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A Deep Learning approach is devised to estimate the elastic energy density ρ at the free surface
of an undulated stressed film. About 190000 arbitrary surface profiles h(x) are randomly generated
by Perlin noise and paired with the corresponding elastic energy density profiles ρ(x), computed
by a semi-analytical Green’s function approximation, suitable for small-slope morphologies. The
resulting dataset and smaller subsets of it are used for the training of a Fully Convolutional Neural
Network. The trained models are shown to return quantitative predictions of ρ, not only in terms
of convergence of the loss function during training, but also in validation and testing, with better
results in the case of the larger dataset. Extensive tests are performed to assess the generalization
capability of the Neural Network model when applied to profiles with localized features or assigned
geometries not included in the original dataset. Moreover, its possible exploitation on domain
sizes beyond the one used in the training is also analyzed in-depth. The conditions providing a
one-to-one reproduction of the ”ground-truth ρ(x) profiles computed by the Green’s approximation
are highlighted along with critical cases. The accuracy and robustness of the deep-learned ρ(x)
are further demonstrated in the time-integration of surface evolution problems described by simple
partial differential equations of evaporation/condensation and surface diffusion.

I. INTRODUCTION

In the last decade, applications of Machine Learning
approaches to Materials Science have grown exponen-
tially, blown by the development of highly parallelized
computational architectures, especially based on GPUs.
Neural Networks (NN) [1, 2], already used for fitting in-
teratomic potentials [3, 4], are now finding applications
on a wide variety of problems, ranging from experimen-
tal data analysis to numerical simulations [5–9], thanks
to their flexibility and capabilities of approximating func-
tions with arbitrary precision [10]. The use of NNs for
accelerating computationally demanding tasks allows to
achieve the desired outputs at a fraction of the time re-
quested by conventional methods and enables the study
over spatial- and/or temporal-scales that would not be
otherwise accessible.

Recent studies have shown how this concept can be
proficiently exploited not just on the atomistic scale but
also in the continuum [11–16], proposing NN workflows
to completely or partially surrogate the numerical solu-
tion of Partial Differential Equations governing physical
problems. In this context, Convolutional NNs (CNN)
are particularly convenient for the approximation of dif-
ferential operators, as they intrinsically encode spatial
correlations and symmetries.

Here we apply a CNN to replace the solution of the me-
chanical equilibrium problem for a strained film. More
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precisely, the prototypical case of a Ge film subject to
a 4% compressive strain, mimicking the epitaxial mis-
fit with a hypothetical Si(001) substrate, will be consid-
ered, with no loss of generality. For the sake of sim-
plicity, we here target to predict by NN just the map of
the elastic energy density ρ at the film surface but the
proposed approach could be straightforwardly applied to
any other scalar property as well as to the components
of the displacement vector or of the stress/strain tensors.
Given that the present work aims at providing a quanti-
tative evaluation of the efficacy of the proposed approach,
hundreds-of-thousands of examples are needed for train-
ing and testing the NN, each one requiring the solution
of the elastic problem to extract the “true” ρ profile.
To this goal, we find it convenient to exploit a semi-
analytical Green’s function approximation (GA) [17–19]
to evaluate the strain state of a non-planar, low-aspect-
ratio, film in two dimensions (2D). The understanding
on the NN behavior acquired after this study, allowing
for the identification of the optimal feature set to be con-
sidered for proficient NN training, poses the basis for
application-oriented developments, using more-accurate,
yet time-consuming, calculation methods. An extension
using a Finite-Element Method solver in place of GA is
the object of an upcoming publication.

The use of a Fully-Convolutional NN architecture [20]
is particularly appealing in the case at hand, as it al-
lows for a convenient encoding of physical symmetries by
construction [15]. As in all ML approaches, the choice of
good inductive biases is also critical to reducing the num-
ber of examples required to learn an accurate model [1, 2].
Still, the question of how big a dataset should be to pro-
vide an effective approximation is an important one for
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this class of methods, particularly in cases in which data
acquisition is expensive or time-consuming. For this rea-
son, we train models with different dataset sizes and com-
pare performances on suitable validation and test sets.

Once the NN model has been trained, the next step in-
volves an extensive inspection of its capabilities, includ-
ing assessing its ability to generalize unseen examples,
comparing its predictions against ground-truth solutions
based on GA, and evaluating its reliability in both ex-
trapolation and interpolation scenarios. By this compre-
hensive examination, we may discern the strengths and
weaknesses of the model in order to confidently apply it.
Moreover, the NN predictions can be exploited in more
complex tasks, such as the time-integration of surface
evolution equations[21–23], where ρ represents the elas-
tic driving force for the material redistribution. However,
while accurate predictions are achieved for static config-
urations, relying on the deep-learned ρ at each of the
possibly millions of timesteps of an evolution simulation
implies even stronger constraints to warrant stable and
consistent behavior. Therefore, testing time-evolution is
critical for validating the quality of NN predictions.

The paper is organized as follows. First, in the Sect. II
we describe the study methodology, including the evalu-
ation of ρ in the Green’s function approach, the details
of the CNN structure, and the dataset generation. Then,
in the Sect. III we discuss the training and validation
procedure, and investigate the performance of the NN
to provide quantitative predictions of ρ against the GA
ground-truth solution. The strengths and limits of the
NN, as well as its generalization capabilities, are ana-
lyzed by an extensive testing. A few applications to the
solution of well-known time-dependent problems are fi-
nally reported to demonstrate the robustness of the pro-
posed approach, yielding one-to-one match of the GA-
based ground-thruth simulations, and its extensibility to
large-scale and long-time. Last, conclusions and perspec-
tives are discussed.

II. METHODS

A. Elastic energy density and Green’s function
approximation

In the present work, we investigate the strain state of
a semi-infinite film, described by a 2D profile function
y = h(x). For the sake of simplicity, the film is described
as an elastically isotropic medium, although extensions to
non-isotropic linear elasticity could be considered using
the same framework. As we refer to a Ge film, we take
Y=103 GPa for the Young modulus and ν=0.26 for the
Poisson ratio.

The strain state of the film is found by solving the
mechanical equilibrium equations, in the linear elasticity

regime [17]:

∇ · σ = ∇ · [C : (ε− ε∗)] = 0 , (1)

σ · n̂ = 0 at free-surfaces (2)

where σ and ε are the stress and strain tensors, ε∗ =
4%I is the (diagonal) eigenstrain tensor, accounting for
the nonelastic deformation state of the unrelaxed film
[24, 25], and C is the tensor of elastic constants. For
general free-surface profiles, eq. (1) has no closed-form
solution. However, for small-slopes a Green’s function
approximation [17–19] can be exploited. In particular, it
is found that the in-plane xx strain component can be
expressed as:

εxx(x) = − Y ε∗

1− ν2

∫
Gxx(x− x′)h(x)dx′ . (3)

Gxx is the Green’s function for the strain field in a half-
space, approximated by a Lorentzian function with cutoff
b to avoid the divergence at x → 0:

Gxx(x) =
2(1− ν2)

πY

1

x2
≈ 2(1− ν2)

πY

1

x2 + b2
. (4)

The convolution integral in eq. (3) can then be solved by
means of Fourier transform as

ε̂xx(q) = 2ε∗
e−b|q| − 1

b
ĥ(q) . (5)

Once εxx is recovered by Fourier anti-transformation, one
can also straightforwardly evaluate the out-of-plane yy
strain component as εyy = (ε∗ − νεxx)/(1− ν).
The elastic energy density ρ at each point x along

the film surface, which is the quantity of interest for the
present study, is then:

ρ(x) =
1

2
σ : (ε− ε∗) ≈ Y

2(1− ν2)
(εxx(x)− ε∗)2 . (6)

B. Neural Network

Both h and ρ are represented by arrays containing val-
ues on a fixed, uniform mesh of Nx points. To learn
the approximate mapping between the free-surface pro-
file and the corresponding elastic energy density, a spe-
cialized Fully Convolutional Neural Network [20] archi-
tecture has been implemented within the PyTorch frame-
work [26]. As a broad definition, this class of networks is
composed by stacking only convolutions and point-wise
non-linearities, thus making it able to process inputs of
arbitrary size. This property, particularly convenient in
tasks such as image segmentation or image-image transla-
tion [20, 27, 28], can be leveraged in the present setting to
apply the learned approximation on computational cells
with a different size than the one presented to the NN at
training time. This point, along with applicability limi-
tations, will be analyzed in Sects. III B, III C and IIID,
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where the model is applied to domains of different sizes
than those used in training. Besides this multiple-scales
generalization possibility, another main advantage is that
Fully-Convolutional NN can be easily modified to com-
ply with physical symmetries by construction, effectively
reducing the number of required examples and helping to
control generalization error.

Translation equivariance is satisfied by construction by
the fully-convolutional structure, as can be directly con-
firmed by the fact that the NN commutes with profile
translation operators [1]. In more practical terms, this
means that if the profile h(x) undergoes a horizontal
shift a transformation h(x) → h(x + a), then the pre-
dicted ρ(x), will be correspondingly shifted by construc-
tion. Consistently with the Green’s function approxima-
tion exploiting Fourier transforms, the NN adopted circu-
lar padding [29, 30], effectively implementing built-in pe-
riodic boundary conditions. Additionally, in the present
case of a semi-infinite material, the elastic energy den-
sity at the surface is invariant with respect to vertical
shifts. The NN prediction ρ should therefore satisfy the
condition ρ(h(x)) = ρ(h(x) + b), for any vertical shift b
in the surface profile. A simple way to implement this
symmetry, which has been exploited in the present work,
is the subtraction of the average of the input profile ev-
ery time ρ is calculated. A last equivariance property of
the profile-elastic energy mapping, valid for the present
assumption of isotropic elastic constants, is mirror sym-
metry. If the profile is reflected with respect to x coordi-
nates, i.e. h(x) → h(−x), then ρ(x) must be reflected in
the same way. This symmetry was directly implemented
in the NN structure by imposing that convolution kernels
are invariant with respect to reflections: given a convo-
lution kernel of size N [k1, k2, ..., kN ], then the kernel
1
2 [k1 + kN , k2 + kN−1, ..., kN + k1] is invariant to reflec-
tions by construction.

The standard mean-squared error for regression tasks
is selected as a loss function. Given the predicted elastic
energy density ρNN and the ground-truth values com-
puted by GA, ρGA it reads:

L(ϑ) = 1

NTSNx

NTS∑
i=1

Nx∑
j=1

(ρNN
j (hi|ϑ)− ρGA

j (hi))
2 , (7)

where the index i runs on training examples (being NTS

their total number), j enumerates collocation points and
ϑ are the NN parameters. Notice that the ρNN

j value
at the j-th collocation point is a function of the whole
profile hi.

We also report for the technical reader the specific
architecture that in our tests produced the best re-
sults. The Network is built by stacking multiple simple-
convolution/non-linearity (hyperbolic tangent activation
was used) blocks, as it is standard in Deep Learning ar-
chitectures. No skip connections are present. Convo-
lutions encompass 20 different kernels with size 21. A
total of 5 such basic blocks are used. With this struc-
ture, the total number of parameters θ to be learned

is 26121, although symmetry constraints approximately
halve the number of independent ones. Additional de-
tails and the specific code implementation can be found
at https://github.com/mosegroup/nn4surf.

C. Dataset generation

The generation of high-quality datasets plays a key role
in training, thus the creation of surface profiles that rep-
resent a wide spectrum of qualitatively distinct features
is essential. To automatically generate arbitrary profiles
of sufficient variability, we considered a kind of gradient
noise known as Perlin noise [31]. It inherently offers the
advantage of producing random profiles with specified
correlation lengths, ensuring that the generated dataset
is not only diverse but also representative of possible sur-
face morphologies. The Python project from Ref. [32] has
been used to conveniently generate profiles for training
set instances.

Each of the generated h(x) profiles is then associated
with the corresponding elastic energy density ρ(x) calcu-
lated by the Green’s function approximation discussed in
Sect. II A.

Based on the well-known Asaro-Tiller-Grinfeld (ATG)
theory [33–36], the characteristic length scale for the mor-
phology of strained-Ge films is expected to be of the or-
der of a few tens of nms. A domain size of L=100 nm
is then assumed sufficient to represent the main traits of
the surface profiles. Then, in order to comply with the
small-slope prescription of the GA approach, the peak-
to-valley height of the generated profiles was restricted
in the range [0.001,8] nm, taking random values, equally
spaced on a logarithmic scale.

A one-dimensional grid with a fixed δx=1 nm spacing
is used for the profile discretization and each data point is
identified as a pixel in the NN structure. A dataset of ap-
proximately 190000 examples, available from the reposi-
tory [37], was been generated. Each instance consists of
the list of 100 (scalar) (hj , ρj)-pairs for the discretized
profiles.

III. RESULTS AND DISCUSSION

In this section, we analyze the capability of the NN to
provide one-to-one predictions of the elastic energy den-
sity ρ(x) associated to arbitrary surface profiles h(x). To
quantify the accuracy of the NN predictions against the
GA ground-truth, we consider both the local prediction
error

δρ(x) = ρNN(x)− ρGA(x) , (8)

https://github.com/mosegroup/nn4surf
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evaluated at each point x = xi of the domain discretiza-
tion, and the normalized root-mean-squared error:

σρ =

√
1

Nx

∑Nx

i [ρNN(xi)− ρGA(xi)]
2

max(ρGA)−min(ρGA)
, (9)

where i indexes each of the Nx collocation points in the
profile discretization. A 2% value of σρ is identified as
the limiting value to consider the NN predictions as a
one-to-one reproduction of the ground-truth.

A. Training, validation and testing

Training is performed using the standard PyTorch im-
plementation of the Adam optimizer [26, 38], with a
learning rate of 1×10−5. Three different dataset sizes
Nset have been considered: the full set of 190000 exam-
ples and two subsets made of 70000 and 15000 examples
respectively, which allows to understand the effect of the
number of examples on the quality of the learned approx-
imation. The dataset elements are randomly distributed
into training and validation sets with a 70-30% propor-
tion. The minimization of the loss function defined in
eq. (7) is performed using a batch size of 512 and was
halted once the average slope of the validation loss curve
falls below 10−4 (i.e. when it would take 104 iterations
to reduce the loss by one order of magnitude).

As customary [1, 2, 39], the first quality assessment for
a trained model is the comparison of the loss function as
calculated on the training and validation set. The results
for the three trained models are reported in Fig. 1. In
all models, the losses steadily decrease during the train-
ing epochs without signs of overfitting. As expected,
the model trained on the largest dataset outperforms
the smaller ones, at least in terms of training/validation
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FIG. 1. Logscale-plot of the training and validation loss values
as a function of the number of training iterations for three NN
models with dataset size Nset ≈15000, 70000 and 190000.

losses, reaching an L value at least one order of magni-
tude lower.
To certify the absence of biases in the NN model and

to check extrapolation limits, several tests have been con-
ducted on additional profiles not included in the train-
ing/validation set (an extensive selection is available in
the repository [37]). In particular, we identify six differ-
ent classes of profiles, exemplified in Fig. 2, useful to test
the NN predictivity:

(a) Perlin noise profiles, conformal to the ones used for
the NN training but never exposed to it;

(b) profiles generated by random Fourier synthesis of
cosines with λ in the range [15,100] nm, providing
smooth profiles generated on a different basis than
the one of training;

(c) combinations of non-overlapping gaussian peaks of
different heights and widths, so to test the NN
against localized features;

(d) asymmetric, single peaks of different skewness and
heights, made by joining two gaussian halves of dif-
ferent widths, so to test the effect of symmetry in
the NN predictions;

(e) series of cusps of different slopes with different
heights and widths, to test the effect of discontin-
uous slope;

(f) profiles made of a single triangular peak of differ-
ent height-to-base aspect ratios at the center of a
flat domain, so to test polygonal geometries with
straight angles.

The analysis of profiles different from Perlin noise is
meant to inspect the generalization capabilities of the
trained NN-models on qualitatively different geometries,
never analyzed in the training procedure. This is criti-
cal, as the non-linear nature of the NN could lead to un-
controlled approximation errors in extrapolation regimes,
even if good performances were achieved in training and
validation examples.
In Fig. 2 a comparison between the ρ(x) profile cal-

culated by GA and its prediction by the Nset ≈190000
NN model is reported for a case of each class of h(x)
profiles. A quantitative agreement is found for all cases
as indicated by the σρ values, of the order of 10−4-10−3.
Notably, the NN is found to correctly reproduce even the
sharp peaks at the singular points in case (e) and (f).
In order to perform a more systematic analysis and as-

sess the difference in predictivity of the three NN models
trained on different dataset sizes, a testing set was then
built by taking 1000 random profiles for each class, set-
ting peak-to-valley heights equidistributed in log-scale in
the same range as in the training set, to comply with the
small-slope constraint and the training example range.
The distribution of σρ prediction errors returned by the

three trained NN models on all cases in the six classes
of the testing set is reported by violin plots in Fig. 3(a).
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FIG. 2. Testing of the trained NN model on different profiles h(x): (a) a Perlin noise profile not included in the training set;
(b) a profile made of random Fourier components; (c) a series of gaussian peaks; (d) an asymmetric peak; (e) a series of cusps;
(f) a triangular peak. The corresponding elastic energy density ρ(x) profiles predicted by the NN (red circles) and calculated
by GA (solid black line) are superimposed. The prediction error σρ is reported for each case.

Notably, all three trained models show satisfactory per-
formances with median values of the order of 10−3 or
less and just a few cases exceeding the 0.02 acceptance
threshold. This provides an a-posteriori justification for
the choice of using Perlin noise as a generator of suffi-
ciently various surface profiles, giving enough informa-
tion to the NN model for generalizing to qualitatively
different geometries. As observed for the training and
validation losses, it is clear that the NN performances
improve by taking a larger dataset but it is remarkable
how the smallest NN-model, trained on just ≈8% of the

full dataset (i.e. Nset ≈15000), yields a similar level of
accuracy, with a typical increment of σρ of a mere factor
2-4.

To better appreciate the efficacy of the NN model, in
Fig. 3(b) we superpose the ρ(x) profiles predicted by each
of the three NN models with the ”true” one calculated
by GA, for one of the Perlin-noise profiles in the test set.
A substantial overlap is found for all three cases, with
local differences that can noted only in the δρ(x) plot
as small uncorrelated fluctuations. Deviations decrease
when taking larger datasets as also indicated by the σρ
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FIG. 3. (a) Distribution of prediction errors σρ by violin plots for the three NN models with dataset size Nset ≈15000, 70000
and 190000, on the cases of a test set with profiles generated by variants of Perlin noise, superpositions of random Fourier
components, series of gaussian peaks, an asymmetric peak, series of cusps and a triangular profile. (b, c) Comparison of the
ρ(x) profiles predicted by the three NN models (circles) with respect to the true GA solution (solid line) for (b) a Perlin-noise
profile not included in the dataset and (c) a series of cusps. The corresponding local prediction errors δρ are reported along
with σρ values.

errors, still on the order of 10−3.

There are however other cases in which the importance
of building a large dataset becomes more evident, as for
example the series of cusps reported in Fig. 3(c). The
Nset ≈190000 NN model returns a one-to-one match of
the GA ρ(x) profile as indicated by the small δρ(x) and
σρ. The Nset ≈70000 NN model still performs reason-
ably well but larger deviations are observed around the
ρ peaks and the σρ approaches the acceptance threshold.
On the contrary, the NN model trained on the smallest
Nset ≈15000 dataset does not match the actual peak val-
ues and returns visible oscillations in-between, ending in
an above-threshold σρ. It is worth noticing how, even in
this worst case, the NN still provides a qualitative repre-
sentation of the right features of the ρ profile so that our
strict 0.02 acceptance criterion looks appropriate to as-
sess a quantitative match. For the following analysis, we
will consider the most accurate Nset ≈190000 NN model

in order to minimize any effect related to the dataset size.

B. NN performance on sinusoidal and gaussian
profiles

To get a deeper insight into how the NN deals with ar-
bitrary morphologies, we now inspect how it performs on
cosine profiles of different wavelengths λ, i.e. on the sin-
gle Fourier components that could form the spectrum of
a generic function. For this analysis, we vary the domain
size so to match a single cosine period, i.e. L = λ, while
keeping the same space discretization step, δx, used in
the training dataset. In Fig. 4(a) we report σρ as a func-
tion of the wavelength λ. λ ranges from a minimum of
10 nm, imposed by the resolution limit of the δx=1 nm
grid, to a maximum of 150 nm, exceeding the size of the
training set (100 nm). This also tests the NN general-
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FIG. 4. Analysis of the NN performances for single-period cosine profiles. (a) Plot of the σρ prediction error as a function of
wavelength λ ∈ [10, 150] nm and height A ∈ [0.1, 18] nm. (b-e) Comparison between the NN prediction (circles) and the GA
calculation (solid line) of ρ for λ =40 (b), 75 (c), 100 (d) and 125 nm (e), and A=8, 12 and 16 nm. The local prediction error
δρ is reported for each case.

ization capabilities to different domain sizes made possi-
ble by the Fully Convolutional architecture. Within this
range, calculations are taken every 1 nm, allowing for the
analysis of the interpolation behavior in between the few
λ components actually present in the fixed-length train-
ing domain, i.e. the integer sub-multiples of 100 nm.
The error analysis is repeated on several cosine heights
A ∈[0.001, 20] nm, which also extends beyond the max-
imum height (8 nm) of the profiles used in the training
set. All cases used for this analysis are available from
[37].

As made evident in the plot, all interpolation cases for
λ ∈[10,100] nm return errors well below the 0.02 accep-
tance threshold as long as the profile height A remains
lower than 4 nm. For taller profiles a loss in accuracy is
observed, starting from smaller values of λ. At A=12 nm
the NN still performs well down to λ ∼40 nm while
for greater amplitudes the error increases and predic-
tions remain reliable only in a narrow range of λ around

100 nm, corresponding to the size of the domain used
for training. This is made evident in the panels (b-d)
of Fig. 4 where the analytical and predicted ρ profiles
(top) and the corresponding local error δρ (bottom) are
superimposed for cosines of λ=40 nm (b), 75 nm (c) and
100 nm (d), and three different profile heights A=8, 12,
and 16 nm. It is worth noticing that, even in the worst
case of λ=40 nm and A=16 nm, corresponding to an
above-threshold σρ ≈0.06, the predicted ρ is still qual-
itatively consistent with the analytical one despite the
tendency to underestimate the actual variation range. A
clear modulation of the σρ error can also be recognized
in the plot of panel (a), indicating better predictivity
for those λs which are close to integer sub-multiples of
100 nm, i.e. those represented in the training dataset.
The errors obtained for these cases are the same if re-
peating the cosines within a L=100 nm domain as used
in training, given the inherent periodicity of our NN def-
inition. For the intermediate λs, σρ increases by about
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FIG. 5. Analysis of the NN performances for gaussian profiles
of different height A and full-width at half-height W , centered
in a L=100 nm cell. (a) Plot of the σρ prediction error as a
function of the peak height A from 0.01 to 100 nm for W ∈
[4,40] nm. (b-e) Superposition of ρ profiles predicted by the
NN and calculated by GA for a gaussian peak of W=20 nm
and different heights A=5, 10, 20, and 30 nm, marked by dots
in the plot of panel (a).

one order of magnitude which can be considered as the
NN interpolation error. Finally, when considering cosines
with λ >100 nm, i.e. exceeding the size of the training
domain, a progressive growth of the σρ error is found, hit-
ting the acceptance threshold at a maximum λ ≈125 nm
for low-amplitude profiles. To better appreciate the qual-
ity of the generalization, the NN and GA profiles of ρ for
a λ=125 nm cosine are compared in Fig. 4 (e) for the
three different heights A=8, 12, and 16 nm. The agree-
ment is overall satisfactory as all three cases correspond
to near-threshold σρ. As for the other cases in panels
(b,d), major discrepancies are at the cosine top and bot-
tom, as the NN tends to overestimate the ρ values.

The analysis of the NN performance on single Fourier
modes provides some insights on its potential for pre-
dicting generic profiles but, since the NN is non-linear,

it is not possible to assess its actual behavior on com-
plex profiles by a mere Fourier synthesis approach. It
is indeed expected that the NN performs better on the
overall profile than on its single Fourier components, as
the training did not include sinusoids. For this reason,
we also inspected the NN predictivity on more localized
peaks set by gaussians of width W <100 nm, whose spec-
trum would return important contributions from short
wavelengths. Fig. 5(a) reports the prediction error σρ

for gaussian peaks of different widths W in the range
[4,40] nm, at the center of a L=100 nm domain (see inset
of Fig. 5(a)), as a function of the peak height A. The
NN matches the analytical solution, with σρ <0.02, as
far as A remains below a critical height, proportional to
the gaussian width W , i.e. as far as the profile aspect ra-
tio remains on the order of the typical features included
in the training set. The closer inspection of the case
with W=20 nm in Fig. 5(b) reveals that for the tallest
peaks the NN fails in reproducing the elastic response at
the gaussian top, with the same systematic underestima-
tion of ρGA already observed for the taller cosine profiles
(Fig. 4(b,c)).

C. Large domain generalization

Thanks to the Fully Convolutional architecture of the
NN, the trained model can be evaluated on any domain
size irrespective of the one used for the training. Fig. 4
already shows that NN results on single Fourier compo-
nents are accurate up to an extension in domain size of
∼25% beyond the one of the training set. Here, we want
to test how the NN performs on generic profiles on a
domain 10 times larger than the training one. This is
illustrated in Fig. 6 where NN predictions are compared
to GA calculations of ρ for three surface profiles with
different Fourier spectrum: case (a) is chosen so that it
contains only Fourier components of λs that mostly fall
within the 100 nm length of the training set; case (b)
combines both λ lower and larger than 100 nm while in
case (c) the leading λs are all above the 100 nm training
size. As expected, the NN provides a quantitative predic-
tion of ρ in case (a) with a prediction error σρ in the same
order of 10−3 found for the testing cases. In case (b), the
agreement is still overall satisfactory but some discrep-
ancies appear at the maxima and minima of ρ, returning
a σρ error around the 0.02 threshold. The prediction for
case (c), instead, exhibits a σρ value above such thresh-
old. This suggests that the prediction is only qualitative:
the NN captures the position of ρ peaks but cannot match
their absolute values. As we already pointed out, the NN
architecture is non-linear so the failure in the prediction
of long-wavelength is not a straightforward consequence
of a Fourier decomposition. A more in-depth analysis,
however, reveals that NN inaccuracies are mainly related
to long-range effects. This is actually expected since the
elastic interaction is long-range by definition while the
NN training on a finite domain size is equivalent to in-
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troducing a cutoff distance. Fourier analysis of the lo-
cal prediction error δρ clearly reveals that the discrep-
ancies are modulated by long-λ modes only, where the
NN was not trained. This suggests that the NN can be
proficiently applied to larger domain sizes whenever the
physical scale of the features appearing on the surface
is comparable to the training set one. If the profile fea-
tures contain longer wavelengths, on the other hand, the
NN predictions will match the real ones only up to long-
range contributions. While the overall prediction might
not be quantitative, this means that the relative values
of elastic energy density in neighboring positions are still
trustworthy.

D. Surface dynamics using the deep-learned ρ as
driving force

In the previous sections, we showed how the NN ap-
proach can be exploited to extract the map of elastic en-
ergy density ρ(x) for a generic profile h(x), matching the
same level of accuracy of the analytical calculation in the
appropriate parameter range. In this section, we further
test the robustness of such predictions when used for the
numerical integration of time-dependent partial differen-
tial equations [21, 22, 40] describing the evolution of the
surface morphology h(x, t) of the strained film.

In particular, we consider two different regimes:
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(a) the evaporation/condensation dynamics, where the
profile directly moves according to the difference
of the local chemical potential µ with respect to a
reference value µ0, e.g. the one of the gas phase:

dh

dt
= −k

√
1 + h′2(µ− µ0) , (10)

with k a kinetic coefficient;

(b) the surface diffusion dynamics where material flows
along the surface are set by the gradients of µ:

dh

dt
= D

√
1 + h′2 ∂

2µ

∂s2
, (11)

with D the diffusion coefficient and s the surface
coordinate.

In its simplest formulation, µ comprises a (isotropic) sur-
face energy contribution, proportional to the local curva-
ture κ = −h′′(1 + h′2)−3/2, and an elastic energy con-
tribution which is directly given by the elastic energy
density ρ:

µ = κγ + ρ , (12)

where γ is the surface energy density, here set equal to
60 meV/Å2 to mimic Ge. The time-integration of these
evolution equations is numerically performed by a simple
Euler explicit scheme with a fixed timestep δt. For con-
venience, the simulation time t is counted as the number
of timesteps, scalable to the physical values by the choice
of kδt or Dδt.
The NN performance is then evaluated by comparing

the profile evolution obtained by using the predicted ρ in
the time integration with the ground-truth one obtained
by using its explicit GA calculation. Quantitatively, we
monitor both the error σρ (eq. (9)) on the prediction of
the ρ profile at each time step and the error σh accounting
for the difference between the hNN profile obtained at a
certain time t when using the NN predictions of ρ instead
of the true one hGA relying on the GA calculation of ρ
at each timestep:

σh(t) =

√
1

Nx

∑Nx

i [hNN(xi, t)− hGA(xi, t)]
2

max(hGA)−min(hGA)
. (13)

In Fig. 7 we show two representative examples of sur-
face evolution simulations, demonstrating the efficacy of
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the NN approach. Several additional simulation cases are
available in the repository [37].

The first case in panel (a) shows a simulation of sur-
face evaporation according to eq. (10). As the evapo-
ration rate is not uniform along the profile, a general
coarsening of the Perlin-noise features occurs while deep
trenches develop due to the local strain concentration.
Despite such divergent dynamics, no distinguishable dif-
ference can be observed between the NN-based profiles
and the GA ones over the whole time integration range.
A more quantitative analysis of the NN accuracy is pro-
vided in panel (b) where both σρ and σh prediction errors
are traced over time. As expected from Sect. IIIA, the
error σρ on the NN estimation of ρ remains well below
the acceptance threshold during the whole evolution but
for the last divergent stages. The slow increment of σh

shows that the error accumulation due to the use of ρNN

during the time integration is not critical to follow the
“true” GA dynamics.

In Fig. 7(c) we instead consider a simulation by surface
diffusion dynamics (eq. (11)) of ATG-like film instability,
initiated from a cosine perturbation of unstable wave-
length λ=25 nm and height A0=0.02 nm. A substan-
tial match is recognizable in all reported stages, covering
both the early linear regime (up to t ≈5×105 steps) and
the subsequent non-linear evolution toward cusp shapes,
eventually ending in a numerical divergence as the cusp
points sharpen (at t ≈8.7×105 steps). Small discrepan-
cies are just observed at the latest evolution stages, in
correspondence of such critical points. The analysis of
the prediction errors σρ and σh reported in panel (d),
confirms the one-to-one match, with both indicators re-
maining below the 0.02 threshold at any time, with lim-
ited accumulation effect in σh.

The one-to-one match found for both (a) and (c) cases
of Fig. 7, despite their exponential behavior spanning a
variation of 3 orders of magnitude in profile height, is a
strong indication of reliability.

Since the NN only copes with the elastic energy con-
tribution to µ, other terms, not related to strain relax-
ation, can be easily plugged in without the need to re-
train a dedicated model. We then consider a more re-
alistic description of a thin Ge film on a Si substrate
by including a wetting energy contribution to the chem-
ical potential [23], accounting for the exponential decay
of the film surface energy density γ as a function of its
thickness [41]. Following Ref. [42], we define γ(h) =
γGe + (γSi − γGe) exp(−h/d), with γSi=8.7 eV/nm2 and
d=0.27 nm. The result of such a contribution is the sta-
bilization of the flat profile for a thickness below a crit-
ical one. In Fig. 8(a) we show the morphological evo-
lution of a slightly-perturbed, planar film of thickness
right above the critical value, as obtained by using ρ
from the Nset ≈190000 and 15000 NN models with re-
spect to using the true one by GA in the time integra-
tion of the surface diffusion equation. The early stages
of the evolution follow ATG dynamics, with the pertur-
bation amplitude growing almost exponentially in time

(t <2× 105 steps). When large enough trenches start
to be dug, the wetting term becomes relevant and lo-
cally quenches the dynamics, so that the profile consists
of separate ”islands” sitting on top of a wetting layer,
as for Stranski-Krastanov conditions [21]. Then, slow
coarsening occurs with lower peaks being consumed by
the largest, more stable, ones ending in a stationary state
(t ≈50×105 steps) made of a single island on top of a flat
wetting layer. While this general behavior is obtained for
both NN models, only the one trained on the full dataset
is capable of following one-to-one the GA evolution at all
evolution stages. In contrast, the Nset ≈15000 NN model
fails in reproducing the actual geometry and coarsening
of peaks, resulting in noteworthy discrepancies that are
partly healed in the late stages as approaching a station-
ary state consistent with the GA one. For a more quan-
titative analysis, in panels (b) and (c) we monitor the
variation of both σh and σρ errors over time, for both
the Nset ≈190000 and 15000 NN models considered in
panel (a) and for the mid-sized model for Nset ≈70000.
All models are found to yield appropriate predictions of ρ
at all evolution stages as the σρ remains at least one order
of magnitude lower than the 0.02 acceptance threshold.
Given the stabilizing nature of the wetting contribution
introduced in the dynamics, the σh error does not grow
continuously as in the cases of Fig. 7 but shows maxima
at the onset of each island coarsening and then tends to
stabilize in the subsequent evolution steps. In the case
of the largest dataset the small σρ error, always of the
order of 10−3 confirms the quantitative reproduction of
the GA evolution at any step. A satisfactory comparison
is also obtained for the intermediate size, with a limited
time interval where the error grows above the threshold.
For the smallest dataset, we instead see that σh quickly
grows above the threshold and then the predicted evo-
lution cannot be taken as a perfect replacement of the
true GA one. By this analysis, we can then conclude
that the capability of providing a good, below-threshold
prediction of the static ρ profile is not sufficient to guar-
antee a stable and consistent description of the system
dynamics due to such a term. However, the larger is the
dataset used for the NN training, the lower will be the
error propagation across time iterations, thus returning
more reliable predictions even after millions of integra-
tion steps.

Given the extrapolation capabilities of the NN demon-
strated in Figure 6 it is worth investigating if they hold
true also for the dynamics on large domains and long sim-
ulation times. In Fig. 9 we analyze the performance of
the NN approach when applied to the simulation of large-
scale and long-time evolutions. In particular, we consider
a L=1000 nm domain, discretized with the same resolu-
tion δx=1 nm considered so far, and initialize a surface
profile by random Fourier components with λ ≤100 nm
for which the NN was demonstrated (Fig. 6(a)) to return
good prediction of ρ. The same islanding dynamics of
Figure 8(a) is considered but for the addition of a de-
position flux, incrementing the film thickness by a con-
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stant rate f . The overall behavior is analogous to the
description of Fig. 8(a) but for the prolonged stability
of pristine islands due to the continuous material sup-
ply by the deposition. Indeed, all peaks with λ ≈ λmax

grow at larger aspect ratios and start coarsening only in
the latest evolution stages until divergent cusp points ap-
pear. The NN is found to match the GA dynamics during
the earlier growth stages where the initial perturbation
grows in amplitude. Instead, local discrepancies emerge
in the subsequent stages whenever a peak is extinguished
or a new one is formed. These faults should not be as-
cribed to a loss in the reliability of the NN prediction of
ρ, which indeed is characterized by σρ well below the ac-
ceptance threshold at all simulation times (see Fig. 9(b)),
but to the inherent instability of the coarsening dynam-
ics, sensitive to whatever small differences between the
peaks. Consequently, σh is found to monotonously in-
crease over time up to about 0.15 at the latest evolution
stages where a few peaks are missing (see e.g. the peaks
at x ≈0 or 580 nm for the profile at t=55×105 steps in
panel (a)). At this point, the NN does not provide a
one-to-one replacement of the analytic GA calculation.
Nonetheless, on a qualitative ground, the NN evolution
still looks consistent with the GA one and hence it can
still be exploited for physically meaningful investigations
on the overall trends and properties. As an example, in
Fig. 9(c) we monitor the variation in time of the num-
ber of islands Nisl, i.e. the number of peaks above a

threshold quota (hc=1.5 nm). A substantial agreement
is found between the curve obtained from the NN-based
simulation and the one based on GA with limited time
shifts corresponding to a lack of synchronization in the
coarsening of single peaks. Such deviations are expected
to have negligible effects when investigating the average
system behavior based on properly averaging over multi-
ple cases.

IV. CONCLUSIONS

In this work, we showed how a specialized Machine
Learning approach can be leveraged to quantitatively
predict the elastic energy density, ρ, at the surface of
a Ge/Si(001) strained film, surrogating its explicit calcu-
lation here based on a semi-analytical Green’s function
approximation.
A large dataset of about 190000 examples has been

generated and three NN models have been trained, one
using the entire set and the others taking a fraction of
≈37% and ≈8% of it, so to inspect the effects and trade-
offs on the resulting NN predictions. All models con-
verged during training and demonstrated quantitative
predictions of ρ on the validation set and on additional
cases of new classes of profiles, with better accuracy and
generalization performances for the larger datasets. Still,
results suggest that even a moderate number of examples
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(≈ 15000) can be used to train NN models with usable
outputs, especially for qualitative assessment. Accuracy
becomes instead critical if NN predictions are to be used
in multiple iterations, as for the time integration of sur-
face evolution equations, because of the error accumu-
lation so that only the models trained on a sufficiently
large dataset can be trustable.

As the ML architecture is based on a Fully Convolu-
tional NN, it can be used on computational cells larger
than those used in training. Limitations of the general-
ization capabilities have also been quantitatively investi-
gated in this case. The NN model exhibits quantitative
agreement as long as the typical wavelength of profile fea-
tures is comparable to the size of the training set. If, in-
stead, long-range contributions are critical, a loss in pre-
diction accuracy is observed. This behavior is expected
due to the inherent non-locality of the elastic equilib-
rium solution. Future development of ML architectures
for this class of applications should therefore take into ac-
count this problem using global free surface descriptors
or alternative NN modules (e.g. attention mechanism,
Fourier neural operators [43, 44]).

While the present work takes profit from the simplic-

ity and low-computational cost of Green’s approximation
method to construct arbitrary large datasets and have
available the ground-truth ρ profiles for any analysis, its
limitation to small-slope profiles hinders the application
to more realistic cases. Moreover, no practical advantage
comes out of replacing GA with NN as the actual speed-
up is negligible. The main achievement of this study is
then to provide a comprehensive analysis of the NN ap-
proach to be transferred to other, more advanced calcula-
tion techniques such as Finite Element Method for which
a NN surrogate represents a significant cut in computa-
tional cost, as will be shown in an upcoming work.
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