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Abstract: In this study, a magnetohydrodynamic model is developed to study the dy-
namics of vortices driven by edge-current. Two modeled equations for fluid and mag-
netic field variables are each transformed into diffusion equation for vorticity and poisson
equation for stream function. A numerical solution method is designed using a simpli-
fied Lattice Boltzmann method (LBM). The LBM-D2Q5 scheme is utilized to obtain
the numerical solutions for the fluid and magnetic field variables. Understanding the
hydrodynamic behavior of systems employed in vortex-based memory systems is crucial
for reliability and performance optimization. Based on this motivation, the effect of
applied edge-current on the hydrodynamic and magnetic vortex configurations are an-
alyzed through numerical simulations. The impact of the boundary magnetization is
also conducted, by varying the strength of the magnetic field at the bottom boundary.
The obtained graphical results provide some insights into the design and operation of
vortex-based memory systems for next-generation data storage applications.

Keywords: Magnetohydrodynamics, Hydrodynamic vortices, Stream function, Lattice
Boltzman method, Edge-current, Magnetization, Vortex memory.

Corresponding Author/Email: R. Musah/mrabiu@uds.edu.gh

1 Introduction
Vortex memory systems are promising candidates for next-generation information stor-
age due to their potential for high-density data encoding and low energy consumption.
Understanding the hydrodynamic behavior of such systems is crucial for optimizing their
performance and reliability.
Many approaches are used for the generation of vortices in confied domains. The most
widely emplyed method of generating vortices in confined volumes is the lid-driven cavity
[1–5]. The Lorentz body force on vortices in driven cavity flow was studied. The results
show that the Stuart number and penetration depth of the Lorentz force significantly
affect the vortices in the flow field, leading to the formation of two new quaternary
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vortices at the bottom corners and the breakdown of the primary vortex into two tertiary
vortices [1]. It is aso possible to create new vortices by modulating the Reynolds number
towards higher values, beyond 100 [5].
Vortices can also be pproduced by driven edge-currents or domain walls [7, 8]. In the
context of few-nm tracking of current-driven magnetic vortex orbits, the absolute timing
of the vortex gyration with respect to the driving current was studied [7]. The proposed
effect is opposite to spin injection-induced vorticity flow discussed in Ref. [6]. The authors
conducted experimental investigation to observe a steady vorticity flow in the system
which drives the spin Hall current. A critical current for the domain wall transformation
from the vortex wall to the transverse wall was observed due to current-driven vortex
domain wall dynamics [6].
In recent times, vortices have been deemed as potential candidates for storing informa-
tion. This is because, non-volatility and perfect reproducibility may be inherent in such
devices. Abrikosov vortex-based random access memory cell was proposed, where a single
vortex is used as an information bit [9]. The Abrikosov vortex-based random cells were
characterized by an infinite magnetoresistance between ’0’ and ’1’ states, a short access
time, a scalability to nanometer sizes, and an extremely low write energy. Quite recently,
a stydy using computational fluid dynamics simulations revealed that vortices can be
employed for conducting certain types of computation. The authors’ results showed that
optimal computational performance can be achieved near some critical Reynolds number,
where flows exhibit a twin vortex configuration [10]. Recently, the concept of a ferroelec-
tric vortex memory device enabling a two-bit memory element and easier vortex chirality
switching was envisaged [11]. The findings suggest an alternative possibility for ferro-
electric vortex-based memory devices. The study also demonstrates the deterministic
switching of vortex chirality and the possibility of developing a new kind of vortex-based
memory device using moderate electric field.
In this study, we investigate the hydrodynamic and magnetic vortex production due to
driven edge-current and bottom boundary magnetization. This is expected to be a novel
approach that harnesses the unique properties of edge currents to manipulate and store
information in vortex configurations. The computational simulations are reached through
Lattice Boltzman Method (LBM) within the D2Q5 scheme.

2 Hydrodyamic model

2.1 Formulation of fluid and magnetic induction models

We begin by considering the hydrodynamic equations governing the behaviour of elec-
tronic fluid in a square cavity. The Navier-Stokes equations coupled with the Maxwell
equation for induced magnetic field provide a comprehensive magnetohydrodynamic frame-
work for describing the dynamics of vortices subject to external magnetic forces.
The normalized governing equations for the fluid is described by the Navier-Stokes equa-
tion [12,13];

∇⃗ · u⃗ = 0, (1)
∂u⃗

∂t
+ u⃗ · ∇⃗u⃗ = −∇⃗p+Re−1∆u⃗+ AlF⃗ext. (2)

The first equation represents the continuity equation, which ensures mass conservation
and the second equation is momentum equation. Here, u⃗ is the two-dimensional (2D)
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velocity vector and p is the pressure. Moreover, the Reynold’s number is Re = u0ℓ/ν,
with u0 as the reference flow velocity, ℓ is the characteristic size of the system, and ν
is kinematic viscosity of the conducting fluid. The external applied force is defined as
F⃗ext = j⃗× (⃗b+ b⃗0). Where b⃗ is the magnetic induction vector and b⃗0 is an inplane applied
field. Al = b0/(µρu

2
0) is the alfe’n number.

The governing equations for the magnetic induction are also presented in the non-dimensional
form as [12,13];

∇⃗ · b⃗ = 0, (3)
∂b⃗

∂t
+ ∇⃗ × u⃗× b⃗ = Re−1

m ∆b⃗. (4)

Where Rem = u0ℓ/η is the magnetic Reynold’s number. The greek letter, η can be viewed
as the ’magnetic viscosity’ and expressed as η = (µσ)−1, with µ and σ as the magnetic
permeability and electrical conductivity, respectively.

2.2 Formulation of stream function and vorticity

To study the hydrodynamic vortex behaviour, the fluid vorticity, ω = ∇⃗×u⃗ is introduced.
The continuity equation is identically stisfied by employing the stream function, ψ as;
ux = ∂ψ/∂y and uy = −∂ψ/∂x. Thus, the vorticty-stream function formulation for
equations 1-2 become;

∆ψ = −ω, (5)
∂ω

∂t
+ u⃗ · ∇⃗ω = Re−1∆ω + Su. (6)

Where Re = u0ℓ/ν is the Reynold’s number. Similarly, the ’magnetic vorticity’, Remj =
∇⃗× b⃗ is utilized in equations 3-4. The quantity j is the charge flow rate in the fluid. The
∇⃗ · b⃗ = 0 condiion is identically stisfied by introducing the magnetic ’stream function’, Λ
as; bx = ∂Λ/∂y and by = −∂Λ/∂x. Thus, the vorticty-stream function formulation for
the magnetic field equations becomes;

∆Λ = −j, (7)
∂j

∂t
+ u⃗ · ∇⃗j = Re−1

m ∆j + Sb. (8)

Where Rem = u0ℓ/η is the magnetic Reynold’s number. Upon careful vector analysis,
one can approximate the source terms in the preceding equation to; Su = Al(⃗b · ∇⃗)j and
Sj = (⃗b · ∇⃗)ω. Where the Alfeven number is expressed as Al = b20/(ρµu

2
0).

2.3 The Lattice Boltzmann formulation

In fact, equations 5-8 are fundamental equation in physics. In particular, equations 5
and 7 are merely poisson equations and equations 6 and 8 are advecttion-diffusion equa-
tions. Not withstanding, these equations are simply and efficiently handled within Lat-
tice Boltzman Method (LBM) formulation [14–16]. The D2Q5 configuration with BGK
approximation usually employed for the poisson-advection-diffusion type models in sim-
ulations correctly reproduce physical results [16, 17, 19]. The implemetations details for
the D2Q5 LBM scheme can be obtained in Ref. [18].
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The evolution equation during a characteristic time step, ∆t for a single particle relaxation
time, τ , the Lattice Boltzman equation reads as:

qα(x⃗+ e⃗α∆t, t+∆t) = qα(x⃗, t)−
qα(x⃗, t)− qeqα (x⃗, t)

τ
∆t+ ωαSψ∆t. (9)

Where x⃗ is a 2D position vector, t is the time, qα(x⃗, t) is the distribution function along the
direction, α with velocity, eα and weighing factor, wα. qeqα is the equilibrium distribution
function, Sψ = −ω is the source term for the stream function equation. Notice that,
the source term for the vorticity equation is zero. The distribusion fuunction, qα(x⃗, t) is
replaced with the particle distribusion function, gα(x⃗, t) for the stream function equation
and fα(x⃗, t) for the vorticity transport equation. The respective equilibrium distribution
functions for the D2Q5 scheme are;

geqα (x⃗, t) = wαψ, (10)

f eqα (x⃗, t) = wαω

(
1 +

e⃗α · u⃗
c2s

)
. (11)

The discrete velocity direction is expressed as;

eα =

{
(0, 0); i = 0,(
cos

( (i−1)π
2

)
, sin

( (i−1)π
2

))
c; i = 1, 2, 3, 4.

(12)

The particle speed c = ∆x (y)/∆t and the associated weight coefficients are w0 = 2/6
and w1,2,3,4 = 1/6. The speed of sound is related to the particle speed as, cs = c/

√
3.

The maccroscopic variables; vorticty, ω and stream function, ψ are recovered from the
microscopic distribusion functions; gα, fα as:

ψ =
∑
α

gα, and ω =
∑
α

fα. (13)

Similarly, following the above lines of arguments for the j-Λ equations, the macroscopic
variables, within the LBM-D2Q5 scheme, can be obtained as:

Λ =
∑
α

gbα, and j =
∑
α

f bα. (14)

Where gbα, f bα are the microscopic distribusion functions for the magnetic field variables.

2.4 Boundary conditions

For the hydrodynamic varibles, the no-slip and the so-called zero-flux boundary conditions
are imposed on the flow velocity on all walls as:

n̂ · u⃗ = 0; n̂× u⃗ = 0. (15)

For the induced magnetic field, an insulating boundary condition is applied to both the
left and the right walls as:

n̂ · b⃗ = 0. (16)

However, separate boundary conditions are, employed at the bottom and top walls. At
the bottom wall, where magnetization of the boundary is applied, the magnetic field
boundary condition is:

bx = bwall; by = 0. (17)
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At the top wall, where edge current is driven along the boundary, the magnetic field
boundary condition is:

∂by
∂x

− ∂bx
∂y

= jwall. (18)

3 Numerical results and discussion
Due to computational constraints, in this research a structured grid of 32× 32 was used
for numerical simulation of the problem. The LBM algorithm was simulated for about
500×∆t seconds. Using the averaged normalized root mean squared error, for the ω:

RMSEω =

√∑N
j=1

[
ωj(t+∆t)− ωj(t)

]2
√∑N

j=1

[
ωj(t)

]2 < 10−5, (19)

the convergene of the silmulation is quite good, as displayed in Table 1 for the vorticity
and stream function. Similar convergence pattern holds for the current and magnetic
stream function.

Table 1: Error convergence for the numerical simulations, for jw = 0.8 and bw = 0.8.

Sim. step errorω errorψ

step 001 1.0 1.0
step 100 1.11×10−4 7.21×10−5

step 200 2.95×10−5 1.39×10−5

step 300 4.26×10−5 8.80×10−6

step 400 4.09×10−5 7.67×10−6

step 500 3.10×10−5 4.71×10−6

Using the numerical simulations based on the modelled equations, we investigate the
behavior of vortices in confined conducting fluids subjected to current flow the top edge
and bottom boundary magnetization. Understanding the hydrodynamic behavior of sys-
tems employed in vortex-based memory systems is crucial for reliability and performance
optimization. Thus, effects of various parameters such as; applied edge-current, jw and
strength of bottom boundary magnetization, bw on the vortices behaviour are analyzed.
In Fig. 1, the impact of varying magniudes of edge-current is observed at zero bottom
boundary magnetization. The top set of grapths are the stream lines, ψ superimposed
on flow velocity fields; ux and uy contours. As seen clearly, the usual partten of vortex
configuration in a typical lid-driven cavity set-up is produced [2, 3, 5]. However, the
stream lines are somewhat flat near the bottom boundary that is opposite to the edge-
current boundary. In this case, the varying edge-current seem to have little effect on the
hydrodynamic vortex configuration. The bottom set of grapths are the magnetic stream
lines, Λ superimposed on the induced magnetic fields; bx and by contours. Similarly,
the effect of the edge-current has negligible impact on the formation of magnetic vortices.
However, the moving edge-current enhances the induced magnetic field closed to the edge
of the top boundary.
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Figure 1: (top) Stream lines of ψ superimposed on flow velocity fields; ux and uy contours
at bw = 0.0. (bottom) Stream lines of Λ superimposed on induced magnetic fields; bx
and by contours: (a) jw = 0.1. (b) jw = 0.4. (c) jw = 0.8.

In Fig. 2, a startk difference occurs at varying magniudes of edge-current when the bottom
boundary magnetization is different from zero, i.e bw = 0.2. As seen clearly in the top set
of graphs, a secondary vortex generation begin to appear. This become manifest at higher
edge-current values. Magnetic vortex also appear in the bottom set of graphs. This is
due to the fact that the magnetized bottom boundary thickens the magnetic boundary
layer. This in turn causes opposing flow to the original flow pattern. Thus, flows near
the bottom boundary generates secondary vortex in the fluid domain, but with opposite
chirality. As the edge-current is increased, the induced magnetic field is enhanced due
to the current flow at the top boundary, which interacts positively with the magnetized
field to form a pronounced effect. The vortex ceter drifts very slowly away from the
magnetized boundary to the center of the bulk. In fact, the emerged secondary vortex in
the fluid domain, in addition to the primary one can serve as a storage for information,
say classical bits; ’0’ and ’1’. A similar concept based on experimental investigation was
recently proposed in Ref. [11].

4 Conclusions
The study sheds light on the hydrodynamics of vortex behaviour driven by edge-current.
In particular, the simulations reveal the intricate interplay between hydrodynamic forces
and magnetic interactions resulting in the dynamics of hydrodynamic and magnetic vor-
tices. It is observed that edge-current can only induce hydrodynamic vortices. However,
the presense of the magnetized bottom boundary creates a significant vortex behaviour for
both hydrodynamic and magnetic domains, leading to potential information memory en-
coding and possible manipulation. The stability of both primary and the seodary vortices
under different edge-current conditions provides further insights into operational regimes
in the design of reliable memory storage systems. Future work may focus on experimental
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Figure 2: (top) Stream lines of ψ superimposed on flow velocity fields; ux and uy contours
at bw = 0.2. (bottom) Stream lines of Λ superimposed on induced magnetic fields; bx
and by contours: (a) jw = 0.1. (b) jw = 0.4. (c) jw = 0.8.

validations, controlling the chirality of the vortices and exploring novel material designs
for enhanced vortex-based memory technologies.
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