of the local
pressure, which resists the further inflation. Conversely, decreasing R results in the
increased tangential velocity and the decreased local pressure, preventing the bubble
from collapsing. The associated resonance frequency, fn, also known as the natural
frequency of TVC is formulated as (Franc & Michel, 2016),

ln
2n σ

cc

U rf σK
rπr

  (2.1)

where r∞ is the distance from the tunnel’s wall to the vortex axis, and r∞ >> R should
be satisfied to ensure minimal impact on far-field pressure, p∞. Here, rc represents the
equilibrium radius,  is the far-field cavitation number, which is defined by (p∞ - pv)
/(0.5ρLU∞2), with L and U denoting the density and velocity of the liquid. Kσ means
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the tangential stiffness coefficient.
The 2-D cavitation bubble oscillation is initially considered as the most probable

resonance source of the vortex singing, because fn is triggered by the step change of
the far field pressure but not affected by the step time (Bosschers 2018b), therefore,
accurate prediction of fn using Equation (2.1) is crucial. Conventional methods use Kσ
= 1.0 (Franc & Michel 2016) but overpredict the singing frequency due to the neglect
of viscous effects (Bosschers 2009b). Determining Kσ for a viscous cavitating vortex
remains a challenge. In this paper, a new linearization strategy is physically proposed
to resolve fn.

Under the conditions of incompressible, zero mass transport across the bubble wall,
neglecting the surface tension and non-condensable gas, the fluid velocity u and
pressure p are determined by,
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where R, Ṙ and R are the radius, velocity and acceleration of bubble wall.
For the equilibrium condition, Ṙ = 0 and R = 0, the Equation (2.2) is rewritten in

the simplified form as,
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L
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(2.3)

and in steady state, the azimuthal velocity uθ follows the Lamb-Oseen vortex profile,
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(2.4)

which Γ∞ is the circulation, rcv denotes the viscous core radius, and a = 1.2564 helps uθ
to reach its peak at r = rcv. Even though the Lamb-Oseen model does not precisely
model the azimuthal velocity due to the lack of coupling with axial flows, it properly
accounts for viscosity effects (Pennings 2016b). By integrating uθ from bubble wall to
far-field in the radial direction, the Equation (2.3) becomes,
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(2.5)

where the boundary condition p(r = rc) = pv is used to solve the Equation (2.5),
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with Ei corresponding to the exponential integral function.
Linearizing rc relative to rcv with a parameter kc, i.e. rc = kcrcv, the circulation, Γ∞, is
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derived from the Equation (2.6) by assuming r∞ >> rcv,
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To describe the cavity oscillation dynamics, the Equation (2.2) with unsteady terms
is solved using the time-varying vortex core radius rv, substituting the Equation (2.4)
into the Equation (2.2) and then integrating from R to r∞ in the radial direction induces
the equation,
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where the pressure on the bubble wall is calculated by,
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here L denotes the molecular viscosity of liquid. For small-amplitude oscillations, by
the radial oscillation coefficient k(t), R = krcv is utilized to rewrite the Equation (2.8),
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According to Choi et al. (2009), k is assumed as constant when the singing cavity
occurs with small-scale oscillations to linearize the Equation (2.10), i.e.
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By eliminating the nonlinear and high-order terms, and incorporating the Equation
(2.6), the Equation (2.10) is simplified to a standard second-order form,
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where K is the radial perturbation of R relative to rcv, ξ is the damping ratio, and ωn =
2πfn, represents the modified natural frequency.
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Once fn is calculated by the Equation (2.12), the tangential stiffness coefficient Kσ
in the Equation (2.1) is updated to,
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Bosschers et al. (2018a) have pointed out the relations between cavitation inception
number (i) and kc = rc/rcv. However, the onset of TVC is very sensitive to the nuclei
of incoming flow, turbulence and scale effects (Zhang et al. 2015; Peng et al. 2017b),
the desinent cavitation number (d) is relatively stable and primarily influenced by the
gas content (Arndt 2002; Song et al. 2017). Therefore, d is more suitable to reflect
the relationship rather than  i. The solution of d is given by letting rc approach the
vortex axis in the radial direction,
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By combining the Equations (2.7) and (2.14),  can be eliminated, and the relative
cavitation number, /d, is obtained by,
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consequently, the tangential stiffness coefficient Kσ is completely determined by the
Equation (2.13) with /d.

The experimental data measured from the stereo particle image velocimetry (SPIV)
and high-speed video (HSV) for angles of attack equaling to 5◦, 7◦ and 9◦ is provided
by Bosschers (2018b) and marked in figures 1(a), (b) and (c). The desinent cavitation
number, d is calculated by the Equation (2.14), where rcv has been proven to be equal
to the vortex core radius in non-cavitating flows, therefore measured as 1.00mm,
1.15mm and 1.60mm, respectively. Note that the blue curves bound the error variation
of 10% or 15% from the averaged value of cavity radius rcv. The results indicate that
all experimental data are covered by the predicted band of rc varying with , and the
theoretical relation in the Equation (2.15) is verified.
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FIGURE 1. The measured cavity radius, rc, varying with  obtained by SPIV and HSV for the
angles of attack at 5◦, 7◦ and 9◦, the theoretical curves are depicted using the Equation (2.15)
for (a) rcv = 1.00mm (with 10% error band), d = 2.0, (b) rcv = 1.15mm (with 15% error band),
d = 3.3, and (c) rcv = 1.60mm (with 10% error band), d = 3.5.

Compared with semi-empirical models in Bosschers et al. (2018a), this approach
contains no empirical parameters and provides an accurate fit of rc with . Therefore,
the bubble’s natural frequency in the Equation (2.1) is updated to,

( ) ln
2

 n σ d
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(2.16)

Based on above discussions, for a step change in far-field pressure, fn is believed to
trigger the near-end TVC’s resonance and singing if the incoming flow is properly
changed to the singing condition. Note that although the Equation (2.16) has the same
form as the Equation (2.1), Kσ is completely different: Kσ = 1.0 for the conventional
method, and a function determined by /d for the proposed method.

2.2. Dispersion relations for 3-D singing interfacial waves
The theoretical analysis of self-excited oscillations for a 2-D cavitation bubble

focuses on the triggering at the far-end of TVC. However, the key to understanding
vortex singing lies in how those disturbances propagate upstream and further excite
the resonance of the near-end cavity. Therefore, to explain why such humming tone is
triggered only in a narrow range of cavitation number, the 3-D dispersion relations
describing the cavity interfacial dynamics are utilized. According to Bosschers et al.
(2018b), particularly for small-scale axial phase velocity or low frequency oscillation,
the non-dimensional dispersion relation is expressed as,
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here ῶ is the resonant frequency, κ = kxrc = -ikrrc denotes the wavenumber, and kθ is
the azimuthal wavenumber. Uc and Vc respectively stand for the mean axial and
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azimuthal velocities on the TVC surface, with Kk  referring to a modified Bessel
function of the second kind (Bosschers 2008).

The plus and minus signs in the Equation (2.17) correspond to two frequencies of
each cavity oscillation mode. And surface tension effects are deemed negligible for a
small cavity core size (Pennings et al. 2015a). Here figure 2 illustrates the primary
cavity oscillation modes,

FIGURE 2. Shapes of cylindrical cavity oscillation modes for (a) monopole breathing mode at
kθ = 0, (b) dipole centreline displacement mode at kθ = ±1, (c) quadrupole helical mode at kθ =
±2 and (d) hexapole helical mode at kθ = ±3.

Assuming Uc /U∞ = 1.0 as per Bosschers (2008) due to the lack of analytical model
for predicting Uc, we can derive the interfacial azimuthal velocity with the Bernoulli
equation,
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The distributions of Uc= U∞ and Vc= 0.5U∞ adhere to the potential vortex solution.
For a stationary TVC per the viscous Lamb-Oseen model, Vc is replaced by the mean
tangential velocity from Equation (2.4) when r = rc, and Equation (2.18) becomes,
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combining Equations (2.7), (2.13) and (2.15), the relation is further expressed as,
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To account for the axial acceleration effect induced by the reduction of tangential
velocity, we apply the Bernoulli equation once more along the streamline developing
from far-field to cavity surface, leading to,
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Thus, the non-dimensional dispersion relation in Equation (2.17) for 3-D singing
waves is recalculated using Equations (2.20) and (2.21),
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The revised equation for 3-D resonance frequencies is solely dependent on  and
/d according to the Equation (2.22). Compared to the assumption of Uc /U∞ = 1.0 in
Bosschers (2008), Equation (2.22) is believed to improve the accuracy of predicting
the wavelength of interfacial waves.

To summarize the three schemes for predicting the interfacial waves, the ratios of
the tangential velocity, Vc, and axial velocity, Uc, to the incoming velocity, U∞, are
presented in table 1, where scheme I is the conventional model using the potential
vortex assumption, scheme II is the revised model by incorporating the Lamb-Oseen
vortex model and scheme III is the newly proposed model in the present study. It is
clear that the theoretical analysis with scheme III needs no any empirical parameter,
and should be promising for predicting the complicated TVC dynamics. In practice,
both the Equations (2.16) and (2.22) are much improved for predicting the resonance
frequencies of 2-D cavitation bubble oscillations and the dispersion of 3-D TVC
interfacial waves by incorporating the dependency on /d.

TABLE 1. Two velocity ratios determined by different models.

Scheme Ⅰ Ⅱ Ⅲ
Vc/U∞ σ0.5 (σKσ)0.5 (σKσ)0.5

Uc/U∞ 1.0 1.0 (σ+1-σKσ)0.5

3. Results and discussions
3.1. Triggering for the vortex singing frequency

The experiment conducted by CSSRC, operating at conditions of U∞ = 7m/s and a
dissolved oxygen level of DO = 68%, serves to validate the equations presented in
section 2. According to Peng et al. (2017a), a twisted stationary TVC appears before
singing, the noise levels abruptly intensify as the incoming pressure slowly increases
until the cavitation number  reaches 1.40. By maintaining the pressure, the vortex
continues to singing for several seconds or minutes due to the presence of resembling
standing waves along the cavity surface, ceasing only as the vibration decays. The
primary frequency of vortex singing identified as fs = 320Hz on the noise spectrum,
aligns precisely with the vibration frequency observed from the ‘dancing’ cavity. The
desinent cavitation number for this test is given as σd ≈ 2.30 (Song et al. 2017),
resulting in /d = 0.61. The solved fn from Equation (2.16) is 319Hz, which closely
matches the measured fs in the experiment. Further analysis, based on the revised
dispersion relation in the Equation (2.22), reveals a zero-group-velocity point (∂ῶ/∂κ
= 0) located on the breathing mode curve (kθ = 0-), yielding the frequency of fzgv =
324Hz, slightly larger than fs. Although three frequencies fs, fn and fzgv appear close
quantitatively, their specific relationships require clearer elucidation.

The variations of cavity radius in time (t) and space (x), from two orthogonal views
of the ‘dancing’ TVC, are recorded by the high-speed video and analyzed using
Canny’s edge detection method (Canny 1986). As shown in figure 3(a), the xy plane
view displays spindle-shaped radius contours distributed along the flow direction,
representing helical waves with a fixed wavelength, λs ≈ 23.5mm. Moreover, a laminar
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separation cavity (LSC) is observed attached to the tip of hydrofoil, anchoring the
singing TVC. From the xz plane view in figure 3(b), cavity radius contours exhibit
rhythmic vibration at the frequency fs in both time and space.

To quantify the cavity radius oscillations, rc is calculated as the mean cavity radius
within the specified region between x/C = 0.56 and x/C = 1.56, yielding rc = 1.30mm
with a pixel error of ± 0.18 mm on xy plane and ± 0.13 mm on xz plane. Using the
Equation (2.21), Uc/U∞ is estimated to be 1.34. Notably, the slope of black solid line
in figures 3(a) and (b) represents the convection flow velocity at 1.34U∞. However,
the slope of background contours exhibits an opposite trend to that of the convection
line, suggesting that the singing waves are travelling from downstream toward the
hydrofoil tip. This finding indicates that, the conjecture in earlier studies (Maines &
Arndt 1997; Arndt et al. 2015) which speculated a standing wave along the surface of
singing tip vortex appears to be a misunderstanding.

FIGURE 3. Variation of ‘dancing’ cavity radius in time and space with the (a) xy plane view
and (b) xz plane view at the singing condition (s = 1.40, d ≈ 2.30) provided by CSSRC, the
cavity radius is identified by Canny’s edge detection method, and the black solid line
indicates the interfacial convection flow at 1.34U∞ predicted by the Equation (2.21).

The frequency-wavenumber diagram extracted from the xy plane view using a two-
dimensional Fast Fourier Transform (2-D FFT) reveals interesting features. In figures
4, the non-dimensional frequency ῶ = 2πfrc /U∞ is defined by rc, theoretical dispersion
curves are predicted by different schemes discussed in table 1. The experimental data
exhibit high-amplitude regions at specific frequencies, the first highlighted region
situates at ῶs = -2πfsrc/U∞ = -0.378, and the second highlighted region is located at the



11

zero frequency, representing a stationary wave, associated with a singing wavenumber
measured as  s = 2πrc/λs = 0.348. It is also clear that there are two oblique bright
stripes indicating high-amplitude cavity radius oscillations. As figure 4(a) indicates,
none of the dispersion curves predicted by Scheme I aligns with the high-amplitude
region. The frequency at zero-group-velocity point i.e. fzgv calculated by ῶ/ = 0 is
plotted with the blue star mark, and is far away from the singing frequency, ῶs = -
0.378. For Scheme Ⅱ as plotted in figure 4(b), two double helical modes i.e. kθ = 2-

and kθ = -2+ seem to approach the oblique bright stripes on the diagram within the first
and fourth quadrants, with fzgv locating somewhat closer to fs. However, the dispersion
curve of kθ = -2+ still exhibits considerable deviation from the right oblique bright
stripe. For the results of Scheme III in figure 4(c), the dispersion curves’ slope shows
a better fitting accuracy of the highlighted background, and fzgv is much closer to fs.
The stationary wavenumber at the zero-frequency point, i.e. the wavenumber at the
intersection of the dispersion curve of kθ = -2+ and ῶ = 0 is calculated as κzf = 0.335,
which approaches the singing wavenumber κs. It is evident that Scheme Ⅲ provides a
more accurate representation of TVC dynamics under singing conditions compared to
Schemes I and Ⅱ.

From figure 4(c), it is noticed that the oscillation energy at the zero-group-velocity
point manifests as a bright spot, located close to the intersection between dispersion
curves of kθ = -2+ and kθ = 0-. However, further clarification is required to ascertain
whether the most high-amplitude oscillation originates from the breathing mode of kθ
= 0- or the double helical mode of kθ = -2+.
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FIGURE 4. Frequency-wavenumber diagram of the variation of cavity radius on the xy plane
at the singing condition ( s = 1.40, d ≈ 2.30) from CSSRC, the dispersion coefficients for
comparison are obtained by (a) Scheme Ⅰ, (b) Scheme Ⅱ and (c) Scheme Ⅲ (Iso colours
indicate the cavity radius amplitude).

The frequency-wavenumber diagram from the xz plane view is illustrated in figure
5(a), where the first and second quadrants are plotted for validation according to the
symmetry. Through Scheme III, the predicted dispersion curves match with the bright
oblique stripes on the background, especially for the double helical waves of kθ = 2-

and kθ = -2+, while some faint bright stripes are also derived near the breathing mode
curve of kθ = 0-.

For further analysis, the coherence between two camera views of the xy plane and
xz plane is presented in decibel and valued by,

*( , ) ( , )
( , )

( , ) ( , )
 xy x xz x

x
xy x xz x

G k f G k f
Coherence k f

G k f G k f
(3.1)

where G(kx, f) is the 2-D FFT of cavity radius segments. The superscript, ∗, represents
complex conjugation.

Using the Equation (3.1), the phase difference spectrum is plotted in figure 5(b). At
the zero-frequency point, the phase difference of double helical mode (kθ = -2+) is
approaching 180°. As for the breathing mode curve of kθ = 0-, the phase difference is
close to 0°, as expected. Moreover, the phase difference near the zero-group-velocity
point is basically close to 0°, confirming that fzgv is stimulated by the breathing wave.
However, from fs to 2fs, the phase difference for the helical wave of kθ = -2+ is also
near 0° due to its proximity to the breathing mode curve of kθ = 0+. To summarize,
once the near-end TVC starts to sing by the disturbance from the far-end cavity, the
cavity interfacial distortions should be mainly composed of double helical waves and
breathing waves that are located near the zero-group-velocity point.
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FIGURE 5. (a) Frequency-wavenumber diagram of cavity radius on the xz plane view at the
singing condition (s = 1.40, d ≈ 2.30) from CSSRC, the dispersion curves are obtained by
Scheme Ⅲ. (b) Phase difference between two camera views for the cavity radius.
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To further reveal the triggering mechanism for a singing TVC, the cross-power
spectral density (CPSD) of cavity radius variations from two orthogonal camera views
is calculated by,

*

10 2

( , ) ( , )
( , ) 120 10log { }  xy x xz x

x
c

G k f G k f
CPSD k f

r (3.2)

As shown in figure 6(a), the local maxima of CPSD are concentrated firstly at the
zero-group-velocity point on the breathing wave (kθ = 0-) with frequency of fzgv, and
subsequently at the zero-frequency-point on the dispersion curves of kθ = -2+ i.e. f-2+ =
0. Under this condition, the frequency, fi, at the intersection between the dispersion
curves at kθ = -2+ and kθ = 0-, marked with the circle, is almost equal to fzgv of 324Hz,
indicating that the helical-shaped TVC starts to oscillate from a stationary state and
then triggers fzgv successfully through the far-end oscillation at fn = 319Hz.

In figure 6(b), the wavenumbers at the zero-frequency point κzf and the zero-group-
velocity-point κzgv are solved as -0.335 and -0.054, respectively. Thus, the wavelength
at the zero-frequency point i.e. λzf is solved by λzf = 2πrc/κzf = -24.4mm, and that at the
zero-group-velocity-point i.e. λzgv is also determined as λzgv = 2πrc/κzgv = -151.3mm.
denoting the relation of λzgv 6.2λzf for these two wavelengths. Furthermore, the phase
velocity at the zero-group-velocity-point i.e. Vbw, calculated by fzgvλzgv, is -49.0m/s,
which is the slope of the purple solid line in figure 6(b). Note that the negative sign of
phase velocity implies a breathing wave travelling upstream.
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FIGURE 6. Frequency-wavenumber diagram of the cavity radius computed through CPSD at
the singing condition (s = 1.40, d ≈ 2.30) from CSSRC, with (a) theoretical feature points on
dispersion curves deduced by Scheme Ⅲ and (b) the phase velocity of breathing waves and
reflected waves.

As figure 6(a) plots, there is also the region with a third highest amplitude of CPSD
near the intersection between the line of frw = 2fs and the dispersion curve of kθ = 2-.
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The subscript rw stands for a ‘reflected wave’ moving downstream, the wavenumber
κrw at the intersection is 0.227, and then the wavelength i.e. λrw is calculated by λrw =
2πrc/κrw = 36.0mm. Furthermore, the phase velocity Vrw at the intersection is 23.3m/s
calculated by Vrw= 2fsλrw, which is the slope of the purple dash line in figures 6(b) and
represents the speed of a downstream-propagating wave, implying that the breathing
distortions seem to be basically absorbed by the sheet cavitation but generates limited
reflected waves. Therefore, the oscillating LSC at the tip is not a ‘trigger’, as assumed
by earlier studies, but more like a ‘muffler’, exerting little effect on the singing
initiation but determining when the singing ends.

3.2. Insights into singing vortex dynamics
Except for the mean mode (ῶ = κ = 0), waves at the zero-group-velocity and the

zero-frequency points exhibit the two largest amplitudes of cavity radius oscillation,
as illustrated in figures 4 and 5. To simplify the representation of these singing waves
under CSSRC’s condition (s = 1.40, d ≈ 2.30), Rzf refers to the radius of helical wave
(kθ = -2+) at the zero-frequency point, the amplitude, frequency and wavelength are Azf,
fzf and λzf, respectively. Rzgv is the radius of a breathing mode wave (kθ = 0-) at the
zero-group-velocity point, where the magnitude, frequency and wavelength are Azgv,
fzgv and λzgv respectively. These parameters, in both two camera views for xy and xz
planes are presented in figure 3, and given in table 2. It is evident that the wave
amplitude at the zero-group-velocity, Azgv, is larger than that at the zero-frequency
point, Azf, and the wavelength at the zero-group-velocity, λzgv, is much longer than that
at the zero-frequency point, λzf, i.e. λzgv 6.2λzf, as indicated before.
TABLE 2. The parameters applied for simplifying singing waves at the singing condition (s =
1.40, d ≈ 2.30) from (1) the xy plane view and (2) the xz plane view.
Parameters Azf [mm] fzf [Hz] λzf [mm] Azgv [mm] fzgv [Hz] λzgv [mm]
(1) xz plane 0.19

0 24.4
0.32

324 151.3
(2) xy plane 0.21 0.36

To analyze features of a singing TVC, a synthetic wave Rzf +zgv is constructed based
on Rzf and Rzgv, which represent two waves with the first two largest amplitudes of the
cavity radius oscillation. Given the equilibrium radius of cavity, rc = 1.30mm, the
singing waves can be expressed as,

2( , , ) exp{ ( 2 2 )}

2( , , ) exp{ ( 2 )}

2 2( , , ) exp{ ( 2 )} exp{ ( 2 2 )}
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πxR x θ t r A i θ πf t
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πx πxR x θ t r A i πf t A i θ πf t
λ λ

(3.3)

To validate this approach, we select four typical instants within the singing cycle.
In figure 7, the cavity from the top view (xz plane) of CSSRC’s tunnel, showcasing the
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interfacial shapes with radii of Rzf, Rzgv and Rzf +zgv at each time instant. For each wave,
the location with the maximum diameter is identified as the crest. The crest A, occurs
at x/C = 0.78 for the time instant t0 = 0.010s. Then, the crest A, carried by breathing
waves, propagates upstream from x/C = 0.78 at t0 to x/C = 0.52 at t1, which further
approaches x/C = 0.00 at t2. At t2, the crest B is theoretically predicted at x/C = 1.61.
The distance between these two crests (A and B) corresponds to λzgv, indicating that a
large-scale volume pulsation is travelling along the singing TVC. By t3 = 0.012s, crest
B reaches x/C = 1.35 with Vbw of -49.0m/s. The simplified singing waves, shaped by
Rzf +zgv, faithfully reproduce the experimental details of a ‘dancing’ cavity.

From t2 to t3, both the upstream and downstream of the TVC undergo self-excited
contraction and expansion, respectively. Guided by the traction-propulsion effect, the
trough C i.e. the location with the minimum diameter for each wave, along the Rzf +zgv

is forced to move upstream from x/C =0.72 at t2 to x/C = 0.46 at t3 with the phase
velocity of Vbw. Therefore, the 2-D self-excited oscillations, occurring with a natural
frequency, fn = 319Hz, as predicted by Equation (2.16), can trigger the wave at zero-
group-velocity point and sustain 3-D breathing waves, which serve as the dominant
source of vortex singing.

FIGURE 7. Four typical time instants within a singing cycle from the top view of CSSRC’s
tunnel (xz plane), and the waves are simplified using the Equation (3.3) at the singing
condition (s = 1.40, d ≈ 2.30).

Considering the side view (xy plane) and utilizing the Equation (3.3), Rzf, Rzgv and
Rzf+zgv are compared with experimental data in figure 8. The helical wave (kθ = -2+)
exhibits a 180° phase difference between two views, e.g. the intersection between the
yellow location line and the shape of Rzf shifts from wave crests (maximum diameter)
on the xz plane to wave nodes (minimum diameter) on the xy plane, and vice versa.
Since there is no phase difference for breathing waves, the evolution of wave crests A
and B, as well as the trough C on the Rzgv from t0 to t3 closely replicates that recorded
from the top view. As figure 8 demonstrates, the synthetic wave Rzf+zgv captures the
strong volume pulsation travelling along the twisted TVC, with λzgv ≈ 6.2λzf keeping in
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good agreement with experimental observations. By t2, the crest A approaches the tip
(x/C = 0.02) and begins to dissipate with the laminar separation cavity (LSC), leading
to the periodic perturbation of tip separation bubbles. At t3, the breathing wave is
mostly absorbed by the attached LSC, with no observed reflected waves. Furthermore,
under the traction-propulsion effects induced by TVC’s self-excited oscillations, the
crest B moves to x/C =1.35 at t3, which will initiate the next wave travelling towards
the tip from downstream.

Learning from the 3-D cavity dynamics, we can conclude that the second high-
amplitude region at the zero-frequency point shown in figure 4 denotes the stationary
helical TVC with the wavelength approaching λzf. During vortex singing, the near-end
wave with fzgv is fully triggered and sustained by the far-end 2-D resonance with fn,
inducing the in-phase breathing waves to propagate rapidly along the twisted TVC,
thereby enhancing the far-field noise. These findings demonstrate that the earlier
assumption attributing the singing TVC to standing waves is incorrect. Instead, the
present results confirm that the singing TVC is determined by large-scale breathing
waves travelling upstream.

FIGURE 8. Four typical time instants within a singing cycle from the side view of CSSRC’s
tunnel (xy plane), and the 3-D waves are simplified using the Equation (3.3) at the singing
condition (s = 1.40, d ≈ 2.30).

3.3. Two triggering mechanisms for vortex singing
The singing criterion has been preliminarily discussed in the section 3.2 based on

cavity dynamics in CSSRC. Once the twisted far-end TVC begins to oscillate at the
natural frequency fn, which can be excited through a far-field pressure step, the cavity
interfacial wave tends to disperse along kθ = -2+ and further stimulates the oscillation
at the zero-group-velocity point on kθ = 0-. If the frequency at the intersection between
the dispersion curves at kθ = -2+ and kθ = 0-, depicted by fi ~ κ (f0- ∩ f-2+), sufficiently
approaches the frequency at the zero-group-velocity, fzgv ~ κ (df0- / dκ = 0), the near-
end cavity vibrations with fzgv should be triggered and further sustained. This process
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implies that fi = fzgv is probably one of the singing criteria. By applying the Equation
(2.22), the 3-D dimensionless resonance frequencies are given as,
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here, if κ > 0, the wavenumber at the intersection κi can be solved from the relation ῶ-

(κ, 0) = ῶ+(κ, -2), yielding κi = 0.062.
The singing criterion can be derived at the extremum by,
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by applying κi = 0.062, the following analytical relation can is achieved,

11 3.445 ( )  σ dK σ σ
σ

(3.6)

For convenience, the relation shown by Equation (3.6) is termed the first singing-
line-a, representing one of triggering mechanisms for TVC-singing. As illustrated by
Equations (2.13) and (2.15), Kσ is solely dependent on /d. Therefore, for each /d,
the theoretical singing cavitation number satisfying the Equation (3.6) can be defined,
and the singing frequency within the second quadrant, ῶa, is predicted using either of
the Equations provided in (3.4),
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(3.7)

as d varies, the first singing-line-a is plotted by the blue curve in figure 9(a). Once d
reaches 1.64, the curves with frequencies of fi and fzgv have the intersect at /d = 0.35
marked with Triggered point-A, indicating that TVC-singing can only be triggered at
the cavitation number of  = 0.351.64 = 0.57.

In figure 9(b), the ‘dancing’ cavity is expected to disperse along the curve at kθ = -
2+ and further stimulate the zero-group-velocity point with ῶ = 0.32, allowing fzgv to be
fully triggered through fi at the intersection.

However, as d increases, there are two solutions, κ = -0.062 and κ = 0.062, of /d
= 0.35, which satisfies the criterion fi = fzgv. According to Equations (3.6), (2.13) and
(2.15), as /d approaches 0, then kc will approach ∞ and Kσwill approach 1, resulting
in  = 0.41, which represents the minimum cavitation number for triggering vortex
singing. Furthermore, if  is large enough, Kσ approaches 0.29 and the solution of the
Equation (3.6) is /d = 0.73, where the asymptotic-line-a is located in figure 9(a).
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FIGURE 9. First type of vortex singing triggering, (a) theoretical solution for the frequency of
lower singing-line-a varying with /d, (b) first trigger mechanism at point A (d = 1.64, /d
= 0.35).

In figure 10(a), once d much increases to 13.50, despite the large distance between
fi and fzgv, the frequency at the intersection between the dispersion lines on kθ = 0+ and
kθ = 2-, i.e. fj ~ κ (f0+ ∩ f2-), coincides with fzgv in the first quadrant as /d = 0.23. The
intersection j marked with a block symbol in figure 10(b) has the same wavenumber
of κj = 0.062 with the intersection i. Therefore, the interfacial waves on a static TVC
disperse along kθ = 2-, rather than kθ = -2+, to excite the zero-group-velocity point with
largest amplitudes of cavity radius oscillation at the singing condition. Consequently,
fj = fzgv is defined as the second criterion for TVC-singing, and the intersection j is
called Triggered point-B under the condition of d = 13.50 and /d = 0.23.
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For kθ = -0+ and kθ = 2-, dimensionless frequencies are derived from the Equation
(2.22), i.e.
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if κ > 0, a constant of κj = 0.062 is the solution to ῶ+(κ, 0) = ῶ-(κ, 2). Solved from
∂ῶ0-/∂κ = 0, κzgv(σ, Kσ) can be obtained as -0.38, inducing the singing tone at the zero-
group-velocity point at ῶ = 1.03. Therefore, the second singing criterion is,

( ,2) ( ,0)     j zgv (3.9)

As depicted in figure 10(a), if d increases continuing, the criterion of fj = fzgv starts
to present two solutions locating at both sides of /d = 0.23. These triggered points
marked with circle symbol all behave in the second type and are further connected to
the singing-line-b, shown as a red curve in figure 10(a) and satisfying the following
relationship,

11 1.422 ( )  σ dK σ σ
σ

(3.10)

Similarly, if /d approaches 0, the minimum cavitation number can be calculated,
i.e.  = 2.37. when  increases, /d approaches 0.41, where the asymptotic-line-b is
obtained, as shown in figure 10(a). And the frequency ῶb is computed using either of
formulas in Equations (3.8), e.g.
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FIGURE 10. Second type of vortex singing triggering, (a) theoretical solution for the
frequency of upper singing-line-b varying with /d, (b) second trigger mechanism at point B
(d = 13.50, /d = 0.23).

To validate the two vortex singing lines, the dataset provided by CSSRC and G.T.H.
is used for comparison on the diagram of (0.5, ῶ) as shown in figure 11. Note that the
available cavity radius measured by G.T.H. is simply treated as rc. For the singing-line
a representing the first criterion for the singing TVC, its non-dimensional frequency
i.e. ῶa can be predicted by the relation of ῶa() = 0.263 (+1)0.5, which is obtained by
combining the Equations (3.10) and (3.11). For the singing-line-b representing the
second criterion for the singing TVC, its non-dimensional frequency i.e. ῶb can be
predicted by the relation of ῶb() = 0.524 (+1)0.5. The relations are described by two
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color solid lines, blue for the singing-line-a, and red for the singing-line-b.
As shown in figure 11, three sets of singing conditions in CSSRC under different

dissolved oxygen contents are concentrated on singing-line-a and in the cavitation
number range between  limit-a = 0.41 and  limit-b = 2.37. Here A and B represent the
intersection points of fi ~ 0.5 connecting fzgv ~ 0.5 and fj ~ 0.5 connecting fzgv ~ 0.5,
which are solved by the potential flow assumption and plotted with purple lines in
figure 11. It is clear that in the case of  limit-a ≤  ≤  limit-b, e.g. the singing region in
CSSRC, the vortex singing can only be triggered along the singing-line-a. For the case
of  >  limit-b, e.g. four singing conditions in G.T.H., the vortex singing is triggered
along the singing-line-b.

In summary, we have presented and validated two theoretical vortex singing lines
and explained why vortex singing can only occur within a narrow cavitation number
range. This analysis provides insights into the underlying mechanisms governing the
vortex singing and highlights the importance of hydrodynamic triggering conditions
for such a whistling vortex cavity.

FIGURE 11. Theoretical solutions for the frequency of two vortex singing lines varying with
σ0.5, with singing conditions from CSSRC and G.T.H.

4. Conclusions
The phenomenon of vortex singing, a typical noise enhancement induced by the

severe interfacial instability in tip vortex cavitating flows, has posed a significant
challenge in cavitation hydrodynamic research over the past three decades. In this
paper, theoretical analytical methods for predicting the 2-D resonance frequency of
cavitation bubbles and the 3-D resonance frequency of cavity interfacial waves have
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been proposed without involving any empirical parameters.
(1) To accurately predict the resonance frequency of TVC, the equation for 2-D

resonance frequency i.e. fn is established by introducing the Lamb-Oseen vortex
model as well as the desinent cavitation number i.e.  d to linearize the 2-D viscous
cavitation bubble’s dynamic equation, the dispersion model of 3-D cavity interfacial
waves is improved by further updating the tangential and axial cavity interfacial
velocity based on the Bernoulli equation.

(2) The wavenumber-frequency spectrum of the singing cavity radius, derived from
the experiment by CSSRC, is convincingly replicated by the proposed 3-D dispersion
model, indicating that singing waves predominantly consist of the stationary double
helical mode (kθ = 2- and -2+) and the breathing mode (kθ = 0-), rather than standing
waves, as assumed in previous literatures. It is also confirmed that far-end oscillations
at fn play a crucial role in generating near-end breathing waves.

(3) Two trigger mechanisms have been proposed: The twisted TVC, initially at rest,
is driven into motion by fn due to a step change of the far-field pressure. Subsequently,
the frequency associated with the zero-group-velocity point (fzgv) at kθ = 0- is excited
through fi, the frequency at the intersection of dispersion curves at kθ = 0- and -2+, or fj,
the frequency at the intersection of dispersion curves at kθ = 0- and 2-, corresponding
to the first and second type of triggering approach for vortex singing, respectively.

(4) By applying the cavitation number () and relative cavitation number (/d),
solutions for vortex singing frequency (fs) are determined independently for two type
of trigger mechanisms, and are expressed by two triggering lines, which are validated
by singing cases in CSSRC and G.T.H., respectively.

(5) Analysis based on the coherence and the cross-power spectral density of cavity
radius oscillation between two camera views for singing TVC depicts a negative and
large phase velocity, indicating a large-scale breathing mode wave propagating along
the cavity surface and travelling from downstream towards the hydrofoil tip.
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