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Abstract

We introduce a new class of probabilistic cellular automata that are capable of exhibiting rich
dynamics such as synchronization and ergodicity and can be easily inferred from data. The sys-
tem is a finite-state locally interacting Markov chain on a circular graph. Each site’s subsequent
state is random, with a distribution determined by its neighborhood’s empirical distribution
multiplied by a local transition matrix. We establish sufficient and necessary conditions on the
local transition matrix for synchronization and ergodicity. Also, we introduce novel least squares
estimators for inferring the local transition matrix from various types of data, which may consist
of either multiple trajectories, a long trajectory, or ensemble sequences without trajectory in-
formation. Under suitable identifiability conditions, we show the asymptotic normality of these
estimators and provide non-asymptotic bounds for their accuracy.
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1 Introduction
Interacting systems, including probabilistic cellular automata (PCA) [Too94, LMS90, LN18] and
interacting particle systems (IPS) [Lig85, Dur07, Ald13, Gri18], have a wide range of applications
in Physics, Computer Science and Electrical Engineering, Economics and Finance, Biology and
Sociology, Epidemiology and Ecology. These applications drive a growing interest in studying the
dynamics of these systems and inference of model parameters from observational data. As Aldous
[Ald13] pointed out, it is “the most broad-ranging currently active field of applied probability”;
however, “it is easy to invent and simulate models, but hard to give rigorous proofs or to relate
convincingly to real-world data”. In this study, we introduce a new class of PCA that exhibits
rich dynamics, yet can be easily inferred from observational data. We rigorously prove dynamical
properties such as synchronization and ergodicity, and then construct computationally efficient
estimators for which we prove properties such as asymptotic normality and non-asymptotic bounds.

We consider a new class of probabilistic cellular automata (PCA) on a N -node cyclic graph pV,Eq

and a finite alphabet A, in which every site updates independently with a distribution determined
by its neighborhood’s empirical distribution multiplied by a local transition matrix.

The probabilistic cellular automaton we consider is a finite-state Markov chain:

Xptq “ pX1ptq, . . . , XN ptqq “: X1:N ptq P AN , A “ t1, . . . ,Ku “: rKs

on a cyclic graph pV,Eq with nodes indexed by V “ t1, 2, . . . , Nu “: rN s and with edges in E
connecting nodes within distances nv, that is, nodes n and n1 are connected whenever |n´n1| ď nv

(modulo N). Conditional on Xptq, each vertex n makes updates independently depending on its
neighborhood

Vn “ tn ´ nv, . . . , n, n ` 1, . . . , n ` nvu (modulo N , e.g., 0 is viewed as N),

and the transition probability of Xptq is in the form

P tXpt ` 1q “ px1, . . . , xN q|Xptqu “

N
ź

n“1

P tXnpt ` 1q “ xn|pXn1ptqqn1PVnu . (1.1)

In particular, the local transition probability P tXnpt ` 1q “ xn|pXn1ptqqn1PVnu of the nth vertex
depends linearly on the empirical distribution of its neighborhood:

P tXnpt ` 1q “ xn|pXn1ptqqn1PVnu “ φn,tTp¨, xnq, (1.2)

where T P r0, 1sKˆK is a row stochastic matrix (that is,
řK

k“1Tpj, kq “ 1 for each j) that we call local
transition matrix, and φn,t P R1ˆK is the local empirical distribution of the vertex’s neighborhood
Vn at time t

φn,t “ pφn,tp1q, . . . , φn,tpKqq, with φn,tpkq :“
1

|Vn|

ÿ

jPVn

δXjptqpkq, k P rKs , (1.3)

where |Vn| is the cardinality of Vn, and δ is the Kronecker delta function.
Equivalently, the Markov chain Xp¨q has a global transition matrix P P RKNˆKN determined

by the local transition matrix T:

Ppx1:N , y1:N q “

N
ź

n“1

ϕnT¨,yn “

N
ź

n“1

1

|Vn|

ÿ

jPVn

Tj,yn (1.4)
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for any configurations x1:N , y1:N P rKsN , where ϕnpkq :“ 1
|Vn|

ř

jPVn
δxj pkq for k P rKs and n P rN s.

One can also view the system’s evolution as follows: at each update step, every vertex samples a
state from its neighbors uniformly at random, and then independently jumps according to the local
transition matrix T.
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(a) PCA on a circle (b) From deterministic to stochastic (c) Synchronization

Figure 1: (a) The system of N “ 8 agents on a graph with an alphabet A “

tYellow, Turquoise, and Blueu with K “ 3. Each agent’s transition depends linearly on the empir-
ical distribution of its nearest neighbors with nv “ 2 agents on each side. (b) The system moves
from deterministic to stochastic dynamics; see Example 2.3. (c) The system moves from stochastic
to deterministic dynamics, reaching a synchronization; see Example 2.4.

The key feature of our model is the linear dependence of the local transition probability in (1.2)
on the local empirical distribution, represented by a local transition matrix. Such a linear depen-
dence significantly reduces the number of parameters describing the local transition probability,
which has a size K |Vn|`1 since it assigns a R1ˆK-valued probability to each of the K |Vn| possible
states of the neighborhood Vn. Without the linear dependence, the transition probability is overly
complicated for analysis and requires a significant amount of data for its estimation. In contrast,
with the linear dependence, our model has only K2 parameters instead of K |Vn|`1, significantly
reducing the model complexity and the amount of data needed for inference.

The Markov chain can exhibit rich dynamics such as synchronization and ergodicity. Figure
1 illustrates two systems with pN,K, nvq “ p8, 3, 2q and with different local transition matrices.
Figure 1(b) shows a trajectory exhibiting a transition from deterministic to stochastic dynamics,
and Figure 1(c) shows a trajectory exhibiting synchronization.

1.1 Main results

We first study how the local transition matrix determines important features of the global dynamics
by establishing sufficient and necessary conditions on the local transition matrix for synchronization
and ergodicity. When the local transition matrix T is irreducible, Theorem 2.7 shows that the system
will achieve a synchronization if and only if T is periodic with period K, and Theorem 2.10 shows
that the system is exponentially ergodic if and only if T is aperiodic. In short,

T irreducible :

#

periodic with period K ô synchronization
aperiodic ô exponential ergodicity.

We then study the dependencies between the global transition probability matrix of the Markov
chain and the local transition matrix. Theorem 3.2 shows that there is a 1-1 map between the
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global transition matrix P P RKNˆKN and the local transition matrix; additionally, the invariant
measure of T is the marginal distribution of the invariant measure of P. Theorem 3.5 shows that
P is Lipschitz in T under the total variation norm.

In Section 4, we introduce and study the properties of least squares estimators (LSEs) for
inferring the local transition matrix from various types of data. The data may consist of multiple
trajectories, a long trajectory, or ensemble sequences without trajectory information. Except for the
case of a long trajectory, the system can be non-ergodic. These LSEs use the marginal distributions
of each vertex and are more efficient to compute than the maximal likelihood estimator, which would
involve non-convex optimization. We specify identifiability conditions for these LSEs and a non-
identifiability for inference using stationary distribution in Section 4.4. We show the asymptotic
normality of these estimators in Theorems 4.4 and 4.10 and provide non-asymptotic bounds for
their accuracy in Section 4.5. Numerical tests show that the LSE with trajectory information is
more accurate than the LSE without trajectory information, while both converge at the optimal
rate M´1{2, with M being the sample size.

1.2 Related work

Probabilistic cellular automata (PCA). PCA are large interacting discrete stochastic dy-
namical systems for the modeling of a wide range of physical and societal phenomena, and we refer
to [Too94,LMS90,LN18] and the reference therein for the applications. Motivated by the applica-
tions, there is consistent interest in studying the ergodicity of the systems; see, e.g., Dawson [Daw75]
for a system with interacting subsystems, Follmer and Horst [FH01] for the averaged process of an
interacting Markov chain with an infinite set of sites, Bérard [Bér23] for the exponential ergodicity
of a 1D PCA with a local transition kernel on a three-state alphabet, and Casse [Cas23] for the
ergodicity of a PCA with binary alphabet via random walks. The innovation in our model above is
introducing a local transition matrix, which enables efficient estimation, while leaving the system
capable of producing rich dynamics, exhibiting phenomena such as synchronization or ergodicity.

Interacting particle systems (IPSs). IPSs are continuous-time Markov processes on certain
spaces of configurations of finitely or infinitely many interacting particles. The state space can
be either discrete, such as the stochastic Ising model or the voter model [Lig85, Dur07, Ald13,
Gri18], or continuous in the form of stochastic differential equations [CM08,CDP18,LRW21]. The
interaction rules, either short-range or long-range, are often specified by functions called interaction
kernels/potentials [Lig85,CDP18] or rate functions [Ald13]. Thus, our local transition matrix can
be viewed as a counterpart of these interaction kernels or rate functions.

Inference of the local transition matrix. The inference of the local transition matrix is akin to
the nonparametric estimation of the interaction kernel of interacting particle systems in [LZTM19,
LMT21, DMH22, LWLM24], where inference leads to a linear inverse problem and is solved by
least squares. However, the estimators in those works maximize the likelihood; here, our LSEs
are different from the maximal likelihood estimator, which would lead to a constrained non-convex
optimization problem, as discussed in Section 4.1.1. Also, while the identifiability conditions are
specified based on the large sample limit case, in the same spirit as the coercivity condition on
function spaces in [LLM`21,LL23], this study considers parametric inference, so the identifiability
conditions are less restrictive.

We use the notations in Table 1 throughout the paper. We denote the entries of T P RKˆK by
Tjk with j, k P rKs, and denote the entries of P P RKNˆKN by Ppx, yq with x, y P rKsN , where
x “ x1:N :“ px1, . . . , xN q with xi P rKs.
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Table 1: Notations.

k P A “ rKs “ t1, . . . ,Ku alphabet set for state values
n P rN s “ t1, 2, . . . , Nu index of vertices/agents in the graph
m P rM s, t P rLs index of sample trajectories and index of time
Xptq P AN state of the Markov chain at time t
Vn and nv the n-th vertex’s neighborhood Vn, consisting of 2nv ` 1 vertices
φn,t “ pφn,tp1q, . . . , φn,tpKqq empirical distribution in Vn at time t; r0, 1s1ˆK-valued
cn,t “ pcn,tp1q, . . . , cn,tpKqq empirical distribution of Xnptq: cn,tpkq :“ δXnptqpkq

T P r0, 1sKˆK local transition matrix:
řK

k“1Tjk “ 1,@j

P P r0, 1sK
NˆKN (global) transition matrix of the Markov chain

} ¨ }, } ¨ }F , } ¨ }op Euclidean, Frobenius and operator norms

2 Dynamical properties: synchronization and ergodicity
This section studies the dynamical properties of the process Xp¨q in (1.1)-(1.2) as a Markov chain
with KN states. We fully characterize the long-time behavior of the system when the local tran-
sition matrix T is irreducible. In particular, Theorem 2.7 shows that the system will achieve a
synchronization if and only if T is periodic with period K; Proposition 2.6 shows that the system
will eventually be periodic with the same period as that of T; and Theorem 2.10 and Proposition
2.9 show that the system is exponentially ergodic if and only if T is aperiodic.

To study the Markov chain, we recall the following preliminaries about a finite-state Markov
chain, denoted by Zptq, which has states in rns and transition matrix A P Rnˆn.

• Irreducible matrix. The transition matrix A P Rnˆn is called irreducible if @i, j P rns2, Dt P N,
such that pAtqij ą 0.

• Period of a matrix. The period dpiq of a state i is the greatest common divisor of all m such
that pAmqii ą 0, i.e., dpiq :“ gcdtm P N : pAmqii ą 0u. When A is irreducible, the period
of every state is the same and is called the period of A. The irreducible matrix A is called
aperiodic if its period is one.

• Recurrence and Transience. A state i is called recurrent if P tτi ă 8|Zp0q “ iu “ 1, where
τi “ mintt P N : Zptq “ iu; in other words, the chain that starts from this state returns to it
in finite time with probability one. The state i is called transient if P tτi ă 8|Zp0q “ iu ă 1.
The state is called positive recurrent if Erτi|Zp0q “ is ă 8.

In the following, we first present a few examples of a locally interacting Markov chain, showing
that the Markov chain can have various dynamical properties. Then, we study the sufficient and
necessary conditions for the system to synchronize or to be ergodic.

2.1 Examples: stochastic dynamics and synchronization

We introduce four examples: non-interacting agents, the smallest model, a system transitioning
from deterministic to stochastic dynamics, and a system achieving synchronization.

Example 2.1 (Non-interacting agents) When the agents do not interact, i.e., nv “ 0, they
move independently according to a Markov chain with T as the probability transition matrix. That
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is, the process Xptq “ pX1ptq, X2ptq, ¨ ¨ ¨ , XN ptqq is a vector of N independent Markov chains with
the same transition matrix T.

Example 2.2 (Smallest model: pN,Kq “ p2, 2q) Consider the model with pN,K, nvq “ p2, 2, 1q.
Since the neighborhood is the full network for each site, the local empirical distributions are the same
for all sites, that is, we have ϕ1 “ ϕ2 for all states. The following table shows the local empirical

distributions and the global transition matrix with a local transition matrix T “

ˆ

T11 T12

T21 T22

˙

:

Global transition probabilityP
x ϕ1 “ ϕ2 11 12 21 22

11 p1, 0q T2
11 T11T12 T11T12 T2

12

12 p0.5, 0.5q 1
4pT11 ` T21q2 Pp12, 12q Pp12, 21q 1

4pT12 ` T22q2

21 p0.5, 0.5q 1
4pT11 ` T21q2 Pp21, 12q Pp21, 21q 1

4pT12 ` T22q2

22 p0, 1q T2
21 T11T12 T11T12 T2

22

where Pp12, 12q “ Pp12, 21q “ Pp21, 12q “ Pp21, 21q “ 1
4pT11 ` T21qpT12 ` T22q.

Example 2.3 (From deterministic to stochastic dynamics) The system can change from de-
terministic to stochastic dynamics. Let T be such that Ti,i`1 “ 1 for i “ 1, . . . ,K´1 and TK,j “ 1

K
for j “ 1, . . . ,K; that is,

T “

»

—

—

—

—

—

–

0 1 0 ¨ ¨ ¨ 0
0 0 1 ¨ ¨ ¨ 0
...

...
. . . . . .

...
0 0 0 ¨ ¨ ¨ 1
1
K

1
K

1
K ¨ ¨ ¨ 1

K

fi

ffi

ffi

ffi

ffi

ffi

fl

. (2.1)

The system’s dynamics will move from deterministic to stochastic if it starts with state p1, . . . , 1q P

AN . Specifically, note that we have φn,0 “ p1, 0, ¨ ¨ ¨ , 0q “: e1 P R1ˆK for each n P rN s. Then, the
value of each site moves to the next value deterministically, i.e., Xptq “ pt`1, t`1, ¨ ¨ ¨ , t`1q P AN ,
for t ď K ´ 1. Correspondingly, we have φn,t “ et`1 P R1ˆK for each n P rN s and t ď K ´ 1.
When t ą K ´ 1, the move becomes stochastic as the last row of the local transition matrix injects
the randomness. Figure 1(b) shows a typical trajectory of the system when pN,K, nvq “ p8, 3, 2q.

Example 2.4 (Synchronization: from stochastic to deterministic dynamics) When T is a
permutation matrix such that it is irreducible with period K, e.g.,

T “

»

—

—

—

—

—

–

0 1 0 ¨ ¨ ¨ 0
0 0 1 ¨ ¨ ¨ 0
...

...
. . . . . .

...
0 0 0 ¨ ¨ ¨ 1
1 0 0 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

ffi

ffi

fl

, (2.2)

the Markov chain will achieve synchronization (see Theorem 2.7), in which all sites move from one
state to another with the same period as T, as demonstrated in Figure 1(c) for a typical trajectory
of the system when pN,K, nvq “ p8, 3, 2q. In particular, the deterministic dynamics of the Markov
chain after synchronization is as follows. Without loss of generality, suppose that it starts from the
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state Xp0q “ p1, . . . , 1q P AN . The local empirical distributions are φn,0 “ p1, 0, ¨ ¨ ¨ , 0q “: e1 P

R1ˆK for each n P rN s. Then, all vertices move uniformly from one state to the next, that is,
Xptq “ pt ` 1, . . . , t ` 1q for t ď K ´ 1, and then repeat periodically, as shown in the following
tabular.

t “ 0 t “ 1 ¨ ¨ ¨ t “ K ´ 1 t “ K ¨ ¨ ¨

Xptq p1, 1, ¨ ¨ ¨ , 1q p2, 2, ¨ ¨ ¨ , 2q ¨ ¨ ¨ pK,K, ¨ ¨ ¨ ,Kq p1, 1, ¨ ¨ ¨ , 1q ¨ ¨ ¨

φn,t e1 e2 ¨ ¨ ¨ eK e1 ¨ ¨ ¨

The corresponding local distributions are φn,t “ et`1 P R1ˆK for each n P rN s and t ď K ´ 1.

2.2 Synchronization

We show first that the system with irreducible local transition matrix T will synchronize if and only
if T is periodic with period K.
Definition 2.5 (Synchronization) We say the system achieves a synchronization at time t0 if
all sites move identically after t0, i.e., X1ptq “ X2ptq “ ¨ ¨ ¨ “ XN ptq for all t ě t0.

The following proposition says that if T is irreducible and periodic, then the Markov chain Xp¨q

will eventually be periodic.

Proposition 2.6 Suppose that T is irreducible and periodic with period 2 ď d ď K. Then

(i) rKs can be decomposed as a finite disjoint union C0 Y ¨ ¨ ¨ YCd´1, such that (setting Cd “ C0),
Tjk ą 0 only if j P Cr and k P Cr`1 for some r.

(ii) For Xp¨q, the collection of states

A :“ CbN
0 Y ¨ ¨ ¨ Y CbN

d´1 Ă rKsN

is periodic with period d. The collection of states rKsNzA is transient.

Proof. (i) This is a standard result; see, e.g. [Nor98, Theorem 1.8.4].
(ii) It follows from (i) that the states in A are periodic with period d. It remains to show that

the states in rKsNzA are transient. For this, we will show that starting from Xp0q “ x1:N for any
configuration x1:N “ px1, . . . , xN q P rKsNzA, there is some t0 P N such that P tXpt0q P Au ą 0.
Assume without loss of generality that x1 P C0. Since T is irreducible, by part (i), there is some
c1 P C1 such that Tc0c1 ą 0. Therefore, recalling the neighborhood V1 “ t1, 2, . . . , 1 ` nv, N ` 1 ´

nv, . . . , N ´ 1, Nu, there is a positive probability that Xp1q has some configuration in

tpy1, . . . , yN q : y1 “ ¨ ¨ ¨ “ y1`nv “ yN`1´nv “ ¨ ¨ ¨ “ yN “ c1u,

i.e., the neighbors of node 1 have the same state c1. Again since T is irreducible, by part (i),
there is some c2 P C2 such that Tc1c2 ą 0. So there is a positive probability that Xp2q has some
configuration in

tpy1, . . . , yN q : y1 “ ¨ ¨ ¨ “ y1`2nv “ yN`1´2nv “ ¨ ¨ ¨ “ yN “ c2u,

i.e., the neighbors of neighbors of node 1 have the same state c2. Continuing in this manner, we see
that there is a positive probability for X to jump after at most r N

2nv
s steps to some state in A, i.e.,

P
!

Xpr N
2nv

sq P A
)

ą 0.
Using Proposition 2.6, we have the following characterization of when synchronization occurs.
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Theorem 2.7 (Synchronization) Suppose that T is irreducible. Then, the system will achieve
synchronization (with period K) if and only if the period of T is K.

Proof. (i) First, we prove the “if” direction. Suppose the period of T is K. Then the decomposition
of rKs in Proposition 2.6(i) must have the form that each Cr is a singleton. So the collection of
states A in Proposition 2.6(ii) is actually just

tpk, . . . , kq P rKsN : k P rKsu. (2.3)

Also, by Proposition 2.6(ii), all states in rKsNzA are transient and will eventually jump to some
state in A. Therefore, the system will achieve synchronization with period K.

(ii) Next, we prove the “only if” direction. Suppose that the system will achieve synchronization.
Then there exists some k0 P rKs such that, starting from pk0, . . . , k0q P rKsN , the system will jump
only among the collection of states in (2.3). This implies that Tk0,k1 “ 1 for some k1 P rKsztk0u.
This further implies, for each r “ 1, . . . ,K ´ 2, Tkr,kr`1 “ 1 for some kr`1 P rKsztk0, . . . , kru,
as otherwise we have kr`1 “ kj for some 0 ď j ď r and it contradicts the assumption that T is
irreducible. Finally, again by irreducibility of T, we must have TkK´1,k0 “ 1. Therefore, the period
of T is K.

Remark 2.8 The arguments in the proof of Proposition 2.6 also reveal that when T is reducible, it
is still possible that the system will reach a synchronization. For example:

(i) If T has some transient states, such as T “

»

–

0 1 0
0 0 1
0 1 0

fi

fl, then eventually, the system will reach

a synchronization and oscillate between p2, . . . , 2q, p3, . . . , 3q P rKsN .

(ii) If T has more than one communication class, such as T “

»

—

—

–

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

fi

ffi

ffi

fl

, then eventually the

system will reach a synchronization and oscillate between the configurations p1, . . . , 1q, p2, . . . , 2q P

rKsN , or between p3, . . . , 3q, p4, . . . , 4q P rKsN .

2.3 Ergodicity

We show that the system with an irreducible local transition matrix T is ergodic if and only if T is
(irreducible and) aperiodic.

Proposition 2.9 The global transition matrix P is irreducible and aperiodic if and only if the
stochastic matrix T is irreducible and aperiodic.

Proof. (i) First, we prove the “if” direction: We will show that P is irreducible and aperiodic
when T is irreducible and aperiodic. It suffices to show that there exists l0 such that for all l ě l0,
Plpx, yq ą 0 for all x “ pj1, . . . , jN q, y “ pk1, . . . , kN q P rKsN .

Since T is irreducible and aperiodic, there exists some l0 such that for all l ě l0 and j, k P rKs,
pTlqjk ą 0. Fix such an l. For each n P rns, pTlqjnkn ą 0 implies that there exists a sequence
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i1pjn, knq, . . . , ilpjn, knq P rKs such that Tji1pjn,knqTi1pjn,knqi2pjn,knq ¨ ¨ ¨Tilpjn,knqk ą 0. Let xptq “

pitpj1, k1q, . . . , itpjN , kN qq for 1 ď t ď l. Then,

Pptqpx, yq ě Ppx, xp1qqPpxp1q, xp2qq ¨ ¨ ¨Ppxplq, yq.

Meanwhile, noting that the neighborhood of the node n includes itself, we have ϕnpxnq ě 1
|Vn|

for any x “ x1:N . Thus, (1.4) implies that

Ppx1:N , y1:N q ě

N
ź

n“1

1

|Vn|
Txn,yn

for any states x1:N and y1:N . Thus, Ppxptq, xpt`1qq ě
śN

n“1
1

|V t
n|
T

x
ptq
n ,x

ptq
n

for each t, where V t
n is the

neighborhood of the n-th agent at time t. Hence,

Pplqpx, yq ě

N
ź

n“1

ˆ

Tjni1pjn,knqTi1pjn,knqi2pjn,knq ¨ ¨ ¨Tilpjn,knqkn ¨
1

|V l
n|

˙

ą 0.

Thus, P is also irreducible and aperiodic.
(ii) Next, we prove the “only if” direction. Let Xp¨q be irreducible and aperiodic.
Suppose T is reducible. Then there exists A Ă rKs with A,Ac ‰ H such that for all j P A, k P Ac

and l ě 1, Tplq
jk “ 0. Then for all x “ pj1, . . . , jN q P AbN , y “ pk1, . . . , kN q P pAcqbN and l ě 1,

Plpx, yq “ 0, so P is reducible. This leads to a contradiction, and hence T must be irreducible.
Suppose T is irreducible but periodic with period d ě 2. Then, by Proposition 2.6(ii), Xp¨q is

not irreducible, which is a contradiction. This completes the proof.

Theorem 2.10 Assume that the stochastic matrix T is irreducible and aperiodic. Then, Xp¨q is
irreducible, aperiodic, and hence ergodic. In particular, there exists a unique stationary distribution
π, all states are positive recurrent, limtÑ8 P tXptq “ ¨u “ πp¨q, and there exist C P p0,8q, ρ P p0, 1q

and t0 P N such that
}Ptpx, ¨q ´ π}TV ď Cρt, @ t ě t0, x P rKsN . (2.4)

Proof. By Proposition 2.9, we have that Xp¨q is irreducible and aperiodic. Then it remains to prove
(2.4), as the rest of the statements are classic results (see, e.g., Proposition A.1 for completeness).

Since Xp¨q is irreducible and aperiodic, there exists some t0 P N such that

Pt0px, yq ą 0, @x, y P rKsN .

Therefore |Pt0px, yq ´ Pt0px1, yq| ă maxtPt0px, yq,Pt0px1, yqu ă Pt0px, yq ` Pt0px1, yq for any
x, x1, y P rKsN . Hence, ρ0 :“ 1

2 maxx,x1

ř

yPrKsN maxtPt0px, yq,Pt0px1, yqu ă
ř

yPrKsN rPt0px, yq `

Pt0px1, yqs “ 1 and

}Pt0px, ¨q ´ Pt0px1, ¨q}TV “
ÿ

yPrKsN

|Pt0px, yq ´ Pt0px1, yq|

ă
ÿ

yPrKsN

maxtPt0px, yq,Pt0px1, yqu ď 2ρ0, @x, x1 P rKsN .

9



It then follows from Proposition A.2 that

}Pkt0px, ¨q ´ π}TV ď 2ρk0, @ k P N, x P rKsN .

For t ě t0, writing t “ t t
t0

ut0 ` pt ´ t t
t0

ut0q, we have

}Ptpx, ¨q ´ π}TV ď 2ρ
t t
t0

u

0 “
2

ρ0
ρ

t t
t0

u`1

0 ď
2

ρ0
pρ

1{t0
0 qt, @x P rKsN .

This gives (2.4) with C “ 2
ρ0

P p0,8q and ρ “ ρ
1{t0
0 P p0, 1q.

The following corollary is a particular case of Theorem 2.10, with t0 “ 1 in its proof.

Corollary 2.11 Suppose Tjk ą 0 for all j, k P rKs. Then all the statements in Theorem 2.10 hold.
In fact, there exists ρ P p0, 1q such that

}Ptpx, ¨q ´ π}TV ď 2ρt, @ t ě 1, x P rKsN .

3 Global and local transition matrices

We study in this section the relation between the global transition matrix P P RKNˆKN and the local
transition matrix T P RKˆK , and their associated invariant measures. Throughout this section, we
assume that T is irreducible and aperiodic, and so is P by Proposition 2.9.

3.1 Local and global transition matrices and associated invariant measures

We show that there exists a 1-1 map between the global and local transition matrices P and T.
Furthermore, we show that π̃ is the marginal of π, where π P RKN and π̃ P RK denote the unique
invariant measures of P and T, respectively. That is, the marginal distribution of the Markov chain’s
invariant measure is the same as the invariant measure of T. However, the marginal distribution
does not determine T, as we show in Example 3.3 that there are two T’s leading to the same π̃ and
different π’s; nor does the joint invariant distribution, as we show in Example 3.4 that there are two
T’s leading to the same π̃ and π.

Proposition 3.1 (Shift-invariance) The transition matrix P is shift invariant. Therefore, the
invariant measure π is shift invariant, namely, for each px1, . . . , xN q P rKsN ,

πpx1, . . . , xN q “ πpx2, . . . , xN , x1q.

Proof. Recall the neighborhood Vn “ tn ´ nv, . . . , n, n ` 1, . . . , n ` nvu. Clearly, the graph
G “ pV,Eq is invariant under the shift of the node indices t1, . . . , nu. As the transition of Xp¨q

in (1.1) and (1.2) depends on states through the empirical distribution of neighborhood’s states,
clearly the transition matrix P is shift invariant. Since the invariant measure π is unique, we also
have shift-invariance of π.

The next theorem shows that there is a 1-1 correspondence between the local and global tran-
sition matrices. In particular, T is determined by K2 entries of P.

Theorem 3.2 (1-1 map between P and T, π̃ as the marginal of π) There is a 1-1 map be-
tween T P RKˆK and P P RKNˆKN . Furthermore, denote by πn the n-th marginal distribution of
π, i.e., πnpkq “ limtÑ8 PpXnptq “ kq, @ k “ 1, . . . ,K. Then πn “ π̃.

10



Proof. Eq.(1.4) shows that T uniquely determines P. It also implies that

Tjk “ Ppx1:N , y1:N q1{N , with x1:N “ pj, . . . , jq, y1:N “ pk, . . . , kq.

Therefore there is a 1-1 map between T P RKˆK and P P RKNˆKN .
Next, we prove that the marginal distribution πn of the invariant measure π of P is the same as

the invariant measure π̃ of T. By shift-invariance in Proposition 3.1, πn “ πm for all n,m P rN s.
Since π is the invariant measure of P, we have π “ πP. Applying (1.4), we can write

πpy1:N q “
ÿ

x1:NPrKsN

πpx1:N q

N
ź

n“1

1

|Vn|

n`nv
ÿ

n1“n´nv

Txn1yn .

Note that 1
|Vn|

řn`nv
n1“n´nv

Txn1yn depends on py1:N q only through yn. Summing over py2, . . . , yN q P

t1, . . . ,KuN´1, we have

π1py1q “
ÿ

px1:N qPrKsN

πpx1:N q
1

|V1|

1`nv
ÿ

n1“1´nv

Txn1y1 “
1

|V1|

1`nv
ÿ

n1“1´nv

ÿ

xn1 PrKs

πn1pxn1qTxn1y1 .

By symmetry of π, we have
π1py1q “

ÿ

kPt1,...,Ku

π1pkqTky1 ,

namely π1 “ π̃.
However, one generally does not have π as the product measure of π̃. In fact, π is not completely

determined by π̃. As illustrated in the following example, one can have two different T’s with the
same π̃ but different π’s.

Example 3.3 (Same marginal, different invariant measures, T and P’s) Consider K “ 2,
N “ 2 and Vn “ t1, 2u without doubling counting the other vertex.

(i) If T “

„

1{2 1{2
1 0

ȷ

, then P “

»

—

—

–

1{4 1{4 1{4 1{4
9{16 3{16 3{16 1{16
9{16 3{16 3{16 1{16
1 0 0 0

fi

ffi

ffi

fl

, π̃p1q “ 2{3, π̃p2q “ 1{3, πp1, 1q “

10{21, πp1, 2q “ πp2, 1q “ 4{21, πp2, 2q “ 3{21.

(ii) If T “

„

3{4 1{4
1{2 1{2

ȷ

, then P “

»

—

—

–

9{16 3{16 3{16 1{16
25{64 15{64 15{64 9{64
25{64 15{64 15{64 9{64
1{4 1{4 1{4 1{4

fi

ffi

ffi

fl

, π̃p1q “ 2{3, π̃p2q “ 1{3,

πp1, 1q “ 14{31, πp1, 2q “ πp2, 1q “ 20{93, πp2, 2q “ 11{93.

An interesting question is whether a 1 ´ 1 map exists between π and P for the PCA. Clearly
P uniquely determines π. The other direction is not true for a general Markov chain: there can
be multiple transition matrices with the same invariant measure, as shown in Example 3.3, where
two different T’s leading to the same invariant measure rπ. Given the special structure of P being
determined by a local transition matrix T P RKˆK , which has only KpK ´ 1q unknowns, one may
question whether the invariant measure π P RKN can uniquely determine T and consequently P.
The following example demonstrates that the answer is no.
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Example 3.4 (Same invariant measure, different T and P’s) Consider pN,Kq “ p2, 2q as

in Example 3.3. If T “

„

7{12 5{12
5{6 1{6

ȷ

, then P “

»

—

—

–

49{144 35{144 35{144 25{144
289{576 119{576 119{576 49{576
289{576 119{576 119{576 49{576
25{36 5{36 5{36 1{36

fi

ffi

ffi

fl

, and we

still have π̃p1q “ 2{3, π̃p2q “ 1{3, πp1, 1q “ 14{31, πp1, 2q “ πp2, 1q “ 20{93, πp2, 2q “ 11{93. This
example shares the same π̃ and π as in Example 3.3(ii) but it has different T and P.

3.2 Lipschitz dependence on the local transition matrix

We show the Lipschitz dependence of the global transition matrix and its invariant measure on the
local transition matrix.

Theorem 3.5 (Lipschitz dependence on T) Given Tp1q and Tp2q, let P1,P2 be the correspond-
ing global transition matrices and π1, π2 be the stationary measures. Then

}P1 ´ P2}1 ď NKN´1mint}Tp1q ´ Tp2q}1,K}Tp1q ´ Tp2q}1,1u,

where }A}1 “
ř

ij |Ai,j |, and }T}1,1 “ sup}ϕ}1ď1 }ϕT}1 is the 1-operator norm. Also,

}π1 ´ π2}TV ď
1

2p1 ´ τpP1qq
}P1 ´ P2}1 ď NKN´1mint}Tp1q ´ Tp2q}1,K}Tp1q ´ Tp2q}1,1u,

where τpP1q :“ 1
2 maxx,x1 }P1px, ¨q ´ P1px1, ¨q}TV .

Remark 3.6 The above Lipschitz dependence on T for the invariant measure is local because the
constant 1

2p1´τpP1qq
can depend on Tp1q. Numerical tests, as shown in Figure 2, suggest that the

bound for P is optimal, but the bound for π may not.

The proof of Theorem 3.5 is based on the following lemma in [Wal20], which bounds the total
variation between two invariant measures by the difference between their transition probability
matrices. We refer to the general study on the perturbation of Markov chains in [Sch68, Sen88,
HVdH84,CM01].

Lemma 3.7 For two finite irreducible transition matrices P1 and P2 with stationary distributions
π1 and π2,

}π1 ´ π2}TV ď
1

1 ´ τpP1q

ÿ

x

}P1px, ¨q ´ P2px, ¨q}TV ,

where τpP1q :“ 1
2 maxx,x1 }P1px, ¨q ´ P1px1, ¨q}TV .

Using this lemma and the observation that
ř

x }P1px, ¨q ´ P2px, ¨q}TV “ 1
2}P1 ´ P2}1, we have

the following proof for the Lipschitz estimate.
Proof of Theorem 3.5. For x “ px1, . . . , xN q P rKsN and y “ py1, . . . , yN q P rKsN , writing

zn ” znpx, yq “
1

|Vn|

n`nv
ÿ

n1“n´nv

Tp1q
xn1 ,yn , wn ” wnpx, yq “

1

|Vn|

n`nv
ÿ

n1“n´nv

Tp2q
xn1 ,yn ,

we have

P1px, yq “

N
ź

n“1

zn, P2px, yq “

N
ź

n“1

wn.

12



So, by adding and subtracting terms,

|P1px, yq ´ P2px, yq| “

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

n“1

w1 ¨ ¨ ¨wn´1pzn ´ wnqzn`1 ¨ ¨ ¨ zN

ˇ

ˇ

ˇ

ˇ

ˇ

ď

N
ÿ

n“1

|w1 ¨ ¨ ¨wn´1pzn ´ wnqzn`1 ¨ ¨ ¨ zN |

“

N
ÿ

n“1

w1 ¨ ¨ ¨wn´1|zn ´ wn|zn`1 ¨ ¨ ¨ zN .

Noting that zn, wn depend on y only through yn and Tp1q and Tp2q are stochastic matrices, we have
ÿ

ynPrKs

zn “ 1,
ÿ

ynPrKs

wn “ 1.

Therefore

}P1 ´ P2}1 “
ÿ

x,y

|P1px, yq ´ P2px, yq| ď

N
ÿ

n“1

ÿ

x,y

w1 ¨ ¨ ¨wn´1|zn ´ wn|zn`1 ¨ ¨ ¨ zN

“

N
ÿ

n“1

ÿ

x

˜

ÿ

y1

w1

¸

¨ ¨ ¨

˜

ÿ

yn´1

wn´1

¸˜

ÿ

yn

|zn ´ wn|

¸˜

ÿ

yn`1

zn`1

¸

¨ ¨ ¨

˜

ÿ

yN

zN

¸

“

N
ÿ

n“1

ÿ

x,yn

|zn ´ wn| ď

N
ÿ

n“1

ÿ

x,yn

1

|Vn|

n`nv
ÿ

n1“n´nv

|Tp1q
xn1 ,yn ´ Tp2q

xn1 ,yn |.

Noting that by symmetry,
ř

x
1

|Vn|

řn`nv
n1“n´nv

∆Txn1 ,yn “ KN´1
ř

xn
∆Txn,yn , we can write the last

term as
N
ÿ

n“1

KN´1
ÿ

xn,yn

|Tp1q
xn,yn ´ Tp2q

xn,yn | “

N
ÿ

n“1

KN´1}Tp1q ´ Tp2q}1 “ NKN´1}Tp1q ´ Tp2q}1.

Alternatively, note that
ÿ

yn

|zn ´ wn| “
ÿ

yn

ϕnp¨q|T
p1q
¨,yn ´ T

p2q
¨,yn | ď }Tp1q ´ Tp2q}1,1.

So, we also obtain
}P1 ´ P2}1 ď NKN}Tp1q ´ Tp2q}1,1.

By Lemma 3.7 with the fact τpP1q ď 1
2 , we have the estimate on }π1 ´ π2}TV .

Remark 3.8 (Bounds in Frobenius norm.) If entries of P1 ´ P2 are of a similar order, then
vaguely speaking one would expect

}P1 ´ P2}2 « CK´N}P1 ´ P2}1 ď CNK´1}Tp1q ´ Tp2q}1 ď CN}Tp1q ´ Tp2q}2,

which agrees with Figure 2. But the above method only leads to a suboptimal estimate as follows:

}P1 ´ P2}2 ď NpKCKqN{2}Tp1q ´ Tp2q}2, (3.1)
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where CK :“ max
!

maxjPrKs

ř

kPrKspT
p1q

j,kq2,maxjPrKs

ř

kPrKspT
p2q

j,kq2
)

ď 1. To see this, one can
adjust the argument in the above proof and get

|P1px, yq ´ P2px, yq|2 “

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

n“1

w1 ¨ ¨ ¨wn´1pzn ´ wnqzn`1 ¨ ¨ ¨ zN

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď N
N
ÿ

n“1

|w1 ¨ ¨ ¨wn´1pzn ´ wnqzn`1 ¨ ¨ ¨ zN |2

“ N
N
ÿ

n“1

w2
1 ¨ ¨ ¨w2

n´1|zn ´ wn|2z2n`1 ¨ ¨ ¨ z2N .

Since
ř

yn
z2n “

ř

yn

ˇ

ˇ

1
|Vn|

řn`nv
n1“n´nv

T
p1q
xn1 ,yn

ˇ

ˇ

2
ď

ř

yn
1

|Vn|

řn`nv
n1“n´nv

ˇ

ˇT
p1q
xn1 ,yn

ˇ

ˇ

2 and similarly for wn,
i.e.,

ř

yn
z2n ď CK ,

ř

yn
w2
n ď CK , we have

}P1 ´ P2}22 “
ÿ

x,y

|P1px, yq ´ P2px, yq|2 ď N
N
ÿ

n“1

ÿ

x,y

w2
1 ¨ ¨ ¨w2

n´1|zn ´ wn|2z2n`1 ¨ ¨ ¨ z2N

ď NCN´1
K

N
ÿ

n“1

ÿ

x,yn

|zn ´ wn|2 ď NCN´1
K

N
ÿ

n“1

ÿ

x,yn

1

|Vn|

n`nv
ÿ

n1“n´nv

|Tp1q
xn1 ,yn ´ Tp2q

xn1 ,yn |2.

Then, we obtain (3.1) by using symmetry to write the last term as

NCN´1
K

N
ÿ

n“1

KN´1
ÿ

xn,yn

|Tp1q
xn,yn ´ Tp2q

xn,yn |2 “ NCN´1
K KN´1

N
ÿ

n“1

}Tp1q ´ Tp2q}22

“ N2pKCKqN´1}Tp1q ´ Tp2q}22.

4 Inference of the local transition matrix
Inference is the first step in the application of the PCA model. In this section, we construct least
squares estimators (LSEs) to infer the local transition matrix from various types of data. Data
may consist of multiple trajectories, a long trajectory, or ensemble sequences without trajectory
information as in Sections 4.1–4.3. For each of these cases, we specify identifiability conditions and
prove that the estimators are asymptotically normal. Additionally, we show T is non-identifiable
from the stationary distribution in Section 4.4. Furthermore, we establish non-asymptotic bounds
for the estimators in Section 4.5. Finally, the numerical tests in Section 4.6 demonstrate that the
LSE with trajectory information is more accurate than the LSE without trajectory information,
while both converge at the rate M´1{2, in agreement with theory.

4.1 LSE from multiple trajectories

Consider first the inference of T P RKˆK from data consisting of M independent trajectories:

Trajectory Data: tXmptq, t “ 1, . . . , LuMm“1.

We estimate each column of T through least squares, followed by a normalization. The least squares
estimator minimizes the loss function

pTM “ argmin
TPRKˆK

EpTq, with EpTq :“
1

M

1

L

1

N

M
ÿ

m“1

L
ÿ

t“1

N
ÿ

n“1

K
ÿ

k“1

ˇ

ˇcmn,tpkq ´ φm
n,t´1T¨,k

ˇ

ˇ

2
, (4.1)
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Figure 2: Mean ratios }∆P}p
}∆T}p

and }∆π}p
}∆T}p

with p “ 1, 2, where each pN,Kq-pair is computed using
100 random T with entries sampled from uniform [0,1] followed by a row-normalization. Here the
neighborhood has nv “ mint3, tN{2uu. Note that }∆P}1

}∆T}1
“ OpKN q, agreeing with Theorem 3.5.

Also, note that }∆π}1
}∆T}1

“ Op1q, }∆P}2
}∆T}2

“ Op1q, and }∆π}2
}∆T}2

“ OpK´N{2q,

where cmn,t P R1ˆK denotes the empirical distribution Xnptqm:

cmn,t “ pcmn,tp1q, . . . , cmn,tpKqq P R1ˆK with cmn,tpkq :“ δXm
n ptqpkq, (4.2)

and ϕm
n,t P R1ˆK is the empirical distribution of the states of sample Xptqm in the neighborhood Vn

of the vertex n, as defined in (1.3). By solving the zero of the gradient of this loss function with
respect to each T¨,k, we obtain the least squares estimator from a system of normal equations K
with a shared normal matrix AM P RKˆK :

pTM p¨, kq “ A:

MbM p¨, kq, 1 ď k ď K,

AM “
1

MLN

L,N,M
ÿ

t,n,m“1

pφm
n,t´1qJφm

n,t´1 , bM p¨, kq “
1

MLN

L,N,M
ÿ

t,n,m“1

`

φm
n,t´1

˘J
cmn,tpkq.

(4.3)

Here, A:

M denotes the Moore-Penrose pseudo inverse of AM .
In practice, instead of using pseudo-inverse, we obtain pTM by using least squares with non-

negative constraints and then row-normalize the solution. The non-negative constraints help to
avoid possible negative entries caused by sampling error.

Identifiability from the large sample limit. To analyze the properties of the estimator, we
first examine the inference problem in the large sample limit. Denote the large sample limit normal
matrix and normal vectors by

A8 “
1

LN

L
ÿ

t“1

N
ÿ

n“1

ErφJ
n,t´1φn,t´1s,

b8p¨, kq “
1

LN

L
ÿ

t“1

N
ÿ

n“1

ErφJ
n,t´1cn,tpkqs, 1 ď k ď K.

(4.4)
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Assumption 4.1 (Identifiability condition: multi-trajectory data) The distribution of the
samples satisfies that the matrix A8 in (4.4) is non-singular.

The assumption 4.1 holds in general, as long as the random vectors tϕn,tu span RK with positive
probability, as the next lemma shows.

Lemma 4.2 Assumption 4.1 holds except when there exists a fixed vector v P R1ˆK such that
vφJ

n,t´1 “ 0 a.s. for all n and l. In particular, when T is irreducible and aperiodic, Assumption 4.1
holds as long as L ě l0 :“ argmin

lě0
tl : Plpx, yq ą 0,@x, y P rKsNu.

Proof. Recall that the covariance matrix ErZJZs of a random vector Z P R1ˆK is singular iff there
exists a vector v P R1ˆK such that ZvJ “ 0 a.s., which is true because 0 “ vErZJZsvJ “ Er|ZvJ|2s

iff ZvJ “ 0 a.s.. Applying this fact to the random vectors φn,t´1, we find that A8 is singular iff
there exists a fixed vector v such that φn,t´1v

J “ 0 a.s. for all n and l.
When T is irreducible and aperiodic, P is also irreducible and aperiodic by Proposition 2.9. The

number l0 is well-defined and is finite. Then, regardless of what the initial condition is, the states
tXptqutďl0 visit all possible states with a positive probability, so tφn,tutďl0 span RK with a positive
probability. Hence, one cannot find a v such that φn,t0v

J “ 0 a.s. for all n.
The exceptions are extreme. For the system in either Example 2.3 or Example 2.4, the normal

matrix A8 is singular when L ď K ´ 2, and is non-singular once L ě K ´ 1. For the system
in Example 2.3, since φn,t “ el`1 P RKˆ1 for each n P rN s and 0 ď l ď K ´ 2, we can take
v “ p0, . . . , 0, 1q “ eK so that vJφn,t “ 0 for all n and l ď K ´ 2. In this case, A8 is singular for
any L ď K ´ 2. On the other hand, if L ě K, the resulting normal matrix A8 becomes full rank.

Lemma 4.3 Under Assumption 4.1, T “ A´1
8 b8 with A8 and b8 in (4.4).

Proof. For each 1 ď k ď K, recall that φn,t´1pkq “ 1
|Vn|

ř

jPVn
δXjpt´1qpkq in (1.3) and cn,tpkq “

δXnptqpkq in (4.2). Then

ErφJ
n,t´1cn,tpkqs “ E

“

φJ
n,t´1ErδXnptqpkq | Xpt ´ 1qs

‰

“ E
“

φJ
n,t´1φn,t´1T¨,k

‰

,

where the second equality follows from ErδXnptqpkq | Xpt´1qs “ P tXnptq “ k|Xpt ´ 1qu “ φn,t´1T¨,k

by (1.2). Hence,

b8p¨, kq “
1

LN

L
ÿ

t“1

N
ÿ

n“1

ErφJ
n,t´1cn,tpkqs “

1

LN

L
ÿ

t“1

N
ÿ

n“1

E
“

φJ
n,t´1φn,t´1

‰

T¨,k.

In other words, b8 “ 1
LN

řL
t“1

řN
n“1 E

“

φJ
n,t´1φn,t´1

‰

T “ A8T. Therefore, T “ A´1
8 b8, where

A8 is invertible by Assumption 4.1.

Asymptotic normality. We show next that the LSE is asymptotically normal.

Theorem 4.4 Under Assumption 4.1, for each k P rKs, the estimator pTM p¨, kq in (4.3) is asymp-
totically normal; that is,

?
M

´

pTM p¨, kq ´ Tp¨, kq

¯

Ñ N p0,A´1
8 ΣkA

´1
8 q, (4.5)

16



where the covariance matrix Σk P RKˆK is,

Σk “
1

L2N2

L
ÿ

t,t1“1

N
ÿ

n,n1“1

Erpcn,tpkqφn,t´1 ´ Ercn,tpkqφn,t´1sq
`

cn1,t1pkqφJ
n1,t1´1 ´ Ercn1,t1pkqφJ

n1,t1´1s
˘

s.

(4.6)

Proof. For 1 ď k ď K, denote

Am
L,N :“

1

LN

L,N
ÿ

t,n

pφm
n,t´1qJφm

n,t´1 , bm
L,N p¨, kq : “

1

LN

L,N
ÿ

t,n

cn,tpkqφm
n,t´1 , (4.7)

where cn,tpkq is defined in (4.2). Note that tAm
L,NuMm“1 and tbm

L,N p¨, kquMm“1 are independently
identically distributed, and AM “ 1

M

řM
m“1A

m
L,N and bM p¨, kq “ 1

M

řM
m“1 b

m
L,N p¨, kq. Thus,

AM
a.s.
ÝÝÑ A8 by the strong law of large numbers, and

?
MpbM p¨, kq ´ b8p¨, kqq

d
ÝÑ N p0,Σkq

for each k, where the matrix Σk in (4.6) is the covariance matrix of bm
L,N p¨, kq:

Σk “ Er
`

bmL,N p¨, kq ´ ErbmL,N p¨, kqs
˘ `

bmL,N p¨, kq ´ ErbmL,N p¨, kqs
˘J

s.

Then, by Lemma 4.5, we have A:

MbM p¨, kq ´ A´1
8 b8p¨, kq

d
ÝÑ N p0,A´1

8 ΣkA
´1
8 q. Now, the

asymptotic normality of the LSE in (4.5) follows from the definition of TM p¨, kq “ A:

MbM p¨, kq in
(4.3) and Lemma 4.3.

The following lemma is a slight extension of Slutsky’s theorem; we will use it repeatedly to study
the asymptotic normality of least squares estimators. Its proof is included for completeness.

Lemma 4.5 Suppose that AM
a.s.
ÝÝÑ A and bM ´ b

d
ÝÑ Np0, Bq as M Ñ 8, where A,B are two

symmetric strictly positive definite matrices. Then A:

MbM is asymptotically normal, i.e., A:

MbM ´

A´1b
d
ÝÑ N p0, A´1BA´1q.

Proof. First, we have A:

M
a.s.
ÝÝÑ A´1 since A is invertible and AM

a.s.
ÝÝÑ A. Specifically, the almost

sure convergence of AM implies that P tlimMÑ8 }AM ´ A} “ 0u “ 1. Then, Weyl’s inequality
|λminpAM q ´ λminpAq| ď }AM ´ A}, where λminpAq denotes the minimal eigenvalue of A, implies
that P tlimMÑ8 λminpAM q “ λminpAq ą 0u “ 1. Thus, A:

M
a.s.
ÝÝÑ A´1.

Next, combining A:

M
a.s.
ÝÝÑ A´1 with

?
MpbM ´ bq

d
ÝÑ N p0, Bq, we have, by Slutsky’s theorem,

A:

M pbM ´ bq
d
ÝÑ A´1N p0, Bq “ N p0, A´1BA´1q and A:

Mb
a.s.
ÝÝÑ A´1b. Therefore, using A:

MbM “

A:

M pbM ´ bq ` A:

Mb, we obtain A:

MbM ´ A´1b
d
ÝÑ N p0, A´1BA´1q.

4.1.1 Comparison with MLE and LSE using stochasticity

We discuss two other estimators, an LSE using stochasticity and the maximal likelihood estimator,
and compare them with the above LSE. We show that the LSE using stochasticity is similar to the
above LSE in theory, but the above LSE is computationally more stable and efficient. The maximal
likelihood estimator (MLE) involves a constrained non-convex optimization, making it less effective
than the LSE.
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Least squares estimator using stochasticity. We can also estimate rT, the first K´1 columns
of T, by least squares, since T is a stochastic matrix. We call this estimator LSE using stochasticity.

Compared to the LSE above, this estimator has two advantages: (1) it does not need the extra
normalization step, and (2) it has parameters KpK ´ 1q to be estimated, removing the redundancy.
However, these advantages may be offset by its computational drawbacks when K is large: it solves
a linear system with KpK ´ 1q equations, with a KpK ´ 1q ˆKpK ´ 1q normal matrix prone to be
ill-conditioned, while the above LSE solves K linear systems with K equations, which can be done
in parallel. Moreover, as shown below, the two estimators share the same identifiability condition
and asymptotic behavior. Thus, the LSE is preferred in practice.

Specifically, the array rT P RpK´1qˆK is the first K ´ 1 column of T. Note that

φm
n,tT “

”

φm
n,t

rT, 1 ´ φm
n,t

rT1J

ı

where 1 “ p1, 1, . . . , 1q P R1ˆpK´1q, and the last column follows from

rφm
n,tTspKq “

K
ÿ

j“1

TK,jφ
j,m
n,t “

K
ÿ

j“1

p1 ´

K´1
ÿ

k“1

Tk,jqφ
j,m
n,t “ 1 ´ φm

n,t
rT1J.

Then, the loss function becomes

EpTq “ EprTq : “
1

MLN

L,N,M
ÿ

t,n,m“1

´

›

›c1:K´1,m
n,t ´ φm

n,t´1
rT
›

›

2

RK´1 ` |cK,m
n,t ´ 1 ` φm

n,t´1
rT1J|2

¯

.

This loss function is quadratic, so its minimizer can be found from the zeros of its gradient. Thus,
we write rT in vector form ÝÑ

T P RpK´1qKˆ1 and write the gradient of the loss function as

∇ÝÑ
T
EprTq “ rAM

ÝÑ
T ´ rbM “ 0 P RpK´1qK ,

where the normal matrix and vectors are, with a notation skj :“ pk ´ 1qK ` j and similarly sk1j1

for 1 ď k, k1 ď K ´ 1 and 1 ď j, j1 ď K,

rAM pskj , sk1j1q “
1

MLN

M
ÿ

m“1

L
ÿ

t“1

N
ÿ

n“1

p1 ` δkk1qφj1,m
n,t´1φ

j,m
n,t´1,

rbM pskjq “
1

MLN

M
ÿ

m“1

L
ÿ

t“1

N
ÿ

n“1

´

1 ` ck,mn,t ´ cK,m
n,t

¯

φj,m
n,t´1.

(4.8)

The resulting estimator is
pTlse
MLN Ø

p

ÝÑ
T “ rA:

M
rbM . (4.9)

The invertibility of the matrix rAM P RpK´1qKˆpK´1qK is the same as the matrix AM P RKˆK

in (4.3). We can write
rAM “ AM b B,

where A b B is a Kronecker product

A b B “

»

—

—

—

–

2A A ¨ ¨ ¨ A
A 2A ¨ ¨ ¨ A
...

...
. . .

...
A A ¨ ¨ ¨ 2A

fi

ffi

ffi

ffi

fl

, with B “

»

—

—

—

–

2 1 ¨ ¨ ¨ 1
1 2 ¨ ¨ ¨ 1
...

...
. . .

...
1 1 ¨ ¨ ¨ 2

fi

ffi

ffi

ffi

fl

P RpK´1qˆpK´1q.
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Recall that the Kronecker product A b B is invertible iff both A and B are invertible, and pA b

Bq´1 “ A´1 b B´1. Note that B is invertible with eigenvalues λB
1 “ K and λB

k “ 1 for k “

2, . . . ,K ´ 1. Hence, rAM is nonsingular iff AM is nonsingular.

Maximal likelihood estimator. We can also estimate the local transition matrix by maximizing
the likelihood of data:

pT “ argmin
T stochastic

EmlepTq, where EmlepTq :“
1

M

1

L

1

N

M
ÿ

m“1

L
ÿ

t“1

N
ÿ

n“1

´ logpφm
n,t´1T¨,Xm

n ptqq. (4.10)

Note that, unlike the LSE, it is necessary to consider the optimization with respect to a stochastic
matrix T, because otherwise, the likelihood has no maximum.

The derivative of the loss function can be computed directly. Using the fact that φm
n,tT¨,K “

řK´1
j“1 φm

n,tpjqp1 ´ TjKq, we have, for each 1 ď k ď K ´ 1 and j P rKs,

BEmle

BTKj
pTq “

1

M

1

L

1

N

M
ÿ

m“1

L
ÿ

t“1

N
ÿ

n“1

«

´
1

φm
n,tT¨,k

δXm
n ptqpkqφj,m

n,t `
1

φm
n,tT¨,K

δXm
n ptqpKqφj,m

n,t

ff

.

Clearly, even with the above gradient, the uniqueness of the minimizer for the constrained optimiza-
tion of a nonconvex function is relatively complicated for analysis. Thus, the asymptotic normality
of the MLE is non-trivial since it relies on uniqueness. Also, while optimization algorithms can
easily compute the minimizer, it remains open to provide a performance guarantee.

4.2 LSE for a single long trajectory for ergodic systems

Suppose that the system is ergodic, and we estimate the local transition matrix from data consisting
of a long trajectory:

A long trajectory Data: tXptq, t “ 1, . . . , Lu.

Under the ergodicity assumption, the estimation is the same as the previous case with M “ 1, and
we define the estimator by

pTLp¨, kq “ A:

LbLp¨, kq, 1 ď k ď K,

AL “
1

LN

L,N
ÿ

t,n“1

φJ
n,t´1φn,t´1 , bLp¨, kq “

1

LN

L,N
ÿ

t,n“1

pφn,t´1q
J cn,tpkq.

(4.11)

Here A:

L denotes the Moore-Penrose pseudoinverse of AL.
Similarly to the previous section, the large sample limit helps us specify the identifiability

condition. Denote the large sample limit normal matrix and normal vectors by

A8 “
1

N

N
ÿ

n“1

ErφJ
n,1φn,1s “ lim

LÑ8

1

NL

L,N
ÿ

t,n“1

φJ
n,tφn,t ,

b8p¨, kq “
1

N

N
ÿ

n“1

ErφJ
n,1cn,1pkqs “ lim

LÑ8

1

NL

L,N
ÿ

t,n“1

φJ
n,tcn,tpkq, 1 ď k ď K ,

(4.12)

where the expectation is with respect to the stationary measure of the Markov chain.
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Theorem 4.6 Assume that A8 in (4.12) is nonsingular. Then, for each k P rKs, the estimator
pTLp¨, kq in (4.11) is asymptotically normal:

?
L
´

pTLp¨, kq ´ Tp¨, kq

¯

Ñ N p0,A´1
8 ΣkA

´1
8 q, (4.13)

as L Ñ 8, where the covariance matrix Σk is, with Φnpkq :“ limLÑ8
1
L

řL
t“1rcn,tpkqφn,t´1s,

Σk “ lim
LÑ8

1

L2N2

L
ÿ

t,t1“1

N
ÿ

n,n1“1

´

cn,tpkqφn,t´1 ´ Φnpkq

¯´

cn1,t1pkqφJ
n1,t1´1 ´ Φnpkq

J
¯

. (4.14)

Proof. We omit the proof, as it is nearly identical to the case of multiple trajectories, except for
applying the law of large numbers and the central limit theorem for an ergodic trajectory.

4.3 LSE from ensemble data without trajectory

Another interesting setting is when the observations are Mn,t samples of Xptq for each time t, but
these samples may come from different trajectories. We call this setting as ensemble data without
trajectory information and denote the data by

Ensemble Data: tXm
n ptq,m “ 1, . . . ,Mn,tu

N, L
n“1,t“0; M “ min

1ďnďN,1ďtďL
tMn,tu.

We assume that M “ min1ďnďN,1ďtďLtMn,tu is large and study the error bounds with respect to
M .

We estimate T by least squares that match the empirical marginal densities of each site. Recall
that the marginal density of site n at time t is, for 1 ď k ď K,

pn,tpkq “ PtXnptq “ ku

“ ErPtXnptq “ k|Xpt ´ 1qus “ Erφn,t´1T¨,ks “ Erφn,t´1sT¨,k.
(4.15)

Thus, our estimator is based on empirical approximations of pn,tpkq and Erφn,t´1s:

ppn,t,M pkq : “
1

Mn,t

Mn,t
ÿ

m“1

δXm
n ptqpkq, 1 ď k ď K,

pφn,t´1,M : “
1

Mn,t´1

Mn,t´1
ÿ

m“1

φm
n,t´1 P R1ˆK ,

(4.16)

for 1 ď t ď L. Note that they are determined by the empirical distributions at each time, and
there is no need for sample trajectories. The sample sizes tMn,tu do not have to be the same at
different times, as long as their minimum M is large enough to make these empirical approximations
reasonably accurate.

Our least squares estimator, called ensemble LSE, minimizes the discrepancy between the em-
pirical approximations ppn,t`1,M and pφn,t´1,M in (4.16):

pTe
M “ argmin

TPRKˆK

K
ÿ

k“1

N
ÿ

n“1

L
ÿ

t“1

}ppn,t,M pkq ´ pφn,t´1,MT¨,k}2. (4.17)
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The ensemble LSE is solved by

pTe
M p¨, kq “ pAe

M q:be
M p¨, kq, 1 ď k ď K,

Ae
M “

1

LN

L,N
ÿ

t,n“1

pφJ
n,t´1,M pφn,t´1,M P RKˆK ,

be
M p¨, kq “

1

LN

L,N
ÿ

t,n“1

pφJ
n,t´1,M ppn,t,M pkq P RKˆ1, 1 ď k ď K.

(4.18)

Similar to the multi-trajectory LSE in Section 4.1, in practice, we obtain the ensemble LSE by least
squares with non-negative constraints, followed by row-normalization.

This LSE can be viewed as a generalized moment estimator, since the entries in the normal
matrix and normal vector are approximations of moments. We will show that the estimator is
asymptotically normal under a new identifiability condition.

Identifiability in the large sample limit. Denote the large sample limit normal matrix and
normal vectors by

Ae
8 “

1

LN

L
ÿ

t“1

N
ÿ

n“1

Erφn,t´1sJErφn,t´1s,

be
8p¨, kq “

1

LN

L
ÿ

t“1

N
ÿ

n“1

Erφn,t´1sJpn,tpkq, 1 ď k ď K.

(4.19)

Assumption 4.7 (Identifiability condition: ensemble data) The distribution of the samples
satisfies the fact that the matrix Ae

8 in (4.19) is non-singular.

Lemma 4.8 Under Assumption 4.7, T “ pAe
8q´1be

8.

Proof. It follows directly from (4.15) and the defintion of Ae
8 and Ae

8 in (4.19).
This assumption puts constraints on both the distribution of the process and the local empirical

distributions tφnu that depend on the neighborhood size of the interaction. Three factors can
contribute to the identifiability: a non-symmetric initial distribution between sites, a neighborhood
that can lead to varying local empirical distributions, and a process that varies in time. For example,
Ae

8 can be full rank if tErφn,0suNn“1 has rank K, which relies on a diverse initial distribution and
local empirical distribution. Example 4.9 below shows an extreme case that tφnu are the same for
all sites, and we rely on the distribution at different times to attain a full-rank norm matrix.

Example 4.9 (Full-network neighborhood) The local empirical distributions are the same for
all sites if the neighborhood is the entire network for each agent. For example, the model in Example
2.2 has φ1 “ φ2 for all states x. Thus, for full-network neighborhood, we have Erφn,ts “ Erφn1,ts

for any n ‰ n1. Then, we have Ae
8 “ 1

L

řL
t“1 Erφ1,t´1sJErφ1,t´1s and it is full rank only if

tErφ1,t´1suLt“1 has rank K. As discussed later, the normal matrix has rank 1 when the process
is stationary.
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Asymptotic normality. We show next that the ensemble LSE is asymptotically normal.

Theorem 4.10 Under Assumption 4.7, for each k P rKs, the estimator pTe
M p¨, kq in (4.18) is asymp-

totically normal; that is,
?
M

´

pTe
M p¨, kq ´ Tp¨, kq

¯

Ñ N p0, pAe
8q´1Σe

kpAe
8q´1q,

where the covariance matrix Σe
k is,

Σe
k “

1

L2N2

n,t´1
ÿ

n,t“0

pn,tpkq2Erφn,t´1sJErφn,t´1sq P RKˆK . (4.20)

Proof. The proof is based on the asymptotic properties of the empirical approximations of ppn,t,M pkq

and pφn,t´1,M defined in (4.16).
First, by the strong Law of Large Numbers,

pφn,t´1,M
a.s.
ÝÝÑ Erφn,t´1s

as M Ñ 8, for each n, t. Also, by Central Limit Theorem,

ppn,t,M pkq ´ pn,tpkq
d
ÝÑ N p0, σn,tpkqq, (4.21)

for each n, t, where the variance σn,tpkq follows from (recall that ppn,t,M pkq “ 1
Mn,t

řMn,t

m“1 δXm
n ptqpkq)

σn,tpkq “ Erppn,t,M pkqppn,t,M pkqs “ Er
1

M2
n,t

Mn,t
ÿ

m,m1“1

δXm
n ptqpkqδXm1

n ptqpkqs

“ ErδXm
n ptqpkqsErδXm1

n ptqpkqs “ pn,tpkq2.

Next, we study the asymptotical properties of the normal matrix and vector in (4.18). Since
pφn,t´1,M

a.s.
ÝÝÑ Erφn,t´1s for each n, t, the normal matrice must also converge a.s., i.e.,

Ae
M

a.s.
ÝÝÑ Ae

8 “
1

LN

L
ÿ

t“1

N
ÿ

n“1

Erφn,t´1sJErφn,t´1s,

where Ae
8 is defined in (4.19). Meanwhile, by Slutsky’s theorem and (4.21), we have

pφJ
n,t´1,M rppn,t,M pkq ´ pn,tpkqs

d
ÝÑ N p0, pn,tpkq2Erφn,t´1sJErφn,t´1sq

for each n P rN s, 0 ď t ď L ´ 1. Then, since
´

pφJ
n,t´1,M ´ ErpφJ

n,t´1s

¯

pn,tpkq
a.s.
ÝÝÑ 0, we have

pφJ
n,t´1,M ppn,t,M pkq ´ ErφJ

n,t´1spn,tpkq
d
ÝÑ N p0, pn,tpkq2Erφn,t´1sJErφn,t´1sq.

Consequently,

be
M p¨, kq ´ be

8p¨, kq “
1

LN

L
ÿ

t“1

N
ÿ

n“1

pφJ
n,t´1,M ppn,t,M pkq ´ ErφJ

n,t´1spn,tpkq
d
ÝÑ N p0,Σe

kq,

with Σe
k defined in (4.20).

Then, by Lemma 4.5 and the invertibility of Ae
8 in Assumption 4.7, we have pAe

M q:be
M p¨, kq ´

pAe
8q´1be

8p¨, kq
d
ÝÑ N p0, pAe

8q´1Σe
kpAe

8q´1q. This, together with Lemma 4.8, proves the asymptotic
normality of the ensemble LSE Te

M p¨, kq.
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4.4 Non-identifiability from stationary distribution

Inference from the stationary distribution is challenging since the information is limited. It is well
known that a stationary distribution of a Markov chain does not determine its transition matrix, i.e.,
P is not determined by π. Similarly, the local transition matrix in our model is under-determined
by the stationary distribution. Example 3.4 shows that when pN,Kq “ p2, 2q, there are two T’s
leading to the same invariant measure. Theorem 4.11 shows that, in general, the ensemble-LSE
is under-determined by the marginal invariant distribution, even though T has only KpK ´ 1q

unknowns and the invariant measure π has KN entries.
We start with a few basic facts when the process is stationary. By the shift-invariance in

Proposition 3.1, the marginal distributions of all vertices are the same, and so are the expectation
of the local empirical distributions, i.e.,

pn,t “ p1,0, Erφn,ts “ Eπrφ1,0s, @l ě 0, n P rN s. (4.22)

Thus, the large sample limit of the loss function in (4.17) is

E8pTq “

K
ÿ

k“1

N
ÿ

n“1

L
ÿ

t“1

}pn,t,8pkq ´ φn,t´1,8T¨,k}2

“

K
ÿ

k“1

|p1,0pkq ´ Erφ1,0sT¨,k|2 “ }p1,0 ´ Erφ1,0sT}22.

(4.23)

Theorem 4.11 (Non-identifiability from the stationary distributions) Given only the in-
variant measure, the local transition matrix T is under-determined, i.e., the loss function in (4.23)
has multiple minimizers, either when K ą 2 or when K “ 2 with p1,0 “ Erφ1,0s.

Proof. Note that when given only the stationary measure, the local empirical distributions tφnu

can only be used via their expectations. Then, by (4.22), one can only estimate T from: (1) the
discrepancy between the distributions p1,0 and Erφ1,0sT; and (2) the fact that p1,0 “ p1,0Ttrue by
Theorem 3.2. Thus, the identifiability of T is equivalent to the uniqueness of the minimizer to the
loss function

ElocalpTq “ }p1,0 ´ p1,0T}22 ` }p1,0 ´ Erφ1,0sT}22. (4.24)

Since ElocalpTq is quadratic in T, it suffices to study the invertibility of its Hessian

HesspElocalq “ pJ
1,0p1,0 ` Erφ1,0sJErφ1,0s. (4.25)

Here, the Hessian is with respect to T¨,k and they are the same for all k P rKs. The Hessian
matrix has rank 2 when p1,0 ‰ Erφ1,0s; and it has rank 1 when p1,0 “ Erφ1,0s. Thus, there are
multiple minimizers to ElocalpTq, i.e., T is under-determined, either when K ą 2 or when K “ 2
with p1,0 “ Erφ1,0s.

The above non-identifiability is rooted in the limited information in use: only the marginal
distributions are used. Loss functions other than the quadratic loss function in (4.24), such as those
based on the Kullback-Leibler divergence, total variation, or Wasserstein distances between p1,0 and
Erφ1,0sT, will also have the same issue.
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4.5 Non-asymptotic bounds for the LSEs

We establish non-asymptotic bounds for the multi-trajectory LSE pTM in (4.3) and the ensem-
ble LSE pTe

M in (4.18). Roughly speaking, for small ϵ ad δ, both estimators are ϵ-close to the
true local transition matrix with a probability of at least 1 ´ δ when the sample size is of order
M “ Op K2

ϵ2λminpA8q2
ln 1

δ q, but the constant for pTe
M is much larger due to the absence of trajectory

information.

Theorem 4.12 Let T be the true local transition matrix. For any ϵ, δ P p0, 1q, let α “ ϵ
4λminpA8q

and s “ 1
2λminpA8qmin

␣

1, ϵ
2}T}F

(

. The following non-asymptotic bounds hold.

(a) Under Assumption 4.1, the multi-trajectory LSE pTM in (4.3) satisfies

Pt}pTM ´ T}F ą ϵu ă δ (4.26)

if the sample size satisfies M ą Mϵ,δ :“ max
␣

48K2`8αK
3α2 ln 6K2

δ , 6`2s
3s2

ln 6K
δ

(

.

(b) Under Assumption 4.8 and assume Mn,t ” M , the ensemble LSE pTe
M in (4.18) satisfies

Pt}pTe
M ´ T}F ą ϵu ă δ (4.27)

if M satisfies M ą M e
ϵ,δ :“ max

␣

384K2`16αK
3α2 ln 12NLK

δ , 288K
2`8Ks
3s2

ln 6NLK
δ

(

.

The proof is based on the concentration bounds for the normal matrices and vectors in the next
lemma. These bounds highlight that the trajectory-based normal matrice and vector approach their
large sample limits faster than those without using trajectory information.

Lemma 4.13 (Concentration for normal matrices and vectors) For any s ą 0, the follow-
ing concentration bounds hold for the normal matrix AM and vector bM in for the multi-trajectory
LSE in (4.3), and Ae

M and be
M for the ensemble LSE (4.18).

(a) Under Assumption 4.1, we have

P t}A8 ´ AM}op ą su ă 2K exp

ˆ

´
Ms2{2

1 ` s{3

˙

,

P t}b8 ´ bM}F ą su ă 2K2 exp

ˆ

´
Ms2

16K2 ` 8sK{3

˙

.

(b) Under Assumption 4.8, we have

P t}Ae
8 ´ Ae

M}op ą su ă 2NLK exp

ˆ

´
Ms2{2

288K2 ` 8Ks

˙

,

P t}be
8 ´ be

M}F ą su ă 4NLK exp

ˆ

´
Ms2

128K2 ` 16Ks{3

˙

.

Proof. These bounds follow from applying Bernstein’s inequalities.
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Part (a). First, Note that A8 ´ AM “ 1
M

řM
m“1

´

Am
L,N ´ ErAm

L,N s

¯

, where tAm
L,NuMm“1,

defined in (4.7), is a sequence of symmetric identically distributed random matrices with mean zero
and

σ2
1 “ }Er

`

Am
L,N ´ ErAm

L,N s
˘2

s}op “
›

›ErpAm
L,N q2s ´ ErAm

L,N s2
›

›

2

op

ď E
›

›Am
L,N

›

›

2

op
`
›

›ErAm
L,N s

›

›

2

op
ď 2E}Am

L,N}2op.

Meanwhile, since Am
L,N is symmetric,

}Am
L,N}op “ sup

uPRKˆ1,}u}“1

uJAm
L,Nu “ sup

uPRK ,}u}“1

1

LN

L,N
ÿ

t,n“1

uJpφm
n,t´1qJφm

n,t´1u

“ sup
uPRK ,}u}“1

1

LN

L,N
ÿ

t,n“1

|φm
n,t´1u|2 ď 1,

where the inequality follows from |φm
n,t´1u|2 ď }u} since each entry of φm

n,t´1 is in r0, 1s. Conse-
quently, σ2

1 ď 2. Applying the matrix Bernstein’s inequality (see Theorem A.4), we obtain the
bound for P t}A8 ´ AM}op ą su.

Next, recall that by the definition of bM in (4.7), we have

rb8 ´ bM spk, k1q “
1

M

M
ÿ

m“1

ξmk,k1 , ξmk,k1 :“
`

Erbm
L,N pk, k1qs ´ bm

L,N pk, k1q
˘

with bm
L,N pk, k1q “ 1

LN

řL,N
t,n cmn,tpkqφm,k1

n,t´1. Using the fact that cmn,tpkq P t0, 1u and φm,k1

n,t´1 P r0, 1s,
we have |ξmk,k1 | ď 2 and Er|ξmk,k1 |

2s ď 4. Thus, Bernstein’s inequality (see Theorem A.3) implies

P
!

|rb8 ´ bM spk, k1q| ą
s

K

)

ă 2 exp

ˆ

´
Ms2{p2K2q

8 ` 4s{p3Kq

˙

“ 2 exp

ˆ

´
Ms2

16K2 ` 8sK{3q

˙

.

Meanwhile, note that }b8´bM}2F “
řK,K

k,k1“1 |b8´bM spk, k1q|2 ą s2 holds true if |b8´bM spk, k1q| ą
s
K for all k, k1. Hence,

P t}b8 ´ bM}F ą su ď P

$

&

%

ď

k,k1

t|rb8 ´ bM spk, k1q| ą
s

K
u

,

.

-

ď
ÿ

k,k1

P
!

|rb8 ´ bM spk, k1q| ą
s

K

)

ď 2K2 exp

ˆ

´
Ms2

16K2 ` 8sK{3q

˙

.

Part (b). The normal matrix Ae
M “ 1

LN

řL,N
t,n“1 pφ

J
n,t´1,M pφn,t´1,M P RKˆK and vector be

M “

1
LN

řL,N
t,n“1 pφ

J
n,t´1,M ppn,t,M pkq in (4.18) require additional treatments since they involve products of

the averages in samples. To remove these products, we use their upper bounds, which leads to a
multiplicative factor NL in the upper bounds for the probabilities.

First, we show that
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rφn,t,M :“pφn,t,M ´ Erpφn,t,M s, }rφn,t,M}R1ˆK ď mint2,
K
ÿ

k“1

|rφn,t,M pkq|u;

rpn,t,M :“ppn,t,M ´ Erpφn,t,M s, }rpn,t,M}R1ˆK ď mint2,
K
ÿ

k“1

|rpn,t,M pkq|u.

(4.28)

Note that }a}R1ˆK “

´

řK
k“1 a

2
k

¯1{2
ď

řK
k“1 |ak|. Thus, we only need to prove that }rφn,t,M} ď 2

and }rpn,t,M} ď 2. Recall that pφn,t,M “ 1
M

řM
m“1 φ

m
n,t and ppn,t,M pkq “ 1

M

řM
m“1 δXm

n ptqpkq in (4.16).
Since φm

n,t is a probability distribution, its entries are non-negative, so |φm
n,tpkq ´ Erφm

n,tspkq| ď

φm
n,tpkq ` Erφm

n,tpkqs. As a result,

}rφn,t,M} ď

K
ÿ

k“1

|rφn,t,M pkq| “

K
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ˇ

1

M

M
ÿ

m“1

rφm
n,tpkq ´ Erφm

n,tspkq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

K
ÿ

k“1

1

M

M
ÿ

m“1

ˇ

ˇrφm
n,tpkq ´ Erφm

n,tspkq
ˇ

ˇ ď 2,

where the last equality uses the facts that
ˇ

ˇrφm
n,tpkq ´ Erφm

n,tspkq
ˇ

ˇ ď φm
n,tpkq`Erφm

n,tspkq and
řK

k“1 φ
m
n,tpkq “

1. Similarly, the bound holds for }rpn,t,M}.
Next, we show the concentration bound for }Ae

M ´ Ae
8}. Note that

Ae
M ´ Ae

8 “
1

NL

L,N
ÿ

t,n“1

pφJ
n,t´1,M pφn,t´1,M

“
1

NL

L,N
ÿ

t,n“1

`

rφn,t´1,M rφJ
n,t´1,M ` rφJ

n,t´1,MErrφn,t´1,M s ` Errφn,t´1,M sJ
rφn,t´1,M

˘

.

Then, using the fact that for any u, v P R1ˆK , }uJv}op “ supcPR1ˆK ,}c}“1 cu
JvcJ ď }u}}v}, we have

}Ae
M ´ Ae

8} ď
1

NL

L,N
ÿ

t,n“1

}rφJ
n,t´1,M rφn,t´1,M} ` }rφJ

n,t´1,MErrφn,t´1,M s} ` }Errφn,t´1,M sJ
rφn,t´1,M}

ď
1

NL

L,N
ÿ

t,n“1

p}rφn,t´1,M}2 ` 2}rφn,t´1,M}}Errφn,t´1,M s}q

ď
6

NL

L,N
ÿ

t,n“1

}rφn,t´1,M} ď
6

NL

L,N
ÿ

t,n“1

K
ÿ

k“1

|rφn,t´1,M pkq|,

where the last two inequalities follow from (4.28). Applying the Bernstein’s inequality as above, we
obtain

P t}Ae
M ´ Ae

8}op ą su ď P

#

6

NL

L,N
ÿ

t,n“1

K
ÿ

k“1

|rφn,t´1,M pkq| ą s

+

ď

L,N
ÿ

t,n“1

ÿ

k

P
!

|rφn,t´1,M pkq| ą
s

6K

)

ď 2NLK exp

ˆ

´
Ms2

288K2 ` 8sKq

˙

.
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Lastly, we consider }}be
M ´ be

8}F }. Using the fact that }uJv}2F “ }u}2}v}2, we have

}be
M ´ be

8} ď
1

NL

L,N
ÿ

t,n“1

}rφJ
n,t´1,M rpn,t´1,M} ` }rφJ

n,t´1,MErrpn,t´1,M s} ` }Errφn,t´1,M sJ
rpn,t´1,M}

ď
1

NL

L,N
ÿ

t,n“1

p}rφn,t´1,M}}rpn,t´1,M} ` }rφn,t´1,M}}Errpn,t´1,M s} ` }Errφn,t´1,M s}}rpn,t´1,M}q

ď
2

NL

L,N
ÿ

t,n“1

p}rφn,t´1,M} ` }rpn,t´1,M}q ď
2

NL

L,N
ÿ

t,n“1

K
ÿ

k“1

p|rφn,t´1,M pkq| ` |rpn,t´1,M pkq|q,

where the last two inequalities follow from (4.28). Applying Bernstein’s inequality, we obtain

P t}be
M ´ be

8}op ą su ď P

#

2

NL

L,N
ÿ

t,n“1

K
ÿ

k“1

p|rφn,t´1,M pkq| ` |rpn,t´1,M pkq|q ą s

+

ď

L,N
ÿ

t,n“1

ÿ

k

pP
!

|rφn,t´1,M pkq| ą
s

4K

)

` P
!

|rpn,t´1,M pkq| ą
s

4K

)

ď 4NLK exp

˜

´
Ms2

128K2 ` 16sK
3

¸

.

This completes the proof.
Proof of Theorem 4.12. The proof is based on the Bernstein concentration inequalities for the
normal matrices and the normal vectors. For Part (a), note that

}pTM ´ T}F “ }A:

MbM ´ A´1
8 b8}F ď }A:

MbM ´ A:

Mb8}F ` }A:

Mb8 ´ A´1
8 b8}F

ď }A:

M}op}bM ´ b8}F ` }A:

M}op}pA8 ´ AM q}op}T}F ,

where in the last inequality we have used the fact that }pA:

M´A´1
8 qb8}F “ }A:

M pA8´AM qA´1
8 b8}F ď

}A:

M}op}pA8 ´ AM qT}F . Hence, we have

}pTM ´ T} ď
1

2
ϵ `

1

2
ϵ “ ϵ, on E1 X E2 X E3,

where we denote by E1, E2, E3 the following events:

E1 :“
␣

}A:

M}op ď C
(

, with C “ 2}A´1
8 }op

E2 :“
␣

}pAM ´ A8q} ď
ϵ

2C}T}F

(

,

E3 :“
␣

}pbM ´ b8q} ď
ϵ

2C

(

.

Thus, t}pTM ´ T} ą ϵu Ă Ec
1 Y Ec

2 Y Ec
3. Then, if we can prove the following bounds

P tEc
1u ă

δ

3
, P tEc

2u ă
δ

3
, P tEc

3u ă
δ

3
(4.29)
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for M ě Mϵ,δ, we can conclude (4.26) by noting that

Pt}pTM ´ T} ą ϵu ă PtEc
1 Y Ec

2 Y Ec
3u ď PtEc

1u ` PtEc
2u ` PtEc

3u ă δ.

In the following, we prove the three bounds in (4.29) by Bernstein’s inequalities. Note that

}A:

M}op “ λminpAM q´1, }A8}op “ λminpA8q.

Thus, Ec
1 “

␣

λminpAM q´1 ą 2λminpA8q´1
(

“ tλminpAM q ă 1
2λminpA8qu Ă

␣

|λminpA8q ´

λminpAM q| ą 1
2λminpA8q

(

. Meanwhile, by Weyt’s inequality, |λminpA8q ´ λminpAM q| ď }A8 ´

AM}op. Hence,

PtEc
1u ă P

"

}A8 ´ AM}op ą
1

2
λminpA8q

*

,

which can be bounded by matrix Bernstein’s inequality. Similarly,

PtEc
2u “ P

"

}A8 ´ AM}op ą
ϵ

2C}T}F
“

ϵ

4}T}F
λminpA8q

*

.

Thus, with s “ 1
2λminpA8qmin

␣

1, ϵ
2}T}F

(

, Lemma 4.13 implies,

max
␣

PtEc
1u,PtEc

2u
(

ă P t}A8 ´ AM}op ą su ă 2K exp

ˆ

´
Ms2{2

1 ` s{3

˙

.

Similarly, with α “ ϵ
2C “ ϵ

4λminpA8q, Lemma 4.13 implies,

PtEc
3u “ P t}b8 ´ bM}F ą αu ă 2K2 exp

ˆ

´
Mα2

16K2 ` 8Kα{3

˙

.

Hence, to obtain (4.29), we set M to satisfy both 2K exp
´

´
Ms2{2
1`s{3

¯

ă δ
3 and 2K2 exp

´

´ Mα2

16K2`8Kα{3

¯

ă

δ
3 , which lead to the lower bound for M .

Part (b). The proof is the same as the above for Part (a).

4.6 Numerical examples

Numerical tests show that the estimators converge as sample size increases at the rate M´1{2,
agreeing with the theory. They also show that the sampling error may lead to estimators missing
the periodic property of the local transition matrix and hence the synchronization; thus, additional
techniques, such as an application of a threshold or a sparse condition, are needed to preserve the
additional properties of the local transition matrix.

Figure 3(a) examines the convergence in sample size for the multi-trajectory LSE in Section
4.1 and the ensemble LSE in Section 4.3. That is, these estimators are obtained by first solving
the normal equations by least squares with non-negative constraints and then row-normalizing the
resulting solutions. Here we consider a system with pN,K, nvq “ p8, 3, 3q. The figure shows the box
plots of the relative errors of the estimators in 100 independent simulations with increasing sample

size. Here we consider a randomly generated matrix T “

»

–

0.4719 0.0315 0.4966
0.1385 0.6118 0.2497
0.2895 0.4999 0.2107

fi

fl, and use it

to generate 5 ˆ 105 sample trajectories with L “ 100. Then, we randomly draw M samples out of
them for 100 times.
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(a) Convergence in sample size (b) Synchronization Prediction

Figure 3: (a): Box plot of relative errors of the LSE estimators in 100 simulations for a system
with pN,K, nvq “ p8, 3, 3q. The estimators converge at the same rate, but the multi-trajectory LSE
is much more accurate than the ensemble LSE. (b): A prediction of synchronization for Example
2.4 with T estimated from M “ 103 trajectories with length L “ 100. The sampling error in
LSE-ensemble leads to a system without synchronizations.

The results show that the estimators converge as sample size increases at the rate M´1{2,
agreeing with Theorems 4.4 and 4.10. Additionally, the multi-trajectory LSE is more accurate than
the ensemble LSE; since both estimators use the same dataset each time, the better accuracy comes
from the additional trajectory information.

Figure 3(b) tests the effects of the sampling error in predicting the synchronization. Here the
true and estimated local transition matrices are:

T “

»

–

0 1 0
0 0 1
1 0 0

fi

fl , pTM “

»

–

0.0000 1.0000 0.0000
0.0000 0.0000 1.0000
0.9962 0.0038 0.0000

fi

fl , pTe
M “

»

–

0.0079 0.9921 0.0000
0.0182 0.0000 0.9818
0.9926 0.0074 0.0000

fi

fl ,

The estimators are estimated using M “ 102 sample trajectories with L “ 10. Due to the sam-
pling error, both estimated local transition matrices are not periodic; thus, their systems will not
synchronize. Figure 3(b) shows that the more accurate multi-trajectory LSE leads to numerical
synchronization, while the ensemble LSE cannot maintain the synchronized motion due to the large
estimation error. In practice, when the system is known to synchronize, we can apply thresholding
or specification techniques to preserve the additional properties of the local transition matrix and
achieve synchronization.

5 Future work
Many venues are to be explored beyond the scope of the present work.

The first venue is to study the new PCAs on general finite graphs. The graph can be more
complex than the cyclic graph in this study, for example, a graph with a non-binary weight matrix
for edges, or a high-dimensional lattice. The dynamical properties, such as synchronization and
ergodicity, and the inference of the local transition matrix, can be studied similarly. Additionally,
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it is of great interest to jointly infer the local transition matrix and the weight matrix of the graph,
as studied in [LWLM24] for interacting particle systems on graphs.

Another venue is to study the new PCAs on infinite graphs. Concerning the dynamical proper-
ties, one can study the ergodicity and the critical phenomena by extending the results in [Too94,
LMS90, Cas23, Bér23, FH01]. Concerning the inference of the local transition matrix, one may
consider the asymptotic and non-asymptotic properties of the estimator when the data is a single
trajectory with N Ñ 8, for which [DMH23] has established similar results for interacting particle
systems and [BZ24] considered this problem for graphon particle systems; see, e.g., [BCW23]. An
interesting parameter to estimate in a similar context would be the size nv of each neighborhood.

A Preliminaries on Markov chain and concentration inequalities

A.1 Properties of Markov chains

Suppose Xptq is a finite-state Markov chain with transition matrix P. We recall the following
general results for Markov chains.

Proposition A.1 • There is a stationary distribution π. (because I ´ P , where P denotes the
transition matrix, is not of full rank)

• All states are positive recurrent; see [Dur19, Theorem 1.30].

• Suppose Xptq is aperiodic. Then limtÑ8 P tXptq “ ¨u “ π; see [Dur19, Theorem 1.19].

• limtÑ8
1
t

řt
t“1 P tXptq “ ¨u “ π; see [Dur19, Theorem 1.23].

• Suppose
ş

|f | dπ ă 8. Then limtÑ8
1
t

řt
t“1 fpXptqq “

ş

f dπ; see [Dur19, Theorem 1.22].

Regarding the exponential convergence to the stationary distribution, we have the following
result taken from [Kul15, Theorem 1.3].

Proposition A.2 Suppose there is some ρ ă 1 such that

}P px, ¨q ´ P px1, ¨q}TV ď 2ρ, @x, x1 P AN . (A.1)

Then }Ptpx, ¨q ´ Ptpx
1, ¨q}TV ď 2ρt, @ t ě 1, x, x1 P AN . In addition,

}Ptpx, ¨q ´ π}TV ď 2ρt, @ t ě 1, x, x1 P AN .

A.2 Concentration inequalities

Theorem A.3 (Bernstein’s Inequality) (see e.g., [Ver18, Theorem 2.8.4]) Let X1, . . . , XM be
independent zero-mean random variables. Suppose that |Xi| ď c almost surely for all i. Then for all
positive t, P

´

|
řM

i“1Xi| ě t
¯

ď 2 exp
´

´
t2{2

Varp
ř

i Xiq` 1
3
ct

¯

.In particular, when tXiu are iid., we have

P
´

| 1
M

řM
i“1Xi| ě t

¯

ď 2 exp
´

´
Mt2{2

VarpX1q` 1
3
ct

¯

.

Theorem A.4 (Matrix Bernstein’s inequality) ( [Ver18, Theorem 5.4.1] or [Tro15, Theorem
6.1.1]) Let tXiu

M
i“1 Ă Rnˆn be independent mean zero symmetric random matrices such that }Xi}op ď

c almost surely for all i. Then, for every t ě 0, we have Pp}
řM

i“1Xi}op ě tq ď 2n exp
´

´
t2{2

σ2`ct{3

¯

,

where σ2 “ }
řM

i“1 ErX2
i s}op. Additionally, when tXiu are identically distributed, we have

Pp}
1

M

M
ÿ

i“1

Xi}op ě tq ď 2n exp

ˆ

´
Mt2{2

}ErX2
1 s}op ` ct{3

˙

.
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