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Andrés Gómez∗, Shaoning Han†and Leonardo Lozano‡

May 2024

Abstract

We consider mixed-integer quadratic optimization problems with banded matrices and indicator vari-
ables. These problems arise pervasively in statistical inference problems with time-series data, where the
banded matrix captures the temporal relationship of the underlying process. In particular, the problem
studied arises in monitoring problems, where the decision-maker wants to detect changes or anomalies.
We propose to solve these problems using decision diagrams. In particular we show how to exploit the
temporal dependencies to construct diagrams with size polynomial in the number of decision variables.
We also describe how to construct the convex hull of the set under study from the decision diagrams, and
how to deploy the method online to solve the problems in milliseconds via a shortest path algorithm.

1 Introduction

We consider mixed-integer quadratic optimization (MIQO) problems of the form

min
x∈Rn,z∈{0,1}n,x0∈R

d⊤x+ c⊤z +
1

2
x0 (1a)

s.t. x⊤Qx ≤ x0 (1b)

x ◦ (1− z) = 0 (1c)

z ∈ Z, (1d)

where x are the continuous decision variables, z are the indicator variables, x0 is an auxliary variable
representing the epigraph of the nonlinear term, matrix Q ∈ Rn×n is positive definite, “◦” denotes the
Hadamard (entrywise) product, 0 and 1 are n-dimensional vectors of zeros and ones, indicator constraints
(1c) impose the logical relationship xi ̸= 0 =⇒ zi = 1, and Z ⊆ {0, 1}n encodes additional constraints on
the indicator variables. Even if constraints (1d) are removed, problem (1a)-(1c) is challenging to solve due to
the presence of the non-convex indicator constraints. In this paper we focus on the case where Q is a banded
matrix with bandwidth k ∈ Z+, that is, Qij = 0 if |i − j| > k. MIQO problems with banded matrices often
arise in inference problems with time-series data. For example, slowly varying sparse regression problems
(Bertsimas et al. 2024), sparse and smooth denoising problems (Atamtürk et al. 2021), and outlier detection
problems in time series (Gómez 2021), all fall under the umbrella of quadratic optimization with banded
matrices.

Our main motivation to study problem (1) with banded matrices is to tackle inference problems arising
from the real-time monitoring of data streams, as described next. In such settings, problem (1) needs to be
solved in real-time, precluding the use of standard mixed-integer optimization solvers. In fact, problem (1)
is rarely solved in such settings, with researchers and practitioners typically resorting to heuristics or simple
convex approximations instead.
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1.1 Monitoring problems

Monitoring systems are increasingly prevalent in manufacturing systems (Yan et al. 2017) and personalized
medicine (Dunn et al. 2018), due to ease of access to sensors and wearables. Processing this data, inferring
the values of the process under study, and detecting anomalous behavior calls for the solution of optimization
problems of the form

min
x∈Rn

1

2

n∑
i=1

(yi − xi)
2 +

1

2
x⊤Rx+ µ∥x∥0, (2)

where {yi}ni=1 is the time series data generated by the sensor, R ⪰ 0 is a suitable regularization (banded)
matrix capturing the temporal evolution of the process, µ > 0 is a regularization parameter to be tuned and
∥x∥0 is the so-called ℓ0-norm, corresponding to the support of vector x. Problem (2) is a special case of
problem (1) with c = 1µ, d = −y, Q = I +R, Z = {0, 1}n, a constant term 1

2∥y∥22 added to the objective
function, and ∥x∥0 is represented as the summation of the indicator variables after adding constraint (1c).
Efficiently solving (2) offline is already a non-trivial task, since (despite substantial recent improvements)
technology for MIQO and mixed-integer nonlinear optimization in general is lagging behind technology for
mixed-integer linear optimization (MILO). In monitoring systems, instances of problem (2) need to be solved
online, each time a new batch of data is generated by the sensor. The resulting optimization problem could
include the complete time series y generated up to that point, or only the most recent n observations. In
either case, with modern sensors generating new information in seconds or even milliseconds, the time frame
to solve (2) is short indeed.

We point out that problem (2) is rarely encountered explicitly in the literature, due in part to the
perceived intractability of solving it in real-time. However, variants involving ℓ1-approximations of the ℓ0-
norm are pervasive in the quality control, statistical and machine learning literatures (e.g., see Chen et al.
2001, Yan et al. 2017, Friedrich et al. 2017, Vogelstein et al. 2010, Lin et al. 2014, Candes et al. 2008, Donoho
et al. 2005, Tibshirani et al. 2005, Rinaldo 2009, Kim et al. 2009, Mammen and Van De Geer 1997, Ruppert
2002, Yan et al. 2014, Zou and Qiu 2009, Guo et al. 2016). Indeed, after replacing the non-convex ∥x∥0 term
with the norm ∥x∥1, problem (2) is convex and can be solved easily. Unfortunately, such approximations
may also lead to subpar estimators (Bertsimas et al. 2016, Mazumder et al. 2023).

We now review common regularization terms x⊤Rx. A common approach is to use multiples of the k-th

order differences: given i ∈ Z+, let ∆
(0)
i x = xi be the zeroth-order difference, and let the kth-order difference

be defined recursively as ∆
(k)
i x = ∆

(k−1)
i+1 x−∆

(k−1)
i x. Then we can set the regularization term as

x⊤Rx = λ

n−k∑
i=1

(
∆

(k)
i x

)2
, (3)

where λ ≥ 0 is a smoothness parameter to be tuned. For example, if k = 0, then x⊤Rx = λ∥x∥22 is
the ridge regularization (Hoerl and Kennard 1970) and matrix R is diagonal; if k = 1, then x⊤Rx =

λ
∑n−1

i=1 (xi+1 − xi)
2 enforces the smoothness term used by Atamtürk et al. (2021), and the matrix R is

tridiagonal; if k = 2, then x⊤Rx = λ
∑n−2

i=1 (xi+2 − 2xi+1 + xi)
2 is the Hodrick-Prescott filter (Hodrick and

Prescott 1997), and the matrix has bandwidth 2. More generally, using the kth order differences yields a
matrix of bandwidth k. Another common regularization term commonly used is simply a moving average
filter given by

x⊤Rx = λ

n∑
i=1

xi −
1

min{k, i− 1}

min{k,i−1}∑
j=1

xi−j

2

(4)

for some prespecified parameter k ∈ Z+, also yielding a matrix of bandwidth k. Other regularization terms
used include simple modifications of the above, e.g., including coefficients in the moving average filter to give
more weight to recent observations.

Approaches relying on ℓ1 approximations do not use binary variables and thus cannot impose additional
logical constraints (1d), but such constraints can be invaluable to include a variety of priors in the inference
problem. The most common prior includes hard constraints on the number of non-zero values,

∑n
i=1 zi ≤ κ
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(in which case typically c = 0). However, more sophisticated priors such as forcing non-zero values to come
in batches of at least τ consecutive periods can also be enforced.

Problem (2) with zeroth-order differences in (3) is separable and can be solved easily. Moreover, it can be
reformulated as a continuous second-order cone program (SOCP) using the perspective reformulation (Fran-
gioni and Gentile 2006, Günlük and Linderoth 2010), an approach that is now standard in mixed-integer
optimization (Hazimeh et al. 2022, Xie and Deng 2020) – in fact, commercial off-the-shelf solvers now per-
form these reformulations automatically to improve the convex relaxations of MIQO problems. Problem (2)
with the first order differences in (3), and thus tridiagonal matrices, has also received detailed attention in
the literature. Atamtürk et al. (2021) propose strong formulations and decomposition algorithms for the
problem, exploiting the substructures involving two variables only. Liu et al. (2023) show that, without
additional constraints (1d), problem (1) with tridiagonal matrices is polynomial-time solvable via a dynamic
programming algorithm. In related works, Jewell and Witten (2018) show that a dynamic programming
algorithm solves a similar problem to (2) with constraints and nonlinear terms coupling consecutive vari-
ables only. Alternatively, problem (2) with the first function class can be interpreted as an mixed-integer
quadratic optimization problem with a Stieltjes matrix, which is polynomial time solvable without additional
constraints (Han et al. 2022). Finally, since the sparsity pattern of the matrix induces a tree, the problem
is also polynomial time solvable if there are no additional constraints (Bhathena et al. 2024), or with a
cardinality constraint but provided that all coefficients ci are identical (Das and Kempe 2008).

All the aforementioned properties on the matrix (tridiagonal, tree, Stieltjes) disappear for bandwidths
greater than one. While strong formulations have been proposed for problems with bandwidth k ≥ 2 that
improve upon perspective-based relaxations when used with off-the-shelf solvers (Han and Gómez 2021), the
formulations are neither ideal nor do they lead to real-time solution approaches for problems with n in the
hundreds.

1.2 Overview of the proposed method

Our proposed approach to tackle problem (2) is based on two fundamental ideas. The first idea relates to
the convexification of the problem. Letting Q = I +R and defining

XQ
def
=
{
x ∈ R, z ∈ {0, 1}n, x0 ∈ R : x⊤Qx ≤ x0, x ◦ (1− z) = 0

}
,

it follows from standard arguments that (2) is equivalent to the convex optimization problem

1

2
∥y∥22 + min

x,z,x0

− y⊤x+ µ
(
1⊤z

)
+

1

2
x0 s.t. (x, z, t) ∈ conv(XQ), (5)

where “conv” denotes the convex hull of a set. In itself, the convex representation (5) is not helpful, as it
requires the computation of the convex hull of a non-polyhedral set, a task that is as difficult (if not more)
than solving (2) in the first place. However, the critical observation is that set XQ does not depend on the
data y. Therefore, in principle, the convexification can be done offline, and then the real-time solution of
(2) reduces to a convex optimization problem, which can be performed faster. In this paper, we provide an
algorithm to compute an SOCP representation of cl conv(XQ) in an extended formulation whenQ is a banded
matrix. Interestingly, the runtime of this algorithm is typically faster, in some cases by orders-of-magnitude,
than the solution of a single problem (2) via off-the-shelf solvers. Equipped with this representation, the
same off-the-shelf solver requires only a few seconds to solve (5), while requiring several minutes to solve (2)
from scratch.

The second idea relates to the methodology used to compute the convex hulls. Time-series problems
are typically amenable to dynamic programming algorithms, and we rely on similar ideas to convexify the
sets. Throughout the paper, we express the methods using decision diagrams. As a by-product of the chosen
methodology, we find that problem (5) can be directly solved as a shortest path problem on a directed acyclic
graph. This approach allow us to further reduce the computational times from a few seconds to milliseconds.
Moreover, we show that the size of the diagrams can be bounded by a quantity that is polynomial in n and a
precision parameter ε, resulting in a fully polynomial time approximation scheme (FPTAS) for problem (1)
when the bandwidth and condition number of Q are fixed and there are no side constraints (1d). Figure 1
summarizes some runtimes from experiments in our computational section, where problem (2) is solved to
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optimality with the moving average filter (4) and n = 200 using financial time-series data. In the experiments,
the convex hull of XQ is computed once, a process requiring 15 minutes at most and often much less, and
then used to sequentially solve close to 7,000 instances of (2) to optimality; the time reported corresponds
to the time per instance.

𝜆 = 5.00𝜆 = 2.00𝜆 = 1.00𝜆 = 0.25 𝜆 = 0.50

(a) k = 2

𝜆 = 5.00𝜆 = 2.00𝜆 = 1.00𝜆 = 0.25 𝜆 = 0.50

(b) k = 3

Figure 1: Time to solve monitoring problems (2) with n = 200 for different bandwidths k and smoothness
parameters λ, in milliseconds. Each plot depicts distributions over different signals and sparsity parameters
µ. Setup costs used to compute the convex hulls, which can be done offline a priori, are under one minute
for k = 2 and under 15 minutes for k = 3.

The proposed approach has three additional “hidden” benefits. First, while using off-the-shelf solvers is
time and memory intensive, shortest path problems in acyclic graphs are easier to implement and deploy.
In particular, once the computation of the convex hull is done, inference problem (2) can then be solved in
edge devices in sensor networks, wearables, or other devices with limited CPU and RAM. Second, similar
to the data y, the parameter µ in (2) does not affect set XQ: as a consequence, cross-validation to select
this parameter can be performed much more efficiently, even in the offline setting. Third, the proposed
method can accommodate additional constraints (1d), provided that they can be conveniently represented
using decision diagrams, allowing for the inclusion of additional priors in inference problems (2).

1.3 Outline and notation

The rest of this paper is organized as follows. In §2 we present relevant background on decision diagrams,
which have been used for the most part for MILO problems. In §3 we present the main method which uses
decision diagrams to solve (2) and, more generally, problem (1) with banded matrices. In §4 we show that the
proposed method can be modified into an FPTAS for problem (1a)-(1c) over matrices with fixed bandwidth
and condition number. In §5 we formally establish the connection between the decision diagrams produced
by the proposed method and the convex hull of set XQ. Finally, §6 presents computational experiments.

Notation

Throughout the paper, we denote vectors and matrices in bold. Given n ∈ Z+, let [n]
def
= {1, . . . , n}.

Given a vector v ∈ Rn or matrix V ∈ Rn×n and a set S ⊆ [n], we denote by vS and VS the subvector
or principle submatrix induced by S, respectively. Given two matrices V and W of same dimensions, we

denote by ⟨V ,W ⟩ def
=
∑

i

∑
j VijWij the inner product between the matrices, and by V ◦W their Hadamard

(entrywise) product, that is, (V ◦ W )ij = VijWij . Given n,m ∈ Z+, we denote by 0n an n-dimensional
vector of zeros and by 0n×m an n×m-dimensional matrix of zeros; when the dimensions are clear from the
context, we omit the subscripts. Given S ⊆ [n], we let eS ∈ {0, 1}n denote the vector that has ones in the

positions indexed by S and 0 elsewhere. Moreover, given i ∈ [n], we let ei
def
= e{i} denote the i-th basis

vector of Rn. Finally, given a matrix W ∈ Rn×n, we let Wj ∈ Rn denote the j-th column of W .
This paper extensively uses pseudoinverses. Given a matrix W , we let W † denote its Moore-Penrose

pseudoinverse. A special case of the pseudoinverse that is used throughout the paper pertains to matrices of
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the form W =

(
A 0
0 0

)
where A is invertible, in which case W † =

(
A−1 0
0 0

)
. Given a matrix W ∈ Rn×n

and set S, denote by WS ∈ RS×S the submatrix of W induced by S. Moreover, given W ∈ Rn×n and
S ⊆ [n], observe that

(
W ◦ eSe⊤S

)
∈ Rn×n is the matrix that coincides with WS in the entries indexed by

S and is 0 elsewhere. Similarly, if WS is invertible, then
(
W ◦ eSe⊤S

)† ∈ Rn×n is the matrix that coincides

with W−1
S in the entries indexed by S and is 0 elsewhere.

Example 1. Consider matrix W =

(
2 1
1 3

)
. Then we find that

(
W ◦ 00⊤

)†
=

(
0 0
0 0

)
,
(
W ◦ e1e

⊤
1

)†
=

(
1/2 0
0 0

)
,
(
W ◦ e2e

⊤
2

)†
=

(
0 0
0 1/3

)
,
(
W ◦ e{1,2}e

⊤
{1,2}

)†
=

(
3/5 −1/5
−1/5 2/5

)
· ■

2 Background on decision diagrams

Decision diagrams are fundamental to the algorithm we propose in the paper. Our work departs from the
classical literature in decision diagrams in the sense that we use them to tackle a nonlinear mixed-integer
optimization problem and construct a non-polyhedral convex hull; §3 is devoted to explaining our algorithm.
Before, we review fundamental concepts concerning decision diagrams in linear settings. These concepts are
necessary to model constraints (1d) when Z ̸= {0, 1}n.

2.1 Decision Diagrams for MILOs: Definitions and Notation

A binary decision diagram D = (N,A,ν, l) encodes a set of points Z ⊆ {0, 1}n as a directed acyclic graph
with node set N and arc set A ⊆ N×N . Set N is partitioned into n+1 layers N1, . . . , Nn+1, where N1 = {r}
contains a root node r and Nn+1 contains a set of terminal nodes. Arcs a ∈ A connect nodes in consecutive
layers and represent value assignments for the components of z ∈ Z. Let ℓ(a) ∈ {1, . . . , n} be the layer from
which arc a ∈ A emanates. We denote the tail node of an arc by ta ∈ Nℓ(a), the head node by ha ∈ Nℓ(a)+1,
and its value assignment by νa ∈ {0, 1}. Typically, in the context of MILOs, each arc is also assigned a
length la ∈ R representing linear costs associated with assignment νa.

A decision diagram D encodes Z through r − t paths, with t ∈ Nn+1, as follows. Each component
of z ∈ Z corresponds to a layer in D. An arc-specified r − t path (a1, . . . , an), where hai = tai+1 for
i = 1, . . . , n − 1, encodes the vector z = (νa1

, . . . , νan
)⊤. A decision diagram is exact if every point z ∈ Z

maps to a corresponding r− t path and vice versa. In the context of minimizing an objective function f(z),
an exact decision diagram satisfies that for any r− t path (a1, . . . , an) the path length

∑n
j=1 laj

= f(z). As
a result, a shortest path in an exact decision diagram D yields an optimal solution to minz∈Z {f(z)}.

Decision diagrams are commonly generated from the state-transition graph of a dynamic programming
(recursive) formulation of the problem (Bergman et al. 2016a). Such formulations consist of a state space,
a set of transition functions, and a set of cost functions. A dynamic program sequentially sets values for
the decision variables, storing the outcome of these decisions in states, which store the relevant information
about the partial solution obtained after fixing a subset of the variables. Transition functions establish how
the system transitions between states, incurring a cost given by the cost functions.

To illustrate the generation of a decision diagram from a state-transition graph, we consider the time
series problem described above and a constraint that requires non-zero values to come in batches of at least
τ consecutive periods. We refer to these constraints as contiguity constraints throughout the paper. Letting
ζ ∈ {0, 1}n be auxiliary binary variables used to indicate whether a batch of consecutive non-zeros starts at
time period i, set Z is the set of binary points satisfying the linear inequalities

z1 ≤ ζ1 (6a)

zi − zi−1 ≤ ζi ∀i ∈ {2, . . . , n+ 1− τ} (6b)

zi − zi−1 ≤ 0 ∀i ∈ {n+ 2− τ, . . . , n} (6c)

ζi ≤ zi+j−1 ∀i ∈ {1, . . . , n+ 1− τ}, ∀j ∈ {1, . . . , τ}. (6d)

To encode contiguity constraints using decision diagrams, we define the state variable sℓ as the minimum
between τ and the number of consecutive non-zero values at decision stage ℓ. Note that sℓ records the state
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of the system after having assigned values to ℓ− 1 variables. The initial state is given by {0} and we use {}
to represent the infeasible state. We define the transition function as sℓ+1 = ϕ(sℓ, ẑℓ), where ẑℓ is the value
assigned to variable zℓ, and

ϕ(sℓ, ẑℓ) =


{} if ẑℓ = 0 and 1 ≤ sℓ < τ

{} if ℓ = n, ẑℓ = 1, and sℓ < τ − 1

{0} if ẑℓ = 0 and sℓ = τ{
min{τ, sℓ + ẑℓ}

}
otherwise

(7)

The first case of (7) corresponds to the event in which at stage ℓ, the number of consecutive non-zero
values is greater than or equal to 1 but less than τ . In this case, it is not possible to set zℓ = 0. The second
case considers the event in which it is not possible to complete a batch of τ consecutive non-zeros at the
last decision stage. The third case considers the event in which zℓ is set to zero, after a batch of at least τ
consecutive non-zero values. In this case, the count of consecutive non-zero values resets back to 0. The last
case considers all other events.

Figure 2(a) presents the state transition graph for the dynamic program described above with n = 3
and τ = 2. The corresponding decision diagram in Figure 2(b) is obtained in this example by removing the
infeasible states. Note that there is a one-to-one correspondence between paths in the diagram and vectors
that satisfy constraints (6). Solution approaches based on decision diagrams have shown promising results

{0}

{0} {1}

{0} {1} {2}{}

{0} {} {2}

z1

z2

z3

r

u1 u2

u3 u4 u5

t1 t2

1

(a)

{0}

{0} {1}

{0} {1} {2}{}

{0} {} {2}

z1

z2

z3

r

u1 u2

u3 u4 u5

t1 t2

1

(b)

Figure 2: State transition graph and corresponding decision diagram for a constraint that requires consecutive
non-zero values.

in discrete problems for which continuous relaxations tend to be weak (Cire and van Hoeve 2013, Bergman
et al. 2014, 2016b)). Recently, decision diagrams have also been used as convexification devices to obtain a
characterization of the convex hull of a discrete feasible set in a lifted space. This approach is explored by
Lozano and Smith (2022) and MacNeil and Bodur (2024) to generate a convex representation of a discrete
recourse problem in the context of two-stage stochastic programming. In the context of nonlinear optimiza-
tion, Davarnia and Van Hoeve (2021) use decision diagrams to generate cuts for an outer approximation
algorithm. We refer the reader to Castro et al. (2022) for a comprehensive literature review on decision
diagrams for optimization.

2.2 Towards building decision diagrams for MIQO

Often, in binary problems, the state space of the underlying dynamic program is conceptually simple and
has a clear interpretation in terms of the problem to be solved. In the proposed approach, which involves
both continuous variables and nonlinear terms involving the continuous variables, we use a state space that
is perhaps less interpretable: selected columns of pseudoinverses associated with submatrices of Q. We now
provide a high-level intuition into why our selection of the state space is pertinent when solving (1), and
defer to §3 the formal statements.

Consider problem (1) after projecting out the auxiliary variable x0,

min
x∈Rn,z∈Z
x◦(1−z)=0

d⊤x+ c⊤z +
1

2
x⊤Qx. (8)

6



We now proceed to write (8) as a purely combinatorial optimization problem by projecting out the continuous
variables x. Indeed, given any z ∈ {0, 1}n, and letting S = {i ∈ [n] : zi = 1}, it follows from the optimality
conditions for the continuous variables that x∗

S = −Q−1
S dS and x∗

[n]\S = 0, where x∗
S and x∗

[n]\S denote
the subvectors of x∗ induced by entries in S and not in S, respectively. Thus, projecting out variable x, we
find that (8) is equivalent to

min
S

−1

2
d⊤
S Q−1

S dS +
∑
i∈S

ci = min
z∈Z

−1

2
d⊤ (Q ◦ zz⊤)† d+ c⊤z (9)

The equality in (9) holds since entries of d associated with variables such that zi = 0 are multiplied by zero

entries of matrix
(
Q ◦ zz⊤)†. Since the objective term in (9) is a linear function of matrix

(
Q ◦ zz⊤)†, it

suggests that understanding the properties of this matrix is critical to the solution of (8). We formalize this
intuition in the next section.

3 Decision diagrams for MIQO

In this section we discuss how to construct decision diagrams in order to solve MIQO problems. Initially, in
§3.1, we discuss a “natural” construction of a decision diagram that, although general, is impractical as it
always produces a diagram with exponentially many nodes and arcs. Then, in §3.2 we propose a refinement
of the state space, which allows for a reduction in the size of the diagrams when matrix Q is banded. Finally,
in §3.3 we discuss considerations associated with numerical precision, which pave the way to the FPTAS we
study in §4.

As stated above, our choice of state space corresponds to pseudoinverses related to matrix Q. The
transition function of the dynamic program thus needs to compute new pseudoinverse based on a existing
state. Lemma 1 below and, more importantly, the ensuing corollary, are critical to the definition of the
transition functions.

Lemma 1 (Blockwise inversion, Lu and Shiou (2002)). Given a non-singular symmetric square matrix

V =

(
A B⊤

B G

)
, its inverse is given by

V −1 =

(
A−1 +A−1B⊤(V /A)−1BA−1 −A−1B⊤(V /A)−1

−(V /A)−1BA−1 (V /A)−1

)
,

where V /A
def
= G−BA−1B⊤ is the Shur complement of the block G in V .

Corollary 1. Given a positive definite matrix V =

(
A v
v⊤ δ

)
, where A ∈ Rn×n, v ∈ Rn and δ ∈ R+, its

inverse is given by

V −1 =

(
A−1 +A−1v(V /A)−1v⊤A−1 −A−1v(V /A)−1

(V /A)−1v⊤A−1 (V /A)−1

)
.

Moreover, letting u
def
=

(
−A−1v

1

)
, the identity

(
A v
v⊤ δ

)†

=

(
A 0
0⊤ 0

)†

+
1

δ − v⊤A−1v
uu⊤ (10)

holds.

3.1 Definition of full decision diagrams for unconstrained MIQOs

For simplicity, and to focus on the task of modeling the nonlinear terms in (8), we initially assume that
Z = {0, 1}n and thus the MIQO reduces to

min
x∈Rn,z∈{0,1}n

x◦(1−z)=0

d⊤x+ c⊤z +
1

2
x⊤Qx = min

z∈{0,1}n
−1

2
d⊤ (Q ◦ zz⊤)† d+ c⊤z. (11)

7



Nonetheless, as Remark 6 in this section shows, other feasible sets Z can be handled by the decision diagrams
as well. We now discuss a state variable and transition function to solve (11) to optimality, where the variable
ordering is given by the natural order stemming from the underlying time series.

We define state variables to be n × n matrices, representing matrices of the form
(
Q ◦ z̄z̄⊤)† where

z̄ ∈ {0, 1}n is a vector denoting the partial assignment of the indicator variables. More formally, we define
the initial state s1 = {0n×n}, and we define the transition function as follows: given state sℓ =

{
W̄ ℓ

}
, let

vector u ∈ Rn be

u =
1√

Qℓℓ −Q⊤
ℓ W̄ ℓQℓ

(
−W̄ ℓQℓ + eℓ

)
=

1√
Qℓℓ −

∑n
i=1

∑n
j=1 W̄

ℓ
ijQiℓQjℓ

(
−

n∑
i=1

W̄ ℓ
i Qiℓ + eℓ

)
, (12)

let sℓ+1 = ϕfull(s
ℓ, ẑℓ), where ẑℓ is the value assigned to variable zℓ, and

ϕfull(s
ℓ, ẑℓ) =

{{
W̄ ℓ

}
if ẑℓ = 0{

W̄ ℓ + uu⊤} if ẑℓ = 1.
(13)

Definition 1 (Complete decision diagram). Define the state transition graph Gfull = (N,A) by applying
the state transition function ϕfull recursively, starting from the initial state s1. Define the complete decision
diagram Dfull = (Gfull,ν,u) as the resulting graph in which each node corresponds to a state, there is
a directed arc (si, ϕfull(s

i, ẑ)) for ẑ ∈ {0, 1}, the value assignment function ν : A → {0, 1} is such that
ν(si, ϕfull(s

i, ẑ)) = ẑ, and the transition vectors u : A → Rn are such that ua = 0 if ν(a) = 0 and are given
by (12) if ν(a) = 1, where W̄ ℓ is the matrix stored by the state at the tail of the arc ta.

To simplify the notation, given any arc a ∈ A, we will use νa and ua instead of ν(a) and u(a). We
will also refer to νa and ua as the value assignment and transition vector stored in arc a of the diagram,
respectively.

Example 2. Consider problem (11) with matrix Q given by

(
2 −1 −1
−1 3 −1
−1 −1 2

)
. Figure 3(a) shows the state

transition graph obtained by applying function ϕfull recursively, and Figure 3(b) depicts the transition vectors
stored in the arcs of the diagram. ■

Before formally proving the key properties of the decision diagram generated (Proposition 1), we state
in Remarks 1-3 below some useful observations concerning states and transition vectors.

Remark 1. Departing from standard practices, Dfull does not have associated arc lengths. Indeed, to allow
for real-time execution, the diagram is constructed without observing the linear coefficients c and d in (11).
Instead we store the transition vectors u which as we show later in Proposition 2, are sufficient to compute
lengths once the data c,d are realized. ■

Remark 2. From the definition of the state transition function (13), given any arc a ∈ A with tail and head
states storing matrices given by W̄ ℓ and W̄ ℓ+1, respectively, we find that uau

⊤
a = W̄ ℓ+1−W̄ ℓ. Moreover,

vector u can also be retrieved directly from the ℓ-th column of the head state as ua = W̄ ℓ+1
ℓ /

√
W̄ ℓ+1

ℓℓ ■

Remark 3. From Figure 3 we observe that the sparsity patterns of the diagonal elements of states W ℓ is
different for all nodes in the same layer. In fact, this sparsity pattern corresponds exactly to the sparsity
pattern of the vector z̄ encoded by the path leading to each node. This property, which is not necessarily
evident from the definition of the transition function, holds true in general (and is a direct corollary of
Proposition 1 below). As a consequence, since different paths in the diagram encode different vectors z̄, each
with a unique sparsity pattern, it follows that the number of nodes in the ℓ-th layer is always 2ℓ−1 and Dfull

corresponds to complete enumeration. Clearly, we do not advocate for using Dfull in practice. ■

We now prove the fundamental property associated with Dfull, namely, that the states generated by
transition function ϕfull indeed correspond to pseudo-inverses associated with matrix Q.

Proposition 1. Given any arc-specified path (a1, a2, . . . , aℓ−1) in Gfull such that ta1 = s1 and haℓ−1
= sℓ,

letting W̄ ℓ be the matrix stored by state sℓ and z̄ℓ =
∑ℓ−1

i=1 νaiei be the partial solution represented by the

path, the identity W̄ ℓ =
(
Q ◦ z̄ℓ(z̄ℓ)⊤

)†
holds.
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Figure 3: State transition graph (a) and transition vectors (b) generated for Example 2.

Proof. Observe that since z̄ℓ corresponds to a partial solution with no assignments for variables {zℓ, zℓ+1, . . . , zn},
we have that z̄ℓi = 0 for i ≥ ℓ. We prove the result by induction on the layer ℓ.
Base case If ℓ = 1, then z̄ℓ = 0n and sℓ = 0n×n, and the result is trivially satisfied.
Inductive step Assume that the result holds for sℓ. There are two cases, depending on the assignment
value ẑℓ.
• If ẑℓ = 0, then the result is automatically satisfied since in this case the state does not change (W̄ ℓ+1 = W̄ ℓ)
and z̄ℓ+1 = z̄ℓ.
• If ẑℓ = 1, then

u =
1√

Qℓℓ −
∑n

i=1

∑n
j=1 W̄

ℓ
ijQiℓQjℓ

(
−

n∑
i=1

W̄ ℓ
i Qiℓ + eℓ

)

=
1√

Qℓℓ −
∑n

i=1

∑n
j=1 (Q ◦ z̄ℓ(z̄ℓ)⊤)

†
ij QiℓQjℓ

(
−

n∑
i=1

(
Q ◦ z̄ℓ(z̄ℓ)⊤

)†
i
Qiℓ + eℓ

)
(∵ induction hypothesis)

=
1√

Qℓℓ −
∑ℓ−1

i=1

∑ℓ−1
j=1 (Q ◦ z̄ℓ(z̄ℓ)⊤)

†
ij QiℓQjℓ

(
−

ℓ−1∑
i=1

(
Q ◦ z̄ℓ(z̄ℓ)⊤

)†
i
Qiℓ + eℓ

)
.

(∵ z̄ℓi = 0 for i ≥ ℓ =⇒
(
Q ◦ z̄ℓ(z̄ℓ)⊤

)†
ij
= 0 if max{i, j} ≥ ℓ)

In particular, from Corollary 1,we find that uu⊤ =
(
Q ◦ z̄ℓ+1(z̄ℓ+1)⊤

)† − (Q ◦ z̄ℓ(z̄ℓ)⊤
)†
, where z̄ℓ+1 =

z̄ℓ + eℓ. The identity

W̄ ℓ+1 = W̄ ℓ + uu⊤ =
(
Q ◦ z̄ℓ(z̄ℓ)⊤

)†
+ uu⊤ =

(
Q ◦ z̄ℓ+1(z̄ℓ+1)⊤

)†
9



follows immediately.

Finally, Proposition 2 shows how to solve problem (8) as a shortest path in the (exponentially large)
decision diagram Dfull once the data c,d are realized.

Proposition 2. Given vectors c,d ∈ Rn and a full decision diagram Dfull, define the length of an arc a ∈ A

as la = ctaνta − 1
2

(
d⊤ua

)2
. Then the length of any arc-specified path (a1, a2, . . . , aℓ−1) in Gfull is given by

h(z̄ℓ)
def
= c⊤z̄ℓ + min

x∈Rn

x◦(1−z̄ℓ)=0

{
d⊤x+

1

2
x⊤Qx

}
= c⊤z̄ℓ − 1

2
d⊤ (Q ◦ z̄ℓ(z̄ℓ)⊤

)†
d,

where z̄ℓ =
∑ℓ−1

i=1 νai
ei is the partial solution represented by the path. In particular, any shortest path between

the root and a terminal node corresponds to an optimal solution of (8).

Proof. We do the proof by induction on the layer ℓ.
Base case ℓ = 1 In this case z̄1 = 0n. Defining the empty path as having length 0, the result holds
automatically.
Inductive step We assume the result is true for path (a1, a2, . . . , aℓ−2), corresponding to partial solution
z̄ℓ−1 and where state haℓ−2

stores matrix W̄ ℓ−1, and prove it for the path including arc aℓ−1, depending
on the assignment νaℓ−1

.
Case νaℓ−1

= 0 In this case uaℓ−1
= 0n, and it follows that laℓ−1

= 0. Moreover, since z̄ℓ = z̄ℓ−1, the
result holds by the inductive hypothesis.
Case νaℓ−1

= 1 In this case z̄ℓ = z̄ℓ−1 + eℓ−1. In order to simplify the notation, we denote by (Qℓ)† =(
Q ◦ z̄ℓ(z̄ℓ)⊤

)†
. We find that

h(z̄ℓ) = c⊤z̄ℓ−1 + cℓ−1 −
1

2
d⊤(Qℓ)†d

= c⊤z̄ℓ−1 − 1

2
d⊤(Qℓ−1)†d+ cℓ−1 −

1

2
d⊤ ((Qℓ)† − (Qℓ−1)†

)
d

= h(z̄ℓ−1) + cℓ−1 −
1

2
d⊤ ((Qℓ)† − (Qℓ−1)†

)
d (∵ Induction hypothesis)

= h(z̄ℓ−1) + cℓ−1 −
1

2
d⊤
(
uaℓ−1

u⊤
aℓ−1

)
d (∵ Remark 2)

= h(z̄ℓ−1) + cℓ−1 −
1

2

(
d⊤uaℓ−1

)2
= h(z̄ℓ−1) + laℓ−1

,

concluding the proof.

3.2 Compressing the state space

The dynamic program discussed in §3.1 is valid for any Q ≻ 0, but does not exploit any properties of the
matrix such as the bandwidth, resulting in an exponential growth of the size of the state transition graph.
We now discuss how to refine the state of the dynamic program for settings where matrix Q is a banded
matrix, ultimately leading to a practical algorithm.

Recall the transition function defined in (12)-(13). Observe that, that if Qiℓ = 0, then the i-th column of
W̄ ℓ is irrelevant to the computation of u in (12). Moreover, if Q has bandwidth k, then Qiℓ = 0 whenever
ℓ − i > k, in other words, column i of the state variable can be safely removed from the state for layers
ℓ > k + i. We now present the notion of relevant index, corresponding to the last layer in which a given
column is relevant.

Definition 2 (Relevant index). Given matrix Q and index i ∈ [n], define the relevant index πi ∈ [n] as

πi
def
= max

j∈[n]
{j : Qij ̸= 0}.

10



Since we assume that Q ≻ 0 and therefore Qii > 0 for all i ∈ [n], we find that i ≤ πi. Moreover, if Q is
a banded matrix with bandwidth k, then πi ≤ i + k for all i ∈ [n]. Since Qiℓ = 0 for all ℓ > πi, it follows
that the i-column of W̄ ℓ is irrelevant to the computation of transition vectors u in (12) whenever ℓ > πi.
Moreover, from Proposition 1, we can infer that columns of W̄ ℓ with indexes i ≥ ℓ are zero columns, and
hence are irrelevant as well. Thus, given a state W̄ ℓ, we say that the relevant columns of W̄ ℓ are precisely
the columns corresponding to indexes such that i < ℓ ≤ πi.

We now update the state and transition functions of the dynamic program. We let s1 = {0n×n} and,
given state sℓ =

{
W̄ ℓ

}
and assignment value ẑℓ, let u be defined as in (12) and let the new transition

function be sℓ+1 = ϕ(sℓ, ẑi) =
{
W̄ ℓ+1

}
, where

W̄ ℓ+1
ij =


0 if ℓ ≥ πj

W̄ ℓ
ij if ℓ < πj and ẑℓ = 0

W̄ ℓ
ij + uiuj if ℓ < πj and ẑℓ = 1.

(14)

Observe that the first condition in (14) sets previously computed columns of W̄ ℓ to zero whenever they are
no longer relevant, while the other conditions match those in (13).

Definition 3 (Compressed Decision Diagram). Define the state transition graph G = (N,A) by applying
the state transition function ϕ in (14) recursively, starting from the initial state s1. Define the compressed
decision diagram D = (G,ν,u) as the resulting graph in which each node corresponds to a state, there
is a directed arc (si, ϕ(si, ẑ)) for ẑ ∈ {0, 1}, the value assignment function ν : A → {0, 1} is such that
ν(si, ϕ(si, ẑ)) = ẑ, and the transition vectors u : A → Rn are such that ua = 0 if ν(a) = 0 and are given by
(12) if ν(a) = 1, where W̄ ℓ is the matrix stored by ta.

Example 3. Consider problems with matrix

Q =


4 −1 −1 0 0
−1 4 0 −1 0
−1 0 4 0 −1
0 −1 0 4 −1
0 0 −1 −1 4

 ,

which has bandwidth k = 2. In this case the relevant indexes are given by π⊤ = (3 4 5 5 5). Figure
4 shows the ensuing compressed decision diagram. Observe that, to depict the states, we simply show the
relevant columns at each layer (corresponding to the k most recently computed columns in this case), as the
others are zero by definition. Moreover, we only show for each column the first ℓ−1 rows, as remaining rows
are zero as well. Observe that after k consecutive zero assignments, the relevant columns revert to 0n×k (a
property that is easily shown to be true for any banded matrix), reducing the size of the decision diagram.

Additional reductions occur for this decision diagram: for example, state

 0 0
0 0

0.25 0
0 0

 in layer 5 is reached by

two different paths, and both correspond to value assignments of one in layer 3. In the end, we observe that
the compressed decision diagram has 11 nodes in layer ℓ = 5, while the full decision diagram (Definition 1)
would have 16. In the last layer, all terminal nodes all compressed into a single one automatically since no
columns are relevant at this point. ■

Proposition 3. Given any arc-specified path (a1, a2, . . . , aℓ−1) in G such that ta1
= s1 and haℓ−1

= sℓ,

letting W̄ ℓ be the matrix stored by state sℓ and z̄ℓ =
∑ℓ−1

i=1 νai
ei be the partial solution represented by the

path, the following properties hold true.

1. W̄ ℓ
ij =

(
Q ◦ z̄ℓ(z̄ℓ)⊤

)†
ij

if ℓ ≤ πj and W̄ ℓ
ij = 0 if ℓ > πj

2. uaℓ−1
=
(
Q ◦ z̄ℓ(z̄ℓ)⊤

)
−
(
Q ◦ (z̄ℓ − νaℓ−1

eℓ−1)(z̄
ℓ − νaℓ−1

eℓ−1)
⊤).

In the interest of completeness, we include a formal proof of Proposition 3 in Appendix A. A simple
argument to show why the proposition holds is that compressed decision diagrams are obtained from the full
diagrams by compressing nodes storing states that coincide in the relevant columns, and letting the matrix
obtained by filling the irrelevant columns with zeros be the state stored in the compressed node. Since
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Figure 4: State transition graph (a) and transition vectors (b) generated for Example 3. Last layer and some
transition vectors omitted for clarity. In the graphs, “0” denotes zero, while “0.00” represents a number
0 < ϵ < 0.005.

computations of vectors u are not affected by this procedure since either those columns were not used in the
computations (if ℓ > πi) or the columns already contained zeros (if ℓ ≤ i), the rest of the decision diagram
is not affected by this procedure. Therefore the compressed decision diagrams inherit the stated properties
from the full diagrams. Similarly, since the vectors u stored in the arcs are identical to the ones in the full
diagram, shortest path in compressed diagrams correspond to optimal solutions of (8). We state this fact
succinctly in the next proposition.

Proposition 4. Proposition 2 holds true for compressed decision diagrams.

We close this section with three additional remarks concerning the implementation of the compressed
decision diagrams, the special case arising from tridiagonal Q matrices, and the inclusion of additional
constraints in the diagram.

Remark 4. While we chose to represent for mathematical convenience the state of compressed decision
diagrams as a n×n matrix full of zero entries, as illustrated in Example 3, a better implementation consists
of storing only the relevant columns. In our code we use the more convenient approach of representing the
matrix as n× n dimensional, but using libraries for sparse matrices to handle the mathematical operations.
While this approach might result in a slight overhead versus only storing the relevant columns, it results in
substantially better performance (especially memory-wise) than using standard dense matrices throughout
the algorithm. ■
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Remark 5. In the special case of a tridiagonal matrix (k = 1), where every arc a with value assignments
νa = 0 leads to the same 0 state, the number of nodes in each layer is ℓ+ 1 and the total number of nodes
produced is thus O(n2). ■

Remark 6. If constraints z ∈ Z can be easily represented via dynamic programming, they can be included
in compressed decision diagrams as well by simply storing the state variable associated with the constraints.
For example, to include contiguity constraints as discussed in §2.1, it suffices to include the number of
consecutive nonzero values in the state, and compress states that coincide in the relevant columns of W̄ ℓ

and the value of consecutive nonzeros. ■

3.3 ϵ-exact decision diagrams

Implementing the compressed decision diagrams discussed in §3.2 requires identifying whether two states in
the same layer are equal. Recall that the states correspond to columns of inverses of submatrices of Q. In
theory, and assuming elements of Q are rational, it would be possible to perform all operations with exact
arithmetic, thus accomplishing the compression exactly. Indeed, note that while the computation of u in
(12) involves a square root, updates in (13) and (14) require only matrix uu⊤, hence the square root does
not need to be computed. In practice, however, we use standard, finite-precision, libraries to compute sums,
products and divisions, resulting in roundoff errors. As a consequence, an exact verification of whether two
states are equal is no longer possible. Instead we turn to the concept of indistinguishable states, as defined
next.

Definition 4 (ϵ-Indistinguishable states). Given a decision diagram D, a parameter ϵ ≥ 0, and two states
in the same layer s̄ℓ = {W̄ ℓ} and ŝℓ = {Ŵ ℓ}, the states are ϵ-indistinguishable if

max
j:j≤ℓ≤πj

{
∥W̄ ℓ

j − Ŵ ℓ
j ∥∞

}
≤ ϵ.

Observe that the comparison in Definition 4 is performed only for the relevant columns, as the remaining
ones are zero in the compressed diagram. Interestingly, the definition can be used for complete decision
diagrams Dfull as well. Moreover, two states are 0-indistinguishable in Dfull if and only if the two solutions z̄ℓ

and ẑℓ represented by the unique paths leading to those states in Gfull correspond to paths in the compressed
decision diagram D leading to a same state. In other words, a compressed diagram is obtained by “merging”
0-indistinguishable states in Dfull. Therefore, merging ϵ-indistinguishable states with ϵ > 0 would result in
even smaller decision diagrams, at the cost of incurring approximation errors.

Definition 5 (ϵ-exact decision diagram). An ϵ-exact decision diagram is any decision diagram produced
layer by layer according to Definition 3 and merging ϵ-indistinguishable states (selecting any of the states in
the merge as the representative).

Note that we do not explicitly distinguish whether the decision diagram is complete or compressed, as
the ensuing ϵ-exact diagram is the same (assuming comparisons between states are performed in the same
order). While ϵ-exact decision diagrams are approximations, we use the term “exact” to emphasize that our
original intention is not to artificially reduce their size, but simply to handle numerical imprecisions. In our
computations in §6, we set ϵ = 10−5, matching the default integrality tolerance of off-the-shelf solvers, and
recover in 99% of the problems the same solution as off-the-shelf commercial solvers. In the remaining 1%
of the instances the maximum relative difference between the objective values reported by decision diagrams
and mixed-integer solvers is at most 0.04% – and in some of these instances, the solution obtained from
using decision diagrams is better. These results are presented in detail in Appendix B. In summary, ϵ-exact
decision diagrams can provide solutions as accurate as “exact” MIQO solvers (which are also subject to
numerical imprecisions) provided that ϵ is small enough. Nonetheless we also observed that for values of ϵ
sufficiently small (e.g., ϵ = 10−5 vs ϵ = 10−6) the solutions obtained are essentially identical, but the size of
the diagrams could vary substantially.

13



Example 4. Consider a problem with matrix Q =




5 −1 0 0 0 0 0
−1 5 −1 0 0 0 0
0 −1 5 −1 0 0 0
0 0 −1 5 −1 0 0
0 0 0 −1 5 −1 0
0 0 0 0 −1 5 ∗
0 0 0 0 0 ∗ ∗




, where ∗ are some un-

specified values associated with variable x7. Moreover, consider states at layer ℓ = 7, where only variable z7
remains unassigned. Since the matrix is tridiagonal, πj = j+1 and only the 6th column of the state variable
is preserved in the compressed decision diagrams. Consider the partial solutions (z̄ℓ)⊤ = (1 1 1 1 1 1 0)
and (ẑℓ)⊤ = (0 1 1 1 1 1 0): we find that

(
Q ◦ z̄ℓ(z̄ℓ)⊤

)†
=




0.21 0.04 0.01 0.00 0.00 0.00008 0
0.04 0.22 0.05 0.01 0.00 0.00040 0
0.01 0.05 0.22 0.05 0.01 0.00190 0
0.00 0.01 0.05 0.22 0.05 0.00909 0
0.00 0.00 0.01 0.05 0.22 0.04356 0
0.00 0.00 0.00 0.01 0.04 0.20871 0
0 0 0 0 0 0 0




(
Q ◦ ẑℓ(ẑℓ)⊤

)†
=




0 0 0 0 0 0 0
0 0.21 0.04 0.01 0.00 0.00038 0
0 0.04 0.22 0.05 0.01 0.00189 0
0 0.01 0.05 0.22 0.05 0.00909 0
0 0.00 0.01 0.05 0.22 0.04356 0
0 0.00 0.00 0.01 0.04 0.20871 0
0 0 0 0 0 0 0




,

where in both cases we use “0.00” to represent a positive number < 0.005, “0” to represent zero, and we
highlight in bold and with additional digits the relevant column that defines the state. If ϵ > 8 · 10−5, then
these two states are ϵ-indistinguishable and could be merged together. In practice we observed that merging
states such as the ones presented here has little impact in the quality of the solution, but substantially helps
in controlling the size of the diagram. ■

In Example 4, we saw a case with a tridiagonal matrix where, for ϵ-exact diagrams, the value assignment
made at layer ℓ = 1 could be irrelevant to computations in layer ℓ = 7. In §4 we formalize this intuition for
problems with banded matrices. In particular, we show that for ϵ-exact decision diagrams with ϵ > 0, the
numbers of nodes at each layer can be bounded by a quantity that depends on the precision ϵ, the condition
number of Q and the bandwidth of the matrix, but is independent of the dimension n of the problem.
In other words, if the relevant parameters of the matrix Q are fixed, then the size of an ϵ-exact decision
diagrams is linear in n. Leveraging these insights, we show that it is possible to obtain solutions to problem
(11) with objective at most OPT+ε, where OPT denotes the optimal objective, with runtime polynomial in
n and 1/ε.

4 A fully polynomial time approximation scheme

In this section we derive FPTAS for (1) where the bandwidth k of Q and its condition number are fixed.

Recall that the condition number of Q is denoted by cond(Q) ≜
γmax(Q)

γmin(Q)
, where γmax(Q) and γmin(Q) are

the largest and smallest eigenvalues of Q respectively.

Remark 7. Consider matrices of the form Q = I +R arising in monitoring problems (2), where R encodes
the temporal regularization. The minimum eigenvalue is γmin(Q) = minx:∥x∥2

2=1 ∥x∥22 + x⊤Rx = 1 if R is

given from a k-th order difference (3) with k ≥ 1 or a moving average filter (4), where the constant x∗ = 1√
n
1

is the associated optimal solution. The condition number is thus given by

cond(Q) = γmax(Q) = 1 + λγmax(R̄)

where λ is the smoothness parameter and R̄ corresponds to the temporal filter (excluding λ) in (3) or (4).
In practice, γmax(R̄) is typically small. For example, in the problems with n = 200 with the moving average
filter we use to generate Figure 1, we find γmax(R̄) = 2.87 if k = 2 and γmax(R̄) = 2.78 if k = 3; moreover,
the dense moving average filter with k = 200 yields γmax(R̄) = 2.76. Finally, note that a simple upper bound
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on the maximum eigenvalue when R̄ has bandwidth k is γmax(R̄) ≤ ∥Q∥1
def
= max

i∈[n]

∑
j∈[n]

|Qij | ≤ k max
i,j∈[n]

|Qij |,

although this bound is rarely tight. ■

Throughout this section we will compute upper bounds on the differences between states of compressed
decision diagrams and approximations obtained by merging states (such as ϵ-exact diagrams). Recall that
the states store columns of special pseudoinverses associated with matrix Q, corresponding to inverses of
submatrices and padding remaining elements with zero. In order to use properties of inverses matrices, which
are simpler than corresponding properties of pseudo-inverses, we introduce the following auxiliary definition.

Definition 6 (padding matrix). For a n-dimensional matrix V ⪰ 0 and a subset S ⊆ [n], the padding
matrix V̂S ∈ Rn×n is defined as

(V̂S)ij =


Vij if i, j ∈ S

1 if i = j /∈ S

0 otherwise.

Example 5. Assume n = 5, k = 2, S1 = {1, 2, 4, 5}, S2 = {1, 4, 5} and S3 = {1, 3, 4}, then

V =




∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗


 , V̂S1 =




∗ ∗
∗ ∗ ∗

1
∗ ∗ ∗

∗ ∗


 , V̂S2 =




∗
1

1
∗ ∗
∗ ∗


 , V̂S3 =




∗ ∗
1

∗ ∗ ∗
∗ ∗

1


 .■

Observe that (i) the bandwidth of the padding matrix does not increase; (ii) given z̄ ∈ {0, 1}n and letting

S = {i ∈ [n] : z̄i = 1}, we find that
(
V̂S

)−1

ij
=
(
V ◦ z̄z̄⊤)†

ij
for all i, j ∈ S.

4.1 Effects of one-shot merging

Suppose we have constructed a compressed decision diagram up to layer ℓ, and we proceed to merge ϵ-
indistinguishable nodes in this last layer. We now show that, after merging, the number of nodes in the last
layer is bounded above by a quantity which does not depend on the layer ℓ. The results rely on the following
couple of lemmas. The first lemma, from the literature, states that the magnitude of the off-diagonal elements
of the inverse of a banded matrix decay exponentially with the distance from the diagonal.

Lemma 2 (Demko et al. (1984)). Assume V ∈ Rn×n is a positive definite matrix with bandwidth k. Then
the inequality ∣∣V −1

ij

∣∣ ≤ C0γ
|i−j|

k ∀i, j ∈ [n]

holds, where γ =

√
cond(V )− 1√
cond(V ) + 1

, C0 = max

{
1,
(
1 +

√
cond(V )

)2
/(2 cond(V ))

}
/γmin(V ).

Observe that since cond(V ) ≥ 1, we find that 1/γmin(V ) ≤ C0 ≤ 2/γmin(V ). In monitoring problems,
where the objective matrix satisfies γmin(Q) = 1 (Remark 7), we find that C0 can be simply treated as a
small constant independent of the condition number or other characteristics of the problem.

Note that if V is a positive semidefinite matrix, then for all i, j ∈ [n], |Vij | ≤ Vmax
def
= maxh∈[n] Vhh. The

second lemma establishes that, for a banded matrix V , the difference between the last columns of V −1 and
certain pseudoinverses associated with it is small.

Lemma 3. Let V ∈ Rn×n be a positive definite matrix with bandwidth k partitioned as V =

(
A B⊤

B G

)
,

where A ∈ R(n−m)×(n−m) and G ∈ Rm×m with k < m < n. Then, letting S = {n−m+ 1, . . . , n}, we have
that ∣∣∣∣V −1

ij −
(
V̂S

)−1

ij

∣∣∣∣ ≤

C0γ

j−i
k if 1 ≤ i ≤ n−m, j ≥ n−m+ 1

VmaxC
2
0

(
1−γ

n−m
k

1−γ
1
k

)2

γ
i+j+2m−2n

k if i ≥ n−m+ 1, j ≥ n−m+ 1.
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Proof. By Lemma 1, one has V −1 =
(
(V /G)−1 P

P⊤ G−1 + P⊤(V /G)P

)
, where V /G

def
= A − B⊤G−1B is

the Shur complement of the block G in V and P = −(V /G)−1B⊤G−1. Moreover, define H
def
= V̂ −1

S =(
I 0
0 G−1

)
. By Lemma 2, one has |Pij | ≤ C0γ

j−i
k for all i ∈ [n−m] and j ∈ [m], implying that the conclusion

holds for 1 ≤ i ≤ n−m. If i ≥ n−m+ 1 and j ≥ n−m+ 1, one can deduce that

∣∣V −1
ij −Hij

∣∣ =
∣∣∣∣∣∣
n−m∑
j1=1

n−m∑
j2=1

Pj1i(V /G)j1j2Pj2j

∣∣∣∣∣∣
≤Vmax

n−m∑
j1=1

n−m∑
j2=1

|Pj1iPj2j | (∵ |(V /G)j1j2 | ≤ Ahh ≤ Vmax ∀h)

≤VmaxC
2
0

n−m∑
j1=1

γ
i−j1

k

n−m∑
j2=1

γ
j−j2

k

=VmaxC
2
0

(
γ

i+m−n
k

1− γ
n−m

k

1− γ1/k

)
·
(
γ

j+m−n
k

1− γ
n−m

k

1− γ1/k

)

=VmaxC
2
0

(
1− γ

n−m
k

(1− γ1/k)

)2

γ
i+j+2m−2n

k .

This finishes the proof.

We now show that the number of nodes obtained after merging ϵ-indistinguishable nodes in an arbitrary
layer of a decision diagram is bounded by a quantity independent of the layer. In particular, the proposition
establishes that paths that coincide in the most recent m value assignments, where m is a sufficiently large
number, can be merged into a single node in ϵ-exact diagrams.

Proposition 5. Given a matrix Q with bandwidth k and the associated compressed decision diagram D,
there exists a constant K (that depends only on the minimum and maximum eigenvalues of Q and bandwidth)

such that for any m ≥ k−1+k log(K/ϵ)
| log(γ)| , any two paths representing solutions z̄ℓ+1 and ẑℓ+1 such that ẑℓi = 0

for all i ≤ ℓ−m and z̄ℓi = ẑℓi for all i > ℓ−m lead to ϵ-indistinguishable states.

Proof. Proof First assume that z̄ℓ+1 = 1. Observe that since the matrix has bandwidth k, the relevant
columns have indexes j ≥ ℓ + 1 − k. Then note that the non-zero rows of the state W̄ ℓ+1 associated with
z̄ℓ+1 are given by the relevant columns of the inverse of V = Q[ℓ] (the submatrix of Q corresponding to the

first ℓ indexes). Similarly, the non-zero rows of the state Ŵ ℓ+1 associated with ẑℓ+1 are given by the relevant
columns of the inverse of the padding matrix V̂S where S = {ℓ−m+1, . . . , ℓ}. Then, using Lemma 3 we find

that if 1 ≤ i ≤ ℓ−m and j ≥ ℓ−m+1, then for the relevant columns C0γ
j−i
k ≤ C0γ

(ℓ+1−k)−(ℓ−m)
k = C0γ

1+m−k
k .

Similarly, if i ≥ ℓ−m+ 1 and j ≥ ℓ−m+ 1 then

VmaxC
2
0

(
1− γ

ℓ−m
k

1− γ
1
k

)2

γ
i+j+2m−2n

k ≤VmaxC
2
0

1(
1− γ

1
k

)2 γ (ℓ−m+1)+(ℓ+1−k)+2m−2ℓ
k

=VmaxC
2
0

γ
1
k(

1− γ
1
k

)2 γ 1+m−k
k .
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Letting K = max

{
C0, VmaxC

2
0

γ
1
k(

1−γ
1
k

)2

}
, we find that the two nodes are ϵ-indistinguishable when

Kγ
1+m−k

k ≤ ϵ ⇔1 +m− k

k
log(γ) ≤ log(ϵ/K)

⇔1 +m− k

k
≥ log(ϵ/K)

log(γ)
(∵ γ < 1 =⇒ log(γ) < 0)

⇔m ≥ k − 1 + k
log(ϵ/K)

log(γ)
.

Since γ is a function of the eigenvalues of Q and Vmax ≤ γmax(Q), the claim follows for this case.
To prove the other cases, let S =

{
i ∈ [ℓ] : ẑℓ+1

i = 1
}
, T =

{
i ∈ [ℓ] : z̄ℓ+1

i = 1
}
⊇ S and let U = Q[ℓ].

The result can be obtained in an identical fashion using Lemma 3 with V = ÛT (corresponding to the state
associated with z̄ℓ+1), since V̂S is the state associated with ẑℓ+1.

Corollary 2. Given a matrix Q with bandwidth k and associated (exact) decision diagram D, a complete
merging of ϵ-indistinguishable states at layer ℓ+1 > k results in at most 2k(K/ϵ)k/| log(γ)| nodes in this layer.

Proof. Merging first states that coincide in the most recent m ≥ ⌈k − 1 + k log(K/ϵ)
| log(γ)| ⌉ assignments, where K

is the constant from Proposition 4.1, we find that there are at most 2m nodes in this layer, one for each
possible combination of assignments in the last layers.

We point out, as noted by Demko et al. (1984), that the bounds in Lemma 2 are not tight, thus the
ensuing bounds are also not tight in general and ϵ-exact merging will typically reduce the number of states
by a much larger amount than the bound suggested in Corollary 2. Moreover, we naturally expect this
bound to hold throughout all layers of an ϵ-exact decision diagram and not just for a one-shot merging as
proved above. We indeed observed this phenomenon in our computations, where the number of nodes per
layer stabilizes in a quantity independent of ℓ and n. However, theoretically tracking the states merged
in ϵ-exact diagram is considerably challenging as it is highly dependent on the matrix Q of the problem.
Nonetheless we show that, by altering the state of the decision diagram, we can design an algorithm with
provable optimality guarantees.

4.2 Truncated decision diagrams

Motivated by the observation that ϵ-exact decision diagrams merge states that coincide in the most recent
m value assignments, we define a new class of decision diagrams. We assume throughout this subsection
that the problem is unconstrained, i.e., Z = {0, 1}n.
Definition 7 (m-truncated decision diagram). An m-truncated decision diagram is any decision diagram
produced layer by layer according to Definition 1 and merging states that coincide in the most recent m
values assignments (selecting the state with zero value assignments in the first ℓ − 1 − m layers as the
representative).

An m-truncated decision diagram has at most 2m nodes per layer and thus at most n2m+1 arcs overall.
Theorem 1 below states the main results of this section, namely that truncated diagrams can be used to
design a FPTAS for problem (8), where matrix Q has fixed bandwidth and minimum/maximum eigenvalues.

Theorem 1. Let h∗ be the optimal objective value of problem (11). There exists a constant C that depends
only on the bandwidth k and the minimum/maximum eigenvalue of Q such that the shortest path between

the root and a terminal in an m-truncated decision diagram with m =

⌈
k

| log(γ)| log
(
C∥d∥2∞n

ε

)⌉
has length

h∗
m such that |h∗

m − h∗| ≤ ε.
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Since the number of arcs in the diagram is bounded by n

⌈(
C∥d∥2∞n

ε

)1+ k
| log(γ)|

⌉
, we find that a shortest

path in this problem is indeed polynomial in the dimension n and the precision ∥d∥2∞/ε whenever the
bandwidth k and minimum/maximum eigenvalues of Q are fixed.

From the definition of truncated decision diagrams, we find that Lemma 3 can be used to bound the
differences between states in the complete decision diagram Dfull and m-truncated diagram Dm reached by
paths representing the same solutions. We formally state this fact in Proposition 6.

Proposition 6. Given any partial solution z̄ℓ ∈ {0, 1}n represented by path (a1, a2, . . . , aℓ−1) in a complete
diagram Dfull and path (α1, α2, . . . , αℓ−1) in an m-truncated diagram Dm, and letting W̄ ℓ and Ω̄ℓ be the
states reached by those paths in the complete and truncated diagrams respectively, the bound

∣∣Ω̄ℓ
ij − W̄ ℓ

ij

∣∣ ≤ {C0γ
j−i
k if 1 ≤ i ≤ ℓ−m− 1, j ≥ ℓ−m

C1γ
i+j+2m−2ℓ+2

k if i ≥ ℓ−m, j ≥ ℓ−m
(15)

holds, where C1 = Qmax

(
C0

1−γ
1
k

)2

.

Observe that in the proposition, we used the bound 1 − γ
ℓ−m

k ≤ 1, which is a good approximation if ℓ
is large. We now prove that not only the states stored in the complete and truncated diagrams are similar,
but also the arc lengths computed once the cost vectors c,d ∈ Rn are realized. Recall that the arc lengths
are computed as la = ctaνta − 1

2 (d
⊤ua)

2 where a is an arc in the complete diagram. Similarly, given an
arc α in the truncated diagram, we let lα denote its length in this diagram, which is computed identically.
Proposition 7 states that the differences in the lengths of certain arcs can be bounded.

Proposition 7. Given any solution z̄ ∈ {0, 1}n, let (a1, . . . , an) and (α1, . . . , αn) be the paths representing
this solution in the complete diagram Dfull and the m-truncated diagram Dm, respectively, and define lengths
according to Proposition 2. Then, given any layer ℓ ∈ [n] the inequality

|laℓ
− lαℓ

| ≤ C∥d∥2∞γm/k,

holds, where C
def
=

C0Qmax (2C0 + 2C1 + C0C1Qmax) γ
1/k

2(1− γ1/k)2
.

Proof. Let W̄ ℓ and Ω̄ℓ be the matrix stored by the state haℓ−1
and hαℓ−1

in D and Dm, respectively. The
conclusion trivially holds if either z̄ℓ = 0 since |laℓ

− lαℓ
| = 0 or ℓ ≤ m+ 1 since no truncation is performed

in this case. Thus, we assume ℓ ≥ m+ 2 and z̄ℓ = 1. By definition, one has

|laℓ
− lαℓ

| =1

2

∣∣∣(d⊤uαℓ

)2 − (d⊤ua

)2∣∣∣ = 1

2

∣∣d⊤ (uαℓ + uaℓ) · d⊤ (uαℓ − uaℓ)
∣∣ . (16)

In the following, we bound each multiplier in (16). First observe that from Remark 2 we find that uaℓ =

W̄ ℓ+1
ℓ /

√
W̄ ℓ+1

ℓℓ , where W̄ ℓ+1 def
=
(
Q ◦ ẑẑ⊤)† and ẑ

def
=
∑ℓ

i=1 z̄iei. Moreover, letting ẑm+1 def
=
∑ℓ

i=ℓ−m z̄iei

and Ω̄ℓ+1 def
=
(
Q ◦ ẑm+1

(
ẑm+1

)⊤)†
, we find that Ω̄ℓ+1 = Ω̄ℓ + uαℓu

⊤
αℓ

and uαℓ = Ω̄ℓ+1
ℓ /

√
Ω̄ℓ+1

ℓℓ . In

addition, we note that 1/Qmax ≤ W̄ ℓ+1
ℓℓ , Ω̄ℓ+1

ℓℓ ≤ 1/γmin(Q).

• Define S = {i ∈ [ℓ] : z̄i = 1} and Sm+1 =
{
i : ẑm+1

i = 1
}
. Note that Sm+1 ⊆ S. Since

|(uaℓ)i| =
∣∣W̄ ℓ+1

iℓ

∣∣ /√W̄ ℓ+1
ℓℓ =

∣∣∣∣(Q̂S

)−1

iℓ

∣∣∣∣ /√W̄ ℓ+1
ℓℓ ≤ C0√

W̄ ℓ+1
ℓℓ

γ
ℓ−i
k ∀i ∈ [ℓ], (∵ Lemma 2)

we deduce that

∣∣d⊤uaℓ

∣∣ = ∣∣∣∣∣
ℓ∑

i=1

di (uaℓ)i

∣∣∣∣∣ ≤ ∥d∥∞
C0√
W̄ ℓ+1

ℓℓ

ℓ∑
i=1

γ
ℓ−i
k ≤ C0∥d∥∞

√
Qmax

1− γ1/k
.
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With identical arguments applied to Sm+1, we can prove that

ℓ∑
i=1

∣∣Ω̄ℓ+1
iℓ

∣∣ ≤ C0

1− γ1/k
and

∣∣d⊤uαℓ

∣∣ ≤
C0∥d∥∞

√
Qmax

1− γ1/k
. Thus,

∣∣d⊤ (uαℓ + uaℓ)
∣∣ ≤ ∣∣d⊤uaℓ

∣∣+ ∣∣d⊤uαℓ

∣∣ ≤ 2C0∥d∥∞
√
Qmax

1− γ1/k
. (17)

• To bound
∣∣d⊤ (uaℓ − uαℓ)

∣∣, we find that

∣∣d⊤ (uαℓ − uaℓ)
∣∣ = ∣∣∣∣∣

ℓ∑
i=1

di

(
W̄ ℓ+1

iℓ /

√
W̄ ℓ+1

ℓℓ − Ω̄ℓ+1
iℓ /

√
Ω̄ℓ+1

ℓℓ

)∣∣∣∣∣
≤∥d∥∞

ℓ∑
i=1

∣∣∣∣(W̄ ℓ+1
iℓ − Ω̄ℓ+1

iℓ

)
/

√
W̄ ℓ+1

ℓℓ + Ω̄ℓ+1
iℓ

(
1/

√
W̄ ℓ+1

ℓℓ − 1/

√
Ω̄ℓ+1

ℓℓ

)∣∣∣∣
≤∥d∥∞

 ℓ∑
i=1

∣∣W̄ ℓ+1
iℓ − Ω̄ℓ+1

iℓ

∣∣ /√W̄ ℓ+1
ℓℓ +

∣∣∣∣√W̄ ℓ+1
ℓℓ −

√
Ω̄ℓ+1

ℓℓ

∣∣∣∣√
W̄ ℓ+1

ℓℓ

√
Ω̄ℓ+1

ℓℓ

ℓ∑
i=1

∣∣Ω̄ℓ+1
iℓ

∣∣
 .

Observe that (from the first part of the proof) we find that
∑ℓ

i=1

∣∣Ω̄ℓ+1
iℓ

∣∣ ≤ C0

1−γ1/k . Moreover,

1/
√
W̄ ℓ+1

ℓℓ ≤ √
Qmax and 1/

(√
W̄ ℓ+1

ℓℓ

√
Ω̄ℓ+1

ℓℓ

)
≤ Qmax. In addition,

√
W̄ ℓ+1

ℓℓ −
√
Ω̄ℓ+1

ℓℓ =
W̄ ℓ+1

ℓℓ −Ω̄ℓ+1
ℓℓ√

W̄ ℓ+1
ℓℓ +

√
Ω̄ℓ+1

ℓℓ

.

Using these substitutions and bounds, we find that
∣∣d⊤ (uαℓ − uaℓ)

∣∣ is less or equal than
∥d∥∞

√Qmax

(
ℓ−m−1∑
i=1

∣∣W̄ ℓ+1
iℓ − Ω̄ℓ+1

iℓ

∣∣+ ℓ∑
i=ℓ−m

∣∣W̄ ℓ+1
iℓ − Ω̄ℓ+1

iℓ

∣∣)+
C0Qmax

1− γ1/k

∣∣W̄ ℓ+1
ℓℓ − Ω̄ℓ+1

ℓℓ

∣∣√
W̄ ℓ+1

ℓℓ +
√
Ω̄ℓ+1

ℓℓ


≤∥d∥∞

[√
Qmax

(
ℓ−m−1∑
i=1

C0γ
ℓ−i
k +

ℓ∑
i=ℓ−m

C1γ
i+2m−ℓ+2

k

)
+

C0Q
3/2
max

2(1− γ1/k)
C1γ

2m+2
k

]
(Proposition 6)

≤∥d∥∞
[√

Qmax

(
C0

γ
m+1

k

1− γ1/k
+ C1

γ
m+2

k

1− γ1/k

)
+

C0Q
3/2
max

2(1− γ1/k)
C1γ

2m+2
k

]

≤∥d∥∞
√
Qmax (2C0 + 2C1 + C0C1Qmax)

2(1− γ1/k)
γ

m+1
k , (18)

where the last inequality is due to γ ≤ 1. Plugging the bounds (17) and (18) in (16), we conclude that

|laℓ
− lαℓ

| ≤ 1

2

2C0∥d∥∞
√
Qmax

1− γ1/k

∥d∥∞
√
Qmax (2C0 + 2C1 + C0C1Qmax)

2(1− γ1/k)
γ

m+1
k = C∥d∥2∞γm/k,

finishing the proof.

Since the lengths of corresponding arcs in both diagrams are similar, we can conclude that the shortest
in both diagrams also has similar length.

Corollary 3. Let h∗ and h∗
m be the lengths of the shortest paths between roots and a terminal node in the full

diagram Dfull and truncated diagram Dm, respectively, with arc lengths defined according to Proposition 2.
Then the inequality |h∗ − h∗

m| ≤ C∥d∥2∞nγm/k holds.
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Proof. Assume (a1, . . . , an) is a shortest path in Dfull, and let (α1, . . . , αn) be the path in Dm representing
the same solution. Then h∗ =

∑n
ℓ=1 laℓ

and h∗
m ≤∑n

ℓ=1 lαℓ
, implying

h∗
m − h∗ ≤

n∑
ℓ=1

(lαℓ
− laℓ

) ≤
n∑

ℓ=1

C∥d∥2∞γm/k = C2∥d∥2∞nγm/k,

where the last inequality is due to Proposition 7. Using the same argument, one can prove the other direction
h∗ − hm

∗ ≤ C∥d∥2∞nγm/k.

We can now conclude the proof of Theorem 1.

Proof. ( Theorem 1) Following from Corollary 3, it is sufficient to set m such that C∥d∥2∞nγm/k ≤ ε, leading
to the result.

5 Convexification

So far, the main focus has been in solving problem (1). In this section, we show that the construction
of the decision diagram is equivalent to the convexification of the constraints of the problem, that is, the
convexification of set

XQ,Z
def
=
{
(x, z, x0) ∈ Rn × {0, 1}n × R : x0 ≥ x⊤Qx, x ◦ (1− z) = 0, z ∈ Z

}
in an extended space. Let D = (G, ν,u) with G = (N,A) be the compressed decision diagram obtained
according to Definition 3 with a potentially enlarged state space to include constraints z ∈ Z, as discussed
in Remark 6. Recall that given an arc a ∈ A, ha, ta ∈ N denote the head and tail of the arc and ℓ(a) denotes
the layer from which the arc emanates, thus eℓ(a) ∈ {0, 1}n is the vector that has a one in position ℓ(a) and
0 elsewhere. Given a node v ∈ N , we denote by ℓ(v) the layer in which the node is. Moreover, in this section
we adopt the convention that 0/0 = 0 and c/0 = +∞ if c > 0. The next theorem states that the closure of
the convex hull of XQ,Z admits an extended SOCP-representable formulation whose number of additional
variables is linear in the number of arcs in the decision diagram.

Theorem 2. Point (x, z, x0) ∈ conv(XQ,Z) if and only if there exist r,w ∈ RA such that the system

x0 ≥
∑
a∈A

w2
a

ra
(19a)

x =
∑
a∈A

uawa (19b)

z =
∑

a∈A:νa=1

eℓ(a)ra (19c)

∑
a∈A:ha=v

ra =
∑

a∈A:ta=v

ra ∀v ∈ N : 2 ≤ ℓ(v) ≤ n (19d)

∑
a∈A:ℓ(a)=1

ra = 1;
∑

a∈A:ℓ(a)=n

ra = 1; r ≥ 0 (19e)

has a solution.

Intuitively, variables r in (19) indicate whether an arc in the decision diagram is used by a given solution.
Conditions (19d)-(19e) state that variable r is in the convex hull of all paths between the root in layer ℓ = 1
and a node in the last layer ℓ = n+1; conditions (19c) link paths and the indicator variables represented by
the paths; terms w2

a/ra in (19a) explicitly enforce the logical condition “ra = 0 =⇒ wa = 0”, and implicitly
enforce the indicator constraints “zi = 0 =⇒ xi = 0” as well; finally, (19a)-(19b) ensure that x0 ≥ x⊤Qx
is satisfied.

The rest of this section is devoted to the proof of Theorem 2. The proof relies on the following recent
result.

20



Lemma 4 (Wei et al. (2024)). If Q ≻ 0, then

conv(XQ,Z) =
{
(x, z, x0) ∈ R2n+1 : ∃W ∈ Rn×nsuch that

(
x0 x⊤

x W

)
⪰ 0, (z,W ) ∈ conv(PQ,Z)

}
where PQ,Z

def
=
{
z ∈ Z, W ∈ Rn×n : W =

(
Q ◦ zz⊤)†} .

Lemma 4 indicates that the characterization of the non-polyhedral set cl conv(XQ,Z) reduces to describing
the polytope conv(PQ,Z) (defined as the convex hull of a finite set of points). The first step of our proof is
thus to show that we can obtain an explicit description of conv(PQ,Z) from D.

Proposition 8. A point (z,W ) ∈ conv(PQ,Z) if and only if there exists r ∈ RA satisfying (19c)-(19e) such
that W =

∑
a∈A uau

⊤
a ra.

Proof. (Proposition 8) Note that

PQ,Z =

{
(z,W ) : ∃r ∈ {0, 1}A s.t. W =

∑
i∈A

(
uau

⊤
a

)
ra, (19c)− (19e)

}
.

Indeed, there is a one to one correspondence between points z ∈ Z and paths in G. Moreover, any path in G
corresponds to a binary point satisfying (19d)-(19e). Constraints (19c) force z to be the solution represented

by the path, and the condition
∑

a∈A

∑
a∈A uau

⊤
a ra =

(
W ◦ zz⊤)† follows from the second statement in

Proposition 3 and cancelling out the terms in the telescoping sum induced by vectors u in the path.
Now observe that the extreme points of the polytope P̄ =

{
(z,W , r) : W =

∑
i∈A

(
uau

⊤
a

)
ra, (19c)− (19e)

}
are precisely the binary points (in r) satisfying the constraints. Indeed, any extreme point is the unique
optimal solution of an optimization problem of the form

min
(z,W ,r)∈P̄

α⊤x+ β⊤r +

n∑
i=1

n∑
j=1

ΓijWij ,

where (α,β,Γ) are properly chosen. Using the equality constraints to project out (z,W ) we can rewrite
the problem as linear optimization over variables r over constraints (19d)-(19e): since those constraints are
totally unimodular, the optimal solution is binary in r. Since projrP̄ is a relaxation of PQ,Z , and the extreme
points of P̄ are precisely the points in PQ,Z , it follows that conv(PQ,Z) = projrP̄ .

Equipped with Proposition 8, we can conclude the proof of the theorem.

Proof. Proof of Theorem 2 From Lemma 4 and Proposition 8, we find that an extended formulation for
cl conv(XQ,Z) is given by (

x0 x⊤

x W

)
⪰ 0, W =

∑
a∈A

uau
⊤
a ra, (19c)− (19e). (20)

SinceW is defined via an equality constraint as the sum of given rank-one matrices multiplied by nonnegative
variables, we immediately find (Nesterov and Nemirovskii 1994, pp 227-229) that an SOCP representation
of the set is (19).

6 Computations

In this section we present computational results with financial time series data. In §6.1 we present the
instances used, in §6.2 we discuss the methods used, and in §6.3 and §6.4 we present the results in offline and
online settings, respectively. We did not observe any major numerical difficulties, and report in Appendix B
results concerning the numerical precision of methods tested.
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6.1 Instances

Given a signal y ∈ Rn, smoothness parameter λ ∈ R+, sparsity parameter µ ∈ R+, width parameter k ∈ Z+

and contiguity parameter τ ∈ Z+, we consider inference problems with a moving average filter and constraints
on the number of contiguous nonzero values as described by constraints (6), that is, problems of the form

min
x,z,ζ

n∑
i=1

(yi − xi)
2 + λ

n∑
i=2

xi −
1

min{k, i− 1}

min{k,i−1}∑
j=1

xi−j

2

+ µ

n∑
i=1

zi (21a)

s.t. (6a)− (6d) (21b)

x ∈ Rn, z ∈ {0, 1}n, ζ ∈ {0, 1}n+1−τ . (21c)

By convention we let (21) with τ = 0 be the problem with no contiguity constraints, that is, obtained by
removing constraints (6a)-(6d) and variables ζ. The signal y are obtained from financial data, as described
next. Time periods where xi ̸= 0 and zi = 1 in optimal solutions of (21) correspond to high-volatility
periods, which correlate with economic downturns (Campajola et al. 2022).

Dataset

We use the financial data provided by Boris Marjanovic in Kaggle 1 to construct inputs y. The original
data contains the daily price for all US-based stocks and ETFs trading on the NYSE, NASDAQ, and NYSE
MKT from 1990 and 2017. We then process the data as follows:

• We only keep the stocks and ETFs who traded in at least 99% of the days reported. For missing days,
we set the price to be the same as the price for the most recently reported day.

• We compute the daily changes in the stocks and ETFs. The resulting dataset, containing 214 securities
and 7,022 time periods, can be found online at https://sites.google.com/usc.edu/gomez/data.

From this data, we construct the instances as follows, depending on the setting.

Offline setting In this setting, the goal is to solve problem (21) once. Given the dimension parameter n and
a security of interest, we create a signal y ∈ Rn by partitioning the time horizon in n epochs corresponding
each to ⌊7, 022/n⌋ days (the last 7, 022 − ⌊7, 022/n⌋n observations are discarded), and yi is set to be the
average daily change of the chosen security in the i-th epoch. Finally, data are standardized so that ∥y∥22 = 1
and

∑n
i=1 yi = 0.

Online setting In this setting, we use the disaggregated signal yfull ∈ R7022, standardized so that
∥yfull∥22 = 1 and

∑7022
i=1 (yfull)i = 0. Then, letting yt ∈ R200 denote the 200-dimensional subvector of

yfull starting at position t, that is, yt1+i = (yfull)t+i for 0 ≤ i ≤ 199, the goal is to sequentially solve (21)
to optimality for all signals yt, t = 1, . . . , 6823. This experiment emulates the situation where data is made
available one datapoint at the time, and a decision-maker resolves the filtering problem (21) on the fly to
quickly detect high-volatility moments.

6.2 Methods and metrics

We compare the following methods for offline settings.
• Mosek Mosek 10.0 branch-and-bound solver, formulating (21) using the perspective reformulation as

∥y∥22 + min
x∈Rn,z∈{0,1}n

ζ∈{0,1}nt∈Rn
+

n∑
i=1

(−2yixi + ti) + λ

n∑
i=2

xi −
1

min{k, i− 1}

min{k,i−1}∑
j=1

xi−j

2

+ µ

n∑
i=1

zi

s.t. x2
i ≤ tizi ∀i ∈ [n]

(6a)− (6d).

1https://www.kaggle.com/datasets/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
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The number of threads is set to one and a time limit of 1,800 seconds is imposed, and the default settings are
used otherwise. For this method we compute the solution time in seconds (timeouts count as 1,800 seconds),
the number of branch-and-bound nodes explored until proving optimality or the time limit is reached, and
the percentage of instances solved to optimality.

• Decision diagram Solving problem (21) by constructing a 10−5-exact decision diagrams according to
Definition 5. We also set a time limit of 1,800 seconds, and abort the construction of the diagram if the time
limit is reached. We report the number of arcs |A| of the diagram, the time in seconds used to construct
the decision diagram (time dd) –time limits count as 1,800 seconds–, the time in seconds required to solve
the problem as a shortest path problem after construction of the diagram(time sp), and the percentage
of instances solved; finally, we also report the time required to solve the SOCP relaxations ensuing from
Theorem 2 using Mosek (time hull).

For online settings, where each run requires the solution of 6,823 MIO problems to optimality, it is not
realistic to use Mosek. Thus, we only report the times associated with constructing the decision diagram
once (which can be done offline) and then solving each online problem as a shortest path problem in the
same diagram with updated length vectors, as discussed in Propositions 2 and 4.

6.3 Results in offline settings

We first presented aggregated results across all combinations of parameters, then discuss how each method
is impacted by the choices of hyperparameters.

6.3.1 Aggregated results

Table 1 shows aggregated results comparing the two different methods in an offline setting. Specifically, the
table shows for different values of dimension n and contiguity parameter τ the metrics of interests. Each row
represents an average over five different signals and parameters k ∈ {2, 3}, λ ∈ {0.25, 0.50, 1.00, 2.00, 5.00}
and µ ∈ {0.001, 0.005, 0.010, 0.020, 0.050, 0.100}; thus, each row is an average over 300 different instances.
The results are summarized in the performance profiles shown in Figure 5.

Table 1: Computational results as a function of the number of variables n and minimum number of
consecutive nonzeros τ . Each row represents an average over 5 different signals y, k ∈ {2, 3}, λ ∈
{0.25, 0.50, 1.0, 2.00, 5.00} and µ ∈ {0.001, 0.005, 0.010, 0.020, 0.050, 0.100}. Each entry shows the average
“±” the standard deviation across all instances tested. All times are in seconds.

τ n
Mosek Decision diagram SOCP

time nodes % |A| time dd time sp % time hull

0

25 0±0 38±103 100% 15,057±18,895 1±0 0±0 100% 0±1
50 1±4 400±1,626 100% 42,052±57,233 2±3 0±0 100% 3±7
100 136±413 18,227±58,041 96% 96,032±133,949 24±38 0±0 100% 26±67
200 344±661 8,662±17,537 85% 203,992±287,397 212±324 0±0 100% 78±191
300 399±709 4,332±8,602 82% 311,952±440,849 461±603 0±0 93% 138±362
500 502±773 1,188±2,081 75% 119,549±77,521 601±422 0±0 65% 7±7

5

25 0±0 31±46 100% 1,753±1,524 0±0 0±0 100% 0±0
50 1±2 206±467 100% 5,543±6,068 1±0 0±0 100% 0±0
100 89±334 3,379±12,044 97% 13,118±15,164 4±5 0±0 100% 1±1
200 279±594 3,016±6,534 88% 28,268±33,360 49±61 0±0 100% 2±3
300 340±664 2,595±5,922 84% 43,418±51,557 87±113 0±0 100% 2±4
500 365±687 826±1,746 82% 73,718±87,951 459±508 0±0 94% 3±6

10

25 0±0 14±20 100% 622±312 0±0 0±0 100% 0±0
50 0±1 103±222 100% 2,195±1,903 1±0 0±0 100% 0±0
100 31±165 1,590±9,160 100% 5,360±5,150 2±1 0±0 100% 0±0
200 276±600 2,616±5,985 88% 11,690±11,645 23±22 0±0 100% 1±1
300 325±658 1,846±4,320 84% 18,020±18,140 44±50 0±0 100% 1±1
500 331±666 468±1,110 84% 30,680±31,131 259±287 0±0 100% 1±2

Observe that the main cost associated with the decision diagram approach is the construction of the
diagram itself, while the cost of solving the shortest path problem is negligible. Moreover, the decision
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Figure 5: Percentage of instances solved as a function of time. The graph summarizes results across 5,400
instances with all combinations of parameters. Mosek solves more instances within a few seconds, but
struggles with harder instances, while decision diagrams methods are more effective in the harder instances.

diagram approach is competitive with Mosek in all settings, but is particularly effective in constrained
instances with large values of τ . Overall, while Mosek seems to be more effective at solving some instances
fast (these instances have large values of sparsity parameter µ, see §6.3.2 for an in-depth analysis), using
decision diagrams leads to more instances solved within the 1,800 time limit, and are faster in instances that
require more than 300 seconds to solve. Finally, we point that the SOCP reformulation can for the most
part be solved within a few seconds, although computational times increase to minutes when the decision
diagrams have over 200,000 arcs (see case τ = 0, n ∈ {200, 300} in Table 1).

6.3.2 Effect of the sparsity parameter

Figure 6 shows, for instances with n = 200, the distribution of runtimes of both methods as a function of the
sparsity parameter. We observe that the performance of Mosek depends critically on the sparsity parameter
µ. When this parameter is large, a branch-and-bound algorithm can easily identify that dense solutions are
suboptimal and prune the corresponding branch-and-bound nodes in the tree. In contrast, for small values of
this parameter, there are more and denser solutions that achieve good objective values and Mosek struggles
to identify an optimal one.

𝜇 = 0.050𝜇 = 0.020𝜇 = 0.010𝜇 = 0.001 𝜇 = 0.005

Figure 6: Distribution of runtimes of Mosek (red) vs Decision diagram (blue) for n = 200 as a function of the
sparsity parameter µ. Each boxplot represents an average over 5 different signals y with n = 200, k ∈ {2, 3}
and λ ∈ {0.25, 0.50, 1.0, 2.00, 5.00}.

On the other hand, parameter µ, which affects the objective linearly, plays no role in the construction of
the decision diagrams. Indeed, as shown in Figure 6, the time to solve the problems via decision diagrams
is approximately the same for all values of the sparsity parameter. As a consequence, using our current
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implementation of the decision diagrams, it is not possible to identify and quickly solve easy instances
due to large values of the sparsity parameter. Nonetheless, our implementation of decision diagrams is an
order-of-magnitude faster than Mosek in the most challenging instances with µ = 0.001.

6.3.3 Effect of other hyperparameters and cross-validation

Table 2 shows, for instances with n = 200 and for different values of parameters τ , k and λ, the performance
of the different methods. Each row corresponds to the average over five different signals y and six different
values of sparsity parameter µ. In particular, the computations corresponding to each row mimic a cross-
validation procedure to select the best sparsity parameter.

Table 2: Breakdown for n = 200, as a function of the width k, smoothness parameter λ and
contiguity parameter τ . Each row represents an average over 5 different signals y and µ ∈
{0.001, 0.005, 0.010, 0.020, 0.050, 0.100}. The decision diagram method is able to solve all instances to opti-
mality. The decision diagram constructed for all 30 instances averaged in each row is identical: using decision
diagrams, the 30 instances could be solved by constructing the decision diagram once (incurring a one-time
setup cost of time dd) and solving the shortest path problem 30 times (with negligible variable cost time sp).

τ k λ
Mosek Decision diagram SOCP

time nodes % |A| time dd time sp time hull

0

2

0.25 47±130 1,119±3,004 100% 10,965±0 7±1 0±0 0±0
0.5 421±741 7,628±13,572 83% 16,749±0 12±1 0±0 0±0
1.0 457±759 15,250±26,760 77% 30,963±0 23±4 0±0 1±0
2.0 474±769 11,672±19,010 77% 51,923±0 44±6 0±0 2±0
5.0 351±677 8,571±16,533 83% 88,491±0 79±14 0±0 4±1

3

0.25 18±45 373±848 100% 56,789±0 55±9 0±0 2±1
0.5 280±563 5,920±12,841 93% 107,591±0 104±23 0±0 6±2
1.0 511±780 14,590±23,573 77% 233,917±0 248±58 0±0 29±6
2.0 471±762 11,448±18,690 77% 478,889±0 524±112 0±0 125±26
5.0 408±720 10,048±17,800 83% 963,643±0 1,026±268 0±0 611±190

5

2

0.25 136±298 1,434±3,205 100% 3,124±0 5±1 0±0 0±0
0.5 367±681 3,675±6,815 83% 5,420±0 8±2 0±0 0±0
1.0 364±680 3,505±6,543 83% 8,440±0 12±2 0±0 0±0
2.0 319±675 3,571±8,169 83% 13,136±0 19±2 0±0 1±0
5.0 304±681 3,779±8,687 83% 23,141±0 35±3 0±0 1±0

3

0.25 92±200 946±2,071 100% 11,289±0 20±3 0±0 0±0
0.5 194±431 2,789±5,331 97% 15,442±0 26±6 0±0 1±0
1.0 386±685 3,703±6,576 83% 30,520±0 54±4 0±0 1±0
2.0 327±674 4,261±8,957 83% 53,325±0 93±11 0±0 3±1
5.0 304±681 2,499±5,591 83% 118,842±0 214±10 0±0 12±1

10

2

0.25 125±230 1,355±2,522 100% 3,661±0 7±1 0±0 0±0
0.5 331±672 3,497±7,506 83% 3,846±0 8±1 0±0 0±0
1.0 325±673 2,775±5,786 83% 4,766±0 10±2 0±0 0±0
2.0 289±636 3,897±9,178 87% 6,431±0 12±2 0±0 1±0
5.0 303±681 2,081±4,809 83% 11,903±0 21±1 0±0 1±0

3

0.25 145±330 1,458±3,223 100% 5,693±0 13±3 0±0 0±0
0.5 348±672 2,908±5,827 83% 6,439±0 15±3 0±0 0±0
1.0 322±674 2,712±5,623 83% 10,310±0 23±3 0±0 1±0
2.0 287±630 3,296±7,513 90% 20,398±0 39±3 0±0 1±0
5.0 285±648 2,181±5,171 87% 43,448±0 84±3 0±0 2±0

Since the averages in each row are taken over parameters concerning the linear coefficients of the objective,
which do not influence the construction of the decision diagram, the ensuing diagram is the same for all
instances. In particular, during cross-validation, the decision diagram needs to be constructed only once and
then can be reused with minimal cost. In contrast, to solve these instances with Mosek, repeated calls to a
branch-and-bound solver need to be done, with limited potential for reoptimization. We also observe that, as
expected, decision diagrams are substantially more effective for smaller values of the regularization parameter

25



λ (leading to better conditioned matrices) and width parameter k. As observed previously, decision diagrams
are also more effective for heavily constrained instances with larger values of parameter τ .

One of the main advantages of decision diagram approaches is the capabilities of reoptimization, as
shown in Table 2 and, later, with computations in the online setting in §6.4. Nonetheless, we emphasize
that they can improve upon off-the-shelf solvers even in the context of a single instance. Figure 7 depicts
the time required to solve each individual instance with n = 200 from scratch using either Mosek or via
decision diagrams. We see that even in unconstrained instances, where decision diagrams are less effective,
the method is competitive with Mosek: Indeed, while Mosek is able to solve some instances (with large values
of µ) almost instantly, it also hits time limits in several instances. Decision diagrams, on the other hand,
are able to solve all instances consistently, and are competitive with the off-the-shelf solver. In constrained
instances with τ ∈ {5, 10}, using decision diagrams clearly results in better performance, solving all instances
to optimality within 300 seconds, and faster than Mosek in most cases.
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(a) Unconstrained instances: τ = 0
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(b) Constrained Instances with τ ∈ {5, 10}

Figure 7: Plots comparison solution times of all instances with n = 200. Each dot corresponds to an
instance, with the horizontal coordinate representing the time used by Mosek and the vertical coordinate
corresponding to the time used by the decision diagram method.

6.4 Results in online settings

Table 3 shows results for the online setting, using the same hyperparameters combinations as in the offline
setting. The table shows for each combination of parameters the number of arcs of the decision diagram
|A| and the setup time time dd (corresponding exactly to the offline setting), the average time per instance
time sp and the total time time total required to solve all 6,823 instances online (not including setup time).
All times reported are in seconds. The results are also summarized in Figure 1 in the introduction.

Table 3: Online instances, each one requiring the sequential solution of 6,823 MIOs (21) with n = 200
(corresponding, for each point, to the most recent 200 observations).

k λ
Setup time Online time

|A| time dd (s) time sp(s) time total(s)

2

0.25 10,965 7 0.001 7
0.5 16,749 11 0.002 11
1.0 30,963 24 0.004 30
2.0 51,923 32 0.006 43
5.0 88,491 62 0.013 88

3

0.25 56,789 40 0.007 48
0.5 107,591 81 0.016 107
1.0 233,917 184 0.035 239
2.0 478,889 409 0.079 539
5.0 963,643 864 0.185 1,261
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Decision diagrams are able to solve the problems in milliseconds. In instances with k = 2 and λ small,
the solution times per instance can be as small as one millisecond per instance. Even in instances with larger
k and λ, the solution times are under 0.2 seconds on average and under 0.4 seconds in the worst case.
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A Proofs

Proof. (Proposition 3) We prove the result by induction. To simplify the notation, for any depth ℓ and

indexes i, j ∈ [n] we let (Qℓ)† =
(
Q ◦ z̄ℓ(z̄ℓ)⊤

)†
, we denote by W̄ ℓ

i and (Qℓ)†i denote the i-th columns of

W̄ ℓ and (Qℓ)†, respectively, and by (Qℓ)†ij the (i, j)-th entry of (Qℓ)†.

Base case If ℓ = 1, sℓ = {0n×n} and the properties are trivially satisfied.
Inductive step Assume that the results hold for path (a1, a2, . . . , aℓ−1), and we prove them for path
(a1, a2, . . . , aℓ−1, aℓ). There are three cases, depending on the depth ℓ and the assignment ẑℓ.
• If ℓ ≥ πj ⇔ ℓ+ 1 > πj , then W̄ ℓ+1

ij = 0.
• If ℓ < πj ⇔ ℓ+ 1 ≤ πj and ẑℓ = 0, then

W̄ ℓ+1
ij = W̄ ℓ

ij = (Qℓ)†ij = (Qℓ+1)†ij ,

where the first equality follows since the state does not change, the second equality follows due to the
induction hypothesis, and the third equality follows since ẑℓ = 0 =⇒ z̄ℓ = z̄ℓ+1. Thus the first property is
satisfied. Moreover, in this case u = 0, also satisfying the second property.
• If ℓ < πj ⇔ ℓ+ 1 ≤ πj and ẑℓ = 1, then we find that

u =
1√

Qℓℓ −
∑n

p=1

∑n
q=1 W̄

ℓ
pqQpℓQqℓ

(
−

n∑
q=1

W̄ ℓ
qQqℓ + eℓ

)

=
1√

Qℓℓ −
∑n

p=1

∑
q∈[n]:πq≥ℓ(Q

ℓ)†pqQpℓQqℓ

−
∑

q∈[n]:πq≥ℓ

(Qℓ)†qQqℓ + eℓ

 (∵ induction hypothesis)

=
1√

Qℓℓ −
∑n

p=1

∑n
q=1(Q

ℓ)†pqQpℓQqℓ

(
−

n∑
q=1

(Qℓ)†qQqℓ + eℓ

)
. (∵ Qqℓ = 0 for πq < ℓ)

From this point the proof is identical to the corresponding step in Proposition 1: from Corollary 1, we find

that uu⊤ =
(
Q ◦ z̄ℓ+1(z̄ℓ+1)⊤

)†−(Q ◦ z̄ℓ(z̄ℓ)⊤
)†
, where zℓ+1 = zℓ+eℓ, thus proving the second property.

The first property follows immediately.

B On numerical precision

In this section we comment on the numerical precision of the proposed methods. Note that, in general,
methods for MIQO are subject to precision errors, and the proposed approach is no exception. In particular,
the ϵ-exact decision diagrams introduce round-off errors due to merging of states that, although close, are
not equal. To evaluate the magnitude of the precision errors introduced, we compare the solutions obtained
by the proposed method and with those reported by Mosek, and report two metrics. We report the relative
objective gap computed as objdd−objmsk

objmsk
, where objdd and objmsk are the objective values reported by the

decision diagram and Mosek, respectively. We also report the relative solution gap computed as

c⊤zdd − 1
2d

⊤ (Q ◦ zddz⊤
dd

)†
d− c⊤zmsk + 1

2d
⊤ (Q ◦ zmskz

⊤
msk

)†
d

c⊤zmsk − 1
2d

⊤
(
Q ◦ zmskz⊤

msk

)†
d

,

where zdd and zmsk are the solutions found by the decision diagram and Mosek, respectively. Note that
in the second metric we are manually verifying the objective value associated with the solution reported
by each solver. Figure 8 reports the distribution of these two metrics across the 4,827 instances that both
methods solved to optimality in our computational experiments.

Both figures show the difference of quality between the two approach is minimal. In 99.0% of the
instances the solution gap is zero, that is, the solutions reported by both methods are identical. Moreover,
in 99.7% of the instances the solution gap between the approaches is less than 10−4 (the default optimality
gap tolerance for Mosek): in other words, the solutions produced by decision diagrams could be certified by
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Figure 8: Numerical precision comparison between decision diagrams and Mosek mixed-integer solver.

Mosek as optimal in a vast majority of the instances. We point out that in inference problems such as (2)
the matrices involved are relatively well-conditioned, see Remark 7. As a consequence our code, even though
it does not implement any advanced numerical techniques to control numerical errors, still delivers optimal
solutions in almost all cases.

We now turn our attention to solutions produced by the convex reformulation in Theorem 2. Observe that
solutions produced by this method could be subject to two additional sources of numerical errors. First, the
formulation involves vectors u themselves instead of outer products of these vectors, hence the computation
of the square root results in unavoidable round-off errors (interestingly, the intermediate SDP reformulation
(20) does not have this issue). Second, since this solution is then obtained by using a nonlinear solver, the
method is affected by the numerical precision of the solver. We point out that the SOCP formulations are
large, involving anywhere from a few thousand to close to a million additional variables: even modern codes,
that deliver extremely high-quality solutions in problems with hundreds of variables, can struggle to avoid
round-off errors with problems of this size. Finally, although not a numerical precision error, we point out
that in instances with multiple optimal solutions, interior point methods for SOCPs would tend to deliver
one that is in the interior of the convex hull of the set of optimal solutions: this solution might not be integral
in variables z.

Figure 9 presents the relative objective and solution gaps resulting from solving (1) via a shortest path
on the decision diagram vs solving the convex reformulation ensuing from Theorem 2. These metrics are
computed in the same fashion, but objmsk and zmsk are replaced with the objective and solution obtained
from the convex reformulation instead of the mixed-integer optimization solver. In 94.9% the solution gap is
exactly zero, showing that the convex reformulation produces optimal solution in a majority of the instances
as well. However, in 1.7% of the instances, the convex reformulation produces a solution with solution gap
smaller than -1%, thus suboptimal by a noticeable margin. We conclude that using the proposed shortest
path method to solve problems with decision diagrams is not only faster, but results in more precise solutions
as well.
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Figure 9: Numerical precision comparison between decision diagrams and Mosek solving the convex refor-
mulation induced by Theorem 2.
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