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Abstract—In this paper, we study a remote monitoring system
where a receiver observes a remote binary Markov source and
decides whether to sample and transmit the state through a
randomly delayed channel. We adopt uncertainty of information
(UoI), defined as the entropy conditional on past observations at
the receiver, as a metric of value of information, in contrast to
the traditional state-agnostic nonlinear age of information (AoI)
penalty functions. To address the limitations of prior UoI research
that assumes one-time-slot delays, we extend our analysis to
scenarios with random delays. We model the problem as a
partially observable Markov decision process (POMDP) problem
and simplify it to a semi-Markov decision process (SMDP)
by introducing the belief state. We propose two algorithms:
A globally optimal bisection relative value iteration (bisec-RVI)
algorithm and a computationally efficient sub-optimal index-
based threshold algorithm to solve the long-term average UoI
minimization problem. Numerical simulations demonstrate that
our sampling policies surpass traditional zero wait and AoI-
optimal policies, particularly under conditions of large delay,
with the sub-optimal policy nearly matching the performance of
the optimal one.

Index Terms—Remote monitoring, uncertainty of information,
age of information, Markov decision process

I. INTRODUCTION

To evaluate the information freshness, age of information
(AoI) has been proposed in [1], [2], and has attracted extensive
research attention in remote monitoring, industrial automation,
and internet-of-things (IoT) applications [3]–[11]. Tradition-
ally, AoI is known to be state-agnostic [12]–[14], i.e., focusing
solely on the timeliness of information without accounting for
the dynamics and the semantics of the source. Today, some
variants of AoI have been proposed in [15]–[24] to address the
state-agnostic limitation. The researchers successfully derive
their metrics of interest, such as the mutual information and the
mean square error between the source and the latest receives
message, as non-linear penalty functions of AoI. In this way,
the problem of minimizing mutual information, or mean square
error, can be transformed into a problem of minimizing non-
linearly penalized AoI.

Uncertainty of information (UoI) is a new metric that ad-
dresses the state-agnostic limitation of AoI [25]. Defined as the
entropy conditional on past observations at the receiver, UoI
quantifies the receiver’s uncertainty about the latest state of
the source based on previously received, potentially outdated
observations. Unlike AoI, UoI integrates both the age and the
historical observations, making it a state-aware metric. For
example, consider a binary discrete-time Markov process with
state transition probabilities P [0|1] = 0.2 and P [1|0] = 0.05.
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Fig. 1. UoI vs. AoI and the latest observed state S0.

As illustrated in Fig. 1, UoI’s dependence on AoI varies
with the latest received state S0, exhibiting a non-monotonic
relationship. This phenomenon introduces new challenges in
designing UoI-optimal sampling policies.

In [25] and [26], the UoI-optimal sampling and scheduling
policy has been investigated in the one-time-slot system. In
[25], a Whittle index-based multi-source scheduling policy for
binary Markov process is derived. Then an index policy for
general finite-state Markov processes under unreliable chan-
nels are further extended in [26]. Both of the studies idealize
the transmission delay as one time slot. However, random
and large delays are common in communication networks due
to network loading, routing, and retransmission [27]. Under
random delay, UoI-optimal sampling process is no longer a
typical Markov decision process (MDP), which brings about
new challange. This prompts us to formulate a new problem
for UoI-minimization under random delay.

Up to this point, considerable research efforts have been
devoted to optimizing metrics related to AoI in the presence
of delays [28]–[33]. Authors proposes a new “selection-from-
buffer” model for sending the features aimed at minimizing
the general functions of AoI (monotonic or non-monotonic)
with random transmission delay in [30]. As an extension to
[30], authors minimizes the general functions of AoI through
a channel with highly variable two-way random delay in
[32]. And in [33], an optimal sampling policy is designed
to minimize the average AoI when the statistics of delay are
unknown. However, all of these AoI-related functions to be
minimized are state-agnostic, distinct to minimization of UoI,
which is a state-aware metric.

To sum up, our motivation is twofold: (i) The optimization
of UoI under random delay still remains largely unexplored.
(ii) The UoI-minimization problem is distinct from other AoI-
related optimization under random delay. In this paper, we
study a remote monitoring system where a receiver observes
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Fig. 2. System model of the considered remote monitoring system.

a remote binary Markov source and decides whether to sample
the source’s state over a randomly delayed channel. Our goal is
to solve a UoI-minimization problem under random delay. We
model the problem as a partially observed Markov decision
process (POMDP), and simplify it into a semi-Markov deci-
sion process (SMDP) by introducing belief state. Specifically,
the contributions of this paper are as follows:

• We formulate a new problem to minimize the average
UoI under random delay.

• We propose an optimal policy for this work. An optimal
sampling policy is provided by applying a two layered
bisection relative value iteration (bisec-RVI) algorithm.

• We develop a sub-optimal policy for this work. A sub-
optimal index policy with computation efficiency is pro-
posed based on the special properties of belief state.

Numerical simulations illustrate that our proposed sampling
policies outperform traditional Zero wait and AoI-optimal
policies. And the performance of the sub-optimal policy nearly
match that of the optimal policy, especially under large delay.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a discrete-time remote monitoring system in
Fig. 2, where the states of a remote binary Markov source
are delivered through a channel to a receiver. Based on the
history observation of the source’s state, the receiver decides
whether to sample the current state or not, and transmits the
decision to the sampler. The remote source is a discrete-time
binary Markov process with a state at time t denoted by S(t) ∈
{0, 1}. We assume that the one-step transition matrix of the
Markov process P is known to the receiver, given by

State 0 State 1
State 0
State 1

[
1− p p
q 1− q

]
(1)

where 0 < p ≤ q < 1, p+ q ̸= 1 1. Consequently, the n-step
transition matrix of this Markov process is [34, Appendix A]

Pn =

[
1− p(n) p(n)

q(n) 1− q(n)

]
, (2)

where p(n) ≜ p−p(1−p−q)n
p+q , q(n) ≜ q−q(1−p−q)n

p+q , n ∈ N+.
The i-th state information sent over the channel is sampled

and transmitted in time slot Gi, and is delivered at the receiver
at time slot Ri = Gi+Yi, where Yi ≥ 1 is the independent and
identically distributed (i.i.d) random transmission delay of the
i-th state information, satisfying 1 ≤ E[Yi] <∞. We assume

1Without loss of generality, we assume that p ≤ q. And when p+ q = 1,
UoI is constant that can not be changed by any sampling policy. For a similar
reason, we also assume that p+ q ̸= 0 and p+ q ̸= 2.

that the sampler receives delay-free decision commands from
the receiver 2 , such that the receiver sends the decision and
the sampler receives the decision at time slot Gi. Let Zi =
Gi−Ri−1 ≥ 0 represent the waiting time for sending the i-th
packet after the (i− 1)-th packet is received by the receiver.

B. Problem Formmulation

The UoI is a metric proposed in [25] to measure the
uncertainty of the source at the receiver side given the history
observations, given by

U(t) = H(S(t)|W(t)), (3)

where W(t) = (S(G0), S(G1), · · · , S(t′)) are the history
observations at the receiver side up to time slot t, and
t′ ≜ S(maxi{Gi : Ri ≤ t}) is the time stamp of the most
recently received update. Leveraging the Markov property of
S(t), we have

U(t) ≜ −
∑

i∈{0,1}

P[S(t) = i|W(t)] log2 P[S(t) = i|W(t)]

= −
∑

i∈{0,1}

P[S(t) = i|S(t′)] log2 P[S(t) = i|S(t′)],

(4)
From the definition of t′, we can rewrite U(t) as a piecewise
function:

U(t) = −
∑

i∈{0,1}

P [S(t) = i|S(Gi)] log2 P [S(t) = i|S(Gi)],

if Ri ≤ t < Ri+1, ∀i ∈ N.
(5)

For short-hand notations, we introduce H(p) ≜ −p log2(p)−
(1 − p) log2(1 − p) as the entropy of a binary information.
With (2) in hand, (5) can be rewritten as

U(t) =

{
H(p(t−Gi)), ifS(Gi) = 0, Ri ≤ t < Ri+1,∀i ∈ N
H(q(t−Gi)), ifS(Gi) = 1, Ri ≤ t < Ri+1,∀i ∈ N,

(6)

where t − Gi for Ri ≤ t < Ri+1,∀i ∈ N is what exactly
AoI indicates. As a result, UoI is an observation-based non-
monotonic function of AoI.

A sampling policy is a sequence π = (G1, G2, · · · ) ∈ Π,
which is time stamps of sampling times for each packet.
Alternatively, the sampling policy can also be expressed as
π = (Z1, Z2, · · · ) ∈ Π, which is the sequence of waiting
times for each packet. (see B for a detailed explanation.) Our
goal is to find both an optimal sampling policy that minimizes
the time-average expected sum-UoI:

inf
π∈Π

lim sup
T→∞

1

T
E

[
T−1∑
t=0

U(t)

]
. (7)

This is a new problem different from previous studies
focused on optimizing cost functions of AoI with random

2A remote monitoring system with two-way random delay can be extended
based on this work.



delay. The uniqueness resides in the fact that UoI is not only
dependent on the age of the latest observation (i.e. t − Gi),
but also customized by the latest observation S(Gi), as shown
in (6). Compared to UoI, the current functions of AoI used as
metrics to design sampling policy under random delay, as we
know, have nothing to do with the contents of the transmission
information and remains invariant [30]–[32].

III. OPTIMAL SAMPLING POLICY

In this section, we propose an optimal sampling policy by
using bisec-RVI algorithm to minimize the long-term average
expected sum-UoI.

A. Belief State
In our system model, the receiver is tasked with determining

sampling actions based on delayed and imperfect observations
W(t) to minimize the time-average UoI. This problem is
commonly modeled as a POMDP. A fundamental approach
in solving partially observable Markov decision processes
(POMDPs) involves transforming them into Markov Decision
Processes (MDPs) by utilizing a concept known as belief state.
In this subsection, we explore the belief state in our context,
which is as the probability of S(t) = 1 given the observations
W(t), given by

Ω(t) = P[S(t) = 1|W(t)]. (8)

Similar to the process to obtain (6), we can prove that for
Ri ≤ t < Ri+1, ∀i ∈ N, Ω(t) can be expressed by

Ω(t) =

{
p(t−Gi), if S(Gi) = 0

1− q(t−Gi), if S(Gi) = 1.
(9)

The evolution of the belief state is given in the following
lemma:

Lemma 1. Given Ω(t) = ω, Ω(t + k) can be explicitly
calculated by

Ω(t+ k) =
p− p(1− p− q)k

p+ q
+ ω(1− p− q)k, (10)

where ω ∈ {p(n), 1 − q(n)}, n, k ∈ N. For short-hand
notations, we leverage τk(ω) to denote the right-hand side
of (10).

Proof. Please refer to A.

Corollary 1. The equilibrium belief state of Ω(t) is

ω∗ ≜ lim
k→∞

τk(ω) =
p

p+ q
. (11)

Proof. Since 0 < |1− p− q| < 1, we have that limk→∞(1−
p+ q)k = 0, and thus we obtain the limit.

Since H(p) = H(1− p), by combing (6) and (9) we have

U(t) = H(Ω(t)). (12)

Then the problem (7) can be rewritten as:

popt = inf
π∈Π

lim sup
T→∞

1

T
E

[
T−1∑
t=0

H(Ω(t))

]
, (13)

where popt is the optimum value of (7).

B. An Optimal Sampling Policy

We present an optimal policy for (13) as follows:

Theorem 1. If Yi’s are i.i.d. with a finite mean E[Yi], given
Ω(Ri) = ω, then π∗ = (Z∗

1 , Z
∗
2 , · · · ) is an optimal solution

to (13), which satisfies the following optimality equation:

g(p̄opt) + Ṽ (ω, p̄opt)

= inf
Zi+1∈N

{c(ω,Zi+1, p̄opt) + r(ω,Zi+1, p̄opt)}, (14)

g(p̄opt) = inf
Zi+1∈N

{c(p, Zi+1, p̄opt) + r(p, Zi+1, p̄opt)}, (15)

where

c(ω,Zi+1, p̄opt) = E

Zi+1+Yi+1−1∑
k=0

(H(τk(ω))− p̄opt)

,
(16)

r(ω,Zi+1, p̄opt) =E

[
τZi+1+Yi+1(ω)Ṽ (1− q(Yi+1), p̄opt)

+ (1− τZi+1+Yi+1(ω))Ṽ (p(Yi+1), p̄opt)

]
,

(17)
for all ω ∈ {p(n), 1− q(n)}, n ∈ N.

Proof sketch. The problem (13) can be cast as an infinite-
horizon average cost SMDP [34, Chapter 11]. Recall that
Zi+1 = Gi+1−Ri as the waiting time for sending the (i+1)-th
packet after the i-th packet is received by the receiver. Given
Ω(Ri) = ω, the Bellman optimality equation of the average
cost problem is

V ∗(ω) = inf
Zi+1∈N

{
E

Zi+1+Yi+1−1∑
k=0

(H(τk(ω))− p̄opt)


+ E

[
τZi+1+Yi+1(ω)V ∗(1− q(Yi+1))

+ (1− τZi+1+Yi+1(ω))V ∗(p(Yi+1))

]}
,

(18)

for all ω ∈ {p(n), 1−q(n)}, n ∈ N, where V ∗(ω) is the relative
value function associated with the average cost problem (13).

We assume that Yi’s are random variables with limited
values, thus the states of ω are finite and countable. The
equation (18) can be converted to (14) and (15). This inversion
can be interpreted as a transformation from the SMDP to an
equivalent MDP [34, Chapter 11]. Please refer to Appendix B
for details of the proof.

Applying Dinkelbach’s method for nonlinear fractional pro-
gramming as shown in [35] and [36, lemma 2], we get two
assertions: (i) p̄opt ⋚ β if and only if g(β) ⋚ 0. (ii) p̄opt
is the unique root of g(β) = 0. Consequently, we can find
the value of p̄opt by finding the root of g(β) = 0 as shown
in Algorithm 1, which is a two-layered Bisec-RVI algorithm.
Bisection search method is applied to the outer layer to get
a fixed β for every step and finally get the optimal value



p̄opt. In the inner layer, as the value of β has been fixed by
the outer layer, we only need to use RVI to find convergent
g(β). The RVI algorithm here is the same as it in MDP. The
details about RVI algorithm have been neglected since it has
been a mature technique to solve an infinite-horizon MDP [34,
Section 8.5.5]. Similar algorithms are proposed in [23], [37]
and [38] to achieve age-optimal or mean square error (MSE)-
optimal sampling.

Algorithm 1: Bisec-RVI algorithm
Input: l = 0, u = 1, tolerance ϵ > 0

1 while u− l ≥ ϵ do
2 β := (l + u)/2;
3 Run RVI to solve g(β) and Ṽ (ω, β);
4 if g(β) > 0 then
5 l := β;

6 else
7 u := β;

Output: p̄opt = β

IV. SUB-OPTIMAL INDEX-BASED POLICY

The optimal policy for (13) uses bisec-RVI algrithm, which
requires repeatedly executing the RVI algorithm in the inner
layer until the value to be found converges, resulting in high
computing complexity.

In this section, we explore a sub-optimal but computation-
efficient index-based policy in the sequel. We assume that the
transmission process spends a long time, i.e., the value of
E[Yi], ∀i ∈ N is large enough. The large transmission delay
may be due to long distance, time-varying channel conditions,
too many packets in the channel and so on. According to (11),
we can conclude that the transition probability from receiving
time Ri to Ri+1 (i ∈ N) is

P[Ω(Ri+1) = 1− q(Yi+1)|Ω(Ri)] = τZi+1+Yi+1(ω) = ω∗.
(19)

As the state transition probabilities are constant, the second
and third terms of the right-hand-side of (18) are irrelevant
to the waiting time, making the Bellman optimality equation
easier to solve. Along this line, we can finally get an index-
based sampling policy.

We depict the details of the problem as follows. On the
basis of the assumption, we consider a sampling policy ψ =
(Z1, Z2, · · · ) ∈ Π and try to optimize the following problem:

pnopt = inf
ψ∈Π

lim sup
T→∞

1

T
E

[
T−1∑
t=0

H(Ω(t))

]
, (20)

After that, we present an index-based sampling policy for
the problem. We introduce an index function as

η(ω) ≜ inf
Zi∈N+

1

Zi

Zi−1∑
k=0

E
[
H(τk+Yi(ω))

]
, (21)

where ω ∈ {p(n), 1− q(n)}, n ∈ N.

Theorem 2. If Yi’s are i.i.d. with a finite mean E[Yi], then
ψ = (Z1(βψ), Z2(βψ), · · · ) is an optimal solution to (15),
where

Zi+1(βψ) = min{k ∈ N : η(Ω(t+ k)) ≥ βψ, t ≥ Ri(βψ)},
(22)

and βψ is the unique root of

E

Ri+1(βψ)−1∑
Ri(βψ)

H(Ω(t))

− βψE[Ri+1(βψ)−Ri(βψ)] = 0,

(23)
where Ri(βψ) = Gi(βψ) + Yi is the receiving time of the i-
th state information submitted to the channel, and Ω(t) is the
belief state at time slot t. Moreover, βψ is exactly the optimum
value of (15), i.e., βψ = pnopt.

Proof sketch. The problem (20) can be cast as an infinite-
horizon average cost SMDP. Given Ω(Ri) = ω, the Bellman
optimality equation of the average cost problem is

Vψ(ω) = inf
Zi+1∈N

{
E

Zi+1+Yi+1−1∑
k=0

(H(τk(ω))− p̄nopt)

}

+ E
[
ω∗Vψ(1− q(Yi+1)) + (1− ω∗)Vψ(p

(Yi+1))
]
,

(24)
for all ω ∈ {p(n), 1−q(n)}, n ∈ N, where Vψ(ω) is the relative
value function associated with the average cost problem (20).
Theorem 2 is proven by directly solving (24). The details are
provided in C.

Theorem 2 signifies that the optimal solution to (20) is
an index-based threshold policy, where the index function
depends on the belief state. Specifically, the state of the source
is submitted in time slot t if two conditions are satisfied: (i)
The channel is idle in time slot t, (ii) the index η(Ω(t))
exceeds a threshold βψ (i.e., η(Ω(t)) ≥ βψ). where the
threshold βψ is exactly the optimum value of (20).

For notational simplicity, we rewrite (13) as

f(βψ) = f1(βψ)− βψf2(βψ) = 0, (25)

where f1(βψ) = E
[∑Ri+1(βψ)−1

Ri(βψ)
H(ω(t))

]
and f2(βψ) =

E[Ri+1(βψ)−Ri(βψ)]. Then a low-complexity algorithm for
finding the optimal objective value p̄nopt is provided as algo-
rithm 2.

Compared the relative value function (24) with (18), the core
difference is that the state transition probabilities in (24) are
irrelevant to the waiting time, which leads to an index policy
for problem (20). According to the convergence of τk(ω) to
ω∗ in (11), we induce that if E(Yi) is large enough, the index
policy is the optimal policy for (13), i.e., π∗ = ψ.

V. NUMERICAL RESULTS

This section presents numerical results that demonstrate the
performance of the index-based threshold policy. As shown in
[25, Fig. 3], the k-step belief state evolutions with p+ q < 1
and with p+ q > 1 are quite different, so we operate both of
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Fig. 3. Average UoI and Average AoI v.s. y with i.d.d random delay, where
P [Yi = 1] = 0.8 and P [Yi = y] = 0.2, the dynamics of the Markov source
depicted as p = 0.05 and q = 0.2.

Algorithm 2: Bisec-index algorithm
Input: l = 0, u = 1, tolerance ϵ > 0

1 while u− l ≥ ϵ do
2 βψ := (l + u)/2;
3 c := f(βψ) = f1(βψ)− βψf2(βψ);
4 if c > 0 then
5 l := βψ;

6 else
7 u := βψ;

Output: p̄nopt = βψ

them in the simulations. First, we evaluate the following four
sampling policies:

1. UoI-optimal: The policy is given by Theorem 1.
2. Index-based: The policy is given by Theorem 2.
3. Zero wait: An update is transmitted once the previous

update is received, i.e., Zi = 0 for ∀i ∈ N. This policy
achieves the minimum delay and maximum throughput.

4. AoI-optimal: The AoI-optimal policy determines waiting
time Zi by [23, Theorem 4] and [23, Algorithm 2].

Fig. 3 shows the four policies comparison in terms of
average UoI and average AoI, when the binary Markov source
evaluates with the probability p+ q < 1. The left panel shows
that the average UoI obtained by the index policy is very close
to the UoI-optimal one, compared to which Zero wait and AoI-
optimal policy performs not well as E[Yi] increases. However,
the right panel reveals that AoI-optimal policy consistently
achieves the lowest AoI. This implies that the desired goal the
receiver tends to achieve leads to different result.

In Fig. 4, we compare the four policies performance for
the evaluated case that p + q > 1. The left panel shows a
similar trend to the left panel of Fig. 3, except for the sub-
optimal index-based policy. A watershed phenomenon occurs
for the index-based policy: When y ≤ 6, the index-based
policy provides the same sampling strategy as zero wait policy,
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Fig. 4. Average UoI and Average AoI v.s. y with i.d.d random delay, where
P [Yi = 1] = 0.8 and P [Yi = y] = 0.2, the dynamics of the Markov source
depicted as p = 0.7 and q = 0.95.

which performs worse than optimal policy; when y > 6, the
index-based policy performs as well as the optimal policy. The
reason for this phenomenon is that the index-based threshold
policy is sub-optimal, deciding whether to sample or not by the
comparison between the index and the constant value p̄nopt.
Therefore, this sub-optimal policy can not always take future
circumstances into account if the value of E(Yi) is small, thus
ignores the oscillation of H(ω) when p+ q > 1. The index is
always less than p̄nopt if y ≤ 6, causing the zero wait policy.
Otherwise, if y > 6, the index outweighs p̄nopt so the policy
is optimal. The right panel demonstrates the lowest AoI is
obtained by AoI-optimal policy as well.

The performance gains of UoI-optimal and index-based
policies are close to the best average AoI, making them better
choices when the system aims to optimize both AoI and UoI
simultaneously. Moreover, Both of the pictures show that when
E[Yi] is large enough, the result of index policy is the same as
that of the UoI-optimal policy, consistent with the theoretical
induction we proposed before. But for what exact value E[Yi]
is meaning "large enough", is still an open issue.

VI. CONCLUSION

In this paper, we have used UoI as a state-aware metric
to estimate the value of information in a remote monitoring
system. First we have put forward an optimal policy to
minimize the time-average expected sum-UoI by two-layered
bisec-RVI algorithm. Based on the properties of belief state,
we have further provided a sub-optimal index-based sampling
policy owning lower computing complexity than the optimal
one. The good performance of the sampling policies have been
demonstrated by numerical simulations. Both of the proposed
sampling policies outperform zero wait policy and AoI-optimal
policy. Moreover, the performance of the sub-optimal policy
approaches to that of the optimal policy, particularly under
large delay. In the future work, it may be worthwhile to
investigate the specific value of E[Yi] that leads to the sub-
optimal policy being identical to the optimal policy.
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APPENDIX A
THE PROOF OF LEMMA 1

Here is the detailed process for the evaluation of the belief
state. With the transition matrix given in (2), the evolution of
the belief state can be written as

Ω(t+ k) = Ω(t) · (1− q(k)) + (1− Ω(t)) · p(k)

= p(k) +Ω(t)(1− p(k) − q(k))

=
p− p(1− p− q)k

p+ q
+Ω(t)(1− p− q)k

=
p− p(1− p− q)k

p+ q
+ ω(1− p− q)k

(26)

The prood is completed.

APPENDIX B
THE PROOF OF THEOREM 1

The sampling problem (13) is an infinite-horizon average
cost semi-Markov decision process (SMDP) [39, Chapter 5.6]
[34, Chapter 11]. In accordance with the description provided
in [39, Chapter 5.6], we elaborate on the various components
of this problem blow:

• Decision Time: Because the control commands from the
receiver are promptly delivered to the sampler without
delay, each i-th receiving time Ri = Gi + Yi also serves
as a decision time of the problem (13), where Gi is the
submission time of the i-th packet, taking Yi time slots
to be delivered to the receiver.

• State: The belief state Ω(t). At time slot Ri, the state of
the system is the belief state Ω(Ri).

• Action: Zi+1 = Gi+1 − Ri is the waiting time for
submitting the (i + 1)-th packet after the i-th packet is
received. We consider G0 = 0, Gi =

∑i−1
j=0(Yj + Zj+1)

and Ri = Gi + Yi for each i ∈ {0, 1, · · · }. Conse-
quently, given (Y0, Y1, · · · ), the sequence (G1, G2, · · · )
is uniquely determined by (Z1, Z2, · · · ). Therefore, π =
(Z1, Z2, · · · ) is a valid representation to a policy in Π.

• State Transitions: The state Ω(t) evolves as follows:

Ω(t) =


1− q(Yi), if t = Ri, S(Gi) = 1

p(Yi), if t = Ri, S(Gi) = 0

τ(Ω(t− 1)), otherwise,

(27)

where i ∈ N. From (10) we can get the transition
probability is

P [Ω(Ri+1)|Ω(Ri)] (28)

=

{
τZi+1+Yi+1(Ω(Ri)), if Ω(Ri+1) = 1− q(Yi+1)

1− τZi+1+Yi+1(Ω(Ri)), if Ω(Ri+1) = p(Yi+1).

(29)

• Expected Transition Time: The expected time difference
between the decision times Ri and Ri+1 is E[Ri+1 −
Ri] = E[Zi+1 + Yi+1]

• Expected Transition Cost: The expected cumulative cost
incurred during the interval between the decision times
Ri and Ri+1 can be calculated as

E

Ri+1−1∑
t=Ri

H(Ω(t))

 = E

Zi+1+Yi+1−1∑
k=0

H(Ω(Ri + k))


= E

Zi+1+Yi+1−1∑
k=0

H(τk(Ω(Ri)))


(30)

We can use dynamic programming [39] to solve the average-
cost SMDP (13). If Ω(Ri) = ω, then the optimal decision
Zi+1 for the (i+1)-th packet satisfies the following Bellman
optimality equation

V ∗(ω) = inf
Zi+1∈N

{
E

Zi+1+Yi+1−1∑
k=0

(H(τk(ω))− p̄opt)


+ E

[
τZi+1+Yi+1(ω)V ∗(1− q(Yi+1))

+ (1− τZi+1+Yi+1(ω))V ∗(p(Yi+1))

]}
,

(31)

where V ∗(ω) is the relative value function associated with the
average cost problem (20).

According to [34, Chapter 11], we can transform the SMDP
into an equivalent Markov decision process (MDP). First, we
rewrite the objective function in problem (13) by taking the
limit superior of the ratio of the total expected transition cost
to the n-th decision epoch (n ∈ N+) to the total expected
transition time as follows:

lim sup
T→∞

1

T
E

[
T−1∑
t=0

H(Ω(t))

]

= lim
n→∞

∑n−1
i=0 E

[∑Ri+1−1
t=Ri

H(Ω(t))
]

∑n−1
i=0 E[Ri+1 −Ri]

= lim
n→∞

∑n−1
i=0 E

[∑Zi+1+Yi+1−1
k=0 H(τk(ω))

]
∑n−1
i=0 E[Zi+1 + Yi+1]

,

(32)

where Ω(Ri) = ω. As a result, (13) can be expressed as

p̄opt = inf
π∈Π

lim
n→∞

∑n−1
i=0 E

[∑Zi+1+Yi+1−1
k=0 H(τk(ω))

]
∑n−1
i=0 E[Zi+1 + Yi+1]

. (33)

To solve the problem (33), we consider the following
problem with a parameter β ≥ 0:

g(β) ≜ inf
ϕ∈Φ

lim
n→∞

1

n

n−1∑
i=0

{
E

Zi+1+Yi+1−1∑
k=0

H(τk(ω))


− βE[Zi+1 + Yi+1]

}



= inf
ϕ∈Φ

lim
n→∞

1

n

n−1∑
i=0

E

Zi+1+Yi+1−1∑
k=0

[H(τk(ω))− β]

. (34)

For each constant β, the problem (34) can be cast as a MDP
problem with components below:

• State: The state of the MDP is the belief state Ω(Ri) at
time Ri for ∀i ∈ N.

• Action: The waiting time Zi for ∀i ∈ N+.
• Transition Probability: The transition probability is

given by

P [Ω(Ri+1)|Ω(Ri)] (35)

=

{
τZi+1+Yi+1(Ω(Ri)), if Ω(Ri+1) = 1− q(Yi+1)

1− τZi+1+Yi+1(Ω(Ri)), if Ω(Ri+1) = p(Yi+1).

(36)

• Cost Function: The cost function is defined by

c(ω,Zi+1, β) = E

Zi+1+Yi+1−1∑
k=0

(H(τk(ω))− β)

,
(37)

where Ω(Ri) = ω.
As the state space is finite and the optimality of the MDP

can be achieved by a unichain policy, the optimal policy ϕ∗β
is determined by the optimality equation as follows:

g(β) + V (ω, β) =

inf
Zi+1∈N

{
c(ω,Zi+1, β) + E

[
τZi+1+Yi+1(ω)V (1− q(Yi+1), β)

+ (1− τZi+1+Yi+1(ω))V (p(Yi+1), β)

]}
,

(38)
where g(β) is the average cost achieved by the optimal policy,
V (ω, β) is the value function.

This infinite-horizon MDP problem can be solved by using
relative value iteration (RVI) [40, Section 6.5.2]. To adapt to
the RVI algorithm, we rewrite the optimality equation (38)
in the following form that is anchored at state p. Define
Ṽ (ω, β) = V (ω, β) − V (p, β), so Ṽ (p, β) = 0. Then (38)
can be rewritten relative to state p as

g(β) + Ṽ (ω, β) = inf
Zi+1∈N

{c(ω,Zi+1, β) + r(ω,Zi+1, β)},
(39)

g(β) = inf
Zi+1∈N

{c(p, Zi+1, β) + r(p, Zi+1, β)}, (40)

where

r(ω,Zi+1, β) =E

[
τZi+1+Yi+1(ω)Ṽ (1− q(Yi+1), β)

+ (1− τZi+1+Yi+1(ω))Ṽ (p(Yi+1), β)

]
.

(41)
It is worthwhile to note that we assume that the state p belongs
to the state space here, if not the anchor point can be changed
to other state in the state space.

Next, we proof that the optimal policy π∗ for problem (13)
and the optimal policy ϕ∗p̄opt for problem g(p̄opt) in (34) are
identical, i.e., π∗ = ϕ∗p̄opt . By similarly applying Dinkelbach’s
method for nonlinear fractional programming as in [35] and
[36, lemma 2], we get two assertions in the following lemma:

Lemma 2. There are two assertions that hold true as follows:
1) p̄opt ⋚ β if and only if g(β) ⋚ 0.
2) p̄opt is the unique root of g(β) = 0.

Proof. Please see Appendix D for detaied proof.

Consequently, we have g(p̄opt) = 0. And there exists an
optimal policy ϕ∗p̄opt = (Z1, Z2, · · · ) satisfying that

lim
n→∞

1

n

n−1∑
i=0

{
E

Zi+1+Yi+1−1∑
k=0

H(τk(ω))


− p̄optE[Zi+1 + Yi+1]

}
= 0,

(42)
which implies that for policy ϕ∗p̄opt ,

lim
n→∞

∑n−1
i=0 E

[∑Zi+1+Yi+1−1
k=0 H(τk(ω))

]
∑n−1
i=0 E[Zi+1 + Yi+1]

= p̄opt. (43)

Because (43) is equal to (33), the policy ϕ∗p̄opt is also the
optimal policy of problem (13), i.e., π∗ = ϕ∗p̄opt .

Therefore, the optimality equation of the SMDP problem
(31) can be converted into the optimality equation of the MDP
problem g(p̄opt) in (34), given by

g(p̄opt) + Ṽ (ω, p̄opt)

= inf
Zi+1∈N

{c(ω,Zi+1, p̄opt) + r(ω,Zi+1, p̄opt)}, (44)

g(p̄opt) = inf
Zi+1∈N

{c(p, Zi+1, p̄opt) + r(p, Zi+1, p̄opt)}, (45)

where

c(ω,Zi+1, p̄opt) = E

Zi+1+Yi+1−1∑
k=0

(H(τk(ω))− p̄opt)

,
(46)

r(ω,Zi+1, p̄opt) =E

[
τZi+1+Yi+1(ω)Ṽ (1− q(Yi+1), p̄opt)

+ (1− τZi+1+Yi+1(ω))Ṽ (p(Yi+1), p̄opt)

]
,

(47)
for all ω ∈ {p(n), 1− q(n)}, n ∈ N.

This completes the proof.

APPENDIX C
THE PROOF OF THEOREM 2

The sampling problem (20) is an infinite-horizon average
cost SMDP [39, Chapter 5.6]. The components of this problem
are the same as the SMDP in the proof of Theorem 1



in Appendix B with one exception. In this case, from the
assumption in (19), the transition probability is given as

P [Ω(Ri+1)|Ω(Ri)] =

{
ω∗, if Ω(Ri+1) = 1

1− ω∗, if Ω(Ri+1) = 0.
(48)

The average-cost SMDP (20) can be solved by using dy-
namic programming [39]. If Ω(Ri) = ω, then the optimal
decision Zi+1 for the (i+ 1)-th packet satisfies the following
Bellman optimality equation

Vψ(ω) = inf
Zi+1∈N

{
E

Zi+1+Yi+1−1∑
k=0

(H(τk(ω))− p̄nopt)

}

+ E
[
ω∗Vψ(1− q(Yi+1)) + (1− ω∗)Vψ(p

(Yi+1))
]
,

(49)
for all ω ∈ {p(n), 1−q(n)}, n ∈ N, where Vψ(ω) is the relative
value function associated with the average cost problem (20).

Let Z̄ = Z(ω, p̄nopt) be an optimal solution to (49), which
means that given Ω(Ri) = ω, then the optimal waiting time
Zi+1 for sending the (i+1)-th packet is Z̄. Because the terms

E
[
ω∗V (1− q(Yi+1)) + (1− ω∗)V (p(Yi+1))

]
do not depend on the waiting time Z̄, we can reformulate the
optimization problem as

inf
Z̄∈N

E

Z̄+Yi+1−1∑
k=0

(H(τk(ω))− p̄nopt)

. (50)

Based on (50), we can derive that Z̄ = 0 if

inf
Z̄∈N+

E

Z̄+Yi+1−1∑
k=0

(H(τk(ω))− p̄nopt)


≥ E

Yi+1−1∑
k=0

(H(τk(ω))− p̄nopt)

.
(51)

After some rearrangement and elimination, the inequality (51)
can also be expressed as

inf
Z̄∈N+

E

Z̄−1∑
k=0

[H(τk+Yi+1(ω))− p̄nopt]

 ≥ 0. (52)

Because the left-hand side of (52) are the infimum of strictly
increasing and linear functions of p̄nopt, The inequality (52)
holds if and only if

inf
Z̄∈N+

{
1

Z̄
E

Z̄−1∑
k=0

[H(τk+Yi+1(ω))]

} ≥ p̄nopt. (53)

The left-hand side of (53) has the same expression as the index
function η(ω) given by (21). Similarly, Z̄ = 1, if Z̄ ̸= 0 and

inf
Z̄∈{2,3,··· }

E

Z̄−1∑
k=0

[H(τk+Yi+1(ω))− p̄nopt]

 ≥ 0, (54)

which is equivalent to

η(τ(ω)) ≥ p̄nopt. (55)

By repetition of the same steps as in (53)-(54), we can
obtain Z̄ = k is optimal, if Z̄ ̸= 0, 1, · · · , k − 1 and

η(τk(ω)) ≥ p̄nopt. (56)

Therefore, the optimal waiting time Zi+1 = Z̄ satisfies

Z̄ = Z(ω, p̄nopt) = min{k ∈ N : η(τk(ω)) ≥ p̄nopt}. (57)

Next, we compute the optimal objective value p̄nopt.
Rewrite Ω(Ri) as Ω(Ri(βψ)) = ω = τYi(ω0), where
ω0 = 1 − q or ω0 = p. And let Zi denote the waiting
time of the i-th submitted information at the receiver. Because
Ri+1(βψ) = Ri(βψ) + Zi+1(βψ) + Yi+1, then we have

E

Ri+1(βψ)−1∑
t=Ri(βψ)

H(Ω(t))

− βψE[Ri+1(βψ)−Ri(βψ)]

= E

Zi+1(βψ)−1∑
k=0

H(τk+Yi+1+Yi(ω0))


+ E

Yi+1−1∑
k=0

H(τk+Yi(ω0))

− βψE[Zi+1(βψ) + Yi+1],

(58)
which implies that p̄nopt = βψ is the root of (13), if the
following equation holds

E

Zi+1(βψ)−1∑
k=0

H(τk+Yi+1+Yi(ω0))

+
E

Yi+1−1∑
k=0

H(τk+Yi(ω0))

− p̄noptE[Zi+1(βψ) + Yi+1] = 0.

(59)
From (49), we can get that

Vψ(τ
Yi(ω0))

= E

Yi+1−1∑
k=0

[H(τk+Yi(ω0))− p̄nopt]


+ E

Zi+1(βψ)−1∑
k=0

[H(τk+Yi+1+Yi(ω0))− p̄nopt]


+ E

[
ω∗Vψ(τ

Yi+1(1− q)) + (1− ω∗)Vψ(τ
Yi+1(p))

]
,

(60)

According to the law of iterated expectations, if we take
expectation over ω0 on both sides of (60), the following
equation is obtained

E
[
Vψ(τ

Yi(ω0))
]

= E

Yi+1−1∑
k=0

[H(τk+Yi(ω0))− p̄nopt]





+ E

Zi+1(βψ)−1∑
k=0

[H(τk+Yi+1+Yi(ω0))− p̄nopt]


+ E

[
Vψ(τ

Yi+1(ω0))
]
. (61)

Because the remote source is a finite-state ergodic Markov
chain with a unique stationary distribution, we have that
E
[
Vψ(τ

Yi(ω0))
]
= E

[
Vψ(τ

Yi+1(ω0))
]
. Consequently, (61) is

transformed into

E

Yi+1−1∑
k=0

[H(τk+Yi(ω0))− p̄nopt]


+ E

Zi+1(βψ)−1∑
k=0

[H(τk+Yi+1+Yi(ω0))− p̄nopt]

 = 0,

(62)

which is equivalent to (59).
Finally, we prove that the root of (13) is unique. According

to the optimal index policy, the right-hand side of (58) can be
expressed as

E

Zi+1(βψ)−1∑
k=0

[H(τk+Yi+1+Yi(ω0))− βψ]


+ E

Yi+1−1∑
k=0

[H(τk+Yi(ω0))− βψ]


= inf
µ∈N

E

[
µ−1∑
k=0

[H(τk+Yi+1+Yi(ω0))− βψ]

]

+ E

Yi+1−1∑
k=0

[H(τk+Yi(ω0))− βψ]

.

(63)

Since the first term is the pointwise infimum of the linear
decreasing functions of βψ and the second term is a linear
decreasing function of βψ , the right-hand side of (63) is a
continuous, concave, and strictly decreasing function of βψ .
Thus the first term of the right-hand side of (63) satisfies

lim
βψ→−∞

inf
µ∈N

E

[
µ−1∑
k=0

[H(τk+Yi+1+Yi(ω0))− βψ]

]
= ∞, (64)

and

lim
βψ→∞

inf
µ∈N

E

[
µ−1∑
k=0

[H(τk+Yi+1+Yi(ω0))− βψ]

]
= −∞, (65)

and the second term of the right-hand side of (63) satisfies

lim
βψ→−∞

E

Yi+1−1∑
k=0

[H(τk+Yi(ω0))− βψ]

 = ∞, (66)

and

lim
βψ→∞

E

Yi+1−1∑
k=0

[H(τk+Yi(ω0))− βψ]

 = −∞. (67)

Therefore, we can obtain that (13) has a unique root. This
completes the proof.

APPENDIX D
PROOF OF LEMMA 2

A. Proof of Part (i)

We prove that p̄opt ⋚ β if and only if g(β) ⋚ 0.
1) p̄opt ≤ β ⇔ g(β) ≤ 0
If p̄opt ≤ β, there exists a policy π = (Z1, Z2, · · · ) ∈ Π

that is feasible for both (33) and (34) such that

lim
n→∞

∑n−1
i=0 Eπ

[∑Zi+1+Yi+1−1
k=0 H(τk(ω))

]
∑n−1
i=0 Eπ[Zi+1 + Yi+1]

≤ β, (68)

which is equivalent to

lim
n→∞

1
n

∑n−1
i=0 Eπ

[∑Zi+1+Yi+1−1
k=0 [H(τk(ω))− β]

]
1
n

∑n−1
i=0 Eπ[Zi+1 + Yi+1]

≤ 0.

(69)
Since the inter-sampling times (Yi+1 +Zi+1) are regenerative
[41, Section 6.1], Yi+1 > 0, and 0 ≤ Zi+1 < ∞, the limit
limn→∞

1
n

∑n−1
i=0 E[Zi+1 + Yi+1] always exists and positive,

which means that

0 < lim
n→∞

1

n

n−1∑
i=0

E[Zi+1 + Yi+1] <∞. (70)

for any policy. Thus we have

lim
n→∞

1

n

n−1∑
i=0

E

Zi+1+Yi+1−1∑
k=0

[H(τk(ω))− β]

 ≤ 0, (71)

which implies that g(β) ≤ 0, as g(β) is the infimum value.
On the reverse direction, if g(β) ≤ 0, we can know that

there exists a policy π = (Z1, Z2, · · · ) ∈ Π that is feasible for
both (33) and (34) satisfying (71). Because (70) always holds,
we can obtain that (69) and (68) holds. Therefore, p̄opt ≤ β.

2) p̄opt > β ⇔ g(β) > 0
If p̄opt > β, for any policy π = (Z1, Z2, · · · ) ∈ Π that is

feasible for both (33) and (34) we have that

lim
n→∞

∑n−1
i=0 E

[∑Zi+1+Yi+1−1
k=0 H(τk(ω))

]
∑n−1
i=0 E[Zi+1 + Yi+1]

> β. (72)

With (70) in hand, we derive that for any policy

lim
n→∞

1

n

n−1∑
i=0

E

Zi+1+Yi+1−1∑
k=0

[H(τk(ω))− β]

 > 0, (73)

which implies that g(β) > 0.
On the contrary, if the infimum value g(β) > 0, then (73)

holds for any policy. Similar to the proof of p̄opt ≤ β ⇔
g(β) ≤ 0, we can finally derive that p̄opt > β.

B. Proof of Part (ii)

From (34), we can see that g(β) is the pointwise infimum
of the linear decreasing functions of β. Consequently, the root
of g(β) = 0 is unique. Combining with the assertion in Part
(i), we get that p̄opt is the unique root of g(β) = 0.

This completes the proof.
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