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Ferromagnetism is typically discussed in terms of the exchange interaction and magnetic

anisotropies. Yet real samples are inevitably affected by the magnetostatic dipole-dipole

interaction. Because of this interaction, a theorem (R.B. Griffiths, Free Energy of interact-

ing magnetic dipoles, Phys. Rev. 176, 655 (1968)) forbids a spontaneous magnetization

in, nota bene, three-dimensional bodies. Here we discuss perpendicularly and in-plane

magnetized ferromagnetic bodies in the shape of a slab of finite thickness. In perpendic-

ularly magnetized slabs, magnetic domains are energetically favored when the lateral size

is sufficiently large, i.e. there is no spontaneous magnetization. For in-plane magnetiza-

tion, instead, spontaneous magnetization is possible below a critical thickness which, in

real thin films, could be as small as few monolayers. At this critical thickness, we predict

a genuine phase transition to a multi-domain state. These results have implications for

two-dimensional ferromagnetism.
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A situation familiar to ferromagnetism foresees that, below the Curie temperature, the graph of

the the free-energy as a function of the magnetization has a flat portion1 (graph ”a” in Fig.1). This

flatness defines a situation in which the magnetization can acquire a value between zero and a so

called ”spontaneous magnetization” ±M0 without any change in the free energy. This ”flatness”

is a property of the thermodynamic limit, i.e. of infinite bodies. In finite bodies, the free energy

assumes a shape that resembles the graph ”b” in Fig.1, ±M0 being the values at which the free

energy has minima. Systems with spontaneous magnetization are, for example, the Ising and clas-

sical Heisenberg ferromagnets in three dimensions (3D)1,2, the 2D-Ising model or the 2D-planar

and classical 2D-Heisenberg models with symmetry breaking single ion interactions3. In real fer-

romagnetic bodies, however, the inevitable dipole-dipole interaction, originating within Maxwell

equation of magnetostatics, must be considered alongside the main exchange interaction (of purely

quantum mechanical origin) and the single ion magnetic anisotropies (produced by the spin-orbit

interaction). The dipole-dipole interaction is, typically, much weaker than the exchange interac-

tion (by about two orders of magnitude). Yet, it is long-ranged, as it decays only with the third

power of the distance between two magnetic moments. Because of the dipole-dipole interaction,

a theorem, proved by Griffiths4 for bodies with linear dimension L approaching infinity along all

three spatial dimensions, implies that any non-zero magnetization produces an increase of the free

energy, i.e. the graph of the free energy as a function of M has a minimum at M = 0 at any tem-

perature (graph ”c” in Fig.1). Accordingly, ferromagnetic order can only be local and, globally,

the spontaneous magnetization is exactly vanishing.

This no-spontaneous magnetization rule is somewhat similar to the absence of long-range order

foreseen for the isotropic 2D-planar and 2D-Heisenberg ferromagnets5 but it refers, remarkably,

to a 3D-body. In fact, it appears that an important assumption underlying Griffith’s theorem is the

size of the body approaching infinity along all three spatial dimensions. In this paper, we discuss

ferromagnetism in the presence of exchange, magnetic anisotropy and dipole-dipole interaction

but in a slab-geometry, where only two spatial dimensions are allowed to increase and the third

is assigned a finite thickness. Our results should be relevant for discussing ferromagnetism in the

new class of monolayer thin materials obtained by mechanical exfoliation6–11. They are known

to be perfectly flat over large distances and have been shown to be vertically engineerable12. As

experiments are often analyzed in term of abstract models, exact theorems such as Griffiths’s one4

or scaling arguments such as those presented here should allow experiments to distinguish those

features that are general and universal from those ones that originates from less known details of

2



a sample (such as defects).

Perpendicular Magnetization. We first analyze the situation of perpendicular magnetization.

In the state of spontaneous perpendicular magnetization, all magnetic moments in the slab point

along one of the two z-directions perpendicular to the slab (Fig.2a), e.g. the +z-direction. In

Fig.2a, this state is rendered with a white color and the magnetization vector with absolute value

M0 is given by a black arrow. M0 represents the magnetic moment per volume of the unit cell, i.e.

M0
.
= g·µB·S

a3 (with S being the spin in units of h̄ and a the lattice constant). A possible, elementary

state of vanishing spontaneous magnetization is shown in Fig.2b. One half of the slab is still filled

with magnetic moments pointing upwards ”↑” but the other half (gray in Fig.2b) contains magnetic

moments pointing downwards ”↓” (indicated as state ↑↓ henceforth). Assuming that Griffith’s the-

orem is valid for the perpendicular magnetization in the slab geometry as well, the ↑↓ state should

have a lower total energy than the state of spontaneous uniform magnetization (indicated as state

↑↑ henceforth). We, therefore, proceed to compare the energy of the two states in a situation where

the size L of the slab is much larger than its thickness d.

Magnetostatic energy EM. The magnetostatic energy EM for the perpendicular magnetization con-

figuration is most appropriately computed as the energy of the interacting Ampèrian effective

currect densities ∇⃗×M⃗(⃗r) resulting from the magnetization vector M⃗(⃗r) (see Section I of the Sup-

plementary Material (SM)). The current density vectors arising in the ↑↑ and ↑↓ configurations

are summarized by red arrows in Fig.2. We find that the formation of the two neighboring do-

mains with opposite magnetization lowers the total magnetostatic energy and is thus the driving

force behind the suppression of the spontaneous magnetization, i.e. EM(↑↓)−EM(↑↑) is negative.

The self-energies of the Ampèrian currents circulating along the perimeter of the slab cancel out

exactly from EM(↑↓)−EM(↑↑). Their mutual interaction provides terms of the order L · d2. The

leading contribution to EM(↑↓)−EM(↑↑) is the self-energy of the current flowing along the wall

that separates the domains. Assuming that the domain wall has a finite thickness w, the leading

contribution writes (Section I, SM), in the limit d<< w<<L

EM(↑↓)−EM(↑↑)≈ L·d
a2 ·

[
− 2

π
· (Ω·d

a
)·ln L

w

]
+O(

d2·L
a3 ) (1)

In Eq.1, L·d is the surface of the domain wall. Ω .
= µ0

2 ·M2
0 ·a3 is a parameter used for expressing

the strength of the magnetostatic energy per unit cell. As an example, Ω for metallic Fe amounts

to ≈ 0.28 meV (see Section I of SM)13. The slab model (see Section I of SM) shows explicitly

that the relevant coupling constant entering EM(↑↓)−EM(↑↑) is not Ω itself but Ω · d
a , i.e. the

characteristic magnetostatic energy per unit surface cell. The logarithmic term in Eq. 1 provides,
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formally, a divergence of EM(↑↓)−EM(↑↑) with the size L. It is universal in the sense that it does

not depend on the exact geometry of the wall separating the domains: both the shape of this wall

and the exact shape of slab contribute only terms of the order Ω·L ·d2.

Energy of the wall between ↑-and ↓-domains. The formation of a domain wall in the ↑↓-state

increases the total energy of the ferromagnetic slab and therefore promotes the state of sponta-

neous magnetization. Within the wall, the magnetic moments rotate away from the z-direction.

For simplicity, we assume the wall to run parallel to the y-direction and the rotation to take place

along the x-direction. Let the rotation be characterized by an angle θ , which increases from 0 to π

when moving along x-within the wall. The misalignement is associated, in the first place, with an

increase of the single ion magnetic anisotropy energy that favors the perpendicular magnetization,

introduced conceptually by Néel17 and computed for the first time from first principles by Gay

and Richter15 for the monolayer of Fe. This term originates from the breaking of translational

symmetry perpendicular to the slab plane. In ultrathin slabs, it is only weakly dependent on d16

as it arises from the two surfaces bounding the slab. Using the convention of Ref.15, we write this

term as −λ · cos2 θ(x), the parameter λ to be intended, as in Ref.15, as an energy per surface unit

cell. For λ , a value of ≈ 0.4 meV is reported15,19 for the one monolayer of Fe.

The Néel-anisotropy is not the only contribution to the magnetic anisotropy affecting the magnetic

moment rotation in the wall. The magnetostatic energy itself favors the magnetic moment to lie

within the slab plane and contributes a term +Ω· d
a ·cos2 θ(x) (Section II of SM). The coefficient

of this contribution scales with d, see Section II of SM and Ref.16, in contrast to λ .

Finally, for the building of the wall, one must also consider that the misalignment of two neighbor-

ing magnetic moments at the sites x and x±a increases the energy by14 J ·S2 ·cos(θ(x±a)−θ(x)),

J being the exchange coupling energy per spin couple. For bulk Fe, Ref.14 estimates J ≈ 48 meV.

The total energy of a wall is proportional to its surface L · d multiplied by the geometric mean

of the relevant coupling constants (see Section III of SM for a short reminding on how the term

+Ω·d·cos2 θ(x) is embedded into the wall energy):

∝
L ·d
a2 ·

[
2 ·
√(

λ −Ω·d
a

)
·2·J ·S2

]
(2)

Absence of spontaneous magnetization and crossover length. Comparing the domain wall energy

cost to the magnetostatic energy gain, we recognize that the logarithmic term always favors the

building of domains for sufficiently large L. Accordingly, Griffith’s theorem about the absence

of spontaneous magnetization in the thermodynamic limit holds true in the slab geometry with
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perpendicular magnetization.

One interesting outcome of our argument is the estimate of the cross-over length Lc at which a

slab will transit from a monodomain state to a multi-domain state, resulting from equating the

magnetostatic energy gain to the wall energy:

Lc ≈ w · e
π·
√
(λ−Ω·da)·2·J·S2

Ω·da (3)

There are three aspects of this result that deserve amplification. First, if we insert the values for

J, Ω and λ given previously, one recognizes that Lc assumes astronomically large values for the

monolayer limit (In Section III of SM we find that the ”monolayer limit” corresponds, in the slab

model, to d≈a; in this limit, the expression Lc is consistent with known results18).

Second, one recognizes a threshold thickness dR
a = λ

Ω at which, formally, the argument of the

exponential function vanishes. dR is in the subnanometer range19,20. We therefore propose that

Lc decreases exponentially with d and, toward dR, it assumes values of few tens of micrometers.

These are the lateral lenghts over which exfoliated two-dimensional magnets are believed to be

almost perfectly flat6–11. Accordingly, a sequence of exfoliated samples with suitable thickness

and with increasing lateral size L should allow an insight into the yet unexplored mechanism of

penetration of magnetic domains in two-dimensional ferromagnetic elements as a function of their

size L. Some preliminary results in this direction were reported in Ref.21 on epitaxially grown

ultrathin films.

Third, the spin wave excitations produce a renormalization of the various coupling constants J, Ω

and λ as a function of temperature22, so that dR is itself a function of the temperature. One finds

that dR(T ) defines a line of phase transitions at which the perpendicular magnetization turns into

the plane of the slab19,20,22. Accordingly, the exponential decay of Lc should become observable

when the temperature T is increased and dR(T ) approaches the actual thickness d of the slab.

A final comment is dedicated to the stability against a perpendicular magnetic field of the domain

phase that should appear at sufficiently large L. In Section IV of the SM, we analyze this prob-

lem by considering the energetics of one stripe of reversed magnetization −M0, embedded into

a background with magnetization +M0, subject to a perpendicularly applied field with strength

+B0. We find that the state of uniform magnetization becomes the energetically favored one when

B0 exceeds a threshold strength Bt ∝
(

µ0 ·M0 · d
Lc

)
. Far away from the dR(T )-transition line, the

threshold field might be as small as few nT . Close to the transition line we expect this field to be

in the mT -range23,24.
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In-plane magnetization. We now analyze the slab geometry with in-plane magnetization. The

two configurations considered are one of uniform magnetization along e.g. the +x-direction

(Fig.3a), and one where one half of the slab has magnetization along the +x-direction and the

other half has magnetization along −x (Fig.3b). In this situation, the magnetostatic energy is

most appropriately computed as the Coulomb interaction between effective ”charges” produced

by ∇⃗ · M⃗(⃗r). The charges resulting from the two spin configurations are indicated in Fig.3 in red.

The change of magnetostatic energy produced by the building of in-plane domains is negative, i.e.

the magnetostatic energy favor a state of vanishing spontaneous magnetization. However, the log-

arithmic term produced by the self-energies cancel out exactly when the energies of the two states

are subtracted, provided the wall is parallel to the magnetization, i.e. the wall is not charged. The

remaining contributions provide terms proportional to −(Ω ·d) ·L ·d (Section V, SM). Again, there

is a wall between the two domains, in which spins rotate away from the x-direction. We assume,

for simplicity, an in-plane uniaxial anisotropy with the strength Λ such as the one encountered

in ultrathin Fe films on W(110)25. This uniaxial anisotropy provides and energy barrier against

rotations away from the x in-plane direction. A typical value for Λ, desumed from Ref.25, is 0.04

meV per unit surface cell26. Notice that Λ originates from the rectangular nature of the surface

unit cell and is about two-orders of magnitude smaller than the Néel magnetic anisotropy constant

forthcoming in the perpendicular magnetization configuration. Λ is rather of the same order of

magnitude as the quartic in-plane magnetic anisotropy constant computed e.g. in Ref.15. Given Λ,

the energy of the wall per wall surface unit cell is then proportional to the geometric average of

the exchange coupling J and Λ, by virtue of the same arguments exposed in Section 3 of SM, i.e.

≈ L ·d ·2·
√

Λ·2 · J ·S2.

Equating the total energy change due to the formation of a domain wall to zero provides an esti-

mate of the critical thickness dc below which a state of spontaneous magnetization is favored:

dc ∝ a ·
√

Λ · J
Ω

(4)

As L cancels out, we argue that it should be possible to find a rigorous proof of spontaneous

magnetization even in the thermodynamic limit L → ∞ in a truly 2D system with in-plane mag-

netization. As both states above and below dc are stable for L → ∞, the transition at dc from a

single-domain state with spontaneous magnetization to a multi-domain stripe state should be a

genuine phase transition. Using the values for Λ,J,Ω introduced in this Letter, we obtain dc ≈ five

lattice constants or less. This small number means that a sample must be fabricated with uniform

thickness over large lateral distances, in order for this transition to be observed. The new class of
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two dimensional magnets6–11 might provide this kind of precision. A final remark: provided that

Ω, J, and Λ renormalize slightly differently with temperature, we might expect a dc(T ) line of

phase transitions which can also be crossed at a fixed thickness d by varying the temperature. This

situation would represent the analogon to a similar phase transition observed in perpendicularly

magnetized films23.

Supplementary Material. Details of the computations used to obtain Eq.1,2,3 and 4 are given in

the ”Supplemental Material”.
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FIG. 1. The free energy as a function of M. a: the graph for an infinite ferromagnetic body with spontaneous

magnetization has a flat portion between ±M0 below the Curie temperature, see Ref.1. b: for a finite

ferromagnetic body, the free energy has minima at ±M0. c: A theorem by Griffiths4 implies that the free

energy has a minimum at M = 0 at any temperature.
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Fig.2
FIG. 2. a: the state of uniform perpendicular magnetization (represented in white) in a slab. The magneti-

zation vector is represented by the vertical black arrow. Red arrows represent the effective current density

vectors flowing along the perimeter of the slab. b: The slab is filled by two domains with magnetization

vector parallel (white domain) and antiparallel (gray domain) to the vertical z-axis. Red arrows represent

the effective current density vectors.
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Fig.3
FIG. 3. a: the state of uniform in-plane magnetization (represented in white) in a slab. The magnetization

vector is represented by the horizontal black arrow. Effective charge densities (their sign being given in red)

appear along the perimeter. b: The slab is filled by two domains with magnetization vector parallel (white

domain) and antiparallel (gray domain) to the horizontal x-axis. The sign of the effective charge densities is

given in red.
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”On the spontaneous magnetization of two-dimensional ferromagnets”
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A. Vindigni
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I. DERIVATION OF EQ.1: MAGNETOSTATIC ENERGY OF JUXTAPOSED SLABS WITH OPPOSITE PERPENDICULAR
MAGNETIZATION.

A. General considerations.

According to [1], the magnetostatic self-energy of a continuous distribution of permanent magnetization M⃗(⃗r) can be written as

EM[M⃗(⃗r)] = −µ0

2
·
∫∫∫

dV · M⃗(⃗r) · H⃗ (⃗r)− µ0

2
·
∫∫∫

dV · M⃗2(r)) (1)

For the purpose of analyzing the situation of juxtaposed slabs with opposite perpendicular magnetization we use a sligthy
different version for EM . As B⃗ = µ0 · (H⃗ + M⃗) and

∫∫∫
dV · B⃗(⃗r) · H⃗ (⃗r) = 0 we can write

EM =− 1
2µ0

∫∫∫
dV · B⃗(⃗r) · B⃗(⃗r) (2)

With B⃗ = ∇⃗× A⃗ and the partial integration∫∫∫

V
∇⃗× A⃗ ·

(
∇× A⃗

)
dV =−

∫

∂V

(
∇× A⃗

)
× A⃗ ·dS+

∫∫∫

V

(
∇×∇× A⃗

)
· A⃗dV (3)

we obtain, using ∇⃗× B⃗ = µ0 · ∇⃗× M⃗,

EM[M⃗(⃗r)] =− 1
2µ0

∫
dV · A⃗ · ∇⃗× ∇⃗× A⃗︸ ︷︷ ︸

µ0 ·⃗∇×M⃗

=−1
2

∫
dV · A⃗ · ∇⃗× M⃗ (4)

(the surface terms are rendered vanishing by extending the surface to ∞, where the fields of a finite and bounded magnetization
distribution are vanishing). We recall that A⃗ fulfills the Poisson equation

△A⃗ =−µ0 · ∇⃗× M⃗ (5)
with solution

A⃗(⃗r) =
µ0

4π
·
∫

dV ′ ∇⃗× M⃗
|⃗r− r⃗′| (6)

Inserting this result in Eq.4 we obtain the sought-for representation of the total magnetostatic energy:

EM[M⃗(⃗r)]=− µ0

8π

∫∫∫
dV1

∫∫∫
dV2

∇⃗1 × M⃗(⃗r1) · ∇⃗2 × M⃗(⃗r2)

|⃗r1 − r⃗2|
(7)

Eq.7 is the interaction energy of effective Amperian currents with current density vector
J⃗M

.
= ∇⃗× M⃗ (8)

B. Application to perpendicular magnetization in a slab.

We compute explicitly the leading logarithmic contribution. Suppose we have two slabs with length L along the y-direction,
infinitely extended along the the x-direction and with thickness d <<L along the z-direction. The slabs meet at x = 0. Along
this line, the perpendicular magnetization changes from (0,0,M0) to (0,0,−M0). This magnetization jump produces an effective
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2

current density:

∇⃗× M⃗ = (0,
2M0

w
,0) (9)

localized at x = 0. This expression entails the fact that, for physical reasons (see Section III), the line x = 0 at which the domains
meet is assigned a finite width w<<L. The self-energy of the effective current flowing along the domain wall amounts to

− µ0

8π
· (2 ·M0)

2

w2

∫∫∫
dV1

∫∫∫
dV2

1√
(x1 − x2)2 +(y1 − y2)2 +(z1 − z2)2

(10)

The integral along z extends from 0 to d, the integral along y from 0 to L and the integral along x from 0 to w. We use the
variables r⃗′1 =

r⃗1
L , r⃗′2 =

r⃗2
L and transform the integral to

− µ0

8π
· (2 ·M0)

2

w2 ·L5 ·
∫∫∫

dV ′
1

∫∫∫
dV ′

2
1√

(x′1 − x′2)
2 +(y′1 − y′2)

2 +(z′1 − z′2)
2

(11)

The integral along z′ extends from 0 to d
L , the integral along y′ from 0 to 1 and the integral along x′ from 0 to w

L
.
= ω . We solve

this integral in the limit d
L <<1. In this limit, we set z′1 = z′2 = 0 in the integrand and perform the z′-integral to obtain

− µ0

8π
· (2 ·M0)

2

w2 ·L5· d
2

L2 ·
∫ ω

0
dx′1

∫ ω

0
dx′2

∫ 1

0
dy′1

∫ 1

0
dy′2

1√
(x′1 − x′2)

2 +(y′1 − y′2)
2

(12)

The remaining integrals are elementary ones and the result of the exact integration is

− µ0

8π
· (2 ·M0)

2

w2 ·L3·d2·2 ·
{

ω2

2
ln

(√
1+ω2 +1√
1+ω2 −1

)
+ω ln

(√
1+ω2 +ω

)
−1

3

[(
1+ω2) 3

2 −ω3−1
]}

(13)

We are interested in the situation where w is also much smaller than L while being larger than d. In this situation, Eq. 13
simplifies to

≈− µ0

8π
· (2 ·M0)

2

w2 ·L3·d2·2 ·
{
(

w
L
)2 ln

(
1
w
L

)
+(

w
L
)2
(

ln2+
1
2

)
+

(w
L )

3

3
+O

(
(

w
L
)4
)}

(14)

The leading term is the logarithmic one:

≈− µ0

4π
· (2 ·M0·)2 ·a3 · L ·d2

a3 · ln L
w

(15)

We use the parameter

Ω .
=

µ0

2
·M2

0 ·a3 (16)

to write this leading term as (see Eq.1 in the bulk of the paper)

− 2
π
· (Ω · d

a
) · L ·d

a2 · ln L
w
+O(

d2 ·L
a3 ) (17)

For the sake of being close to practical examples, we compute Ω assuming Fe atoms occupying a bcc lattice, i.e. 2 atoms in the
unit cell, each carrying a magnetic moment of 2.2 µB and

µ0 = 4π ·10−7 · T ·m
A

µB = 9.3 ·10−24 · Joule
T

a = 2.83 ·10−10 ·m 1 · Joule = 6.2 ·1018 · eV

We find
Ω ≈ 0.28 ·meV (18)

II. THE DIPOLAR CONTRIBUTION TO THE NEEL SURFACE ANISOTROPY: THE TERM Ω·d.

A. General considerations.

For the purpose of dealing with this specific problem we insert

H⃗ =
1

4π
·
∫∫∫

dV ′∇⃗
∇⃗′ · M⃗(⃗r′)
|⃗r− r⃗′| (19)

into
−µ0

2
·
∫∫∫

dV · M⃗(⃗r) · H⃗ (⃗r) (20)

We use the identity

M⃗(⃗r′) · ∇⃗ 1
| r⃗− r⃗′ | = ∇⃗

′ · M⃗(⃗r′) · 1
| r⃗− r⃗′ | − ∇⃗

′ · (M⃗(⃗r′) · 1
| r⃗− r⃗′ | ) (21)

and suppose that M(⃗r′) is well behaved and localized. Then the integral over the last term can be transformed by Gauss law into
a surface integral and the surface can be pushed to infinity, where there is no magnetization and the surface integral vanishes,



3

leading to

EM[M⃗(⃗r)] = +
µ0

8π

∫∫∫
dV
∫∫∫

dV ′ ∇⃗ · M⃗(⃗r) · ∇⃗′ · M⃗(⃗r′)
| r⃗− r⃗′ | − µ0

2

∫∫∫
dV · M⃗2(⃗r) (22)

B. Application to the slab geometry.

We consider a slab of size L× L in the xy-plane, finite thickness d << L along the z-direction. We need to compute the
magnetostatic energy when the slab is filled with a uniform magnetization distribution M⃗ = (sinθ ,0,cosθ) (θ being the angle
with respect to the slab normal), subtracted by the magnetostatic energy at θ = π

2 . As we will let the slab extend to infinity, we
proceed by setting the derivative of M⃗(⃗r) along x and y to zero in Eq.22. The derivatives along z can be redirected and we obtain,
for the magnetic anisotropy energy ∆EM

.
= EM[cosθ ]−EM[cos π

2 ] produced by the dipolar interaction

∆EM = cos2 θ · µ0

8π
·M2

0

∫∫∫
dρ⃗dz

∫∫∫
dρ⃗ ′dz′

[
∂
∂ z

∂
∂ z′

1
((⃗ρ − ρ⃗ ′)2 +(z− z′)2)1/2

]
(23)

with ρ⃗ = (x,y). The integral over z and z′ from 0 to d can be performed to obtain

∆EM = cos2 θ · µ0

4π
·M2

0

∫∫
dρ⃗
∫∫

dρ⃗ ′
[

1√
(⃗ρ − ρ⃗ ′)2

− 1√
(⃗ρ − ρ⃗ ′)2 +d2

]
(24)

The integrations over the in-plane coordinates are elementary, as the integration limits in the plane can be considered to extend
to ∞ and ρ⃗ ′ can be set to zero:

∆EM = cos2 θ · µ0

4π
·M2

0

∫
dx ·dy

︸ ︷︷ ︸
L2

∫
dh ·dk

[
1√

h2 + k2
− 1√

h2 + k2 +d2

]

= cos2 θ · µ0

4π
·M2

0 ·L2 ·2π · lim
L→∞

∫ L

0
dr(1− r√

r2 +d2
)

︸ ︷︷ ︸
d

= L2 · µ0

2
·M2

0 ·d · cos2 θ = (
L
a
)2 · (Ω · d

a
) · cos2 θ (25)

In this last equation one can read out that Ω · d
a determines the coefficient of the magnetic anisotropy arising from the dipolar

interaction.
One technical aspect: whithin a discrete model, ”one monolayer” is defined by default [4]. Whithin the continuum slab model
used here, one needs to define the value of d corresponding to ”one monolayer”. One possible way of accomplishing this is
comparing the coefficient Ω · d

a in Eq.25 with the corresponding coefficient computed within the discrete model [4]. We find that
setting d ≈ a for the ”one monolayer” is indeed a suitable choice.

III. DERIVATION OF EQ.2: THE ENERGY OF A DOMAIN WALL.

For the exchange energy between a pair of neigboring spins at sites r⃗i and r⃗ j we adopt the classical rendering which appears
to be appropriate e.g. for metallic Fe, as explained in Ref.[2]:

EJ =−J ·S2 · n⃗(⃗ri) · n⃗(⃗r j) (26)
n⃗ is a classical vector. J is the exchange coupling constant given in Ref.[2] as ≈ 48 meV. The use of S2 instead of S(S+ 1) is
explained in Ref.[2]. For using this expression to computing the energy of a domain wall we need some approximations. Within
a wall that evolves along the x-axis, r⃗i

.
= (x,0,0) and the r⃗ j

.
= (x±a,0,0) and

n⃗i = (sinθ(x),0,cos(θ(x)) n⃗ j = (sinθ(x±a),0,cos(θ(x±a)) (27)
The change of exchange energy produced by the misalignement of two consecutive spins amounts accordingly to

EJ(↑↓)−EJ(↑↑) =−J ·S2 · cos(θ(x)−θ(x±a))+ J ·S2 (28)
We expect that θ(x)−θ(x± a) is small, so that we can replace the cos function with the lowest terms of its Taylor series and
obtain

EJ(↑↓)−EJ(↑↑)≈
JS2

2
(θ(x)−θ(x±a))2 (29)

We also use

(θ(x)−θ(x±a))2 ≈ ∂θ(x)
∂x

2

·a2 (30)
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This approximation allow to write the exchange component of the total elastic functional that is used to compute the equilibrium
profile of θ(x). Together with the term originating from the Neel [3] magnetic anisotroy, the functional Ew[θ(x)] describing the
total energy of a wall writes

Ew[θ(x)] =
L ·d
a2 ·

[
J ·S2

2
·a ·

∫ ∞

−∞

(
∂θ(x)

∂x

)2
·dx− (λ −Ω · d

a
)

1
a

∫
dx · cos2 θ(x)

]
(31)

The corresponding Euler-Lagrange equation reads

J ·ad2θ
dx2 −2

λ −Ω d
a

a
sin(θ(x))cos(θ(x)) = 0 (32)

The solution to the boundary conditions limx→−∞ θ(x) = π and limx→+∞ θ(x) = 0 reads

cos(θ(x)) = tanh
( x

w

)
(33)

with the width w of the wall

w =
a
2

√
2 · J ·S2

λ −Ω d
a

(34)

This solution was proposed originally by Landau and Lifschitz in 1935 [5]. For the sake of finding the proper role of the dipolar
interaction within the expression for the wall energy we have repeated this solution here. The total energy of the wall amounts
to (see Eq.2 in the bulk of the paper)

L ·d
a2 ·2 ·

√(
λ −Ω

d
a

)
·2 · J ·S2 .

= Ew (35)

IV. STABILITY OF A STRIPE DOMAIN IN AN APPLIED MAGNETIC FIELD.

We have determined that, when the size of a magnetic element exceeds the crossover length Lc, a phase with domains of
opposite perpendicular magnetization can penetrate a magnetic element. We now determine the stability of this phase with
respect to a magnetic field applied perpendicularly to the plane. For this purpose, we compute the magnetic field necessary to
render metastable one stripe of reversed magnetization with width δ . The change in total energy produced by the stripe with
respect to an element of uniform magnetization +M0 in an applied magnetic field B⃗ = (0,0,+B0) amounts to

∆E(B0,δ ) = 2 ·Ew · L ·d
a2 +2 ·B0 ·M0 ·δ ·L ·d − 4

π
· (Ω · d

a
) · L ·d

a2 · ln δ
w
+O(

L ·d
a2 ·Ω · d

a
) (36)

The − ln δ
w in Eq. 36 comes about by subtracting 2 · ln L

w (originating from the the self energy of the effective current densities
flowing along the domain walls) from 2 · ln L

δ (originating from the reciprocal interaction energy between the effective current
densities flowing along the domain walls [6]). Minimizing ∆E(B0,δ ) with respect to δ produces the equilibrium stripe width

δ ∗(B0) = a ·
2
π ·Ω · d

a
B0 ·M0 ·a3 = d · µ0

π
· M0

B0
(37)

On p.20-21 of Ref.[7], a numerical study of ∆E(B0,δ ) as a function of δ for various fields B0 is reported. It is shown that, below
a certain threshold magnetic field Bt (and, in particular, at B0 = 0), this minimum renders ∆E(B0,δ ) negative: the energy of the
element containing the stripe is lower than the energy of the element with uniform magnetization. Above the threshold field,
instead, the minimum provides a metastable state, as ∆E(B0,δ ∗) > 0 [7]. We now proceed to find Bt . To find Bt we insert the
expression for δ ∗(B0) in ∆E(B0,δ ), i.e. we build the function ∆E(B0,δ ∗(B0)):

∆E(B0,δ ∗(B0)) =
L ·d
a2 ·

(
2 ·Ew − 4

π
· (Ω · d

a
) · ln

(
µ0 ·M0

π ·B0
· d

w

)
+O(Ω · d

a
)

)
(38)

∆E(B0,δ ∗(B0)) expresses the energy change at the minimum δ ∗ as a function of B0. Setting ∆E(B0,δ ∗(B0)) to zero provides us
with an equation in the variable B0 for the sought-for field Bt . The solution of this equation writes

Bt ∝ µ0 ·M0 ·
d
Lc

(39)

This is the transition field referred to in the bulk of the paper. A similar dependence of Bt on M0 and on the ratio Lc/d was
obtained in a situation of stripe order in 2D[7, 8]. Notice that, even if the stripe is metastable, there is an energy barrier for it to
be eliminated from the element. A further issue is that a bubble phase might intervene between the stripe phase and the phase of
uniform magnetization. For the purpose of this paper, however, these issues are less relevant and we refer the reader to Refs.7
and 8 for an extended discussion.
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V. MAGNETOSTATIC ENERGY OF JUXTAPOSED DOMAINS WITH OPPOSITE IN-PLANE MAGNETIZATION.

For the in-plane configuration we compute the magnetostatic energy using

EM[M⃗(⃗r)] = +
µ0

8π

∫
dV
∫

dV ′ ∇⃗ · M⃗(⃗r) · ∇⃗′ · M⃗(⃗r′)
| r⃗− r⃗′ | (40)

(the summand on the right hand side of the exact Eq.22 cancels out when energies of two different configurations with equal∫∫∫
dV M⃗2(⃗x) are subtracted). We consider the two magnetization distributions ”uu” (a in the top view of the slab in Fig.1SM)

and ”ud” (b in Fig.1SM) (for a magnetization pointing along +x and −x we use the symbols ”u” and ”d”, respectively). In uu the
in-plane magnetization M⃗ = (0,M0,0) is uniformly distributed. It produces a ∇⃗ · M⃗ in the vicinity of the segments terminating
the slabs: effective negative charges accumulate along the segments A and B and effective positive charges along the segments C
and D, see Fig.1SM. In ud, half of the slab is filled with M⃗ = (0,+M0,0) and the remaining half with the opposite magnetization
(0,−M0,0). The effective charges at the terminating segments are accordingly modified: A and D are negatively charged, B
and C positively. In a situation where the domain boundary is exactly parallel to the magnetization vector, the self-energy of
the charge distributions cancel out when the magnetostatic energy of the configuration uu is subtracted from the energy of the
configuration ud. The remaining terms amount to the Coulomb interaction (symbolically) −4 ·A(+)B(+) + 4 ·A(+)D(+). The
leading term is the Coulomb energy between the charges along the segments A and B, and it is negative, i.e. the formation
of domains with parallel opposite magnetization lowers the magnetostatic energy of the slab. In the evaluation of this energy,
the integration along z produces a d2 by simultaneously setting z = z′ = 0 in the integrand. The integration along y produces
∆2 by simultaneously setting y = y′ = 0 in the integrand. ∆ is the length of that border region at A,B,C,D across which the
magnetization decays to 0. The integration over x and x′ must be performed explicitly. We insert a wall of finite thickness w
between the two domains. At the end of the calculation we will let w go to zero. This will show that this energy contribution is
also finite. E(ud)−E(uu) writes, approximately

E(ud)−E(uu) ≈ (−4) · µ0

8π
M2

0 ·d2 ·
∫ −w

−L
dx′
∫ L

w
dx

1
|x− x′|

= (−4) · µ0

8π
M2

0 ·d2 ·L
∫ −w

L

−1
dx′
∫ 1

w
L

dx
1

|x− x′|

= (−4) · µ0

8π
M2

0 ·d2 ·L
∫ −w

L

−1
dx′ ln

1− x′
w
L − x′

≈︸︷︷︸
w→∞

−4 ·2 · ln2 · µ0

8π
M2

0 ·d2 ·L =−2ln2
π

·Ω · d2 ·L
a3 (41)

This result is used to write Eq.4 in the bulk of the paper.
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FIG. 1. a: Top view of the slab in the state of uniform in-plane magnetization (represented in white). Black arrows represent the magnetization
vector. The sign of the effective charges appearing along the segments A,B,C,D is given. b. Top view of the slab with two domains of opposite
in plane magnetization (white and gray), magnetization vectors represented by black arrows. The sign of the effective charges appearing along
the segments A,B,C,D is given.


