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ABSTRACT

A substantial fraction of stars can be found in wide binaries with projected separations between

∼ 102 and 105 AU. In the standard lore of binary physics, these would evolve as effectively single

stars that remotely orbit one another on stationary Keplerian ellipses. However, embedded in their

Galactic environment their low binding energy makes them exceptionally prone to perturbations from

the gravitational potential of the Milky Way and encounters with passing stars. Employing a fully

relativistic N -body integration scheme, we study the impact of these perturbations on the orbital

evolution of wide binaries along their trajectory through the Milky Way. Our analysis reveals that

the torques exerted by the Galaxy can cause large-amplitude oscillations of the binary eccentricity to

1− e ≲ 10−8. As a consequence, the wide binary members pass close to each other at periapsis, which,

depending on the type of binary, potentially leads to a mass transfer or collision of stars or to an

inspiral and subsequent merger of compact remnants due to gravitational-wave radiation. Based on a

simulation of 105 wide binaries across the Galactic field, we find that this mechanism could significantly

contribute to the rate of stellar collisions and binary black hole mergers as inferred from observations

of Luminous Red Novae and gravitational-wave events by LIGO/Virgo/Kagra. We conclude that the

dynamics of wide binaries, despite their large mean separation, can give rise to extreme interactions

between stars and compact remnants.

1. INTRODUCTION

In recent years, unprecedented astrometric data ob-

tained with the Gaia spacecraft have revealed numer-

ous wide stellar binaries with projected separations be-

tween ∼ 102 and 105 AU (Andrews et al. 2017; Oelkers

et al. 2017; El-Badry & Rix 2018; Jiménez-Esteban et al.

2019; Hartman & Lépine 2020; Tian et al. 2020; Hwang

et al. 2021; El-Badry et al. 2021; El-Badry 2024). For

instance, El-Badry & Rix (2018) identified ∼ 5.5 × 104

wide main-sequence and white dwarf binaries in the

Gaia DR2 sample within a distance d < 200 pc to

the Sun. Given a local total stellar number density of

n⋆ ≈ 0.1/pc3 this implies that at least several per cent
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of all stars in the solar neighborhood and possibly within
the Galaxy must be part of a wide binary. Indeed, esti-

mates from the Gaia Early Data Release 3 indicate that

the wide binary fraction of nearby FGK stars is as large

as 10 – 12% (Gaia Collaboration et al. 2021).

In the standard lore of binary physics, wide binaries

(simply denoted as “binaries”, hereafter) are thought to

evolve as non-interacting, effectively single stars (e.g.,

Sana et al. 2012). However, this is only true as long

as the binaries are assumed to be in isolation. In re-

ality, they are embedded in a galactic environment in

which their low binding energy makes them susceptible

to perturbations from the gravitational potential of their

host galaxy and encounters with passing stars and giant

molecular clouds. The effect of these perturbations has

been studied in a wide range of different contexts, e.g.,

to constrain the existence of a distant companion to our

Sun (Antonov & Latyshev 1972; Whitmire & Jackson
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1984; Davis et al. 1984; Hut 1984; Weinberg et al. 1987;

Melott & Bambach 2010; Matese &Whitmire 2011; Luh-

man 2014), to probe the nature of dark matter (Yoo

et al. 2004; Quinn et al. 2009; Monroy-Rodŕıguez &

Allen 2014; Peñarrubia et al. 2016) and gravity (Pit-

tordis & Sutherland 2019; Banik et al. 2023), to explore

the stability of binaries with a distant tertiary compan-

ion (Kaib et al. 2013; Correa-Otto & Gil-Hutton 2017;

Antonini et al. 2017; Michaely & Perets 2020; Grishin &

Perets 2022), and to form colliding stars (Kaib & Ray-

mond 2014) and compact object mergers (Michaely &

Perets 2019, 2020; Raveh et al. 2022).

From a dynamical point of view, it is understood that

the Galactic perturbations could generally lead to two

different extreme outcomes: they may either dissolve

the wide binary (e.g., Weinberg et al. 1987; Jiang &

Tremaine 2010; Correa-Otto & Gil-Hutton 2017) or they

torque it to an eccentric orbit on which the two bi-

nary members pass close to each other at periapsis (e.g.,

Heisler & Tremaine 1986; Collins & Sari 2008; Kaib

& Raymond 2014; Correa-Otto et al. 2017; Modak &

Hamilton 2023; Hamilton & Modak 2023). These find-

ings were largely made using one or more of the following

assumptions:

1. The Galactic potential is averaged over the long

orbital period of the binary (also known as secular

approximation).

2. The gravitational perturbation from the Galac-

tic potential is approximated by the leading-order

contribution of an expansion about the binary cen-

tre of mass (barycentre).

3. Focusing on the dynamics of wide binaries in the

solar neighbourhood, the perturbation from the

Galactic potential is evolved along the (circular)
trajectory of the Sun at a Galactocentric radius

ρ ≈ 8 kpc from the centre of the Milky Way.

However, studies of binaries orbiting in other gravi-

tational potentials let us wonder if these assumptions

lead to an underestimation of the perturbative effect of

the Galactic potential on wide binaries. For instance,

Hamilton & Rafikov (2019a,b, 2021) and Bub & Petro-

vich (2020) studied the evolution of binaries orbiting

inside the smooth potential of a star cluster and found

that resonant behaviour can excite their eccentricity to

near-unity (e → 1). Similarly, the eccentricity of bina-

ries moving inside the Keplerian potential of a distant

tertiary companion (i.e., those that form a hierarchical

triple) can undergo a long-term growth to near-unity

through the so-called eccentric von Zeipel-Kozai-Lidov

effect (Naoz 2016). For either case, it was shown that

the external potentials exert a torque on the binaries

which could remove nearly all their orbital angular mo-

mentum. Depending on the type of binary this could

cause a stellar collision (Katz & Dong 2012; Kushnir

et al. 2013; Toonen et al. 2018, 2020; Stegmann et al.

2022b) or a gravitational-wave capture (Antonini et al.

2014, 2017; Rodriguez & Antonini 2018) at close peri-

apsis passage.

In this regard, it would be surprising if the potential

of a galaxy acted differently than the aforementioned

examples. Indeed, if we consider an example stellar-

mass binary (total mass m = 1M⊙) moving on circular

trajectory at a Galactocentric radius ρ = 5kpc on the

Galactic plane and treat the Milky Way as a tertiary

point mass equal to the enclosed mass M(ρ) we find

that the latter perturbs the binary on a characteristic

(von Zeipel-Kozai-Lidov) timescale (Antognini 2015)

tZKL =9.0Gyr

(
5.9× 1010 M⊙

M(ρ)

)(
m

M⊙

)1/2

×
(

ρ

5 kpc

)3 (
5× 103 AU

a

)3/2

. (1)

While this toy model (Chebotarev 1966) indicates that

the tertiary “Galaxy companion” could induce large-

amplitude oscillations of the binary eccentricity within a

Hubble time for wide semi-major axes a ≳ O(103)AU, it

cannot serve as more than a simple back-of-the-envelope

estimate to motivate this work.

Here, we develop a numerical method to evolve the

relativistic dynamics of binaries following the mutual

gravitational interaction between the two members, the

force exerted by the Galaxy in which they orbit, and

the effect of encountering stars. Crucially, to accurately

evolve binaries which are torqued to a very eccentric or-

bit we employ a directN -body approach rather than any

secular code that derives from a time- (e.g., orbit-) av-

eraged Hamiltonian. While the secular approximation

is oftentimes used to efficiently evolve a large number

of, e.g., hierarchical triples (e.g., Naoz et al. 2013; Ro-

driguez & Antonini 2018; Liu & Lai 2019; Stegmann

et al. 2022a) and binaries inside clusters (e.g., Hamilton

& Rafikov 2019c; Bub & Petrovich 2020) it has been

shown that it tends to underestimate the maximum pos-

sible eccentricity because it washes out any short-term

variability of the torque exerted by the perturbing po-

tential (Antonini et al. 2014, 2017; Hamilton & Rafikov

2024). These shortcomings are circumvented by using

a full direct N -body integration scheme which, in our

case, adds little computational costs because of the low

number of particles (N = 2).

The aim of this work is to use this integrator which re-

lies on none of the aforementioned assumptions (1 – 3) in
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Figure 1. Schematic overview of the problem considered in this work. We study the dynamical evolution of wide binaries
along their barycentre trajectory R = R(t) through the Galaxy (dashed curve), denoting its projection onto the Galactic plane
as ρ = ρ(t). We consider one model in which the wide binaries are solely perturbed by the axisymmetric Galactic potential
Φ and another one where we additionally include the impulsive effect of ambient stars impinging on the encounter sphere
(solid circle) with radius Renc from the binary barycentre. The main effect of the Galactic perturbations is to torque the
binary orbital angular momentum L leading to large-amplitude oscillations of the binary eccentricity e, and hence its peri- and
apoapsis r = a(1 ∓ e), and the relative orientation cos(i) = êL · êz of the orbital plane w.r.t. the Galactic frame (insets). The
dimensions are not drawn to scale. The Atlas Image of the Milky Way in the near infrared used as a background is courtesy of
2MASS/UMass/IPAC-Caltech/NASA/NSF.

order to systematically and accurately study the dynam-

ical evolution of wide binaries throughout the Galaxy.

The primary focus is to understand their dynamical evo-

lution treating the binary members as point masses. We

highlight potential implications for wide binary stars

and wide binary compact objects, where stellar tides or

natal kicks also may play a role, but defer a thorough

investigation to a follow-up study.

This paper is organised as follows. In Sec. 2, we

present our method to evolve the wide binaries. In

Sec. 2.4, we describe how we initiate a population of

wide binaries whose dynamical evolution we simulate

along their trajectory through the host galaxy. In Sec. 3,

we present the results of their numerical integration.

Finally, our findings are summarised and discussed in

Sec. 5.

2. METHODS

2.1. Equations of motion and numerical integration

We study the dynamical evolution of wide binaries as

they move through the smooth gravitational potential

Φ of their host Galaxy. Denoting the masses, positions,

and velocities of the two binary members as mi, ri, and

vi (i = 1, 2), respectively, the equations of motion can

be written as1

dri
dt

= vi, (2)

dvi

dt
= ai + gi + fi, (3)

where

ai = Gmj
rj − ri

∥rj − ri∥3
(i ̸= j) (4)

is the Newtonian acceleration due to the binary com-

panion and fi = −∇Φ|ri is the acceleration due to the

external Galactic potential. Relativistic corrections to

the internal binary motion are captured by the velocity-

dependent post-Newtonian accelerations gi = gi(rj −
ri,vj − vi) with i ̸= j. We can characterise the orbit of

the binary in terms of its angular momentum vector L

1 Throughout this work, the magnitude, unit vector, and time
derivative of some vector V are written as V = ∥V ∥, êV = V /V ,
and V̇ = dV /dt, respectively. G refers to the gravitational con-
stant.
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and eccentricity vector e which are

L = µr× v, (5)

e =
v × (r× v)

Gm
− r

r
, (6)

where r = r2 − r1 and v = v2 − v1 are the relative

separation and velocity vectors, and m = m1 + m2

and µ = m1m2/m are the total and reduced mass of

the binary, respectively. They have magnitudes L =

µ
√

Gma(1− e2) and ∥e∥ = e, where a and e are the

semi-major axis and eccentricity of the orbit, respec-

tively. Erecting a frame in which the Galaxy is centred

at x = y = z = 0 and defining the Galactic plane as

z = 0, we denote the position of the binary barycentre

as R = (Rx, Ry, Rz)
T and its projection onto the Galac-

tic plane as ρ = (Rx, Ry, 0)
T. Fig. 1 shows a schematic

overview of our considered geometry.

In the absence of any perturbative force (fi = gi = 0)

the equations of motion (2) – (3) reduce to that of a

Keplerian orbit which preserves L and e. As we will see,

however, the forces exerted by the Galactic potential and

stellar encounters (Sec. 2.3) can put the binary members

on a nearly radial orbit (e → 1) on which they pass

each other at an extremely close pericentre distance r =

a(1 − e) ≪ a despite their wide semi-major axis. To

accurately recover their evolution it is necessary that

we also include post-Newtonian corrections gi to Eq. (3)

which we do to 3.5 order (Mora & Will 2004).

To evolve the equations of motion (2) and (3) we use

the publicly available direct N -body integrator MSTAR

(Rantala et al. 2020; Mannerkoski et al. 2023) which

is based on an algorithmically regularized integration

technique (e.g., Mikkola & Tanikawa 1999; Preto &

Tremaine 1999; Mikkola & Merritt 2008; Hellström

& Mikkola 2010; Trani & Spera 2023). The time-

transformed versions of the equations of motion (2)

and (3) that MSTAR integrates are Eqs. (7) and (8) in

Rantala et al. (2020). The Gragg-Bulirsch-Stoer (GBS)

extrapolation technique (Gragg 1965; Bulirsch & Stoer

1966) is used to achieve an extremely high integration

accuracy. Briefly, in the GBS method a longer timestep

∆t is subdivided into n substeps with lengths ∆t/n and

integrated with a suitable numerical integrator, in our

case the leapfrog. As n is increased, the results will in

general converge towards the exact solution of the equa-

tions of motion over ∆t. Finally, the results are extrap-

olated to n → ∞ using a polynomial or rational function

extrapolation. We use a Gragg-Bulirsch-Stoer error tol-

erance parameter of ηGBS = 10−12. The MSTAR endtime

iteration tolerance parameter is set to ηt = 10−6. For

more details of MSTAR and the algorithmic regularization

see Rantala et al. (2020) and the appendices of Rantala

et al. (2017). In particular, by accounting for the post-

Newtonian corrections, MSTAR has the capability to fol-

low the inspiral and the subsequent merger of the binary

members due to the emission of gravitational waves un-

til they come as close as twelve combined Schwarzschild

radii.

2.2. Gravitational potential of the Galaxy

We have modified MSTAR to also include the ability to

follow the position of the binary barycentre and the rel-

ative acceleration due to the external Galactic potential

as in Eqs. (2) and (3). Here, we adopt an axisymmet-

ric mass-model for the Milky Way from Price-Whelan

(2017) consisting of a spherical nucleus and bulge, a

spherical NFW dark matter halo, and an exponential

disk. The numerical values for the parameters of all

components of the potential which are explicated in the

following are adopted from the model of Price-Whelan

et al. (2024) which is based on the kinematic Milky Way

analysis of Eilers et al. (2019) and Darragh-Ford et al.

(2023). Specifically, the potentials of the nucleus and

the bulge as a function of the binary member positions

ri are modelled with a Hernquist (1990) profile

ΦHernquist(ri) = − GM

ri + c
, (7)

where for the nucleus we use M = 1.814 × 109 M⊙ and

c = 6.889×10−2 kpc and for the bulgeM = 5.0×109 M⊙
and c = 1.0 kpc. The potential of the NFW dark matter

halo is given by (Navarro et al. 1996)

ΦNFW(ri) = −GM

rs

ln(1 + ri/rs)

ri/rs
, (8)

where M = 5.542 × 1011 M⊙ and rs = 15.626 kpc. The

stellar disk is constructed from a sum of three Miyamoto

& Nagai (1975) disk potentials which models the thin

and thick disk component of the Milky Way (Smith et al.

2015)

ΦMiyamoto(ri) = − GM√
x2
i + y2i + (a+

√
z2i + b2)2

, (9)

where xi, yi, and zi are the Cartesian components of

the binary member positions, M = 7.872× 109 M⊙, a =

1.526 kpc, and b = 0.207 kpc for the first instance of the

potential, M = −2.756 × 1011 M⊙, a = 6.783 kpc, and

b = 0.207 kpc for the second, and M = 3.206×1011 M⊙,

a = 5.895 kpc, and b = 0.207 kpc for the third.

The total potential of our axisymmetric Milky Way

model is then given by the sum of all components de-

scribed by Eqs. (7) – (9). For the purpose of this

work, we are ignoring more complex non-axisymmetric
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features of our Galaxy such as its bar, spiral arms,

and molecular cloud structure and neglecting any time-

evolution of the potential. We discuss potential impli-

cations of these simplifications in Sec. 5.

2.3. Stellar encounters

In addition to the force caused by the smooth potential

of the Galaxy, a wide binary experiences gravitational

perturbations from encounters with passing stars. As-

suming that the binary moves through a locally homo-

geneous and isotropic sea of stellar perturbers the rate

of encounters within a distance Renc to its barycentre

can be written as (Hamers et al. 2021)

Γenc ≈ 2
√
2πR2

encσ⋆n⋆

≈ 60.2

Gyr

(
Renc

104 AU

)2 ( σ⋆

50 km s−1

)(
n⋆

0.1/pc3

)
,

(10)

where σ⋆ and n⋆ are the relative velocity dispersion and

number density of the perturbers, respectively (Flynn

et al. 2006). Eq. (10) shows that the rate of encoun-

ters quickly grows if we consider distances Renc much

larger than the typical relative separation of the wide

binaries and modelling each of those would become com-

putationally expensive. Fortunately, the effect on wide

binaries is by far dominated by encounters which are

“penetrative”, “weak”, and “impulsive” (Hamilton &

Modak 2023). This means that the perturbation from

the few stars which get as close as ∼ a to the binary (so-

called “penetrative” encounters) is much stronger than

the cumulative effect of the many more distant encoun-

ters, most encounters are harmless, meaning that they

unlikely disrupt the binary (“weak”), and that the stel-

lar perturbers encounter the binary on a timescale much

shorter than its orbital period T = 2π
√
a3/Gm (“impul-

sive”) which is due to the fact that the typical velocity

dispersion σ⋆ of ambient stars is much larger than the

orbital velocity of the binary

vorb = 0.9 km s−1

(
m

M⊙

)1/2 ( a

103 AU

)−1/2

. (11)

This allows us to ignore any encounter at a distance

Renc ≫ a and to only consider close encounters which

in the impulsive approximation impart an instantaneous

velocity kick to the two stars of the binary.

The effect of those encounters is implemented as fol-

lowing. After each successful internal integration step

∆t of MSTAR we sample a number of encounters within

∆t. We do so by drawing a random number k of encoun-

ters from a Poisson distribution with mean λ = Γenc∆t.

The number density n⋆ that determines Γenc is calcu-

lated from the current position of the binary within

the Galactic disk, assuming a single perturber mass

mp = 1M⊙. Furthermore, we use σ⋆ = 50 km s−1 and

only consider encounters within Renc = 100r where r is

the current relative separation of the binary.

Each of the k encounters imparts an instantaneous ve-

locity kick to both members of the binary which is com-

puted following Hamers & Tremaine (2017) and Hamers

et al. (2021) as summarised below.

1. In an inertial frame centred at the binary barycen-

tre, we sample a random perturber position Renc

at a distance Renc from the binary barycentre.

We give the stellar perturber a random relative

velocity Venc impinging on the encounter sphere,

which is drawn from a a distribution P (Venc) ∝
exp

(
−V 2

p /2σ
2
⋆

)
H(−Venc · R̂enc)(−Venc · R̂enc),

where H is the Heaviside step function (Henon

1972).

2. We calculate the impact parameters which de-

scribe how close the perturber gets to the bi-

nary barycentre and either of the binary members

(i = 1, 2), respectively, as

b = Renc − V̂enc

(
Renc · R̂enc

)
, (12)

bi = b−Ri − V̂enc

[
(b−Ri) · V̂enc

]
, (13)

where Ri are the positions of the binary members

in the barycentre frame.

3. We add an instantaneous kick

∆vi =
2Gmp

Venc

b̂i

bi
(14)

to the velocity of both binary members and update

the barycentre velocity accordingly. In the impul-

sive approximation the instantaneous positions of

the binary members and their barycentre remain

unaffected.

We have modified MSTAR to include the kick prescription

above. Typically, the integration step ∆t of MSTAR is a

small fraction of the orbital period of the binary and

within this step it experiences k ∼ O(1 – 1000) weak

encounters.

2.4. Initial conditions

Using the integration scheme described above, we sim-

ulate the evolution of a population of 105 wide binaries

whose initial parameters (denoted with subscript “0”)

are as follows. The semi-major axes a0 are drawn from

a log-uniform distribution between 102 and 105 AU and

the eccentricities from a thermal distribution p(e0) ∝ e0
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Figure 2. Five different dynamical regimes for wide binaries inside the Milky Way potential. We assume an example binary
with semi-major axis a whose barycentre moves on a circular trajectory at a Galactocentric radius ρ on the Galactic plane. We
set the binary masses to m1 = m2 = 1M⊙ but note that the displayed dynamical regimes are not particularly sensitive to this
choice. The figure shows that our sampled range, a = 102 – 105 AU (see Sec. 2.4), fully covers the spectrum where the Galactic
potential can influence wide binaries on a meaningful timescale. The details of the figure are fully explained in Sec. 3.

between 0 and 1. Our choice of the semi-major axis

range roughly corresponds to the regime where secular

changes of the binaries could be induced within a Hub-

ble time, see Sec. 3 for details. While in reality the

mass distributions of wide low-mass and high-mass stel-

lar binaries and binaries of compact objects may signif-

icantly differ from each other (Moe & Di Stefano 2017;

El-Badry 2024) we opt to choose a mass function which

is as simple as possible in order to unbiasedly focus on

its consequences for the dynamics. Thus, the component

masses m1,2 are independently sampled from a uniform

distribution between 1 and 10M⊙ which covers the typ-

ical masses of solar- to B-type stars and the peak of the

mass distribution of binary black hole mergers inferred

from gravitational-wave detections (Abbott et al. 2023).

We discuss in Sec. 5 how plausible it is to form wide

binary black holes from wide massive binary stars.

The orientation of the binary orbits with respect to

the Galaxy are sampled isotropically, i.e., the initial ar-

gument of periapsis ω0, longitude of the ascending node

Ω0, cosine of the inclination cos i0, and orbital phase f0
are sampled randomly and define the initial positions

and velocities of the binaries as (Merritt 2013)

r0 =r0[u1 cos(f0 + ω0) + u2 sin(f0 + ω0)], (15)

ṙ0 =

√
Gm

p0
{−u1[e0 sinω0 + sin(f0 + ω0)]

+ u2[e0 cosω0 + cos(f0 + ω0)]}, (16)

where p0 = a0(1− e20) and r0 = p0/(1 + e0 cos f0) and

u1 =

cosΩ0

sinΩ0

0

 , u2 =

− cos i0 sinΩ0

cos i0 cosΩ0

sin i0

 . (17)

The Galactocentric positions and velocities of the bi-

nary barycentres are initialised using cogsworth2 (Wagg

et al. in prep.) which is based on the Galaxy model

of Wagg et al. (2022). This is an empirically informed

model of the metallicity-dependent star formation his-

tory of the Milky Way in a low-α and high-α disc and

bulge component (McMillan 2011; Bovy et al. 2016,

2019; Frankel et al. 2018). We initialise the trajectory

of the binary barycentre within the Galaxy based on its

2 https://cogsworth.readthedocs.io/

https://cogsworth.readthedocs.io/
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initial position, such that the initial velocity is equal to

its circular velocity in the Milky Way potential with an

additional isotropic 5 km s−1 dispersion (Price-Whelan

2017; Price-Whelan et al. 2024).

The evolution of the binaries which are initiated in this

way is simulated twice. In one simulation we focus ex-

clusively on the influence from Galactic tides (Sec. 2.2)

and ignore the effect of stellar encounters (Sec. 2.3). In

the other simulation we repeat the integration of each

system but consider the combined effect of Galactic tides

and stellar encounters. In either case, the binaries are

evolved for a maximum integration time tmax = 14Gyr

unless they merge earlier due to the emission of gravi-

tational waves or are disrupted in the sense that their

semi-major axis becomes larger than the initial value by

a factor of ten. Binaries that would undergo a collision

or mass transfer if they were made of stars are identified

by post processing the data as described below in Sec. 3.

3. RESULTS

A wide binary and its host galaxy can be viewed as

an effective hierarchical triple in which the “inner” or-

bit of the binary members around each other and the

much larger “outer” orbit of the binary barycentre in the

Galaxy exchange orbital angular momentum (e.g., Naoz

2016). Similar to actual triples the tidal torque exerted

along the “outer” orbit inside the Galactic potential can

induce incremental changes of the binary angular mo-

mentum L ∝
√
1− e2 per “inner” orbital period. Over

longer timescales these changes can accumulate and give

rise to large-amplitude oscillations of the binary eccen-

tricity e which determines how close and far the two

binary members get at peri- and apoapsis r = a(1∓ e),

respectively. This dynamical mechanism is studied in

detail in the following subsections. In order to facilitate
this investigation, we outline in Fig. 2 the most relevant

dynamical regimes for wide binary evolution which are

as follows:

1. Quenching by relativistic precession: In close bi-

naries located in the lower black-shaded area (a ≲
O(102)AU), the effect of the Galactic tides is sup-

pressed by the “fast” relativistic precession of the

binary orbit (Schwarzschild 1916). Formally, this

is the case when the so-called secular timescale tsec
at which the Galaxy perturbs the binary (which we

define in Sec. 3.1) exceeds the precession timescale

tGR = a5/2c2/3G3/2m3/2 (e.g., Liu et al. 2015).

2. Oscillations too slow: If the semi-major axis is

a few 102 AU (hatched area), the Galaxy-induced

eccentricity oscillations are no longer quenched by

relativistic effects but occur on a long timescale

tsec > 101 Gyr which renders them inefficient at

perturbing the binary within a Hubble time.

3. Weak oscillations: In the white-shaded region, the

torques do act on a timescale shorter than the

Hubble time but it is much longer than the orbital

period (∥L/L̇∥ > T ). In this regime, they can in-

crementally perturb the binary orbit-by-orbit and

slowly remove (or return) the binary orbital angu-

lar momentum (secular approximation). As a re-

sult, the Galactic torques give rise to regular long-

term eccentricity oscillations whose amplitudes are

relatively mild (typically 1− e ≳ 10−4), unless the

binary orbital plane is near-perpendicular to the

Galactic plane in which case extreme eccentrici-

ties are possible.

4. Strong oscillations: In the blue-shaded regime, the

torques act on a timescale shorter than the or-

bital period (∥L/L̇∥ < T ). This corresponds to

a “secular break-down” which renders the secular

approximation formally inapplicable. As a result,

we find that extreme eccentricity excitations are

possible regardless of the binary inclination. The

exact boundary of this regime depends on the cur-

rent eccentricity of the binaries. Those which are

already eccentric can be further driven towards ex-

treme eccentricities more easily, which is indicated

by the light-blue shading (e = elim).

5. Disruption by Galactic tides: Ultra-wide binaries

located in the upper black-shaded region (a ≳
O(105)AU) tend to be ripped apart quickly by the

Galactic tides (Hill instability) and are therefore

short-lived (Jiang & Tremaine 2010).

In summary, the parameter space of interest where

Galactic torques can induce significant eccentricity os-

cillations of binaries on a meaningful timescale is defined

by the regimes 3 and 4 which are separately investigated

in the following two subsections 3.1 and 3.2. In the entire

parameter space the timescale tdis (orange solid lines) for

disruption due to the cumulative effect of encountering

stars (Binney & Tremaine 2008) is longer than tsec which

indicates that Galactic tides have typically enough time

to significantly perturb the binary orbit before a disrup-

tion due to stellar encounters could take place. We study

the effect of the latter in the subsections 3.3 and 3.4.

3.1. Weak oscillations

Panel A of Fig. 3 shows an example of a wide binary

whose binary separation oscillates between r ≈ 2 × 104

and 1AU while its barycentre moves on a trajectory

shown in panel B (edge-on) and panel C (face-on) at a
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Figure 3. Example of a wide binary orbiting inside the Milky Way potential without stellar encounters. panel A: Relative
separation r of the binary members and semi-major axis a as a function of time. The grey-shaded area is defined by r <
a(1 − emax,sec) where emax,sec is given by Eq. (19). For the secondary abscissa we calculate the secular timescale tsec from
Eq. (20). Panels B and C: The trajectory of the binary barycentre viewed edge-on and face-on, respectively. The black curve
shows the entire trajectory over t = 14Gyr, red highlights the last t ∈ [14Gyr− tsec, 14Gyr) of it, and the star symbol indicates
the final (t = 14Gyr) position of the binary. panel D: The time-average ⟨Φij⟩(t) of the tidal field components along the
barycentre trajectory. Off-diagonal terms not shown here are zero or quickly decay to it. Panel E: The variations of the tidal
field to check for the secular break-down condition in Eq. (28). The grey-shaded area defines the parameter space where the
condition is satisfied and large non-secular eccentricities are possible.

Galactocentric radius of ρ =
√
R2

x +R2
y ≈ 5 kpc near

the Galactic plane (Rz ≲ 20 pc). Additionally, panels D

and E display information about the components of the

tidal field Φij = ∂2Φ/∂xi∂xj (where x1 = x, x2 = y,

and x3 = z) along the barycentre trajectory which de-

termine the leading-order contribution to the Galactic

acceleration fi in Eq. (3). Panel D shows how the time-
average

⟨Φij⟩(t) =
1

t

∫ t

0

Φij(R(t′)) dt′ (18)

evolves along the trajectory R = R(t) for t > 0. In

panel E we show the instantaneous components Φij(t) =

Φij(R(t)) (in units of
√
1− e/T 2) along the trajectory.

For this system, the angular frequencies Ω̇ρ, Ω̇ϕ and

Ω̇z of the barycentre trajectory along the radial, az-

imuthal, and vertical direction, respectively, are much

higher than the frequency 1/tsec (defined below) of sec-

ular changes of the orbital elements and they are non-

commensurable, i.e., the binary traces a non-repeating

path through the Galaxy (Binney & Tremaine 2008).

As a consequence, the trajectory of the binary barycen-

tre densely fills an axisymmetric torus within a few

tsec and the leading-order perturbation of the binary

can be approximately determined by the torus-average

of the tidal field ⟨Φij⟩ over many azimuthal periods.

This situation was generally studied by Hamilton &

Rafikov (2019a,b, 2021) who showed that the torus-

averaged tidal field is diagonal (⟨Φij⟩ = 0 for i ̸= j

and ⟨Φxx⟩ = ⟨Φyy⟩; see panel D) and admits an integral

of motion Θ = (1−e2) cos2 i. Thus, the eccentricity and

the binary orientation oscillate at the expense of each

other, with the eccentricity reaching a maximum given
by

1− e2max,sec =
Σ+

√
Σ2 − 10ΓΘ(1 + 5Γ)

1 + 5Γ
, (19)

on a characteristic timescale

tsec =
4π

3T ⟨Φzz +Φxx⟩
, (20)

where

Γ =
1

3

⟨Φzz⟩+ ⟨Φxx⟩
⟨Φzz⟩ − ⟨Φxx⟩

, (21)

Σ =
1 + 5Γ

2
+ 5ΓΘ +

(
5Γ− 1

2

)
D, (22)

D = e2
(
1 +

10Γ

1− 5Γ
sin2 i sin2 ω

)
. (23)
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Figure 4. The effect of Galactic tides in driving wide binaries to close separations. Panels A and B show the minimum separation
rmin of the binaries in our population as a function of their initial semi-major axis a0 and the initial inclination cos i0 between
their orbital plane and the Galactic plane, respectively. The minimum separation rmin is defined as the closest distance the
binary members ever achieve due to Galactic tides over a maximum integration time of 14Gyr, either when considering (orange
dots) or when neglecting (blue crosses) encounters with passing stars. The purple dashed line separates compact object binaries
that merge due to the emission of gravitational waves, where arrows indicate that the binaries are simulated until merging.
The red-shaded area shows the regime in which stellar binaries fill their Roche-lobes at periapsis (Eggleton 1983); below that
area they potentially collide. The black line in panel B forms a narrow cone defining the smallest minimum separation allowed
in the torus-averaged approximation (Eq. (19)) for a fiducial semi-major axis a0 = 102 AU. Black squares indicate particular
example systems shown in Figs. 3 and 5 – 7. Panel C shows the cumulative distribution functions (CDF) as well as the initial
distribution of rmin = a0(1− e0) following a thermal eccentricity distribution (see Sec. 2.4).

For our barycentre trajectories we typically find that

Γ ≈ 1/3 which agrees with the analytical result for

epicyclic orbits in disk-like potentials (Hamilton &

Rafikov 2019c). Thus, in the torus-filling approxima-

tion the maximum of the eccentricity and the timescale

of oscillations can be calculated from the initial values

of e, i, and ω and the average ⟨Φii⟩ along the barycentre

trajectory. We numerically verify that the example sys-

tem shown in Fig. 3 satisfies this approximation as the

timescale for oscillations agrees with tsec within a factor

of order unity and the minimum separation is limited by

r ≳ a(1 − emax,sec) (indicated by the grey-shaded area

in panel A).

In general, reaching extreme eccentricities in the

torus-filling approximation is confined to a narrow win-

dow around cos2 i0 ≈ 0, i.e., binaries whose orbital plane

is near-perpendicular to the Galactic plane. Indeed, con-

sidering initially circular binaries (e0 = 0) Eq. (19) sim-

plifies to

emax,sec =

√
1− 10Γ

1 + 5Γ
cos2 i0, (24)

which, e.g., for a typical value of Γ ≈ 1/3 requires

∥ cos i0∥ ≲ 1.6 × 10−4 to reach an eccentricity as large

as emax,sec ≳ 1− 10−4 like the one presented in Fig. 3.

In Fig. 4, we show the minimum separations of our

entire binary population, as a function of their initial

semi-major axis and the initial mutual inclination with

respect to the Galaxy. Here, we focus on the model

where we include only the effect of Galactic tides (blue)

and investigate the additional effect of stellar encoun-

ters (orange) in Sec. 3.3. Considering the dependence

of the minimum separation on the initial relative in-

clination (panel B), we see that the majority of sys-

tems are roughly consistent with the maximum eccen-

tricity predicted by the torus-averaged approximation

(cf. Eqs. (19)). They show a characteristic concen-

tration of large eccentricities around initial inclinations

cos i0 ≈ 0, defining a narrow cone of inclinations within

which large eccentricity excitations are possible in the

torus-averaged approximation. As a reference, the min-

imum separation in the torus-averaged approximation is
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shown for initially circular binaries (e0 = 0) at our small-

est initial semi-major axis a0 = 102 AU (black line).

3.2. Strong oscillations

The torus-filling approximation described in the pre-

vious subsection fails to characterise the systems which

undergo the strongest eccentricity oscillations and at-

tain the smallest separations in our population. Instead,

Fig. 4 shows that high eccentricities are achieved well be-

yond the narrow cone of initial inclinations predicted by

the torus-filling approximation. Depending on the type

of wide binary these high-eccentricity excitations can

have important evolutionary implications. A few 0.1%

of the binaries in our population are driven to rmin < R⊙
(red dashed line) where we would expect a stellar colli-

sion if the wide binary was composed of two solar-type

main-sequence stars (cf., Kaib & Raymond 2014). In

stellar binaries reaching rmin ≳ R⊙ (red-shaded area)

one or both members will fill their Roche-lobe at peri-

apsis (Eggleton 1983) and transfer mass to their com-

panion which may give rise to electromagnetic signals.

About a few 0.01% of the binaries are driven to separa-

tions which inevitably lead to a subsequent inspiral due

to gravitational-wave emission (purple dashed line). If

these binaries are composed of black holes or neutron

stars their inspiral will lead to a merger that could re-

sult in a multi-band gravitational-wave detection (see

below). Towards a0 ∼ 105 AU we observe a depletion of

large eccentricities because these loosely bound systems

tend to be quickly disrupted by the pull of the Galactic

tides (see Sec. 3.4).

Panel C of Fig. 4 shows that the resulting fraction

of extremely eccentric binaries leading to the aforemen-

tioned evolutionary outcomes are neither expected from

the initial thermal distribution nor in the torus-filling

approximation. Instead, we identify two reasons leading

to a break-down of the latter and to extreme eccentricity

excitations which are as follows.

Firstly, the maximum eccentricity in the torus-filling

approximation is derived from a torus-averaged poten-

tial in which any short-term variation of Φij is washed

out. In reality, there are small but non-zero residuals

δΦij = Φij − ⟨Φij⟩ along the trajectory of the binary

barycentre which are neglected in the torus-averaged ap-

proximation. These residuals are peculiar near a high-

eccentricity peak where the binaries only carry a tiny

orbital angular momentum L ∝
√
1− e2. Thus, even a

small δΦij could give rise to a torque which changes L by

the order of itself. For hierarchical triples in which the

binary is perturbed by the tidal field of a distant tertiary

companion it is well-known that these residuals can re-

sult in a different maximum eccentricity than predicted

from an orbit-averaged potential (Antonini et al. 2014;

Luo et al. 2016; Antonini et al. 2017; Grishin et al. 2018;

Hamilton & Rafikov 2024). For binaries moving in some

arbitrary potential, we generalise previous findings and

estimate the importance of this effect by considering the

instantaneous torque exerted by the Galactic potential

dL

dt
= −µr×∇Φ|R+r. (25)

Introducing a set a of orthonormal basis vectors êr, êL,

and êp that point along the relative separation of the bi-

nary, its orbital angular momentum, and a vector which

is orthogonal to the latter two, respectively, the leading-

order (quadrupole) contribution to the torque can be

written as

dL

dt
= µr2 (ΦrpêL − Φrj êp) , (26)

where the potential derivatives Φrp and Φrj are eval-

uated at R. The torque is maximised at apoapsis

r = a(1 + e) where in the limit e → 1 the timescale

for changes in L = ∥L∥ evaluates to∥∥∥∥ 1

L

dL

dt

∥∥∥∥−1

=
π√
2

√
1− e

T∥Φrp∥
. (27)

If this timescale is shorter than the orbital period T

any secular treatment in which the potential is averaged

over the orbital period or the “outer” period inside the

Galaxy (1/Ω̇ρ, 1/Ω̇ϕ, or 1/Ω̇z) formally breaks down

(c.f., Hamilton & Rafikov 2019a,b; Bub & Petrovich

2020; Hamilton & Rafikov 2021; Rasskazov & Rafikov

2023) and must be replaced by a direct N -body integra-

tion like the one presented in this study. The condition

for secular break-down can be rewritten in compact form

as √
1− e ≲ T 2∥Φrp∥, (28)

where for some arbitrary orientation of the orbital

frame (êr, êp, êL), ∥Φrp∥ can be as large as ∼
maxi,j=x,y,z(∥Φij∥). Eq. (28) generalises the condition

found by Antonini et al. (2014) for hierarchical triples

to arbitrary perturbing potentials. One recovers the

former by explicitly using Φ = −Gm3/aout(1 − eout)

where m3 is the mass of the tertiary companion and

aout(1 − eout) is the periapsis of its orbit around the

inner binary barycentre.

In panel E of Fig. 3 we can see that the previous ex-

ample binary remains in the secular torus-filling regime

as condition (28) remains unfulfilled and Eq. (19) accu-

rately describes the maximum eccentricity. In contrast,

we show in Fig. 5 a binary which is torus-filling in the

sense of Sec. 3.1 but whose evolution satisfies Eq. (28)

and becomes non-secular near the high-eccentricity peak
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at t ≈ 2.3Gyr. As a consequence, the tidal field torques

the binary to an extreme eccentricity 1 − emax ≈ 10−8

where at periapsis gravitational wave radiation decou-

ples the binary from the Galactic perturbation and

causes an orbital decay and circularisation through the

bandwidths of LISA and LIGO/Virgo/Kagra towards a

merger (inset to panel A).

We stress that substituting ∥Φrp∥ →
maxi,j=x,y,z(∥Φij∥) in Eq. (28) must be seen as an

order-of-magnitude calculation for the occurrence of

high eccentricities due to secular break-down. In prac-

tice, the accuracy of the substitution for individual

systems could be limited due to the facts that (i) the

sign of Φrp may actually cause a torque to lower ec-

centricities, (ii) writing Φrp in terms of Φi,j=x,y,z with

respect to the coordinates depends on the actual ori-

entation of the binary, and (iii) Eq. (28) was derived

from the instantaneous torque at apoapsis and does not

guarantee that the binary maintains its (high) eccen-

tricity value until the subsequent pericentre passage,

but also (iv) the torus-filling approximation already

fails if the timescale (27) is less than the “outer” period

∼ 1/Ω̇ϕ inside the Galaxy (which is generally much

longer than the binary period T ). Nevertheless, we find

that satisfying Eq. (28) to undergo secular break-down

correlates well with the systems which experience ex-

treme eccentricities that can no longer be described by

the torus-filling approximation.

The second reason for which the torus-filling approxi-

mation can break down is the emergence of chaos. The

previous examples are characterised by Ω̇ϕtsec ≫ 1 in

which case within a secular timescale the tidal tensor

components Φij quickly converge to their torus-average,

⟨Φxx⟩ = ⟨Φyy⟩, and ⟨Φij⟩ = 0 for i ̸= j (panel D

of Fig. 3 and 5). As shown by Hamilton & Rafikov

(2019a,b, 2021) this results in regular cycles of secular

changes on a timescale O(tsec). In contrast, the evolu-

tion can become chaotic if the azimuthal period of the

barycentre becomes comparable to the secular timescale

(Ω̇ϕtsec ≈ 1) an example of which is shown in Fig. 6. In

that case, the averaged tidal tensor components fail to

converge even on many secular timescales tsec (panel D)

and the binary undergoes a random walk through phase

space which eventually leads to extreme eccentricities.

Equivalent findings were made for hierarchical triples

and quadruples and binaries orbiting inside a cluster po-

tential (Petrovich & Antonini 2017; Hamers & Lai 2017;

Liu & Lai 2019; Bub & Petrovich 2020).

3.3. Effect of stellar encounters

Considering the effect of stellar encounters, panel C

of Fig. 4 shows that their inclusion marginally reduces

the number of high-eccentricity excursions in our pop-

ulation. Comparing the simulations with and without

stellar encounters, we find the numbers of stellar colli-

sions (rmin < R⊙) and gravitational-wave mergers get

reduced by factors of ∼ 2 and 5, respectively. It is note-

worthy that we find almost no system which undergoes

a stellar collision or gravitational-wave merger in both

models. Instead, the actual evolutionary outcome is ran-

domised. This is due to the fact that stellar encounters

at each timestep add a small random perturbation to

the relative velocity of the binary (see Sec. 2.3) which

may either break a resonance that would have led to a

high eccentricity due to Galactic tides alone or may ac-

tually be the cause that placed it on an resonant orbit.

An example is shown in Fig. 7 where the binary under-

goes large-eccentricity excitation on a resonant highly

inclined trajectory (cos i0 ≈ 0, see panel B of Fig. 4)

until a stellar encounter at t ≈ 1.5Gyr breaks the res-

onance and quenches further perturbation. Finally, an-

other encounter at t = 9.0Gyr disrupts the binary. Dis-

rupting binaries are studied in the following Sec. 3.4.

3.4. Disruptions

Owing to their low binding energy, wide binaries are

susceptible to disruptions by Galactic tides and the (cu-

mulative) effect of stellar encounters, which we find

is the case for around 10% of the binary population

in either simulation. A useful quantity to understand

whether a binary can get disrupted by the Galactic

tides is set by the Jacobi radius rJ given by (Binney

& Tremaine 2008; Jiang & Tremaine 2010)

rJ(ρ) = f(ρ)

[
m

3M(ρ)

]1/3
ρ, (29)

where

f(ρ) =

[
1− 1

3

d lnM(ρ)

d ln ρ

]1/3
, (30)

and M(ρ) is the mass of the Galaxy interior to ρ. The

Jacobi radius given by Eqs. (29) and (30) defines the

maximum extent of a satellite body orbiting on a circu-

lar trajectory inside a spherically symmetric host (Bin-

ney & Tremaine 2008). Our host Galaxy is neither

spherically symmetric nor do we restrict our binary

barycentres to circular trajectories. Nevertheless, we

find that rJ evaluated at the minimum Galactocentric

radius ρmin = min (ρ(t)) along the barycentre trajectory

demarcates well the region of stability of our simulated

binaries. This is shown in Fig. 8 where the apoapsis

of most disrupted binaries exceeds the Jacobi radius at

their minimum Galactocentric radius (r ≈ 2a0 > rJ ;

solid/dashed lines). This result confirms previous find-

ings of Jiang & Tremaine (2010) who found that r ∼
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Figure 5. Same as Fig. 3 for a binary undergoing a non-secular high-eccentricity excitation after t ≈ 2.3Gyr followed by a
gravitational-wave merger. The inset to panel A displays the evolution of the binary eccentricity e and the dominant harmonic
of the gravitational-wave frequency fGW (Wen 2003) through the bandwidths of LISA and LIGO/Virgo/Kagra.

Figure 6. Same as Fig. 3 for a binary undergoing chaotic evolution.

Figure 7. Same as Fig. 3 for a binary that is perturbed by stellar encounters and which gets disrupted after t ≈ 9Gyr.
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O(rJ) sets a natural limit to the stability of wide bina-

ries in the solar neighborhood.

Fig. 8 shows that exceptions to this stability criterion

only occur if stellar encounters are taken into account.

In that case, the velocity kicks imparted to the binary

members can occasionally unbind them even if they are

much closer to each other than the stability limit defined

by the Jacobi radius.

4. RATE CALCULATIONS

Here, we estimate the galaxy-driven volumetric event

rate of binary black hole (BBH) mergers, collisions of

stars on the main-sequence (MSMS), and of binary white

dwarfs (BWDs) in the local Universe. For this purpose,

we adopt a simplistic formalism and do an order-of-

magnitude estimate of the rate in the flavour of a Drake

equation, which for BBH mergers reads

RBBH = ρMW︸ ︷︷ ︸
Number density
MW-like galaxies

× NMW︸ ︷︷ ︸
Number of
stars in MW

× A︸︷︷︸
Massive pri-
mary fraction

× B︸︷︷︸
Compan-

ion fraction

× C︸︷︷︸
Massive compan-

ion fraction

× D︸︷︷︸
Wide BBH form-
ation fraction

× E︸︷︷︸
Galaxy-driven
merger fraction

× 1

14Gyr
.︸ ︷︷ ︸

per max. inte-
gration time

(31)

We assume that the number density of Milky Way-like

galaxies is ρMW = 0.0116Mpc−3 and that they host

a total number of NMW = 1 – 4 × 1011 stars (Kop-

parapu et al. 2008). Only a fraction A of all stars is

massive enough to form a black hole. Adopting a lower

limit of 20M⊙ and a Kroupa (2001) initial mass func-

tion between 0.08 and 150M⊙ this fraction evaluates

to A = 1.3 × 10−3. The large majority B = 0.94 of

massive stars is accompanied by another star (Moe &

Di Stefano 2017). In this calculation, we do not dis-

tinguish between companions that form an isolated bi-

nary, triple, or higher-order configuration and discuss

this approximation in Sec. 5. Again, only a fraction C

of the companions is massive enough to form a black

hole too. Because we are interested in the formation of

wide BBHs, we can draw the mass ratio q = m2/m1

from the observed distribution p(q) ∝ q−2 between 0.1

and 1.0 for long-period binaries, which is nearly con-

sistent with an independent sampling of the companion

mass from the initial mass function (Moe & Di Stefano

2017). Thus, we find for the fraction in which both

stars are massive (m1,2 > 20M⊙) A × C = 1.3 × 10−4.

To estimate the fraction D of massive stellar binaries

which successfully form wide BBHs in the simulated

semi-major axis range 102 – 105 AU, we run a pop-

ulation of massive binaries (m1,2 > 20M⊙) from the

zero-age-main-sequence with the rapid binary popula-

tion synthesis code COMPAS (Riley et al. 2022). Since

wide BBHs originate from non-interacting stars their

fraction is fully determined by the stellar wind model

and the natal kick prescription. Here, we follow Vink

et al. (2001) for the winds and the “delayed” fallback

supernova engine model of Fryer et al. (2012). Assum-

ing a log-uniform semi-major axis distribution between

10−1 and 105 AU (Offner et al. 2023), a thermal eccen-

tricity distribution between 0 and 1 (Moe & Di Stefano

2017), a Kroupa (2001) mass function for the primary

star, and p(q) ∝ q−2 between 0.1 and 1.0 for the sec-

ondary, we find D = 0.41 and 0.37 at low (Z = 2×10−4)

and high metallicity (Z = 2 × 10−2), respectively. Our

simulations show that a fraction E ≈ 5× 10−5 of these

are driven to a gravitational-wave merger by the Galac-

tic perturbation (see panel C of Fig. 4). These as-

sumptions result in a BBH merger rate RBBH ≈ 0.2 –

0.8Gpc−3yr−1 which amounts to a fraction 0.4 – 5% of

the observed rate 17.9 – 44Gpc−3yr−1 (90% C.L.) in-

ferred from LIGO/Virgo/Kagra gravitational-wave de-

tections (Abbott et al. 2023).

To estimate the rate of collisions RMSMS of main-

sequence stars we note that the wide binary fraction

(a ≳ 102 AU) of low-mass stars (m1 = 0.3 – 5M⊙) has

been observed to be around 10 to 46% which we can use

to replace B×C×D in Eq. (31) (Offner et al. 2023). For

a (Kroupa 2001) mass function, the fraction of primaries

in the range m1 = 0.3 – 5M⊙ evaluates to A = 0.38,

and our simulation shows that a fraction E ≈ 2× 10−3

of binaries fall below rmin < 1R⊙. Thus, we infer

a total rate RMSMS ≈ 0.6 – 11.6 × 10−5 Mpc−3yr−1

which is consistent with recent measurements of the

rate 7.8+6.5
−3.7 × 10−5 Mpc−3yr−1 of Luminous Red novae

(Karambelkar et al. 2023) and agrees with previous es-

timates from Kaib & Raymond (2014).

Lastly, for the rate of binary white dwarf collisions

we simply reduce the previous rate estimate for MS col-

lisions using E ≈ 5 × 10−5 to account for the lower

probability to get rmin < 10−2 R⊙. In order to make a

meaningful comparison to observations we additionally

impose a minimum mass of the primary of 0.8M⊙ for

the collision to produce enough radioactive nickel to be

visible as a type Ia SN, as also assumed by Ruiter et al.

(2011). For the Kroupa (2001) mass function this intro-

duces another reduction by a factor of 50, so that RBWD

amounts to a fraction 0.01 – 0.1% of the measured rate

4.1×10−5 Mpc−3yr−1 of Type Ia SNe (Toy et al. 2023).
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Figure 8. Initial semi-major axis a0 and minimum Galac-
tocentric radius ρmin of wide binaries which get disrupted.
Disruptions are defined when the binary separation at any
time in the simulation exceeds r = 10a0 (see Sec. 2.1). The
minimum Galactocentric radius ρmin is defined as the min-
imum of ρ of the barycentre trajectory inside the Galaxy.
Grey- and black-shaded regions correspond to Hill instabil-
ity evaluated at that distance for binary masses m > 2M⊙
and m > 20M⊙, respectively. These limits correspond to
the minimum and maximum mass in our population (see
Sec. 2.4).

We stress that Eq. (31) leads to an order-of-magnitude

rate estimate that takes into account neither how differ-

ent other potentials than the Milky Way contribute (see

Sec. 5), nor how the merger fraction depends on the

mass of the binary members. Furthermore, it does not

properly convolve the star-formation rate as a function

of time with the delay time distribution for a particular

event. A more accurate rate estimate, which specifically

depends on the type of event, is beyond the scope of this

paper and should be addressed in the future. However,
we have checked that the merger fraction is nearly in-

dependent of the input masses of the binaries and that

the typical delay time of the events, which is a few Gyr,

coincides with the lookback time of the peak in star for-

mation (Madau & Dickinson 2014).

5. CONCLUSIONS

In this study, we have shown that the torque exerted

by the gravitational potential of the Milky Way can in-

duce eccentricity oscillations of wide binaries orbiting

inside the Galactic field. Largely relying on one or more

of the assumptions 1 – 3 in Sec. 1, this has been known

for decades (e.g., Heisler & Tremaine 1986) but we find

that the maximum possible eccentricity excitation has

been severely underestimated. By employing a direct

N -body integrator which relies on none of the previous

assumptions we have shown that near-unity eccentrici-

ties (1− e ≲ 10−8) are possible in two different dynam-

ical regimes. In the weak regime (Sec. 3.1) assumptions

1 – 2 are well-satisfied and large eccentricities are only

possible within a narrow cone cos i0 ≈ 0 of initial in-

clinations between the binary plane and Galactic plane

(Fig. 4), similar to the von Zeipel-Kozai-Lidov effect in

hierarchical triples (Naoz 2016) and binaries inside stel-

lar clusters (Hamilton & Rafikov 2019a,b; Bub & Petro-

vich 2020; Hamilton & Rafikov 2021). This weak regime

breaks down if the Galactic torque acts on a timescale

less than the orbital period (Eq. (28)) or if chaos emerges

when the binary orbits inside the Galaxy on a timescale

similar to the secular timescale (Sec. 3.2). In either case,

extreme eccentricities can be achieved beyond the cone

of inclinations derived from the secular approximation.

Depending on the type of wide binary, this dynamics

may have important implications for the occurence of

stellar collisions, of white dwarf collisions, and binary

black hole mergers and may contribute significantly to

the observed rate of these events (Sec. 4).

We conclude this study by highlighting several aspects

that need to be addressed in future work.

1. We have focused our investigation on binaries or-

biting inside a Milky Way potential which was ap-

proximated as being axisymmetric and stationary

(Sec. 2.1). It is not obvious whether including

the non-axisymmetric and time-dependent density

field of the Milky Way (including its bar and spiral

structure) will change our findings. As with stel-

lar encounters, it could either tend to break the

resonance or introduce additional perturbations

δΦij of the tidal field (see Sec. 3.2) which may

actually drive the binaries into the non-secular

regime. Regarding other galactic potentials we

do not have any reason to expect that the dy-

namical evolution would be qualitatively different.

However, the potential of, e.g., elliptical, irregu-

lar, and dwarf galaxies, may significantly alter the

fraction of each events quantitatively due to po-

tentially different initial binary populations, the

strength of Galactic torques, and the abundance

of chaotic orbits. In addition, the time-evolution

of such potentials could affect our results in a non-

trivial way. In our analysis we find a relatively

large span of delay times between the start of

the simulation and the occurrence of a particular

event. For instance, the gravitational-wave merg-

ers cover a total range of delays between ∼ 0.1

and 14.1Gyr. The bulk of systems merge after a

few Gyr, with a median value (75% – quantile)

of 5.1Gyr (10.5Gyr), which, if contributing to the

present-day local merger rate, would correspond to
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a birth redshift of z ≈ 0.5 (2.0). Thus, a complete

Galactic model would need to take into account

the evolution over at least 0 ≲ z ≲ 2.

2. When low-mass stars approach each other closely

at periapsis by the mechanism explored in this

study, they interact with each other through stel-

lar tides (e.g., Zahn 1975; Hut 1981). As shown

by Kaib & Raymond (2014) the dissipated energy

by tides can convert a wide binary at small peri-

apsis to a close or contact binary which is shielded

against further perturbation from the Galaxy. Ex-

ploring a set of various tidal models for the (un-

certain) amount of dissipated energy, Kaib & Ray-

mond (2014) found that the formation of close bi-

naries reduces the number of Galactically-driven

stellar collisions by a factor of order unity, com-

pared to no-tide evolution, for their fiducial dis-

sipation models of polytropic stars (Lee & Os-

triker 1986; Press & Teukolsky 1977) and a factor

of around ten for some artificially extreme mod-

els. Thus, for any plausible tidal model, they find

enough stellar mergers in their simulations to ex-

plain the observed rate of stellar collisions in the

Milky Way. For the purpose of focusing on the

point mass dynamics we have ignored the effect

of tides in our work. Yet, applying the reduction

factors found by Kaib & Raymond (2014) our rate

of stellar collisions (Sec. 4) is lowered by a factor

of a few at most.

3. Unlike low-mass stars, their massive counterparts

(m1,2 ≳ 8M⊙) evolve within a few Myr to neu-

tron stars or black holes which is much shorter

than the secular timescale tsec at which the Galaxy

could drive the binaries to a close periapsis. There-

fore, it is justified to neglect the effect of stellar

tides for wide massive binaries. However, wide or-

bits of massive stars are found most often to be

the outer orbit of a hierarchical triple or higher-

order configuration (Moe & Di Stefano 2017), i.e.,

one or both wide binary members exhibit addi-

tional sub-companions. In addition, compact ob-

jects may experience a significant natal kick when

they form from massive stars (Tauris & van den

Heuvel 2023) which risks disrupting the loosely

bound wide orbit. The effects of massive star mul-

tiplicity and natal kicks introduce uncertainties

to our rate estimates of binary black hole merg-

ers (Sec. 4). In general, natal kicks are caused

by asymmetric mass ejection and neutrino emis-

sion during the core-collapse supernova explosions.

It is thought that black holes tend to accrete all

the stellar material so that their kicks are mainly

determined by the asymmetric neutrino emission

leading to typical kicks of several km s−1 at most

(Janka & Kresse 2024; Burrows et al. 2024), which

is supported by recent observations of orbits host-

ing a black hole (Shenar et al. 2022; Vigna-Gómez

et al. 2023; Burdge et al. 2024). Despite the kick

uncertainties due to the exact explosion mecha-

nisms and the amount of matter accreted onto the

black hole (Mandel 2016), it is hence reasonable to

assume that for many black holes the kick velocity

is smaller than the typical orbital velocity of wide

binaries (Eq. (11)) so that a significant number of

wide massive binary stars successfully form wide

binary black holes (Olejak et al. 2020). To esti-

mate the impact of natal kicks on the formation of

wide BBHs, we initiate a population of N0 = 105

massive binary stars (m1 = m2 = 10M⊙) with a

log-uniform semi-major axis distribution between

10−1 and 105 AU, a thermal eccentricity distribu-

tion, and isotropic orbital angles. We consecu-

tively apply isotropic natal kicks at random or-

bital phases to each of the stars and update the or-

bital elements accordingly. The magnitude of the

natal kicks is drawn from a Maxwellian velocity

distribution with dispersion σkick = 0.1, 0.5, 1.0,

5.0, and 10.0 km s−1, respectively. Figure 9 shows

the final semi-major axis distribution of surviv-

ing BBHs indicating that for σkick ≲ O(1) km s−1

a significant fraction can be expected throughout

the wide binary range explored in this work. Con-

versely, three-dimensional supernova simulations

consistently predict large natal kicks for neutron

stars (typically a few hundred km s−1) which are

mainly driven by the asymmetric mass ejection

(Janka & Kresse 2024) and substantiated by the

observation of high pulsar velocities (e.g., Hobbs

et al. 2005). This is much larger than the typical

orbital velocity of wide binaries which makes the

successful formation of bound wide binary neutron

stars or black hole-neutron star binaries extremely

unlikely. Additionally, wide compact object bi-

naries might form from initially unbound pairs of

single objects due to chance encounters during the

dissolution phase of young star clusters (Kouwen-

hoven et al. 2010).

4. Regarding multiplicity, while it is plausible that

about 20% of massive stellar triples and higher-

order configurations could become wide binary

black holes after the sub-companions are lost be-

cause of mergers during stellar evolution (Sana

et al. 2012; Stegmann et al. 2022a), a non-
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Figure 9. The effect of natal kicks on the formation of wide
BBHs. The dashed line shows that the initial distribution of
N0 = 105 wide massive binaries (m1 = m2 = 10M⊙) which
consecutively receive two natal kicks at BH formation whose
magnitudes are drawn from a Maxwellian velocity distribu-
tion with dispersion σkick. Solid lines show the semi-major
axis distribution of all surviving BBHs and the grey-shaded
area highlights the range of values simulated in this work.
As a reference, we also show the orbital velocity of the BBHs
(Eq. (11)).

negligible number of wide binary black holes may

form while retaining their sub-companions. Gr-

ishin & Perets (2022) have shown that a wide ter-

tiary companion which is gently driven towards

the inner binary through Galactic tides can trigger

von Zeipel-Kozai-Lidov oscillations of the latter.

For wide tertiary companions which are driven to

a near-radial orbit through the mechanism studied

in our work, we may additionally expect systems
that undergo chaotic evolution at close periapsis

passage similar to binary-single star scattering ex-

periments (e.g., Samsing et al. 2014) which likely

lead to the ejection of one of the components or

the merger of two. Thus, we anticipate that the in-

clusion of additional tertiary or higher-order com-

panions introduces further complexity to the prob-

lem, potentially enlarging the parameter space for

mergers.

We emphasise that the proposed channel to form

compact object mergers from wide binaries (or

higher-order configurations with a wide outer or-

bit) is appealing from a theoretical point of view.

Since the wide binary stars evolve far apart from

each other, they are not subject to the system-

atic uncertainties associated with the stellar evo-

lution of interacting short-period massive binary

stars that have been proposed to be the origin of

compact object mergers; either through common-

envelope evolution (Postnov & Yungelson 2014;

Belczynski et al. 2016; Eldridge & Maund 2016;

Lipunov et al. 2017), a stable mass transfer episode

(van den Heuvel et al. 2017; Inayoshi et al. 2017;

Neijssel et al. 2019; Bavera et al. 2021; Marchant

et al. 2021; Gallegos-Garcia et al. 2021; Olejak

et al. 2021; van Son et al. 2022), or chemically

homogeneous evolution (de Mink & Mandel 2016;

Mandel & de Mink 2016; Marchant et al. 2016; du

Buisson et al. 2020; Riley et al. 2021). Instead, the

uncertainty reduces to the initial properties and

the formation of wide binaries (El-Badry 2024),

the orbital widening due to mass-loss by stellar

winds if the stars are metal-rich (Vink et al. 2001;

Björklund et al. 2021), and to the remnant mass

function and natal kick prescription of (effectively

single) massive stars (Heger et al. 2003).

5. Finally, we point out that it would be worthwhile

to use our integrator to investigate the evolution

of the eccentricity distribution of wide binaries in

the solar neighbourhood. Tokovinin (2020) and

Hwang et al. (2022) found that the wide binaries

astrometically identified in the Gaia DR2 sam-

ple show evidence for a super-thermal distribu-

tion, i.e., p(e) ∝ eα where α > 1. Working with

the secular approximation, Modak & Hamilton

(2023) and Hamilton & Modak (2023) have shown

that neither Galactic tides nor stellar encounters

could transform a thermal (α = 1) or sub-thermal

(α < 1) to the observed distribution, concluding

that dynamical effects cannot drive the binaries

away from thermal equilibrium, hence they must

already form with a super-thermal distribution.

Whether their results withstand a direct N -body

integration can be tested with our formalism.
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Vigna-Gómez, A., Willcox, R., Tamborra, I., et al. 2023,

arXiv e-prints, arXiv:2310.01509,

doi: 10.48550/arXiv.2310.01509

Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2001,

A&A, 369, 574, doi: 10.1051/0004-6361:20010127

Wagg, T., Broekgaarden, F. S., de Mink, S. E., et al. 2022,

ApJ, 937, 118, doi: 10.3847/1538-4357/ac8675

Weinberg, M. D., Shapiro, S. L., & Wasserman, I. 1987,

ApJ, 312, 367, doi: 10.1086/164883

Wen, L. 2003, ApJ, 598, 419, doi: 10.1086/378794

Whitmire, D. P., & Jackson, A. A. 1984, Nature, 308, 713,

doi: 10.1038/308713a0
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