
Towards a Flexible and High-Fidelity Approach to
Distributed DNN Training Emulation

Banruo Liu∗
Tsinghua University

Mubarak Adetunji Ojewale
KAUST

Yuhan Ding
Tsinghua University

Marco Canini
KAUST

ABSTRACT
We propose NeuronaBox, a flexible, user-friendly, and high-fidelity
approach to emulate DNN training workloads. We argue that to
accurately observe performance, it is possible to execute the training
workload on a subset of real nodes and emulate the networked
execution environment along with the collective communication
operations. Initial results from a proof-of-concept implementation
show that NeuronaBox replicates the behavior of actual systems
with high accuracy, with an error margin of less than 1% between
the emulated measurements and the real system.

1 INTRODUCTION
Modern DNN training clusters are remarkable engineering feats
that more closely resemble high-performance specialized comput-
ing environments – and the large costs that these entail – than
their mainstream counterparts in commodity cloud computing dat-
acenters. Optimizing resource utilization and overall efficiency is
paramount to maximizing the performance of training workloads
and minimizing associated costs. Therefore, it is highly desirable to
explore the large space of potential design considerations, perfor-
mance optimizations and configuration tunings, and ideally to do
so without incurring time, energy, and monetary costs of profiling
training workloads at scale on actual hardware.

Conducting in-depth “what if” analyses is essential to making
informed decisions and beneficial for a variety of scenarios. For
instance, a ML engineer may want to explore for a given model the
impact of a particular parallelization strategy1 on the training time
and resource utilization. But it is not practical to profile the training
workload on thousands of HW accelerators (GPUs, TPUs, etc.) for
each possible strategy and different configurations. Similarly, a
researcher may want to quantify the benefits at scale of a new
optimization technique to improve LLM training efficiency. Also in
this case, it is hardly feasible to run systematic experiments on a
large cluster for each possible configuration.

Recent work has shown the potential of simulation and analytical
methods to gain insights about DNN training behavior [1, 2, 19–
21, 29]. However, these approaches suffer from at least one of three
limitations: 1) they require significant effort to transform the actual
workloads into an input model for the simulator, 2) they require
explicit models of parallelization strategies and incorporating new
ones entails non-trivial development of new simulation models,
and, 3) the fidelity of their results is limited by how faithful the

∗Work done primarily while author was interning at KAUST.
1Possible strategies include data parallelism [30], tensor parallelism [23], pipeline
parallelism [8], fully sharded data parallelism [32] among others.

N0

N3N2

N1 N0

N3N2

N1

Compute 
Node NeuronaBox

Inter-node 
Link

Emulated 
Node

Figure 1: A training job running in a 4-node cluster (left) is emulated
by executing a single real node (𝑁0) wrapped by NeuronaBox, which
emulates the environment (right).

underlying analytical models of compute and communication are,
which are notoriously difficult to get right at scale [15].

This work pioneers and advocates the use of emulation to aid
in the analysis and experimentation of distributed DNN training
workloads. What we mean by emulation is illustrated in Fig. 1. In
a nutshell, we propose to isolate a node subset (denoted as N ) of
a distributed training job and emulate the networked execution
environment (denoted as E) from the perspective of the nodes in
N . We elect to view the network as a natural boundary between
the real and emulated environments since communication between
nodes in distributed training jobs typically occurs through a collec-
tive communication library (e.g., NCCL [17]) that both isolates the
training scripts from dealing with all the unnecessary details of the
underlying network and demarcates clear points for inter-process
synchronization. We refer to our approach as NeuronaBox.

Notably, in this approach, the nodes in N run unmodified train-
ing scripts, DNN frameworks and libraries. In particular, the commu-
nication is handled by the actual collective communication library
over the network fabric. Meanwhile, the emulation environment
E executes on dedicated hardware resources. The requirements
for the emulation environment are modest: it doesn’t require HW
accelerators, it can run on a single CPU-based node, and it requires
network bandwidth to match the available aggregate bandwidth of
nodes in N .

The key benefit of this approach is that it allows us to faith-
fully execute on real hardware a portion of the training workload,
which executes without overheads from instrumentation (since
there is none) nor profiling N in controlled conditions. Therefore,
we can observe the actual behavior of the training job, including
the HW utilization metrics and collective communication patterns

1

ar
X

iv
:2

40
5.

02
96

9v
1 

 [
cs

.L
G

] 
 5

 M
ay

 2
02

4

https://orcid.org/0009-0002-9932-6096
https://orcid.org/0000-0003-3861-1782
https://orcid.org/0009-0000-2829-0319
https://orcid.org/0000-0002-5051-4283


Banruo Liu, Mubarak Adetunji Ojewale, Yuhan Ding, and Marco Canini

that are critical in analyzing the performance of distributed training
workloads.

We wish to stress that our objective is to enable performance
analysis and optimization of distributed training workloads. Impli-
cations on model quality are out of scope.

Thus, in this work, we initiate the study of these core research
questions: 1) What aspects of the workload must E emulate? 2) How
can this approach maintain high fidelity while retaining wide appli-
cability?

With this short paper, we aim to provide an initial exploration of
the feasibility and potential of this approach, and to solicit feedback
from the community on the soundness of our approach and the
prospects for future research.

2 PROPOSED APPROACH
Our goal is to enable any subset N of nodes in a distributed DNN
training job to execute the workload as if it were running on the
entire set of nodes and resources. We propose to achieve this goal
by emulating the interactions between N and its networked envi-
ronment E, which in a sense can be viewed as a virtualization of
the remaining job’s nodes. We argue that, under certain assump-
tions (detailed below), by observing the performance of N , we can
analyze and extrapolate the behavior for an entire job with high
fidelity.

In our design, we adhere to two driving principles:
1) Ease of use. The user should be able to use NeuronaBox without
any modification to their existing code.
2) Flexibility and independence of parallelization strategies.
NeuronaBox should target a level of abstraction that is indepen-
dent of the specific parallelization strategy. NeuronaBox should be
flexible to seamlessly adapt to changes in parallelization strategies,
including new ones that may emerge in the future.
Workflow and architecture. Fig. 2 depicts an overview of our ap-
proach. The high-level workflow of NeuronaBox is as follows. First,
the user provides the training script, the job configuration (e.g.,
world size, nodes in N , HW resources, etc.), and optionally a set of
what-if conditions for experimentation (an example is given later).
Second, NeuronaBox initializes the emulation environment by syn-
thesizing the network topology and instantiating a communication
model that calculates delay times for collective operations within
the emulated environment. Third, the training script is launched
(e.g., via torchrun). Meanwhile, desired performance metrics like
iteration time and resource utilization are gathered in N . Traces of
collective communication (e.g., NCCL traces) can also be collected.
Assumptions. We assume that nodes have uniform hardware and
network configuration. In practice, it is common to execute dis-
tributed training jobs on homogeneous clusters [10, 13, 26, 28, 33].
We assume that the model fits entirely within N . This assumption
is not restrictive, as it is common to use model or tensor parallelism
within a node or a shard [9, 23] . We expect that these assumption
yield a sort of symmetry in the workload distribution across the
nodes, which allows us to treat the nodes in N as a representative
sample of the entire nodes.We discuss how to extend our arguments
to a non-uniform scenario in § 2.3.

Further, we assume that the collective communication layer is
the only point of interaction between N and E. This assumption is

Training 
Workload

Input

Output

Cluster
Config 

Iteration
Time

Resource
Utilization

NeuronaBox

Coll. Comm. Lib. (NCCL)

DNN Framework (PyTorch)

Network

DNN Framework (PyTorch)
Coll. Comm. Lib. (NCCL)

Network

Real Node

Delay Model
Modified

Vanilla

Add-on

What-if
Conditions System

Traces

Figure 2: Overall workflow and architecture of NeuronaBox.

reasonable, as the collective communication layer is the primary
interface between the computation and the network stack in dis-
tributed training jobs. Finally, note that we are free to modify the
DNN framework and collective communication libraries within the
emulator. That is how we are able to implement NeuronaBox!
Scalability. While collective communication is a natural layer
to target in our work, the astute reader may now wonder how
scalable this approach is. Scalability is traditionally a challenge in
network emulators [11, 27], as emulating a large number of nodes
could overload the emulator. Our key insight is that we are only
interested in the interaction betweenN and the outside world. And
so, the actual communication between the emulated nodes can be
skipped. Instead, only the delay resulting from these communica-
tion operations needs to be incorporated into the emulation. As a
result, the number of connections as well as the amount of data
transfer for NeuronaBox are the same as that ofN . This observation
allow NeuronaBox to potentially scale to a large number of nodes.
A complete exploration of the scalability of NeuronaBox is left for
future work.

In the remainder of this section, we detail the design and imple-
mentation of our proposed approach, NeuronaBox. Since we aim
to demonstrate feasibility through a proof-of-concept, we focus on
a single real node, denoted by 𝑁0. That is, N = {𝑁0}.

2.1 Initialization
Before we describe how NeuronaBox behaves during training, we
first need to initialize the emulator. This requires setting up the en-
vironment, including the network topology and the communication
model.
Topology detection. This step involves establishing the con-
nection between any pair of nodes, and finding the optimal data
paths between all node pairs. It is normally bootstrapped by the
collective communication library itself. During this process, each
node builds up its own local topology graph (how HW accelera-
tors are connected via NVLink, PCIe and NICs), then exchanges
its local graph and, together with other nodes, builds the global
graph. In NeuronaBox, the emulator fakes the local graph of emu-
lated nodes based on the job configuration input. Then, it emulates
multiple end points (the virtualized job nodes) so that nodes in N
can communicate with them (directly via RDMA).

2



Towards a Flexible and High-Fidelity Approach to Distributed DNN Training Emulation

N0

0 3

21

0 3

21

All Reduce

N1

N2

N3

Nemu

Send Recv Dep.

Figure 3: An example DAG for four-node ring all-reduce. The upper
left squares shows the net result of all-reduce, where color-coded
data fromdifferent nodes are reduced and then gathered at each node.
The upper right figure shows the dependency DAG for N (𝑁0). The
lower figure shows how we merge the dependency DAG of 𝑁1, 𝑁2, 𝑁3
into E. The cross-node dependencies from 𝑠𝑒𝑛𝑑 (𝑥 ) to 𝑟𝑒𝑐𝑣 (𝑥 ) are not
shown for clarity sake. We only show the initial 4 steps of all-reduce
for simplicity.

Delay calculation. Based on the global topology, NeuronaBox
calculates the communication and computation delays within the
emulated environment. In our design, we provide an interface so
that the calculation itself is done within a user-defined add-on plu-
gin. For example, the delay in a ring all-reduce call can be estimated
simply by using the classical all-reduce delay model [25], or by
using a packet-level simulator. In the future we seek to leverage
the network simulation components of DNN simulators [1, 2, 29].

2.2 Emulation in a Uniform Scenario
In general, a collective operation (e.g., ring all-reduce) can be split
into a number of messages with dependencies. The emulator must
send/receive messages in a way that takes into account both the
dependency and the internal protocol of the collective operations
library (in our case, NCCL). We first describe how we treat a single
collective operation and then generalize to multiple asynchronous
collective operations.
Single collective operation. Recall that we only need to consider
the interaction between N and E. This means that we can omit
the dependencies for communication within E. The workflow of a
collective operation can be represented as a directed acyclic graph
(DAG) where vertices are send or recv tasks and edges are the data
dependencies. Thus, we note that in NeuronaBox, this DAG can be
greatly simplified. Fig. 3 shows an example for ring all-reduce.2 It is
worth noting that the DAGs forN and NeuronaBox are isomorphic.
As a result, with every message received from N to E, we can

2The all-reduce operation performs reduction on data (i.e., sums) across nodes and
stores the result in a buffer at every node. We use different color for data in different
worker.

always determine the correct state in order to generate the next
message of the collective operation workflow.

To achieve this, E maintains a bitmap of the messages that have
been sent to or received from N , and it applies the following two
actions (E polls these using background threads) that advance the
state of the DAG ensuring synchronization correctness:
1) Try Send To N . A message can be sent if and only if all its prede-
cessors have been sent or received in the DAG. If the next unsent
message in the bitmap fulfils this condition, we update the bitmap
and send the message.
2) Try Receive FromN . Upon receiving a message fromN , E checks
whether it is the expected message for the current operation. If this
is the case, the bitmap of the record is updated; otherwise, an error
is reported.
Multiple async collective operations. The design of a single
collective operation can easily be extended to support multiple oper-
ations by assigning a unique ID to each operation and maintaining
its information in a logically centralized controller. We record the
mapping of operations to their message bitmaps. We ensure fairness
between the individual streams through round-robin polling. Note
that the method for single operation is asynchronous by nature,
as the functions are polled by background threads. Given that, the
synchronization is achieved by busy-waiting.

2.3 Extension to a Non-uniform Scenario
The workload of individual nodes in a training job may not always
be balanced. This is the case, for example, when model parallelism
fails to achieve a balanced workload distribution, or when there is
heterogeneity of hardware and topology. Consequently, emulating
the behavior of an arbitrary node subset (N ) may not adequately
represent the behavior of the entire workload. To overcome this
challenge, we propose to classify each node in the job based on the
part of the model it contains, e.g., like having different stages in
model parallelism. We then ensure that one node in each class is
in N . This approach allows us to infer the behavior of the work-
load by observing the collective behavior of each class of nodes.
This approach also solves the heterogeneity of hardware and topol-
ogy when we classify nodes with different hardware into different
classes.

However, we note that this approach requires more resources.
Suppose there are𝑚 classes; in the basic solution, we need to have
one representative real node for each of them. And with 𝑡 hardware
types, we then need 𝑡𝑚 nodes in N . We conjecture that it may be
possible to reduce the number of nodes inN , say to𝑘 , by decoupling
the emulation between different nodes. Assuming nodes in N are
in different classes, if all the communication is interposed by E,
then we can time-multiplex the class-based workload and assign
each node 𝑚

𝑘
amount of load. We leave the exploration of these

techniques for future work.

2.4 Proof-of-concept Implementation
Our proof-of-concept implementation entails the development of an
end-to-end system using the PyTorch DNN framework and NCCL
as the collective communication library, chosen because of their
popularity.

3



Banruo Liu, Mubarak Adetunji Ojewale, Yuhan Ding, and Marco Canini

Size AllreduceB AllreduceE AllgatherB AllgatherE
1KB 435.2us 418.8us 282.6us 276.2us
4KB 526.5us 511.0us 306.5us 300.2us
32KB 564.9us 552.3us 329.0us 322.6us
256KB 1326.0us 1314.0us 868.9us 859.6us
2MB 7661us 7655us 4928us 4929us
16MB 59.0ms 58.9ms 37.5ms 37.5ms
128MB 470ms 469ms 298ms 298ms

1GB 3760ms 3760ms 2408ms 2407ms
Table 1: Average run time per call. B for baseline and E for emulator
(NeuronaBox). NeuronaBox only incurs at most 4%/2% extra time for
all-reduce and all-gather, respectively.

Our implementation is able to run a two-node training using a
distributed data-parallel strategy. In particular, we modify NCCL’s
instance in E to emulate the collective operations as per § 2.2.
Moreover, in E we skip the cudaKernelLaunch completely so that
no GPU computations are involved. We also modify the NCCL
proxy so that it sends dummy data in compliance with the internal
protocol so that the workload continues to run and N is not aware
of the emulation. In PyTorch, we mainly alter the autogard and
c10d to implement the synchronization that previously relies on a
CUDA kernel now compatible with the emulator. We also remove
computation in backward pass and model weight update in E, given
that those computations are redundant in emulation.

The whole system is about 2000 LoC in CUDA C++ and 50 LoC
in Python, exclusive of experiments and tests. We plan to release
NeuronaBox as open source.

3 PRELIMINARY EXPERIMENTS
We evaluate our prototype NeuronaBox implementation by (1) run-
ning microbenchmarks in NCCL level to see the pure performance
of collective communication, (2) running an end-to-end system
in PyTorch to see the accuracy of emulation, as well as measur-
ing CPU utilization to evaluate the overheads of NeuronaBox. We
also demonstrate (3) an application scenario of NeuronaBox by
performing a “what-if” analysis with latency variations.

Testbed. Our test environment consists of two nodes, each equipped
with two 8-core Intel Xeon Silver 4112 CPUs running at 2.60 GHz,
512 GB RAM and is fitted with a 100 GbEMellanox ConnectX-5 NIC.
In addition, each node contains two NVIDIA V100 GPUs, although
only one is used during evaluation. Each node runs Ubuntu 22.04
(Linux kernel 5.15.0), CUDA 12.2, PyTorch 2.2.0a0 and NCCL 2.19.4.

If not otherwise stated, we call the two nodesN = {𝑁0} and E =

{𝑁𝑒𝑚𝑢 }.𝑁0 always runs the unmodified code.𝑁𝑒𝑚𝑢 is configured to
run either NeuronaBox’s modified code(as emulator), or unmodified
modified code (as a baseline).

3.1 Microbenchmark
Setup. First we assess NeuronaBox’s capability to emulate col-
lective communication operations. We devise the benchmark by
generating input data tensors of different sizes on GPU and issuing
two-node collective operations. We test ncclAllreduce and ncclAll-
gather. After warm-up, we measure the time taken over at least

Model Task Dataset Size
BERT [5] Question Answer SQuAD [18] 1.28GB
ResNet152 [6] Image Classify ImageNet-1K [22] 230MB
DeepLight [4] Click Predict Criteo 1TB [14] 2.26GB

Table 2: Characteristics of benchmark DDN models, size represents
the total parameter size of a model.

Model Time-E Time-B CPU-E CPU-B
BERT 629 ± 3.0 628±1.1 12.93% 14.25%
ResNet152 1061±19.8 1063±16.3 12.68% 12.95%
DeepLight 727±15.0 726± 13.8 7.52% 7.75%

Table 3: End-to-end workload comparison. ‘E’ and ‘B’ stand for
emulator-enabled (NeuronaBox) and the baseline, respectively.
‘Time’ stands for the training times inmilliseconds; and ‘CPU’ stands
for the percentage of CPU usage in a node.

100 repetitions for each call on 𝑁𝑒𝑚𝑢 and report the average. 𝑁0
always runs unmodified code. We compare the result when 𝑁𝑒𝑚𝑢

is running unmodified NCCL (baseline) and NeuronaBox’s NCCL
(emulator).
Results. Table 1 shows that NeuronaBox only incurs at most 4%
overhead; we attribute this to the mutex lock on the controller and
bitmap bookkeeping. The overhead diminishes as the size increases;
when the size is greater than 2MB, the gap is no more than 1%. Since
most data parallel implementations use buckets to batch all-reduce
calls to a larger size (e.g., 25MB in NVIDIA APEX [16]), we believe
this NCCL-level overhead of NeuronaBox is acceptable.

3.2 End-to-end Training Emulation
Setup. To evaluate NeuronaBox’s ability to accurately emulate
end-to-end DNN training, we conducted experiments using three
real-world DNN models, including computer vision, natural lan-
guage processing and recommendation systems. The models details
are listed in Table 2. We use PyTorch’s DistributedDataParallel
module for data parallelism. 𝑁0 runs unmodified PyTorch; 𝑁𝑒𝑚𝑢

runs NeuronaBox’s PyTorch as emulator and unmodified PyTorch
as baseline.

We measure the metrics and report the average after warm-up.
We report training time per iteration for BERT and ResNet; we
report training time per epoch for DeepLight because it involves
model pruning and has variance in between iterations. We also
measure the CPU usage in NeuronaBox to illustrate the overhead
of the emulation.
Results. As shown in Table 3, NeuronaBox is quite accurate in
a two-node environment training with data parallelism, with er-
ror less than 1%. For CPU usage, it actually drops a little bit in
all scenario. We attribute that to: (1) the efficient and lightweight
implementation of NeuronaBox, which keeps the overhead gener-
ally low; (2) the removal of computation in backward pass, which
eliminates a lot of memory allocation and data movements. So the
net effect is a drop in CPU usage. This is promising in terms of the
potential scalability of NeuronaBox.

4



Towards a Flexible and High-Fidelity Approach to Distributed DNN Training Emulation

0 1 2 3 4 5 10 15 20
Additional Delay (ms)

500

1000

1500

2000

In
te

ra
tio

n 
Ti

m
e 

(m
s)

Figure 4: The end-to-end training time per iteration in BERT model
(ms) vs the additional delay injected in every all reduce call (ms).
Error bar is plotted in black.

3.3 What-if Analysis: Latency
Setup. In this experiment, 𝑁0 runs unmodified code and 𝑁𝑒𝑚𝑢

runs NeuronaBox. We inject additional delay in each all-reduce
call in 𝑁𝑒𝑚𝑢 and train a BERT model. We measure the emulated
training time per iteration for each delay.
Results. As Fig. 4 shows, the iteration time increases linearly with
the delay larger than 2 milliseconds. However, when the delay is
small, the overheads reflected in the end-to-end performance does
not grow linearly. We consider this “smooth slope” as a result of
the computation-communication overlap during the training. The
delay injected in each all-reduce call is partly shadowed by the
async computation in the backward pass. Such observation implies
a possible space of improvement in the training, as there is a "2ms"
space for more communication to happen. This is an example of
the kind of insights that can be obtained from using NeuronaBox.

4 RELATEDWORK
DDL simulation. A number of simulators have been developed to
study the behavior of DNN clusters, including DeepFlow[1], Astra-
sim [19, 29], vTrain [2] and several others [7, 20, 21, 24]. These
simulators use analytical methods combined with profiling results
to make predictions, suffering from limitations mentioned in § 1.
Network emulation. Emulation has been widely adopted in net-
working research [11, 27]. MimicNet [31] is a machine learning
based network emulator. It exercises a similar idea by dividing the
datacenter into an “observable” cluster (N in our work) and a black-
box (E in our work) and it applies a machine learning model to fit
it. However, MimicNet focuses on how to train a model to better
approximate the datacenter network at scale, whereas our work
focuses on emulating end-to-end DNN training behaviors.
Goodput prediction. Currently, NeuronaBox only sends dummy
data to N during emulation since it only predicts the completion
time for each training iteration. However, lossy training optimiza-
tion techniques like compression and quantization [12, 28] require
goodput (accuracy) to be taken into account. To support that, Neu-
ronaBox needs to communicate meaningful data to N without
incurring much overhead. One possible solution is to use a proxy
model [3] that generates data with a similar distribution to the
dataset and intermediate results.

5 CONCLUSION
We proposed a novel approach for estimating time-per-iteration
in distributed DNN training, focusing on executing only a part of
the model along with collective communication operations. To sub-
stantiate our proposal, we designed the NeuronaBox emulator and
implement a proof-of-concept system. Through extensive experi-
mentation, we demonstrated in a two-node setup that NeuronaBox
achieves high accuracy in predicting training time across a variety
of DNN models, with an error margin of less than 1% compared to
actual training runs. Finally, we encourage further research in this
direction, recognizing that many questions remain to be explored.

REFERENCES
[1] Newsha Ardalani, Saptadeep Pal, and Puneet Gupta. 2024. DeepFlow: A Cross-

Stack Pathfinding Framework for Distributed AI Systems. ACM Trans. Des.
Autom. Electron. Syst. 29, 2 (2024).

[2] Jehyeon Bang, Yujeong Choi, Myeongwoo Kim, Yongdeok Kim, and Min-
soo Rhu. 2023. vTrain: A Simulation Framework for Evaluating Cost-
effective and Compute-optimal Large Language Model Training. (2023).
arXiv:cs.LG/2312.12391

[3] Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman,
Peter Bailis, Percy Liang, Jure Leskovec, and Matei Zaharia. 2020. Selection via
Proxy: Efficient Data Selection for Deep Learning. In ICLR.

[4] Wei Deng, Junwei Pan, Tian Zhou, Deguang Kong, Aaron Flores, and Guang Lin.
2021. DeepLight: Deep Lightweight Feature Interactions for Accelerating CTR
Predictions in Ad Serving. In WSDM.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In NAACL-HLT.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In CVPR.

[7] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun,
Hassan Kianinejad, Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. 2017.
Deep Learning Scaling is Predictable, Empirically. (2017). arXiv:cs.LG/1712.00409

[8] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, and zhifeng
Chen. 2019. GPipe: Efficient Training of Giant Neural Networks using Pipeline
Parallelism. In NeurIPS.

[9] Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu, Zilong
Wang, Rafael Salas, Jithin Jose, Prabhat Ram, Joe Chau, Peng Cheng, Fan Yang,
Mao Yang, and Yongqiang Xiong. 2023. Tutel: Adaptive Mixture-of-Experts at
Scale. In MLSys.

[10] Fan Lai, Wei Zhang, Rui Liu, William Tsai, Xiaohan Wei, Yuxi Hu, Sabin Devkota,
Jianyu Huang, Jongsoo Park, Xing Liu, Zeliang Chen, Ellie Wen, Paul Rivera,
Jie You, Chun cheng Jason Chen, and Mosharaf Chowdhury. 2023. AdaEmbed:
Adaptive Embedding for Large-Scale Recommendation Models. In OSDI.

[11] Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A network in a laptop:
rapid prototyping for software-defined networks. In HotNets.

[12] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. 2018. Deep
Gradient Compression: Reducing the Communication Bandwidth for Distributed
Training. In ICLR.

[13] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. (2019). arXiv:cs.CL/1907.11692

[14] Microsoft. 2015. Criteo’s 1TB Click Prediction Dataset. (2015).
https://docs.microsoft.com/en-us/archive/blogs/machinelearning/now-
available-on-azure-ml-criteos-1tb-click-prediction-dataset.

[15] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind Krishna-
murthy, Sylvia Ratnasamy, and Scott Shenker. 2018. Revisiting Network Support
for RDMA. In SIGCOMM.

[16] NVIDIA. 2024. A PyTorch Extension: Tools for easy mixed precision and dis-
tributed training in Pytorch . (2024). https://github.com/NVIDIA/apex.

[17] NVIDIA. 2024. Collective Communication Library (NCCL). (2024). https:
//developer.nvidia.com/nccl.

[18] Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. Know What You Don’t
Know: Unanswerable Questions for SQuAD. In ACL.

[19] Saeed Rashidi, Srinivas Sridharan, Sudarshan Srinivasan, and Tushar Krishna.
2020. ASTRA-SIM: Enabling SW/HW Co-Design Exploration for Distributed DL
Training Platforms. In ISPASS.

[20] Saeed Rashidi, William Won, Sudarshan Srinivasan, Srinivas Sridharan, and
Tushar Krishna. 2022. Themis: A Network Bandwidth-Aware Collective Sched-
uling Policy for Distributed Training of DL Models. In ISCA.

5

https://arxiv.org/abs/cs.LG/2312.12391
https://arxiv.org/abs/cs.LG/1712.00409
https://arxiv.org/abs/cs.CL/1907.11692
https://docs.microsoft.com/en-us/archive/blogs/machinelearning/now-available-on-azure-ml-criteos-1tb-click-prediction-dataset
https://docs.microsoft.com/en-us/archive/blogs/machinelearning/now-available-on-azure-ml-criteos-1tb-click-prediction-dataset
https://github.com/NVIDIA/apex
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl


Banruo Liu, Mubarak Adetunji Ojewale, Yuhan Ding, and Marco Canini

[21] Wilfredo J. Robinson M., Flavio Esposito, and Maria A. Zuluaga. 2022. DTS: A
Simulator to Estimate the Training Time of Distributed Deep Neural Networks.
In MASCOTS.

[22] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla,Michael Bernstein, Alexander C
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision 115, 3 (2015).

[23] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2020. Megatron-LM: Training Multi-Billion Parameter
Language Models Using Model Parallelism. (2020). arXiv:cs.CL/1909.08053

[24] Aleksandar Stanić, Dylan Ashley, Oleg Serikov, Louis Kirsch, Francesco Faccio,
Jürgen Schmidhuber, Thomas Hofmann, and Imanol Schlag. 2023. The Languini
Kitchen: Enabling Language Modelling Research at Different Scales of Compute.
(2023). arXiv:cs.LG/2309.11197

[25] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. 2005. Optimization of
Collective Communication Operations in MPICH. Int. J. High Perform. Comput.
Appl. 19, 1 (2005).

[26] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lam-
ple. 2023. LLaMA: Open and Efficient Foundation Language Models. (2023).
arXiv:cs.CL/2302.13971

[27] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan Kostić, Jeff
Chase, andDavid Becker. 2002. Scalability andAccuracy in a Large-Scale Network
Emulator. In OSDI.

[28] Guanhua Wang, Heyang Qin, Sam Ade Jacobs, Xiaoxia Wu, Connor Holmes,
Zhewei Yao, Samyam Rajbhandari, Olatunji Ruwase, Feng Yan, Lei Yang, and
Yuxiong He. 2024. ZeRO++: Extremely Efficient Collective Communication for
Large Model Training. In ICLR.

[29] William Won, Taekyung Heo, Saeed Rashidi, Srinivas Sridharan, Sudarshan
Srinivasan, and Tushar Krishna. 2023. ASTRA-sim2.0: Modeling Hierarchical
Networks and Disaggregated Systems for Large-model Training at Scale. In
ISPASS.

[30] Eric P. Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun
Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. 2015. Petuum: A New
Platform for Distributed Machine Learning on Big Data. IEEE Transactions on
Big Data 1, 2 (2015).

[31] Qizhen Zhang, Kelvin K.W. Ng, Charles Kazer, Shen Yan, João Sedoc, and Vincent
Liu. 2021. MimicNet: Fast Performance Estimates for Data Center Networks with
Machine Learning. In SIGCOMM.

[32] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min
Xu, Less Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison,
Can Balioglu, Pritam Damania, Bernard Nguyen, Geeta Chauhan, Yuchen Hao,
Ajit Mathews, and Shen Li. 2023. PyTorch FSDP: Experiences on Scaling Fully
Sharded Data Parallel. Proc. VLDB Endow. 16, 12 (2023).

[33] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yan-
ping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E.
Gonzalez, and Ion Stoica. 2022. Alpa: Automating Inter- and Intra-Operator
Parallelism for Distributed Deep Learning. In OSDI.

6

https://arxiv.org/abs/cs.CL/1909.08053
https://arxiv.org/abs/cs.LG/2309.11197
https://arxiv.org/abs/cs.CL/2302.13971

	Abstract
	1 Introduction
	2 Proposed Approach
	2.1 Initialization
	2.2 Emulation in a Uniform Scenario
	2.3 Extension to a Non-uniform Scenario
	2.4 Proof-of-concept Implementation

	3 Preliminary Experiments
	3.1 Microbenchmark
	3.2 End-to-end Training Emulation
	3.3 What-if Analysis: Latency

	4 Related work
	5 Conclusion
	References

