
Functional Post-Clustering Selective Inference with

Applications to EHR Data Analysis

Zihan Zhu∗ Xin Gai∗ Anru R. Zhang†

(May 7, 2024)

Abstract

In electronic health records (EHR) analysis, clustering patients according to pat-

terns in their data is crucial for uncovering new subtypes of diseases. Existing medical

literature often relies on classical hypothesis testing methods to test for differences in

means between these clusters. Due to selection bias induced by clustering algorithms,

the implementation of these classical methods on post-clustering data often leads to an

inflated type-I error. In this paper, we introduce a new statistical approach that adjusts

for this bias when analyzing data collected over time. Our method extends classical

selective inference methods for cross-sectional data to longitudinal data. We provide

theoretical guarantees for our approach with upper bounds on the selective type-I and

type-II errors. We apply the method to simulated data and real-world Acute Kidney

Injury (AKI) EHR datasets, thereby illustrating the advantages of our approach.
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1 Introduction

Testing for a difference in means between groups of functional data is fundamental to answer-

ing research questions across various scientific areas (Fan and Lin, 1998; Cuevas et al., 2004;

Zhang and Chen, 2007; Zhang, 2014). Recently, there has been an increasing demand for

post-clustering inference of functional data, namely, testing the difference between groups dis-

covered by clustering algorithms. In particular, the electronic health records (EHR) system

contains a rich source of longitudinal observational data, covering patient demographics, vi-

tal signs, and biochemical markers, making these data ideal for identifying subphenotypes of

patients. With the increasing prevalence of EHR data, longitudinal data clustering methods

used to evaluate patient subphenotypes have become more commonly applied in clinical re-

search, especially in the analysis of vital signs, laboratory values, interventions, etc (Manzini

et al., 2022; Ramaswamy et al., 2021; Lou et al., 2021; Chen et al., 2022; Zeldow et al.,

2021). Post-clustering inference for functional data is a challenging problem and existing

testing methods are often not applicable. The main challenge of this problem is the selection

bias, which would lead to inflated false discoveries if uncorrected, induced by clustering al-

gorithms. In more detail, the clustering forces separation regardless of the underlying truth,

making the p-value spuriously small. In practice, empirical observations reveal that apply-

ing classical methods often leads to spuriously small p-values (Hall and Van Keilegom, 2007;

Zhang and Chen, 2007; Horváth and Kokoszka, 2012; Qiu et al., 2021). This is an instance

of a broader phenomenon termed data snooping (Ioannidis, 2005), referring to the misuse of

data analysis to find patterns in data that can be presented as statistically significant, thus

leading to potentially false conclusions.

The selective inference framework is commonly employed as a remedy for selection bias.

However, the focus of selective inference has primarily been on data with discrete obser-

vations. Due to the nature of EHR data, there is an urgent demand for a novel selective

inference framework that accommodates continuous functional datasets with unaligned ob-
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servations.

To address this challenge, in this paper, we develop a valid test for the difference in means

between two clusters estimated from the functional data, named Post-clustering Selective

Inference for Multi-feature Functional Data (PSIMF). To handle the continuity of functional

datasets, which often contain large timesteps and cannot be treated as discrete data, our

method finds the low-rank spectral representation for the continuous data based on kernel

ridge regression. To address the selection bias in the inference procedure, we propose a

selective inference framework leveraging the clustering information. Next, we discuss the

EHR phenotyping problem before introducing more details of our procedure.

1.1 Application: Phenotyping Based on Electronic Health Records

Phenotyping refers to the process of identifying specific clinical characteristics or patterns

of patients. The application of longitudinal clustering methods to electronic health records

(EHR) data has proven to be a powerful tool for phenotyping, offering novel insights into

patient heterogeneity and disease progression. Numerous studies have similarly utilized

longitudinal clustering methods with EHR data to identify various patient subtypes and

advance clinical research. For instance, researchers studied type 2 diabetes mellitus (T2DM)

patients by analyzing their data on various biochemical markers (Manzini et al., 2022). These

markers included glycated hemoglobin (HbA1c), body mass index (BMI), and diastolic and

systolic blood pressures, among others. By applying longitudinal deep learning clustering

methods on EHR, Manzini et al. (2022) identified seven different subtypes of T2DM. In

addition, a hybrid semimechanistic modeling methodology was introduced to analyze the

progression of chronic kidney disease (CKD) (Ramaswamy et al., 2021). When applied

to the EHR data of CKD patients, the model effectively identified five distinct patient

subpopulations. Through this pioneering method, the emphasis was placed on harnessing

longitudinal data to understand disease progression phenotypes, thereby aiming to streamline
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individualized treatment strategies for each subgroup.

1.2 Main Contributions

Our work introduces a post-clustering selective inference framework for functional data and

provides theoretical guarantees to control selective errors under the Gaussian distributional

assumption. Our framework comprises three parts:

1. We utilize low-dimensional embedding to transform high-dimensional functional data

into low-dimensional tensors (i.e., three-way arrays) while simultaneously imputing

missing values. This embedding is a linear transformation that preserves normality,

resulting in a random tensor where each slice follows a matrix normal distribution.

2. We propose an estimator to evaluate the unknown covariance matrices of the matrix

normal distribution and use the estimated covariance matrices to perform a whitening

transformation.

3. We define the selective p-value based on the tensor obtained through low-dimensional

embedding and the whitening transformation. Inspired by previous work, our selective

p-value leverages clustering information to reduce selection bias and control the selec-

tive type-I error. Furthermore, we prove that the proposed p-value is the conditional

probability of a scaled Chi-square distribution truncated to a subset. We also introduce

a Monte Carlo approximation to estimate the proposed selective p-value.

Our work presents two major novelties compared to previous works (Lucy L. Gao and Wit-

ten, 2024; Chen and Witten, 2023; Yun and Barber, 2023; Hivert et al., 2022). First, our

selective inference framework addresses functional data with missing values and multiple fea-

tures, while previous works often focus on vector inputs. We impute missing values through

low-dimensional embedding, specifically using basis expansion regression. This linear trans-

formation preserves both null and alternative hypotheses, transforming records of a feature
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into a low-dimensional vector. The resulting data has a tensor structure induced by the mul-

tiple features. Consequently, we extend selective inference for matrix inputs (Lucy L. Gao

and Witten, 2024) into the tensor case and define the selective p-value.

Second, we employ the sample covariance estimator for the whitening transformation.

Unlike previous works that often assume covariance matrices are scaled identity matrices,

this assumption may not hold in our scenarios with multi-feature functional observations.

Therefore, estimators for the scaled parameter, such as the mean estimator (Lucy L. Gao

and Witten, 2024), may fail in functional settings. To address this issue, we demonstrate

that the problem essentially boils down to estimating the covariance of a truncated normal

distribution, and we develop a sample covariance estimator accordingly. We prove that the

sample covariance estimator is consistent under the null hypothesis and our selective inference

framework then controls the selective type-I error. Furthermore, we show that the statistical

power converges to 1, and the proposed selective inference framework is asymptotically

powerful.

The merit of the proposed procedure is illustrated in a real data example on Acute

Kidney Injury (AKI) EHR data. AKI is a potentially life-threatening condition that impacts

approximately 20% of hospitalized patients in the United States (Wang et al., 2012). Given

this prevalence, early warning of patient outcomes becomes crucial as it can significantly

improve prognosis (MacLeod, 2009). Identifying new subphenotypes often serves as the

foundation for such early warnings. The most direct, insightful, and currently available

indicator for AKI is the temporal trajectory of creatinine. We apply our proposed method

to the inference after longitudinal clustering of AKI based on creatinine. In conducting this,

we utilized EHR data from the MIMIC-IV database (Johnson et al., 2020, 2023; Goldberger

et al., 2000). Our approach yields results that are both meaningful and credible.

The code of the proposed PSIMF is available online (https://github.com/Telvc/PMISF).
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1.3 Related work

Selective Inference. In classic statistical inference, hypotheses are assumed to be prede-

termined before observing the dataset. However, in a broad range of supervised and unsuper-

vised learning tasks, such as regression and clustering, the hypotheses are often data-driven.

Consequently, the model selection step introduces selection bias, rendering classical inference

methods inadequate. To address this issue, Berk et al. (2013), Fithian et al. (2014), and Lee

et al. (2016) developed the selective inference framework, a process for making statistical

inferences that account for the selection effect. Building on the work of Lee et al. (2016),

selective inference has been extensively applied to the high-dimensional linear models (Tib-

shirani et al., 2016; Yang et al., 2016; Loftus and Taylor, 2015; Charkhi and Claeskens, 2018;

Taylor and Tibshirani, 2018; Hyun et al., 2021; Jewell et al., 2022). In recent years, Lucy

L. Gao and Witten (2024) proposed an elegant selective inference framework for conducting

hypothesis tests on post-clustering datasets, inspiring a series of subsequent studies on this

topic (Chen and Witten, 2023; Zhang et al., 2019; Hivert et al., 2022; Yun and Barber, 2023).

While most existing work focuses on post-clustering inference for discrete data, this paper

aims to develop a selective inference framework for multi-feature functional data.

Functional Clustering. In this paper, we investigate post-clustering inference for func-

tional data. Functional clustering involves categorizing curves, functions, or shapes based

on their patterns or structures. This method has been explored in functional data analysis

literature due to its practical applications. For example, Abraham et al. (2003); Serban and

Wasserman (2005); Kayano et al. (2010); Coffey et al. (2014); Giacofci et al. (2013) devel-

oped two-stage clustering methods that leverage functional basis expansion. These methods

reduce the dimensionality of functional data through basis expansion regression before im-

plementing clustering techniques for low-dimensional vectors. In contrast, Peng and Müller

(2008); Chiou and Li (2007) proposed methods that select the basis using functional principal

components (FPC), avoiding the need for a prespecified set of basis functions. Additionally,
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other research directions include functional clustering approaches such as leveraging the FPC

subspace-projection (Chiou, 2012; Chiou and Li, 2008) and model-based clustering (Banfield

and Raftery, 1993; James and Sugar, 2003; Jacques and Preda, 2014; Heinzl and Tutz, 2014).

Modeling of Matrix Distribution. In this paper, we model multi-feature functional data

using the matrix normal distribution. To implement the whitening transformation in our

proposed selective inference framework, we propose to estimate the block covariance matrix,

determined by the Kronecker product of two covariance matrices. Estimating the block

covariance matrix has been extensively explored in the literature (Dawid, 1981; Dutilleul,

1999; Yin and Li, 2012; Tsiligkaridis and Hero, 2013; Zhou, 2014; Hoff, 2015; Ding and

Dennis Cook, 2018; Hoff et al., 2022).

1.4 Notation and Preliminaries

In this paper, we denote MN (µ,Σ1,Σ2) as the matrix normal distribution with mean µ

and covariance matrices Σ1,Σ2. Specifically, if Z is a random matrix with i.i.d. standard

Gaussian entries, then µ + Σ
1/2
1 ZΣ

1/2
2 ∼ MN (µ,Σ1,Σ2). For any positive integer m, Sm

+

denotes the collection of all m-by-m symmetric positive semi-definite matrices. For any

matrix A ∈ Rm×n, we denote ∥A∥F as its Frobenius norm, and vec(A) ∈ Rmn denotes the

vectorization of A, which is defined as follows:

vec



A11 · · · A1m

...
. . .

...

An1 · · · Anm


 =

[
A11 · · · A1m A21 · · · A2m · · · An1 · · · Anm

]⊤
∈ Rmn.

For any Hilbert space H, we denote ∥·∥H as the associated norm. For any vector func-

tion µ = (µ1, µ2, · · · , µn) : D → Rn, where D ⊆ R is the domain, we denote ∥µ∥∞ =

supx∈D max{|µ1(x)|, |µ2(x)|, · · · , |µn(x)|}. For any functions f, g, we define f ⊙ g as their

Cartesian product. Namely, for any (f ⊙g)(x, y) = f(x) ·g(y), where x, y are in the domains
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of f, g respectively. For any two matrices A ∈ Rm×n, B ∈ Rp×q, define

A⊗B =


a11B · · · a1nB

...
. . .

...

am1B · · · amnB

 ∈ R(pm)×(qn)

as their Kronecker product. For any positive integer n and any n-mode tensor A ∈ Ri1×···×in ,

define A[j, :, · · · , :] as its jth mode-1 slice, A[:, j, :, . . . , :] as its jth mode-2 slice, etc. For any

matrix U ∈ Rim×K , where i1, . . . , in, K are positive integers, define U×mA ∈ Ri1×···im−1×K×im+1×in

as their mode-m tensor product. The cardinality of a set A is denoted by |A|.

1.5 Paper Organization

This paper is organized as follows. In Section 2, we introduce the problem formulation

of post-clustering inference for functional data. Section 3 introduces our proposed method

PSIMF. Section 4 proves how our method achieves bounded selective type-I and type-II errors.

Lastly, Section 5 presents our numerical experiments on synthetic data to validate our theory

and on real-world Acute Kidney Injury (AKI) EHR data.

2 Problem Formulation

This section introduces the problem of post-clustering inference for functional data, illus-

trated in the context of the EHR data analysis. EHR contains records of diverse features

for different patients, where each record of a feature and a patient forms a trajectory of

functional data. We consider the EHR data from n patients and m features. We observe

W = (Wij)i∈[n],j∈[m] for each subject i ∈ [n] and feature j ∈ [m], where Wij is the observed

data of the ith subject and jth feature within a certain period recording their physical fea-

tures. Let Ω = (Ωij)i∈[n],j∈[m] be the corresponding time points of the record W , where

Ωij := (tijk)k∈[rij ] ∈ Rrij is the record of time points for the jth feature of the ith subject,
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rij is the number of time points for this record, and Wij := (Wij(tijk)) ∈ Rrij is the record

for the jth feature of the ith patient. For all i ∈ [n], j ∈ [m] and k ∈ [rij], denote the time

point of observations as {tijk} ⊆ [0, T ]. In summary, the data for each subject i comprises m

features, with each feature j represented by a vector Wij corresponding to the time points

Ωij. Our observations are thus Wij(t), for i ∈ [n], j ∈ [m], and t ∈ Ωij. Real EHR data

often contain missing values, resulting in Ωij frequently having low cardinality. Given these

data, our objective is to uncover the phenotypes of the subjects, i.e., the potential clusters

among these subjects.

2.1 Model Setup

Next, we introduce the model of functional post-clustering inference. We assume the mea-

surements of each feature Wij along time follow a Gaussian process. This implies that the

feature records on a set of time points follow a multivariate normal distribution. Given the

similarity between subjects and for the sake of analytical simplicity, we assume that these

Gaussian processes Wij share a common covariance function across all subjects i. Further-

more, as each subject i contains multiple features, the record Wi = (Wij)j∈[m] for the subject

i could be viewed as a multivariate Gaussian process, which is formally defined as follows.

Definition 1 (Multivariate Gaussian process). We denote f ∼ MGP(µ,R) and say f :=

(f1, f2, · · · , fm) is a multivariate Gaussian process on [0, T ] with the vector-valued mean

function µ := (µ1, · · · , µm) : [0, T ] → Rm and covariance function R := (Rj1j2)j1,j2∈[m] :

[0, T ]× [0, T ]→ Rm×m, if the following holds for any t1, t2, · · · , tr ∈ [0, T ]:

vec(f(t1), f(t2), · · · , f(tr)) ∼ N (vec(µ(t1), µ(t2), · · · , µ(tr)),Σ),

where Σ is defined as follows. For any s, t ∈ [mr], there exist unique j1, j2 ∈ [m] and

k1, k2 ∈ [r] such that s = (j1 − 1)r + k1, t = (j2 − 1)r + k2. Define

Σ[s, t] := Cov(fj1(tk1), fj2(tk2)) = Rj1j2(tk1 , tk2).
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Here Rj1j2 is the auto-covariance function when j1 = j2 and is the cross-covariance function

if j1 ̸= j2.

We introduce the following assumption on the distribution of observations Wij.

Assumption 1 (Distributional Assumption of Observations). Suppose Wij’s satisfy

Wij(tijk) = Zij(tijk) + ϵijk for all tijk ∈ Ωij,

and Zi ∼MGP(µi, R), ϵijk
iid∼ N (0, σ2

j ), Zi, ϵijk are independent.
(1)

Here, µi := (µij)j∈[m] : [0, 1] → Rm is the mean vector function for subject i, Zi follows the

multivariate Gaussian process, ϵijk is the Gaussian noise, and R is the covariance function.

Suppose that R and µi are Lipschitz continuous for all i ∈ [n]. Z1, . . . , Zn are all independent.

In addition, for all i ∈ [n], j ∈ [m], suppose tijk
iid∼ U [0, 1] for all k ∈ [rij].

Assumption 1 concerns all features within the period [0, T ] and supposes they follow the

multivariate Gaussian process with additive noise. Under Assumption 1, for different sub-

jects, the auto- and cross-covariance kernels of Wi are identical, while their mean functions,

denoted as µi, may differ across different i.

In addition to the actual observations of the data Wij, for the convenience of presenting

our methods and theory, we also assume W = (wij)i∈[n],j∈[p] is a collection of n random

samples, each generated according to Model (1).

2.2 Formulation of the Post-clustering Inference Problem

In two-component clustering analysis, we apply a functional clustering algorithm, such as

two-stage clustering methods with functional basis expansion (Abraham et al., 2003; Serban

and Wasserman, 2005; Kayano et al., 2010; Coffey et al., 2014; Giacofci et al., 2013) on W

to obtain two clusters of subjects, denoted by C1 and C2. Here, C1 and C2 record the indices

of subjects in Clusters 1 and 2, respectively, and form a partition of [n]. We aim to test if

there is a significant difference in the means of clusters C1, C2.
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In previous work on selective inference for matrix data, Lucy L. Gao and Witten (2024)

considers the hypothesis test

H̃0

{C1,C2}
: µC1 = µC2 versus H̃1

{C1,C2}
: µC1 ̸= µC2 ,

where µC1 :=
∑

i∈C1 µi/|C1| and µC2 :=
∑

i∈C2 µi/|C2| denote the group means of clusters C1

and C2. However, this hypothesis test cannot be generalized to the functional setting due to

the typical unknown covariance function R. To elaborate, Lucy L. Gao and Witten (2024)

assumes Xi ∼ N (µi, σ
2Id), where Xi is the data in vector format (e.g., sequencing reads),

µi is the mean function, and σ2 is the unknown variance parameter. In contrast, in the

functional setting, the covariance matrix σ2Id is replaced by a covariance function R, and

estimating R without additional assumptions is challenging. This difficulty arises because

the estimation of R requires knowledge of the mean function µi, and any non-zero difference

in µi within a cluster G ∈ C1, C2 would introduce a nuisance parameter, complicating the

estimation process. Similar phenomena and discussions were presented in Yun and Barber

(2023), where they extended the selective inference framework for matrix data proposed in

Lucy L. Gao and Witten (2024); Chen and Witten (2023) to settings with unknown variance.

To address the aforementioned issue, we propose a modeling approach for the null hy-

pothesis, wherein all subjects in a cluster have the same mean function. The variability of

observations across different samples is encapsulated through their covariance function R.

We define µC1 = µi,∀i ∈ C1 and µC2 = µi, ∀i ∈ C2 as the mean functions of samples in clusters

C1 and C2, respectively. Consequently, the task of post-clustering selective inference can be

formulated as the following hypothesis-testing problem:

H
{C1,C2}
0 : µC1 = µC2 versus H

{C1,C2}
1 : µC1 ̸= µC2 . (2)

A natural approach for solving (2) is to apply Wald test (Wald, 1943). Considering a

special case: suppose the time points of measurements Ωi are consistent across all subjects.

In this case, wi = (wij)j∈[m] forms a
(∑m

j=1 r1j

)
-dimensional vector. Denote wC1 and wC2 as

11
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Figure 1: Failure of the Wald test. We sample 100 datasets following Model (1) with

zero mean functions and zero noise terms (µi = 0, σ2
j = 0 for all i, j ∈ [m]). Each dataset

contains 500 subjects, where the record for each subject contains 1 feature with 11 time

points scattered uniformly in [0, 1] (i.e., n = 500, m = 1, rij = 11 for all i ∈ [500], j ∈ [1]).

For each dataset, we apply k-means to obtain two clusters. (a) shows the first 100 records

of the first dataset labeled by the clustering outputs. (b) is the quantile plot of the p-values

for the 100 datasets obtained by the Wald test.

the sample means within clusters C1 and C2, i.e., wG =
∑

i∈G wi/|G| for all G ∈ {C1, C2}. A

straightforward way to evaluate the p-value is

P
H

{C1,C2}
0

(
∥W C1 −W C2∥ ≥ ∥wC1 − wC2∥

)
, (3)

where W G =
∑

i∈G Wi/|G| for all G ∈ {C1, C2}. However, this method can be invalid because

it fails to control the type-I error, namely, one might find the p-value as the trend to be 0 or

1, which is problematic in real practice. See Figure 1 for an illustrative example.
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Figure 2: Overall procedure. (a). the first 100 curves of the dataset with the common

mean µi = 0 and the zero noise ϵi = 0 labeled by the clustering results. (b). scatter plot

(first two coordinates) of the low-dimensional embedding for this dataset. (c). scatter plot

of the whitened data; (d). the first 100 curves of the dataset with the mean µi = −5 or

µi = 5 and the zero noise term labeled by the clustering results; (e). scatter plots (first two

coordinates) for the low-dimensional embedding and whitened data; (f). scatter plots (first

two coordinates) for the low-dimensional embedding and whitened data.

3 Selective Inference for Functional Data Clustering

In this section, we introduce the procedure of PSIMF for testing the difference between post-

clustering matrix data following Model (1) that addresses the challenges described in Section

2.2.
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Our procedure is based on the selective inference framework, which adjusts the inferential

process to account for the selection that has occurred, thereby providing statistically valid

conclusions. In the context of our hypothesis test (2), we aim to test µC1 = µC2 given

C1, C2 ∈ C(w), where w := (wi)i∈[n] is a random sample generated by Model (1). A natural

approach is deriving the selection procedure by constructing a p-value conditioning on the

clustering outputs C1 and C2. Specifically, in the special case where the time points of

measurements Ωi are consistent across all subjects, the selective p-value could be defined as

follows:

P
H

{C1,C2}
0

(
∥W C1 −W C2∥ ≥ ∥wC1 − wC2∥

∣∣∣ C1, C2 ∈ C(W)
)
. (4)

However, in practice, the time records Ωi often differ across subjects, rendering the sample

means wC1 and wC2 ill-defined, and the direct application of our initial approach (4) is

infeasible. To overcome this, we transform wi into vectors with the same dimension by

considering their low-dimensional representations through basis expansion regression. More

details on this can be found in Section 3.1. Additionally, the p-value as initially defined is

numerically infeasible due to the complexity of the condition {C1, C2 ∈ C(W)}. In Section

3.3, we simplify this condition through an orthogonal decomposition and define a formal

p-value.

Our method includes three main steps: first, we conduct the basis expansion regression

to embed the functional data Wi into low-dimensional vectors and form a tensor structure;

second, we conduct the whitening transformation to normalize the tensor; third, we calculate

the selective p-value on the tensor data leveraging the clustering information. We describe

these three steps in the following Sections 3.1, 3.2, 3.3, respectively.

3.1 Low-dimensional Embedding

In this step, we aim to identify a low-dimensional representation of the functional data by

embedding the multivariate Gaussian process data into a dimension-reduced tensor repre-
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sentation.

Recall Model (1), where Wij denotes the record of the ith subject and the jth feature.

Given the time points Ωij and (Wij(tijk))k∈[rij ] ∈ Rrij , where rij is the number of time points

for this record. We select q basis functions {ϕs}s∈[q]. Here, q is a user-specified positive

integer and each ϕs is Lipschitz continuous. We then perform the ridge regression as follows:

αij := argmin
α∈Rq


rij∑
k=1

(
Wij(tijk)−

q∑
s=1

αs · ϕs(tijk)

)2

+ λ∥α∥2
 , (5)

where i ∈ [n], j ∈ [m], λ is a regularization parameter, and (ϕs(tijk))k∈[rij ] is a rij-dimensional

vector of the basis function ϕs. Define the matrix Φij := (ϕs(tijk))s∈[q],k∈[rij ] ∈ Rq×rij , where

the (s, k)th entry of Φij is ϕs(tijk) for s ∈ [q], k ∈ [rij]. Define Kij := ΦijΦ
⊤
ij ∈ Rq×q. Then,

the coefficient vector αij has the following closed-form expression:

αij = (Kij + λIq)
−1Φij(Wij(tijk))k∈[rij ], (6)

and the basis expansion function is µ̂ij =
∑q

s=1 αijsϕs.

The linear transformation (6) embeds the functional dataWij into a q-dimensional vector

αij. By applying this low-dimensional embedding to all i ∈ [n] and j ∈ [m], we transform

each Wij into an m × q matrix. Consequently, the entire dataset W is transformed into an

n×m× q tensor.

Definition 2 (Low-dimensional embedding). Given the basis functions {ϕs}s∈[q] and the

time record Ω, we define the linear map H :W → Rn×m×q, where

H(W)[i, j, :] := (Kij + λIq)
−1Φij(Wij(tijk))k∈[rij ]. (7)

The following lemma shows that under the distributional assumption, the vectorization

of each slice H(W)[i, :, :] ∈ Rm×q of the resulting tensor from Step 1 follows a multivariate

normal distribution.

Lemma 1 (Distribution of H(W)). Under Assumption 1, the following statements hold:
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(I) Define the block diagonal matrix Di := diag((Kij+λIq)
−1Φij)j∈[m] ∈ Rmq×(

∑m
j=1 rij) and

define µΩi
ij := (µij(tijk))k∈[rij ] as the vector of µij characterized by the time record Ωi.

For any a, b ∈ [m], define ΣΩi
ab = (Rab(tijk1 , tijk2))k1,k2∈[rij ] ∈ Rrij×rij as the covariance

matrix, then

vec (H(W)[i, :, :]) ∼ N
{
vec
[(
(Kij + λIq)

−1Φijµ
Ωi
ij

)
j∈[m]

]
, Di

[
Σ

(i)
1 + Σ

(i)
2

]
D⊤

i

}
, (8)

where

Σ
(i)
1 :=

(
ΣΩi

ab

)
a,b∈[m]

and Σ
(i)
2 := diag(σ2

j · Irij)j∈[m].

(II) For some i ∈ [n], if the number of time points rij goes to infinite for all j ∈ [m], then

the distribution of vec(H(W)[i, :, :]) converges as follow:

vec (H(W)[i, :, :])
d−→ N

{
vec

((
K−1µ

(0)
ij

)
j∈[m]

)
,Λ

}
as min

j∈[m]
rij →∞. (9)

Here,

K :=

(∫ 1

0

ϕs1(t)ϕs2(t)dt

)
s1,s2∈[q]

, µ
(0)
ij :=

(∫ 1

0

ϕs(t)µij(t)dt

)
s∈[q]

,Λ := (Λab)a,b∈[m].

We assume K is invertible and define

Λab := K−1

(∫ 1

0

∫ 1

0

ϕs1(t1)ϕs2(t2)(Rab(t1, t2) + 1a=b · σ2
a)dt1dt2

)
s1,s2∈[q]

K−1.

Proof. See Appendix B.1.

3.2 Whitening Transformation

Next, we perform the whitening transformation to normalize H(W) obtained in Step 1. The

goal is to transform the covariance matrix of distribution (8) into an identity matrix.

Define βΩi

(i)
:= ((Kij + λIq)

−1Φijµ
Ωi
ij )j∈[m] and Λ(i) := Di

[
Σ

(i)
1 + Σ

(i)
2

]
D⊤

i . Then the dis-

tribution of (8) reduces to vec (H(W)[i, :, :]) ∼ N
(
vec(βΩi

(i)),Λ(i)

)
. We introduce a slice-wise

transformation L on the tensor H(W):

vec(L(W)[i, :, :]) := Λ
− 1

2

(i) vec(H(W)[i, :, :]), i = 1, . . . , n. (10)
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Under the distributional assumption, the transformed tensor follows another normal distri-

bution:

vec(L(W)[i, :, :]) ∼ N
{
Λ

− 1
2

(i) vec(β
Ωi

(i)), Imq

}
, i = 1, . . . , n.

Analogous to Lemma 1, we can characterize the asymptotic distribution of vec(L(W)[i, :, :]):

vec(L(W)[i, :, :])
d−→ N (Λ− 1

2vec(β(i)), Imq) as min
j∈[m]

rij →∞, (11)

where β(i) := (K−1µ
(0)
ij )j∈[m] and K,Λ, µ

(0)
ij are defined in Lemma 1.

Covariance Estimation. In practice, both the covariance function R and the variance of

noise σ2
j are typically unknown, rendering the covariance matrix Λ unknown. Therefore, we

apply the following sample covariance estimator to estimate Λ:

Λ̂ :=
1

n− 1

[
n∑

i=1

(
vec(H(W)[i, :, :])− vec(H(W))

)(
vec(H(W)[i, :, :]− vec(H(W))

)⊤]
,

where H(W) :=
∑n

i=1H(W)[i, :, :]/n is the sample mean.

If the null hypothesis H
{C1,C2}
0 holds (i.e., µC1 = µC2), we have µi1 = µi2 and β(i1) = β(i2)

for all i1, i2 ∈ [n]. Lemma 1 implies that vec(H(W)[i, :, :]) ∼ N (vec(β(i)),Λ) as rij →∞ for

all j ∈ [m]. Therefore, if H
{C1,C2}
0 holds and the sample size n→∞, we have Λ̂

p−→ Λ.

If the alternative hypothesis H
{C1,C2}
1 holds (i.e., µC1 ̸= µC2), define

βCj := β(i) for some i ∈ Cj and j ∈ {1, 2},

then we have βC1 ̸= βC2 . In this situation, we rewrite the sample covariance estimator as

follows:

Λ̂ =

( 2∑
j=1

[∑
i∈Cj

(vec(H(W)[i, :, :])− vec(H(W)Cj))(vec(H(W)[i, :, :])− vec(H(W)Cj))
⊤

+ |Cj|(vec(H(W)Cj)− vec(H(W)))(vec(H(W)Cj)− vec(H(W)))⊤
])
/(n− 1).

(12)
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Intuitively, (12) implies that

Λ̂
p−→ Λ +

c

(c+ 1)2
vec(βC1 − βC2) · vec(βC1 − βC2)⊤ (13)

as |C1|, |C2| → ∞, |C1|/|C2| → c, and rij →∞. Therefore, the sample covariance estimator Λ̂

has a constant bias c/(c+1)2 · vec(βC1 − βC2) · vec(βC1 − βC2)⊤. In Section 4, we leverage this

bias to show that the proposed estimator controls the statistical power under mild additional

assumptions.

3.3 Selective p-value

Suppose w = (wi)i∈[n] is a sample generated from Model (1) and L(w) is a tensor obtained

by low-dimensional embedding and whitening transformation. Next, we apply a clustering

algorithm (such as the hierarchical clustering or k-means clustering) on {L(w)[i, :, :]}i∈[n] to

separate n subjects into two clusters, where the indices are denoted by C1, C2, respectively.

Analogous to (4), we consider the following selective p-value that leverages the clustering

information:

P
H

{C1,C2}
0

(
∥L(W)C1 − L(W)C2∥F ≥ ∥L(w)C1 − L(w)C2∥F

∣∣∣ C1, C2 ∈ C(L(W))
)
, (14)

where L(W)Cj :=
∑

i∈Cj L(W)[i, :, :]/|Cj| for all j ∈ {1, 2}. We remark that the clustering

algorithm C(·) is implemented on a collection of matrix data {L(w)[i, :, :]}i∈[n] instead of the

functional data W . Intuitively, the proposed p-value is a probability of L(W) conditioning

on the region {L(W) : C1, C2 ∈ C(L(W))}. Following the selective inference theory (Fithian

et al., 2014), this selective p-value leverages the model selection information to eliminate the

selection bias and further control the selective type-I error.

Definition 3. (Post-clustering selective type-I error). Suppose that W = (Wi)i∈[n] follows

Model (1) and w is a realization of W. Suppose that the partition C1, C2 (C1 ∪ C2 = [n],

C1 ∩ C2 = ∅) is the output of a clustering algorithm C(·). Let H
{C1,C2}
0 be the null hypothesis
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defined as (2), we say a test of H
{C1,C2}
0 based on W controls the selective type-I error for

clustering at level α if

P
H

{C1,C2}
0

(
reject H

{C1,C2}
0 based on W at level α

∣∣∣ C1, C2 ∈ C(L(W))
)
≤ α (15)

for any α ∈ [0, 1].

However, the selective p-value (14) cannot be directly calculated because the condition

C1, C2 ∈ C(L(W)) is numerically infeasible, meaning the selection set {L(W) : C1, C2 ∈

C(L(W))} might be complex and difficult to construct. Inspired by the approach in Lucy

L. Gao and Witten (2024), we aim to modify the selection set to simplify the expression of

the selective p-value. Given the clustering output C1, C2, we define the indicator vector as

follows:

ν(C1, C2) :=
(
1{i∈C1}

|C1|
−
1{i∈C2}

|C2|

)
i∈[n]

,

where the ith coordinate of ν(C1, C2) is 1/|C1| if i ∈ C1 and −1/|C2| if i ∈ C2. Based on

ν(C1, C2), we decouple L(W) by the following orthogonal decomposition.

Lemma 2. (Orthogonal Decomposition). For any tensor A ∈ Rn×m×q and any partition of

[n] denoted by C1, C2, we have the following decomposition:

A = π⊥
ν(C1,C2) ×1 A+

(
∥AC1 −AC2∥F
1/|C1|+ 1/|C2|

)
ν(C1, C2)×1 dir(AC1 −AC2)

⊤, (16)

where ACi =
∑

j∈Ci A[j, :, :]/|Ci| is the mean of mode-1 slices corresponding to the partition

Ci, ×1 denotes the tensor mode-1 product (here we view ν(C1, C2) as a n × 1 matrix and

dir(AC1 −AC2) as a 1×m× q tensor), π⊥
ν = I− νν⊤

∥ν∥2 is an orthogonal projection matrix, and

dir(ω) = ω
∥ω∥F

1{ω ̸=0} is the direction of ω (here ω is a matrix, ∥ω∥F is its Frobenius norm,

and 1{ω ̸=0} is the indicator function takes the value 0 when all the entries in ω are zero and

takes the value 1 otherwise).

Proof. See Appendix B.2.
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Plugging L(W) into Lemma 2, we have

L(W) = π⊥
ν(C1,C2)×1L(W)+

[
∥L(W)C1 − L(W)C2∥F

1/|C1|+ 1/|C2|

]
ν(C1, C2)×1 dir

(
L(W)C1 − L(W)C2

)⊤
.

Based on this decomposition of L(W), we define the following selective p-value incorporating

additional conditions.

Definition 4. (Selective p-value). Suppose that W follows Model (1) and w is a realization

of W. Suppose that the partition C(L(w)) = {C1, C2} (C1∪C2 = [n], C1∩C2 = ∅) is the output

of a clustering algorithm C(·). Let H
{C1,C2}
0 be the null hypothesis defined as (2), we propose

the following selective p-value:

pselective = P
H

{C1,C2}
0

(
∥L(W)C1 − L(W)C2∥F ≥ ∥L(w)C1 − L(w)C2∥F

∣∣∣∣C1, C2 ∈ C(L(W)),

π⊥
ν(C1,C2) ×1 L(W) = π⊥

ν(C1,C2) ×1 L(w), dir(L(W)C1 − L(W)C2) = dir(L(w)C1 − L(w)C2)
)
.

(17)

Under the null hypothesis H
{C1,C2}
0 , we have

∑
i∈C1 β(i)/|C1| =

∑
i∈C2 β(i)/|C2|, then (11)

implies that

vec
(
L(W)C1 − L(W)C2

)
d−→
√

1/|C1|+ 1/|C2| · N (0, Imq) as min
i∈[n],j∈[m]

rij →∞. (18)

Next, we plug in (18) to reform the selective p-value (17). To elaborate, (18) implies that

∥L(W)C1 − L(W)C2∥F follows the distribution
√

1/|C1|+ 1/|C2| · χmq if the null hypothesis

holds (and the number of time points goes to infinite). Therefore, we can reform the selective

p-value as a survival function of a truncated chi-squared distribution.

Lemma 3. Suppose that W follows Model (1) and w is a realization of W. Suppose that

vec(L(W)C1 − L(W)C2) ∼
√

1/|C1|+ 1/|C2| · N (0, Imq). Then the selective p-value (17) can

be rewritten as follows:

pselective = 1− F

(
∥L(w)C1 − L(w)C2∥F ;

√
1

|C1|
+

1

|C2|
,S(w; C1, C2)

)
, (19)
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where F(t; c,S) denotes the cumulative distribution function of the random variable c · χmq

truncated to the set S defined by

S(w; C1, C2) :=

{
φ ≥ 0 :

C1, C2 ∈ C
(
π⊥
ν(C1,C2) ×1 L(w) +

[
φ

1/|C1|+ 1/|C2|

]
ν(C1, C2)×1 dir(L(w)C1 − L(w)C2)

⊤
)}

.

Proof. See Appendix B.3.

3.4 Numerical Approximation of Selective p-value

Now we introduce the Monte Carlo method to compute the truncated survival function (19),

which serves as an approximation of the selective p-value (17).

To begin with, we briefly discuss the geometric intuition of S(w; C1, C2). Given a partition

C1, C2 obtained by a certain clustering algorithm, we consider the linear map F : R →

Rn×m×q:

F (φ) := π⊥
ν(C1,C2) ×1 L(w) +

[
φ

1/|C1|+ 1/|C2|

]
ν(C1, C2)×1 dir

(
L(w)C1 − L(w)C2

)⊤
. (20)

Intuitively speaking, F operates the orthogonal projection π⊥
ν(C1,C2)×1L(w) along a “vector”

ν(C1, C2)×1 dir
(
L(w)C1 − L(w)C2

)⊤
with the length φ. The set S(w; C1, C2) contains all the

“length” φ ∈ R such that the transformed tensor has the same clustering outputs as L(w)

(i.e., the partition is equal to C1, C2). Lemma 2 shows

L(w) = π⊥
ν(C1,C2) ×1 L(w) +

[
∥L(w)C1 − L(w)C2∥F

1/|C1|+ 1/|C2|

]
ν(C1, C2)×1 dir

(
L(w)C1 − L(w)C2

)⊤
.

Therefore, we conclude that ∥L(w)C1 − L(w)C2∥F ∈ S(w; C1, C2). Furthermore, when φ >

S(w; C1, C2), the transformation F “pushes away” the sets {L(w)[i, :, :]}i∈C1 and {L(w)[i, :, :

]}i∈C2 along the vector ν(C1, C2) ×1 dir(L(w)C1 − L(w)C2)
⊤, and vice versa. If φ is too large

or small, the clustering output of F (φ) will be different from C1, C2. Therefore, S(w; C1, C2)

concentrates near ∥L(w)C1 − L(w)C2∥F .
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Monte Carlo Approximation. We use the Monte Carlo method to approximate (19),

which is the survival function of the distribution
√
1/|C1|+ 1/|C2| ·χmq truncated on the set

S(w; C1, C2). Mathematically, we rewrite (19) as follows:

pselective =
P
(
φ ≥ ∥L(w)C1 − L(w)C2∥F , C1, C2 ∈ C(F (φ))

)
P(C1, C2 ∈ C(F (φ)))

=
E
[
1{φ≥∥L(w)C1

−L(w)C2
∥F ,C1,C2∈C(F (φ))}

]
E[1{C1,C2∈C(F (φ))}]

,

where φ follows the distribution
√

1/|C1|+ 1/|C2| · χmq, P is the corresponding probability

mass function, and E is the expectation with respect to φ. We will sample some φ ∈ R and

check if φ ∈ S(w; C1, C2) to approximate S(w; C1, C2) and further estimate pselective.

We apply importance sampling to approximate this conditional probability. As afore-

mentioned, S(w; C1, C2) concentrates near ∥L(w)C1 − L(w)C2∥F . Therefore, we set g(x) =

f1(x)/f2(x), where f1 is the density of
√

1/|C1|+ 1/|C2| · χmq and f2 is the density function

of N
(
∥L(w)C1 − L(w)C2∥F , 1/|C1|+ 1/|C2|

)
. For a positive integer S, we sample S values

γ1, . . . , γS ∼ N (∥L(w)C1 − L(w)C2∥F , 1/|C1| + 1/|C2|), then the selective p-value can be ap-

proximately by

pselective ≈

∑
πi1{γi≥∥L(w)C1

−L(w)C2
∥F ,C1,C2∈C(F (γi))}∑

πi1{C1,C2∈C(F (γi))}
, πi =

f1(γi)

f2(γi)
. (21)

3.5 Overall Procedures

We summarize the three steps for computing the selective p-value as an overall procedure

PSIMF in Algorithm 1.
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Algorithm 1: Post Selective Inference for Multiple Functional Data (PSIMF)

Step I: Low-dimensional embedding;

Input: Data of n subjects W, time record Ω, basis functions {ϕs}s∈[q], regularization term λ.

1. Compute the matrices Kij and Φij by Ω and {ϕs}s∈[q];

2. (Basis expansion regression). Xi ← (Kij + λIq)
−1ΦijWij , for i ∈ [n];

Output: Low-dimensional embedding {Xi}i∈[n].

Step II: Covariance estimation;

Input: Low-dimensional embedding {Xi}i∈[n].

3. Compute the sample covariance Λ̂ :=
∑n

i=1(vec(Xi)−vec(X))(vec(Xi)−vec(X))⊤

n−1 ;

Output: Estimated covariance matrix Λ̂.

Step III: Whitening and Clustering;

Input: Low-dimensional embedding {Xi}i∈[n], covariance matrix Λ̂.

4. (Whitening). Conduct the linear transformation vec(Yi)← (Λ̂)−
1
2 vec(Xi);

5. (Clustering). Apply certain clustering algorithm on {Yi}i∈[n] and obtain a partition C1, C2, where

the number of clusters is 2;

Output: Whitened data {Yi}i∈[n], partition C1, C2.

Step IV: Numerical approximation of the selective p-value;

Input: Whitened data {Yi}i∈[n], partition C1, C2, sampling horizon S.

for s = 1→ S do

6. Generate γs ∼
√
1/|C1|+ 1/|C2| · χmq, compute πs = f1(γs)/f2(γs);

7. Apply the same clustering algorithm to obtain the partition C(F (γs));

end

Output: Selective p-value

∑S
s=1 πs1{ωs≥∥Y C1

−Y C2
∥,C1,C2∈C(F (γs))}∑S

s=1 πs1{C1,C2∈C(F (γs))}
.

4 Theoretical Guarantees

In this section, we present theoretical results for PSIMF. We first focus on the selective type-I

error. Recall that the selective p-value is the survival function of a truncated chi-squared

distribution. Therefore, if the selective p-value conditioning on the selection set follows a

uniform distribution on [0, 1], then the selective type-I error can be controlled accordingly.
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The following theorem provides a formal statement:

Theorem 1. (Selective Type-I error control). Suppose W follows Model (1) and w is a

realization of W. Suppose the partition C(L(w)) = {C1, C2} (C1 ∪C2 = [n], C1 ∩C2 = ∅) is the

output of the clustering algorithm C(·). Suppose vec(L(W)C1 −L(W)C2) ∼
√

1/|C1|+ 1/|C2| ·

N (0, Imq) if the null hypothesis H
{C1,C2}
0 holds, then the selective type-I error is controlled by

α ∈ [0, 1]:

P
H

{C1,C2}
0

(
p(W ; C1, C2) ≤ α

∣∣ C1, C2 ∈ C(L(W))
)
= α, (22)

where p(W ; C1, C2) denotes the selective p-value given the data W and the partition {C1, C2}.

Proof. See Appendix A.1.

Next, we study the statistical power of PSIMF, beginning with an intuitive analysis. Under

the alternative hypothesis H
{C1,C2}
1 , if |C1|, |C2| → ∞, |C1|/|C2| → c ∈ (0, 1), (13) implies that

as n→∞,

Λ̂
p−→ Λ +

c

(c+ 1)2
vec(βC1 − βC2) · vec(βC1 − βC2)⊤.

Also, suppose there are infinitely many time points, i.e., mini∈[n],j∈[m] rij → ∞, Lemma 1

implies that

vec(H(W)[i, :, :]) ∼ N (vec(β(i)),Λ).

Recall the whitening transformation vec(L(W)[i, :, :]) = Λ̂− 1
2vec(H(W)[i, :, :]), as n → ∞,

we have

vec(L(W)C1 − L(W)C2)
p−→ Λ̂− 1

2 · vec(βC1 − βC2).

Intuitively, since µi are Lipschitz continuous for i ∈ [n] according to Assumption 1, as the

difference between clusters increases, i.e., ∥µC1 − µC2∥∞ → ∞, we have ∥βC1 − βC2∥F → ∞.

Following the Sherman–Morrison formula (A+ uv⊤)−1 = A−1 −A−1uv⊤A−1/(1 + v⊤A−1u),

we obtain that ∥L(W)C1 − L(W)C2∥F
p−→ (c+ 1)/

√
c. Therefore, suppose w is a realization

of W , plugging the above asymptotic property into Lemma 3, the selective p-value is

pselective ≈ 1− F
(
(c+ 1)/

√
c;
√

1/|C1|+ 1/|C2|,S(w; C1, C2)
)
,
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Figure 3: Scatter plot of L(W). Set m = 1, q = 2, rij = 20 and n ∈ {500, 1000, 2000}

for all subjects and features, set |C1| = |C2| = n/2, µC1 ∈ {5, 10, 50} and µC2 = −µC1 . (a).

scatter plot of L(W) with n = 500 and ∥µC1 − µC2∥∞ = 10. (b). scatter plot of L(W)

with n = 1000 and ∥µC1 − µC2∥∞ = 20. (c). scatter plot of L(W) with n = 2000 and

∥µC1 − µC2∥∞ = 100.

which converges to 1 as the sample size n increases. The following theorem provides a formal

statement.

Theorem 2. (Statistical power). Suppose that W follows Model (1) and w is a realization

of W. Suppose that the partition C(L(w)) = {C1, C2} (C1 ∪ C2 = [n], C1 ∩ C2 = ∅) is the

output of a clustering algorithm C(·). Suppose that vec(H(W)[i, :, :]) ∼ N (vec(β(i)),Λ) if the

alternative hypothesis H
{C1,C2}
1 holds. Then for all α ∈ (0, 1], we have

lim
∥µC1−µC2∥∞→∞,n→∞

P
H

{C1,C2}
1

(
p(W ; C1, C2) ≤ α

∣∣ C1, C2 ∈ C(L(W))
)
= 1

if (i): |C1|, |C2| → ∞ and |C1|/|C2| → c ∈ (0, 1) as n → ∞, (ii): for any ϵ, δ > 0, there

exists M > 0 such that P
H

{C1,C2}
1

(√
1/|C1|+ 1/|C2| · s ∈ S(W ; C1, C2)

)
≥ 1− ϵ for any s > δ,

∥µC1 − µC2∥∞ > M and n > M . Here, the covariance function R is fixed.

Proof. See Appendix A.2.

We briefly explain Assumptions (i) and (ii) in the above theorem. First, Assumption (i)
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implies that two clusters are asymptotically balanced as the sample size increases. Secondly,

Assumption (ii) suggests that the lower bound of S(W ; C1, C2) converges to 0 as n and

∥µC1 − µC2∥∞ increase. Recall the geometric intuition of S(W ; C1, C2) in Section 3.4, the

lower bound of S(W ; C1, C2) is the maximum range of “push back” under the linear operator

F (·) that remains the same clustering outputs. Figure 3 shows the shape of two clusters

becomes flatter as n and ∥µC1 − µC2∥∞ increase. Thus, the clustering algorithm may recover

C1, C2 even if the distance of two clusters and the lower bound of S(W ; C1, C2) tend to

zero when n and ∥µC1 − µC2∥∞ grow, namely Assumption (ii) is feasible. In addition, we

intuitively explain why clusters become flatter as n and ∥µC1 − µC2∥∞ grow: recall that

vec(L(W)[i, :, :]) = Λ̂− 1
2vec(H(W)[i, :, :]) ∼ N (Λ̂− 1

2vec(β(i)), Λ̂
− 1

2ΛΛ̂− 1
2 ). Therefore, as n and

∥µC1−µC2∥∞ increase, Λ̂− 1
2ΛΛ̂− 1

2 is approximately singular and the shape of clusters becomes

flatter.

5 Simulation Studies

In this section, we conduct experiments on synthetic data to evaluate the performance of the

proposed procedure PSIMF. We first assess the selective type-I error to verify the consistency

of PSIMF’s performance with Theorem 1. Subsequently, we examine the statistical power

and explore the robustness of the proposed selective inference framework in Section 5. Due

to page constraints, we provide the basic setup and discussion of the experiments in this

section, while the figures of the experiments are presented in Appendix C.

Selective type-I error under a global null. We generate a dataset containing 100

instances following Model (1), where each instance contains n = 10000 subjects, m = 1

feature, and rij = 15 time points. Specifically, for all s ∈ [100], i ∈ [n], and j ∈ [m], we

generate Ω
(s)
i = {tijk}k∈[rij ], where tijk

iid∼ U [0, 1] and W
(s)
ij (tijk) = Z

(s)
ij (tijk) + ϵ

(s)
ijk, where

Z
(s)
i ∼ MGP(µi, R), ϵ

(s)
ijk

iid∼ N (0, σ2
j ), and Z

(s)
i , ϵ

(s)
ijk are independent. Here we set σ2

j = 0.1,

26



µi = 0 and conduct the simulation for three different covariance functions:

(i) Rational quadratic kernel

R(x, y) =

(
1 +

(x− y)2

ℓ2

)−1/2

;

(ii) Periodic kernel

R(x, y) = e−8 sin2(2π|x−y|);

(iii) Truncated local periodic kernel

R(x, y) = 1{1/3<|x−y|<2/3} · e−8 sin2(2π|x−y|)e−2(x−y)2 + 1{|x−y|≤1/3 or |x−y|≥2/3} · 0.01.

Next, we set the basis functions {ϕs}s∈[q] as the eigenfunctions of the Gaussian RBF (Radial

Basis Function) kernel R(x, y) = e
− ρ

1−ρ2
(x−y)2

, where ρ ∈ (0, 1). By the Mercer expansion

(Fasshauer and McCourt, 2012), the i-th eigenfunction of R(x, y) is

ϕi(x) =
1√
Ni

Hi(x)e
− ρ

1+ρ
x2

, (23)

where Ni = 2ii!
√

1−ρ
1+ρ

and Hi(x) is the i-th order physicist’s Hermite polynomial. In this

experiment, we set ρ = 0.99 and set the truncation number q to be 3, i.e., we use the first

three eigenfunctions to conduct the low-dimensional embedding.

Now, we apply the proposed selective inference framework to the generated datasets.

Figure 5 displays quantile plots of the selective p-values for datasets corresponding to the

three kernels above. The plots demonstrate that the selective p-values approximately follow

a uniform distribution under the global null hypothesis, thereby validating the statement of

Theorem 1.

Statistical power. Next, we present numerical results to verify Theorem 2. Specifically,

we generate datasets following Model (1) under the alternative hypothesis and compute the
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corresponding statistical power. We compute the selective p-value for datasets generated

with varying cluster means ∥µC1 − µC2∥∞ and sample sizes n.

We set the sample size n = 10k for k ∈ {4, . . . , 10}. We fix m = 1 and set rij = 15,

σ2
j = 0.1 for all i ∈ [n], j ∈ [m]. For each sample size n, we generate a dataset containing

n subjects following the alternative hypothesis: µi(·) = −10 for i ≤ m/2 and µi(·) = 10

for i > m/2. We use the same basis as in (23) with the parameter q = 3 to conduct the

low-dimensional embedding. Figure 6(b) presents the statistical power with a fixed mean

difference and increasing sample sizes, showing that the statistical power increases as the

sample size increases.

To investigate the statistical power for different cluster means, we fix the sample size at

n = 80 and the other parameters remaining the same as in the previous paragraph. For each

k ∈ {3.5, 4, 4.5, 5, 5.5, 6, 6.5}, we generate a dataset with n records with population means

µi(·) = k for i ≤ n/2 and µi(·) = −k for i > n/2. Figure 6(c) presents the statistical power

with the same sample size and the increasing difference between cluster means, it shows that

the statistical power increases as the difference between cluster means increases.

Empirical robustness analysis. We consider three misspecification cases and compute

the selective p-value under a global null: Wiener process (Figure 7(a)), exponential Brownian

motion (Figure 7(c)), and Ornstein–Uhlenbeck (OU) process (Figure 7(e)). We also present

the QQ-plot of the selective p-value in Appendix C.

6 Phenotyping of AKI based on EHR

Now we present a real-data application of our selective inference framework. Acute Kidney

Injury (AKI) is a common clinical syndrome characterized by a complex treatment process

and high mortality rates. The pathology of AKI exhibits a high degree of heterogeneity,

posing significant challenges to the formulation of treatment plans. Consequently, identifying
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new AKI subtypes is crucial for improving patient outcomes. The severity of the disease in

AKI patients tends to vary over time, making the problem of hypothesis testing for functional

disease subtypes of significant practical importance.

We specifically focus on the MIMIC-IV EHR dataset from PhysioNet (Johnson et al.,

2020, 2023; Goldberger et al., 2000), which contains de-identified medical data from patients

admitted to the Intensive Care Units (ICU) at Beth Israel Deaconess Medical Center from

2008 to 2019. The database provides a variety of medical data, including vital signs, medica-

tions, laboratory measurements, diagnostic codes, and hospital length of stay. This dataset

is rich in individual patient-level information and is freely accessible, making it feasible for

clinical research worldwide.

We focus on data from adult patients with AKI admitted to the ICU. We identify patients

with ICD codes with explanations including “acute kidney failure.” Then we preprocess

the data similarly to the framework provided by (Song et al., 2020), excluding patients

at or before admission with 1) End Stage Renal Disease, 2) Burns, and 3) Renal Dialysis.

Subsequently, according to the clinical practice guidelines for Acute Kidney Injury designated

by Kidney Disease Improving Global Outcomes (KDIGO)1:

• Stage 1: Serum creatinine (SCr) value rises to 1.5-1.9 times the baseline value within

1The original Kdigo’s definition of AKI staging includes two key quantities: serum Creatinine and urine

output. We focus on the criterion of serum creatinine since the urine output information may be unavailable

in other studies (Song et al., 2020) and using SCr is inconsistent with the later analysis. Our baseline

creatinine value is chosen as the earliest creatinine measurement recorded within the first 48 hours following

the patient’s admission to the ICU. The original definition of Kdigo stages (Khwaja, 2012) does not specify

a period of observing increases over baseline. Due to the heterogeneity of ICU stays of these patients, we

set the observation period to 48 hours (maximum SCr value) or 7 days (multiplication from the baseline),

following the AKI definition used in (Song et al., 2020). Additionally, considering that a relatively small

increase in SCr might be due to random variation, the second condition in the definition of Stage 1 could

lead to false positives (Makris and Spanou, 2016; Lin et al., 2015). Therefore, this condition is not considered

in this study.
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7 days or SCr value increases ≥ 0.3 mg/dl within 48 hours.

• Stage 2: SCr value rises to 2.0-2.9 times the baseline value within 7 days.

• Stage 3: meets at least one of the following two conditions:

– SCr value rises to 3 times the baseline value or more within 7 days;

– increase in SCr value to ≥ 4.0 mg/dl within 48 hours.

We further divide Stage 3 into two subclasses: S3-1, where there is an increase in SCr value

to ≥ 4.0 mg/dl within 48 hours; and S3-2, where the SCr value increases to three times the

baseline or more within 7 days without meeting the conditions of S3-1. The specific shape

of this longitudinal data is shown in Figure 4. For consistency in definition, we selected data

from the first seven days as our study subjects. We then used hierarchical clustering based

on squared Euclidean distance to cluster each category combination, specifying the number

of clusters as 2. In this clustering scenario, we compared the p-values under two distinct test

methods: PSIMF, performing the post-clustering hypothesis test (2), and the Wald test.

Included data S1 S2 S3-1 S3-2 (S1, S3-1) (S1, S3-2) (S3-1, S3-2)

PSIMF p-value 0.2070 0.4504 0.5324 0.9033 0.0095 0.0254 0.5455

Wald p-value < 10−307 < 10−307 < 10−307 < 10−307 < 10−307 < 10−307 < 10−307

Table 1: Comparison of p-values under different clustering scenarios.

As indicated in Table 1, when the input data comprises only one cohort of patients (S1,

S2, S3-1, or S3-2), the p-values produced by PSIMF are relatively high, whereas those from

the Wald test are significantly lower. Our approach appropriately refrains from rejecting the

null hypothesis, unlike the Wald test. This suggests that PSIMF effectively recognizes the

inherent homogeneity among these subtypes.
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Figure 4: a. Real trajectories for 100 randomly selected patients from each category. b.

Trajectories (Mean ± 1.96× standard deviation/
√
sample size) of the four AKI subtypes.

When the input data includes patients from different AKI stages, the p-value for the

combination of S1 and S3-1 is low, correctly indicating the heterogeneity of this combined

class. Clinically, given the definitions of AKI, S1 and S3-1 exhibit significant differences in

distribution and mean, justifying the rejection of the null hypothesis. Similarly, the p-value

for the combination of S1 and S3-2 is also low. We recognize that these two categories are

not adjacent in the clinical staging of AKI—with S1 involving an SCr rise to 1.5-1.9 times

the baseline within 7 days, and S3-2 defined by an SCr increase to three times the baseline

or more. Therefore, the significant results under PSIMF are justified due to the non-adjacent

staging definitions.

Lastly, the p-value produced by PSIMF for the combination of S3-1 and S3-2 is relatively

high, suggesting that S3-1 and S3-2 likely represent the same subtype. This is clinically

plausible, as both S3-1 and S3-2 are categorized under Stage-3 AKI and are not sufficiently

distinct to warrant classification into separate subtypes.
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7 Discussions

This paper focuses on the post-clustering inference problem for functional data. We establish

a selective inference framework and propose a selective p-value for functional data that

reduces the selective bias induced by the clustering algorithm. Our theoretical results show

that the proposed method controls the selective type-I error and statistical power when there

are sufficient time records and sufficient subjects. We use numerical simulation to verify our

theory and further apply the method to the phenotyping of Acute Kidney Injury (AKI), in

which the selective p-value between different stages matches the medical consensus.

Our work opens up several avenues for future research. In this paper, we primarily focus

on scenarios where tijk ∼ U [0, 1]. However, in real-world applications, time records may

be more concentrated during certain periods, potentially invalidating this assumption. A

valuable direction for future research would be to extend our theoretical results to accom-

modate a broader class of distributions for tijk. Additionally, our analysis of selective type-I

error and statistical power currently relies on asymptotic approximations, using the limiting

distribution of H(W) with an infinite number of time records. Addressing the challenge of

deriving finite-sample results for selective type-I error and statistical power remains an open

problem and an important next step.

In addition, we study the setting where clustering algorithms output two clusters, and it

would be interesting to extend the selective inference framework to the setting of multiple

clusters. For this problem, a key challenge would be estimating the unknown kernel function

with multiple clusters. To elaborate, in Section 3.2, we leverage all the data within two

clusters and consider the sample covariance estimator. When there are multiple clusters,

the transformed data vec(L(W)[i, :, :]) within each cluster follows a truncated multivariate

normal distribution. Therefore, combining two clusters and leveraging the sample covariance

estimator would be biased.

Furthermore, the proposed method necessitates that the clustering algorithm C(·) be
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applicable to a collection of matrix data L(w)[i, :, :]i∈[n]. Extending our framework to ac-

commodate a broader class of clustering algorithms is another interesting area for future

research.

References

Abraham, C., Cornillon, P.-A., Matzner-Løber, E. and Molinari, N. (2003). Unsupervised

curve clustering using b-splines. Scandinavian Journal of Statistics, 30 581–595.

Banfield, J. D. and Raftery, A. E. (1993). Model-based gaussian and non-gaussian clustering.

Biometrics, 49 803–821.

Berk, R., Brown, L., Buja, A., Zhang, K. and Zhao, L. (2013). Valid post-selection inference.

The Annals of Statistics, 41 802–837.

Charkhi, A. and Claeskens, G. (2018). Asymptotic post-selection inference for the akaike

information criterion. Biometrika, 105 645–664.

Chen, A., Stein, R., Baldassano, R. N. and Huang, J. (2022). Learning longitudinal patterns

and subtypes of pediatric crohn disease treated with infliximab via trajectory cluster

analysis. Journal of Pediatric Gastroenterology and Nutrition, 74 383–388.

Chen, Y. T. and Witten, D. M. (2023). Selective inference for k-means clustering. Journal

of Machine Learning Research, 24 1–41.

Chiou, J.-M. (2012). Dynamical functional prediction and classification, with application to

traffic flow prediction. The Annals of Applied Statistics, 6 1588–1614.

Chiou, J.-M. and Li, P.-L. (2007). Functional clustering and identifying substructures of

longitudinal data. Journal of the Royal Statistical Society Series B: Statistical Methodology,

69 679–699.

33



Chiou, J.-M. and Li, P.-L. (2008). Correlation-based functional clustering via subspace pro-

jection. Journal of the American Statistical Association, 103 1684–1692.

Coffey, N., Hinde, J. and Holian, E. (2014). Clustering longitudinal profiles using p-splines

and mixed effects models applied to time-course gene expression data. Computational

Statistics & Data Analysis, 71 14–29.

Cuevas, A., Febrero, M. and Fraiman, R. (2004). An ANOVA test for functional data. Com-

putational statistics & data analysis, 47 111–122.

Dawid, A. P. (1981). Some matrix-variate distribution theory: notational considerations and

a bayesian application. Biometrika, 68 265–274.

Ding, S. and Dennis Cook, R. (2018). Matrix variate regressions and envelope models. Jour-

nal of the Royal Statistical Society Series B: Statistical Methodology, 80 387–408.

Dutilleul, P. (1999). The mle algorithm for the matrix normal distribution. Journal of

statistical computation and simulation, 64 105–123.

Fan, J. and Lin, S.-K. (1998). Test of significance when data are curves. Journal of the

American Statistical Association, 93 1007–1021.

Fasshauer, G. E. and McCourt, M. J. (2012). Stable evaluation of gaussian radial basis

function interpolants. SIAM Journal on Scientific Computing, 34 A737–A762.

Fithian, W., Sun, D. and Taylor, J. (2014). Optimal inference after model selection. arXiv

preprint arXiv:1410.2597.

Giacofci, M., Lambert-Lacroix, S., Marot, G. and Picard, F. (2013). Wavelet-based cluster-

ing for mixed-effects functional models in high dimension. Biometrics, 69 31–40.

34



Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G.,

Mietus, J. E., Moody, G. B., Peng, C.-K. and Stanley, H. E. (2000). Physiobank, phys-

iotoolkit, and physionet: components of a new research resource for complex physiologic

signals. circulation, 101 e215–e220.

Hall, P. and Van Keilegom, I. (2007). Two-sample tests in functional data analysis starting

from discrete data. Statistica Sinica, 17 1511–1531.

Heinzl, F. and Tutz, G. (2014). Clustering in linear-mixed models with a group fused lasso

penalty. Biometrical Journal, 56 44–68.
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A Proof of Main Theorems

A.1 Proof of Theorem 1

Suppose w is a realization of (1) and C1, C2 is the partition obtain by a clustering algorithm

based on L(w). For any α ∈ [0, 1], we consider the following conditional probability:

P
H

{C1,C2}
0

(
p(W ; C1, C2) ≤ α

∣∣∣∣C1, C2 ∈ C(L(W)), π⊥
ν(C1,C2) ×1 L(W) = π⊥

ν(C1,C2) ×1 L(w),

dir(L(W)C1 − L(W)C2) = dir(L(w)C1 − L(w)C2)
)
.

(24)

Given the partition C1, C2, for any W follows Model (1) and satisfies C1, C2 ∈ C(L(W)), (19)

implies that

p(W ; C1, C2) = 1− F

(
∥L(W)C1 − L(W)C2∥F ;

√
1

|C1|
+

1

|C2|
,S(W ; C1, C2)

)
.

Therefore, we rewrite (24) as follows:

P
H

{C1,C2}
0

(
1− F

(
∥L(W)C1 − L(W)C2∥F ;

√
1

|C1|
+

1

|C2|
,S(W ; C1, C2)

)
≤ α

∣∣∣∣C1, C2 ∈ C(L(W)),

π⊥
ν(C1,C2) ×1 L(W) = π⊥

ν(C1,C2) ×1 L(w), dir(L(W)C1 − L(W)C2) = dir(L(w)C1 − L(w)C2)
)
.

(25)

Under the conditions π⊥
ν(C1,C2)×1L(W) = π⊥

ν(C1,C2)×1L(w), dir(L(W)C1−L(W)C2) = dir(L(w)C1−

L(w)C2), the truncation sets S(W ; C1, C2) and S(w; C1, C2) are equivalent:

S(W ; C1, C2)

=

{
φ ≥ 0 : C1, C2 ∈ C

(
π⊥
ν(C1,C2) ×1 L(W) +

[
φ

1
|C1| +

1
|C2|

]
ν(C1, C2)×1 dir(L(W)C1 − L(W)C2)

⊤

)}

=

{
φ ≥ 0 : C1, C2 ∈ C

(
π⊥
ν(C1,C2) ×1 L(w) +

[
φ

1
|C1| +

1
|C2|

]
ν(C1, C2)×1 dir(L(w)C1 − L(w)C2)

⊤

)}
= S(w; C1, C2).

Note that the random variable ∥L(W)C1 − L(W)C2∥F is independent of π⊥
ν(C1,C2) ×1 L(W)

and dir(L(w)C1 − L(w)C2) (we refer readers to Appendix B.3 for the proof). Therefore, the
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conditional probability (25) can be rewritten as follows

P
H

{C1,C2}
0

(
1− F

(
∥L(W)C1 − L(W)C2∥F ;

√
1

|C1|
+

1

|C2|
,S(w; C1, C2)

)
≤ α

∣∣∣∣
C1, C2 ∈ C

(
π⊥
ν(C1,C2) ×1 L(w) +

[
∥L(W)C1 − L(W)C2∥F

1/|C1|+ 1/|C2|

]
ν(C1, C2)×1 dir(L(w)C1 − L(w)C2)

⊤
)
,

π⊥
ν(C1,C2) ×1 L(W) = π⊥

ν(C1,C2) ×1 L(w), dir(L(W)C1 − L(W)C2) = dir(L(w)C1 − L(w)C2)
)

=P
H

{C1,C2}
0

(
1− F

(
∥L(W)C1 − L(W)C2∥F ;

√
1

|C1|
+

1

|C2|
,S(w; C1, C2)

)
≤ α

∣∣∣∣
C1, C2 ∈ C

(
π⊥
ν(C1,C2) ×1 L(w) +

[
∥L(W)C1 − L(W)C2∥F

1/|C1|+ 1/|C2|

]
ν(C1, C2)×1 dir(L(w)C1 − L(w)C2)

⊤
))

=P
H

{C1,C2}
0

(
1− F

(
∥L(W)C1 − L(W)C2∥F ;

√
1

|C1|
+

1

|C2|
,S(w; C1, C2)

)
≤ α

∣∣∣∣
∥L(W)C1 − L(W)C2∥F ∈ S(w; C1, C2)

)
.

(26)

Plugging (26) into (24), we have

P
H

{C1,C2}
0

(
p(W ; C1, C2) ≤ α

∣∣∣∣C1, C2 ∈ C(L(W)), π⊥
ν(C1,C2) ×1 L(W) = π⊥

ν(C1,C2) ×1 L(w),

dir(L(W)C1 − L(W)C2) = dir(L(w)C1 − L(w)C2)
)

=P
H

{C1,C2}
0

(
1− F

(
∥L(W)C1 − L(W)C2∥F ;

√
1

|C1|
+

1

|C2|
,S(w; C1, C2)

)
≤ α

∣∣∣∣
∥L(W)C1 − L(W)C2∥F ∈ S(w; C1, C2)

)
= α.

(27)

Now we use (27) to compute the selective p-value. By the law of iterated expectation, we

rewrite the selective type-I error as follows:

P
H

{C1,C2}
0

(
p(W ; C1, C2) ≤ α

∣∣ C1, C2 ∈ C(L(W))
)
= E

H
{C1,C2}
0

(
1p(W;C1,C2)≤α

∣∣ C1, C2 ∈ C(L(W))
)

= E
H

{C1,C2}
0

(
E
[
1p(W;C1,C2)≤α

∣∣C1, C2 ∈ C(L(W)), π⊥
ν(C1,C2) ×1 L(W) = π⊥

ν(C1,C2) ×1 L(w),

dir(L(W)C1 − L(W)C2) = dir(L(w)C1 − L(w)C2)
]∣∣ C1, C2 ∈ C(L(W))

)
.
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Plugging in (27), we obtain

P
H

{C1,C2}
0

(
p(W ; C1, C2) ≤ α

∣∣ C1, C2 ∈ C(L(W))
)
= E

H
{C1,C2}
0

(
α
∣∣ C1, C2 ∈ C(L(W))

)
= α.

A.2 Proof of Theorem 2

Plug in (19), we have

P
H

{C1,C2}
1

(
p(W ; C1, C2) ≤ α

∣∣ C1, C2 ∈ C(L(W))
)

=P
H

{C1,C2}
1

(
1− F

(
∥L(W)C1 − L(W)C2∥F ;

√
1

|C1|
+

1

|C2|
,S(W ; C1, C2)

)
≤ α

∣∣ C1, C2 ∈ C(L(W))

)
.

(28)

We rewrite the survival function F(·) as follows:

F

(
∥L(W)C1 − L(W)C2∥F ;

√
1

|C1|
+

1

|C2|
,S(W ; C1, C2)

)
=P
(
φ ≤ ∥L(W)C1 − L(W)C2∥F

∣∣φ ∈ S(W ; C1, C2)
)
,

where φ follows the distribution
√

1/|C1|+ 1/|C2| · χmq. Using the fact that P(A|B) ≥

P(A)− P(Bc), we have

P
H

{C1,C2}
1

(
p(W ; C1, C2) ≤ α

∣∣ C1, C2 ∈ C(L(W))
)

≤P
H

{C1,C2}
1

(
1− F

(
∥L(W)C1 − L(W)C2∥F ;

√
1

|C1|
+

1

|C2|
,S(W ; C1, C2)

)
≤ α

)
− P

H
{C1,C2}
1

(C1, C2 /∈ C(L(W)))

=P
H

{C1,C2}
1

(
P
(
φ ≤ ∥L(W)C1 − L(W)C2∥F

∣∣φ ∈ S(W ; C1, C2)
)
≥ 1− α

)
− P

H
{C1,C2}
1

(C1, C2 /∈ C(L(W))) .

(29)

Following assumption (ii), we obtain that

lim
∥µC1−µC2∥∞→∞,n→∞

P
H

{C1,C2}
1

(C1, C2 /∈ C(L(W))) = 0. (30)
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To derive the bound for

P
H

{C1,C2}
1

(
P
(
φ ≤ ∥L(W)C1 − L(W)C2∥F

∣∣φ ∈ S(W ; C1, C2)
)
≥ 1− α

)
,

we leverage the inequality P(A|B) ≥ P(A)− P(Bc) again and obtain

P
H

{C1,C2}
1

(
P
(
φ ≤ ∥L(W)C1 − L(W)C2∥F

∣∣φ ∈ S(W ; C1, C2)
)
≥ 1− α

)
≥P

H
{C1,C2}
1

(
P
(
φ ≤ ∥L(W)C1 − L(W)C2∥F

)
− P(φ /∈ S(W ; C1, C2)) ≥ 1− α

)
.

(31)

Asymptotic behaviour of ∥L(W)C1 − L(W)C2∥F . Recall that

vec(H(W)[i, :, :]) ∼ N (vec(β(i)),Λ),

we rewrite vec(H(W)[i, :, :]) as follows:

vec(H(W)[i, :, :]) := vec(β(i)) + ei,

where ei ∼ N (0,Λ). Under the alternative hypothesisH
{C1,C2}
1 and assumption (i): |C1|, |C2| →

∞, |C1|/|C2| → c ∈ (0, 1), (13) implies that

Λ̂
p−→ Λ +

c

(c+ 1)2
vec(βC1 − βC2) · vec(βC1 − βC2)⊤. (32)

Recall that the whitening transformation outputs vec(L(W)[i, :, :]) = Λ̂− 1
2vec(H(W)[i, :, :]).

Plugging in (32), Slutsky’s theorem implies that

vec(L(W)[i, :, :])
d−→
(
Λ +

c

(c+ 1)2
vec(βC1 − βC2) · vec(βC1 − βC2)⊤

)−1/2

(vec(β(i)) + ei)

as n→∞, which further implies that

vec(L(W)C1−L(W)C2)
d−→
(
Λ +

c

(c+ 1)2
vec(βC1 − βC2) · vec(βC1 − βC2)⊤

)−1/2

vec(βC1−βC2)

as n → ∞. Therefore, as ∥µC1 − µC2∥∞ → ∞, we have ∥βC1 − βC2∥F → ∞ and the Sher-

man–Morrison formula (A+ uv⊤)−1 = A−1 − A−1uv⊤A−1/(1 + v⊤A−1u) implies that

∥L(W)C1 − L(W)C2∥F
p−→ (c+ 1)/

√
c.
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Since φ ∼
√

1/|C1|+ 1/|C2| · χmq, then for any ϵ > 0, there exists M > 0 such that for any

∥µC1 − µC2∥∞ > M and n > M , the following inequality holds

P
H

{C1,C2}
1

(
P
(
φ ≤ ∥L(W)C1 − L(W)C2∥F

)
≥ 1− α/2

)
≥ 1− ϵ. (33)

Asymptotic behaviour of P(φ /∈ S(W ; C1, C2)). We rewrite P(φ /∈ S(W ; C1, C2)) as

follows:

P(φ /∈ S(W ; C1, C2)) = P(
√

1/|C1|+ 1/|C2| · s /∈ S(W ; C1, C2)),

where s ∼ χmq. Following assumption (ii), for any ϵ > 0 set δ = zα/2 as the α/2 quantile of

distribution χmq, there exists M > 0 such that

P
H

{C1,C2}
1

(√
1/|C1|+ 1/|C2| · s ∈ S(W ; C1, C2)

)
≥ 1− ϵ

for any s > δ, ∥µC1 − µC2∥∞ > M and n > M . This further implies that

P
H

{C1,C2}
1

(P(φ /∈ S(W ; C1, C2)) ≤ α/2) ≥ 1− ϵ. (34)

Plugging (33) and (34) into (31), we obtain that

lim
∥µC1−µC2∥∞→∞,n→∞

P
H

{C1,C2}
1

(
P
(
φ ≤ ∥L(W)C1 − L(W)C2∥F

)
− P(φ /∈ S(W ; C1, C2)) ≥ 1− α

)
= 1.

(35)

Combine (30) and (35) with (29), we come to the result that

lim
∥µC1−µC2∥∞→∞,n→∞

P
H

{C1,C2}
1

(
p(W ; C1, C2) ≤ α

∣∣ C1, C2 ∈ C(L(W))
)
= 1.

B Proof of Auxiliary Lemmas

B.1 Proof of Lemma 1

Proof of (I). Under Assumption 1, we have

(Wij(tijk))k∈[rij ] ∼ N (µΩi
ij ,Σ

Ωi
jj + σ2

j · Irij)
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and

vec((Wij(tijk))j∈[m],k∈[rij ]) ∼ N (vec((µΩi
ij )j∈[m]),Σ

(i)
1 + Σ

(i)
2 ).

Recall the low-dimensional embedding (6), we have

vec(H(W)[i, :, :]) = Di · vec((Wij(tijk))j∈[m],k∈[rij ]).

Therefore, the transformed data H(W)[i, :, :] follows the distribution

vec(H(W)[i, :, :]) ∼ N (vec(((Kij + λIq)
−1Φijµ

Ωi
ij )j∈[m]), Di

[
Σ

(i)
1 + Σ

(i)
2

]
D⊤

i ).

Proof of (II). Notice that Di = diag((Kij + λIq)
−1)j∈[m] · diag(Φij)j∈[m], we have

vec(H(W)[i, :, :]) = diag((Kij + λIq)
−1)j∈[m] · diag(Φij)j∈[m] · vec((Wij(tijk))j∈[m],k∈[rij ])

=
[
diag((Kij/rij + λ/rij · Iq)−1)j∈[m]

]︸ ︷︷ ︸
XΩi

·
[
diag(Φij/rij)j∈[m] · vec((Wij(tijk))j∈[m],k∈[rij ])

]︸ ︷︷ ︸
Y Ωi

.

(36)

• Convergence of XΩi

Recall that Kij = ΦijΦ
⊤
ij, namely

Kij =

(
rij∑
k=1

ϕa(tijk)ϕb(tijk)

)
a,b∈[q]

.

By the law of large numbers, we obtain that

Kij/rij =

(
rij∑
k=1

ϕa(tijk)ϕb(tijk)/rij

)
a,b∈[q]

p−→
(∫ 1

0

ϕa(t)ϕb(t)dt

)
a,b∈[q]

= K.

Combine the above equation with the continuous mapping theorem, we have

(Kij/rij + λ/rij · Iq)−1 p−→ K−1 as rij →∞. (37)

Then XΩi converge to diag(K−1)j∈[m] in probability if rij →∞ for all j ∈ [m].

45



• Convergence of Y Ωi

We leverage the following lemma:

Lemma 4. For any n ∈ N, suppose Ωn := {ti}i∈[n] is a set of random variables, where

ti
iid∼ U [0, 1]. Suppose µn : Rn → Rm and Σn : Rn → Sm×m

+ , where m ∈ N is a fixed integer.

Suppose {Yn}n∈N+ is a sequence of random vectors satisfying Yn ∈ Rm and

Yn|Ωn ∼ N (µn(Ωn),Σn(Ωn)).

If there exists a fixed vector µ and a fixed matrix Σ such that

µn(Ωn)
p−→ µ and Σn(Ωn)

p−→ Σ as n→∞,

then the following statement holds:

Yn
d−→ N (µ,Σ).

Proof. See Appendix B.4 for the complete proof.

For a time record Ωi = (Ωij)j∈[m] (where |Ωij| = rij), define µΩi
:= vec((Φijµ

Ωi
ij /rij)j∈[m])

and ΣΩi
:= diag(Φij/rij)j∈[m]

[
Σ

(i)
1 + Σ

(i)
2

]
diag(Φij/rij)

⊤
j∈[m], then we have

Y Ωi |Ωi ∼ N (µΩi
,ΣΩi

).

Next, we are going to prove that

1) µΩi

p−→ vec((µ
(0)
ij )j∈[m]),

2) ΣΩi

p−→ (KΛabK)a,b∈[m],
(38)

as minj∈[m] rij →∞.

Proof of 1). Since µΩi
ij = (µij(tijk))k∈[rij ], we have Φij[s, :]µ

Ωi
ij /rij =

∑rij
k=1 µij(tijk)ϕs(tijk)/rij

for any s ∈ [q], then law of large number implies that

Φijµ
Ωi
ij /rij →

(∫ 1

0

ϕs(t)µij(t)dt

)
s∈[q]

= µ
(0)
ij and µΩi

→ vec((µ
(0)
ij )j∈[m]).
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Proof of 2). By the definition of ΣΩi
, we have ΣΩi

= (DΩi
ab )a,b∈[m], where

DΩi
ab =

1

riarib
Φia

[
ΣΩi

ab + 1a=b · σ2
aIia
]
Φ⊤

ib.

For any s1, s2 ∈ [q], the (s1, s2) entry of DΩi
ab is

DΩi
ab [s1, s2] =

1

riarib

ria∑
k1=1

rib∑
k2=1

ϕs1(tiak1)ϕs2(tibk2)(Rab(tiak1 , tibk2) + 1a=b · σ2
a).

Lemma 5. Suppose a1, a2, · · · , am, b1, · · · , bn
iid∼ U [0, 1]. Define

Cm,n :=
1

mn

m∑
k1=1

n∑
k2=1

f(ak1)g(bk2)ψ(ak1 , bk2), C :=

∫ 1

0

∫ 1

0

f(t1)g(t2)ψ(t1, t2)dt1dt2,

where f, g : [0, 1]→ R and ψ : [0, 1]× [0, 1]→ R are Lipschitz continuous. Then we have

Cm,n
p−→ C as min{m,n} → ∞.

Proof. See Appendix B.5 for the complete proof.

Lemma 5 implies that

DΩi
ab [s1, s2]

p−→
∫ 1

0

∫ 1

0

ϕs1(t1)ϕs2(t2)(Rab(t1, t2) + 1a=b · σ2
a)dt1dt2

as min{ria, rib} → ∞. Therefore, we have

ΣΩi

p−→ (KΛabK)a,b∈[m] as min
j∈[m]

rij →∞.

Combine 1), 2) and leverage Lemma 4, we obtain that

Y Ωi
d−→ N (µΩi

,ΣΩi
).

Plugging the convergence of XΩi and Y Ωi into (36) and leveraging Slutsky’s theorem, we

have

vec(H(W)[i, :, :])
d−→ N (vec((K−1µ

(0)
ij )j∈[m]),Λ) as min

j∈[m]
rij →∞.
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B.2 Proof of Lemma 2

To begin with, we have

A = π⊥
ν(C1,C2) ×1 A+ (I − π⊥

ν(C1,C2))×1 A.

By the definition of π⊥
ν(C1,C2), we have I − π⊥

ν(C1,C2) = ν(C1, C2)ν(C1, C2)⊤/∥ν(C1, C2)∥2 and

∥ν(C1, C2)∥2 = 1/|C1| + 1/|C2|. As a result, we can rewrite the second term in the above

equation as follows:

(I − π⊥
ν(C1,C2))×1 A =

ν(C1, C2)ν(C1, C2)⊤

1/|C1|+ 1/|C2|
×1 A

=
ν(C1, C2)

1/|C1|+ 1/|C2|
×1 (AC1 −AC2)

⊤,

(39)

where the last equation holds by the property of tensor mode product. The equation (39)

further leads to (16) and finishes the proof.

B.3 Proof of Lemma 3

Combine (17) with the orthogonal decomposition (16), we have

pselective = P
H

{C1,C2}
0

(
∥L(W)C1 − L(W)C2∥F ≥ ∥L(w)C1 − L(w)C2∥F

∣∣∣∣C1, C2 ∈ C(π⊥
ν(C1,C2) ×1 L(W)+[

∥L(W)C1 − L(W)C2∥F
1/|C1|+ 1/|C2|

]
ν(C1, C2)×1 dir(L(W)C1 − L(W)C2)

⊤
)
, π⊥

ν(C1,C2) ×1 L(W) = π⊥
ν(C1,C2) ×1 L(w),

dir(L(W)C1 − L(W)C2) = dir(L(w)C1 − L(w)C2)
)

= P
H

{C1,C2}
0

(
∥L(W)C1 − L(W)C2∥F ≥ ∥L(w)C1 − L(w)C2∥F

∣∣∣∣C1, C2 ∈ C(π⊥
ν(C1,C2) ×1 L(w)+[

∥L(W)C1 − L(W)C2∥F
1/|C1|+ 1/|C2|

]
ν(C1, C2)×1 dir(L(w)C1 − L(w)C2)

⊤
)
, π⊥

ν(C1,C2) ×1 L(W) = π⊥
ν(C1,C2) ×1 L(w),

dir(L(W)C1 − L(W)C2) = dir(L(w)C1 − L(w)C2)
)
.

Next, we are going to show that

1) ∥L(W)C1 − L(W)C2∥F ⊥ π⊥
ν(C1,C2) ×1 L(W),

2) ∥L(W)C1 − L(W)C2∥F ⊥ dir(L(W)C1 − L(W)C2).
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Proof of 1). By the property of vectorization operator, we have vec(π⊥
ν(C1,C2) ×1 L(W)) =

(Imq ⊗ π⊥
ν(C1,C2))vec(M1(L(W))), where (Imq ⊗ π⊥

ν(C1,C2)) is the orthogonal projection matrix

that projects vec(M1(L(W))) onto a subspace orthogonal to Imq⊗ν(C1, C2). By the property

of multivariate normal distribution, the projections of a multivariate normal vector onto

two orthogonal subspaces are independent. Therefore, (Imq ⊗ π⊥
ν(C1,C2))vec(M1(L(W))) is

independent to (Imq ⊗ ν(C1, C2))vec(M1(L(W))), i.e., vec(π⊥
ν(C1,C2) ×1 L(W)) is independent

to vec(ν(C1, C2)⊤ ×1 L(W)) = vec(L(W)C1 − L(W)C2).

Proof of 2). Since vec(L(W)C1 − L(W)C2) follows the scaled standard normal distribu-

tion N (0, (1/|C1|+ 1/|C2|)Imq), then ∥L(W)C1 − L(W)C2∥F is independent to vec(L(W)C1 −

L(W)C2). Because the length and direction of a multivariate normal distribution are inde-

pendent (if the covariance matrix is the scaled identity matrix).

We have shown that ∥L(W)C1 − L(W)C2∥F is independent of π⊥
ν(C1,C2) ×1 L(W) and

dir(L(W)C1 − L(W)C2). Therefore, we can drop these conditions and rewrite the selective

p-value as follows

pselective = P
H

{C1,C2}
0

(
∥L(W)C1 − L(W)C2∥F ≥ ∥L(w)C1 − L(w)C2∥F

∣∣∣∣C1, C2 ∈ C(π⊥
ν(C1,C2) ×1 L(w)

+

[
∥L(W)C1 − L(W)C2∥F

1/|C1|+ 1/|C2|

]
ν(C1, C2)×1 dir(L(w)C1 − L(w)C2)

⊤
))

.

Define φ = ∥L(W)C1 − L(W)C2∥F and S(w, C1, C2) = {φ ≥ 0 : C1, C2 ∈ C(π⊥
ν(C1,C2) ×1 L(w) +

(φ/(1/|C1|+ 1/|C2|)) ν(C1, C2)×1 dir(L(w)C1 −L(w)C2)
⊤)}, then the selective p-value has the

form

pselective = P
H

{C1,C2}
0

(φ ≥ ∥L(w)C1 − L(w)C2∥F |C1, C2 ∈ S(w, C1, C2)).

Since vec(L(W)C1 − L(W)C2) ∼
√

1/|C1|+ 1/|C2| · N (0, Imq), the random variable φ follows

the
√
1/|C1|+ 1/|C2| · χmq distribution and further finishes the proof.
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B.4 Proof for Lemma 4

Define a sequence of random vectors {Ỹn}n∈N+ as follows

Ỹn := µn(Ωn) + Σn(Ωn)
1/2 · Z where Z ∼ N (0, Im) ⊥ Ωn,

then Ỹn and Yn follow the same distribution. By Slutsky’s theorem, we have

Ỹn = µn(Ωn) + Σn(Ωn)
1/2 · Z p−→ µ+ Σ1/2 · Z,

which further implies that

Yn
d−→ N (µ,Σ).

B.5 Proof for Lemma 5

We decompose Cm,n − C as follows:

Cm,n − C =
1

mn

m∑
k1=1

n∑
k2=1

f(ak1)g(bk2)ψ(ak1 , bk2)−
∫ 1

0

∫ 1

0

f(t1)g(t2)ψ(t1, t2)dt1dt2

=
1

m

m∑
k1=1

f(ak1)

[
1

n

n∑
k2=1

g(bk2)ψ(ak1 , bk2)−
∫ 1

0

g(t)ψ(ak1 , t)dt

]
︸ ︷︷ ︸

A

+

∫ 1

0

g(t2)

[
1

m

m∑
k1=1

f(ak1)ψ(ak1 , t2)−
∫ 1

0

f(t1)ψ(t1, t2)dt1

]
dt2︸ ︷︷ ︸

B

.

Therefore, for any ϵ > 0, we have

P(|Cm,n − C| ≥ ϵ) ≤ P(|A| ≥ ϵ/2) + P(|B| ≥ ϵ/2). (40)

Next we set ϵ < 2min{sup(a,b)∈[0,1]2 |g(b)ψ(a, b)|, sup(a,b)∈[0,1]2 |f(a)ψ(a, b)|}/3 and leverage

the following lemmas:

Lemma 6 (Yukich (1985)). If P is a probability measure and f is a function, denote Pf :=∫
f(z)dP (z). Given Z1, · · · , Zn

iid∼ P , let Pn be the empirical measure and denote Pnf :=
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∑n
i=1 f(Zi)/n. Given a function class F , let A = supf

∫
|f |dP and B = supf∥f∥∞. For any

ϵ < 2A/3,

P
(
sup
f∈F
|Pn(f)− P (f)| > ϵ

)
≤ 4N[ ](ϵ/8,F , L1(P ))e

− 96nϵ2

76AB .

Lemma 7 (van der Vaart (2000)). Let F = {fθ : θ ∈ Θ} where Θ is a bounded subset of

Rd. Suppose there exists a function m such that for every θ1, θ2,

|fθ1(x)− fθ2(x)| ≤ m(x)∥θ1 − θ2∥.

Then,

N[ ](ϵ,F , Lq(P )) ≤

(
4
√
d · diam(Θ)

∫
|m(x)|qdP (x)

ϵ

)d

.

Bounding P(|A| ≥ ϵ/2). Since g and ψ are Lipschitz continuous, the conditions in Lemma

6 and Lemma 7 are satisfied. Therefore, there exists a constant U > 0 such that

P

(
sup

a∈[0,1]

∣∣∣∣∣ 1n
n∑

k=1

g(bk)ψ(a, bk)−
∫ 1

0

g(t)ψ(a, t)dt

∣∣∣∣∣ ≥ ϵ

)
≲ e−U ·nϵ2/ϵ. (41)

Bounding P(|B| ≥ ϵ/2). Following the same proof steps, there exists a constant V > 0

such that

P

(
sup
b∈[0,1]

∣∣∣∣∣ 1m
m∑
k=1

f(ak)ψ(ak, b)−
∫ 1

0

f(t)ψ(t, b)dt

∣∣∣∣∣ ≥ ϵ

)
≲ e−V ·mϵ2/ϵ. (42)

Plugging (41) and (42) into (40), we obtain that

P(|Cm,n − C| ≥ ϵ) ≲
e−U ·nϵ2 + e−V ·mϵ2

ϵ
.

Therefore, for any ϵ, δ > 0 (ϵ is sufficiently small), there exists M,N such that for any

m > M and n > N ,

P(|Cm,n − C| ≥ ϵ) ≤ δ.
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C Supplementary Figures

This section presents the auxiliary figures for numerical simulation and EHR-dataset appli-

cation in Section 5 and Section 6.
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Q-Q plot of the selective p-value under null hypothesis
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Figure 5: Left column: Records of the first feature and the first 5 subjects for the dataset

generated with 15 time points. Right column: Quantile plots of the selective p-value for

the corresponding kernel with 100 generated datasets, where (b) is the result of RQ Kernel,

(d) is the result of PE Kernel, and (f) is the result of LPE Kernel.
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Statistical Power
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Figure 6: (a): Example of the dataset generated under H
{C1,C2}
1 with 15 time points and

sample size m = 80, where population means are µi(·) = 1.1 for i ≤ 50 and µi(·) = −1.1

for i > 50. (b): Statistical power with sample size m ∈ {40, 50, · · · , 100}, where population

means are µi(·) = 10 for i ≤ m/2 and µi(·) = −10 for i > m/2. (c): Statistical power

with sample size m = 80 and population means µi(·) = k for i ≤ m/2 and µi(·) = −k for

i > m/2, where k ∈ {3.5, 4, · · · , 6.5}.
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Q-Q plot of the selective p-value under global null (misspecification cases)
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Figure 7: Left column: Records of the first feature of the first 5 subjects for the dataset

generated with 15. Right column: quantile plots of the selective p-value. (a): Each record

is generated independently under the Wiener process. (c): Each record is generated indepen-

dently under the exponential Brownian motion. (e): Each record is generated independently

under the OU process.
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